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Abstract. Sediment transport dynamics were studied dur-
ing ice-free conditions under different atmospheric circu-
lation regimes on the Laptev Sea shelf (Siberian Arctic).
To study the interannual variability of suspended particu-
late matter (SPM) dynamics and their coupling with the vari-
ability in surface river water distribution on the Laptev Sea
shelf, detailed oceanographic, optical (turbidity and Ocean
Color satellite data), and hydrochemical (nutrients, SPM, sta-
ble oxygen isotopes) process studies were carried out contin-
uously during the summers of 2007 and 2008. Thus, for the
first time SPM and nutrient variations on the Laptev Sea shelf
under different atmospheric forcing and the implications for
the turbidity and transparency of the water column can be
presented.

The data indicate a clear link between different surface dis-
tributions of riverine waters and the SPM transport dynamics
within the entire water column. The summer of 2007 was
dominated by shoreward winds and an eastward transport of
riverine surface waters. The surface SPM concentration on
the southeastern inner shelf was elevated, which led to de-
creased transmissivity and increased light absorption. Sur-
face SPM concentrations in the central and northern Laptev
Sea were comparatively low. However, the SPM transport
and concentration within the bottom nepheloid layer in-
creased considerably on the entire eastern shelf. The sum-
mer of 2008 was dominated by offshore winds and northward
transport of the river plume. The surface SPM transport was
enhanced and extended onto the mid-shelf, whereas the bot-
tom SPM transport and concentration was diminished. This

study suggests that the SPM concentration and transport, in
both the surface and bottom nepheloid layers, are associ-
ated with the distribution of riverine surface waters which
are linked to the atmospheric circulation patterns over the
Laptev Sea and the adjacent Arctic Ocean during the open
water season. A continuing trend toward shoreward winds,
weaker stratification and higher SPM concentration through-
out the water column might have severe consequences for the
ecosystem on the Laptev Sea shelf.

1 Introduction

The Arctic summer sea ice cover is continuously decreasing
as a result of climate change, accelerating in the record min-
ima in September 2007 (e.g. Serreze et al., 2007; Comiso
et al., 2008; Kwok et al., 2009) and 2012 (National Snow
and Ice Data Center;http://nsidc.org). Climate models em-
ploying medium future greenhouse gas emissions predict that
the Arctic Ocean will be seasonally ice-free by the end of
this century (e.g. Bóe et al., 2009; Tietsche et al., 2011).
Larger open water areas due to reduced sea ice cover on the
vast Siberian continental shelves in summer are expected to
lead to increased sediment resuspension and coastal erosion,
due to larger wind fetch and wave heights (e.g. Eicken et
al., 2005; Carmack et al., 2006). Additionally, annual Arc-
tic river discharge may increase by 10–20 % under a dou-
bled CO2 scenario (ACIA, 2005), accompanied by increased
loads of freshwater (Zhang et al., 2012) as well as suspended
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Figure 1 724 

 725 

726 
Fig. 1.Bathymetric map of the Laptev Sea shelf and the locations of
the presented stations. Red circles indicate measuring sites during
TRANSDRIFT XII expedition (22 August–22 September 2007) and
green circles during TRANSDRIFT XIV (5–21 September 2008).
The location of bottom-mooring station Anabar and Khatanga are
marked by a blue and a yellow star, respectively. The solid line
marks the cross-shelf section shown in Fig. 4.

and dissolved matter to the Arctic ecosystem. The export of
turbid waters from rivers and coastal regions could enhance
the delivery of nutrients to microalgal populations, but could
also impair photosynthesis by scattering and absorbing sun-
light (Retamal et al., 2008). A detailed understanding of the
pathways of suspended particulate matter (SPM) is critical
in order to draw the connection between sediment dynamics,
optical properties and ecosystem dynamics under a changing
climate.

The Laptev Sea shelf hydrography is strongly dominated
by river discharge from the River Lena, with an annual fresh-
water input of 600–700 km3 (e.g. Ĺetolle et al., 1993; R-
ArcticNET, 2011). The riverine influence reveals a strong
seasonality with highest freshwater input during and briefly
after the spring breakup in June (Pivovarov et al., 1999).
In summer the shelf hydrography functions like an estuar-
ine system that derives its water and material from both
terrestrial and oceanic sources (e.g. Wegner et al., 2005).
The spatial distribution of the Lena River freshwater plume
shows a strong interannual variability, mainly associated with
positive and negative phases of atmospheric vorticity over
the adjacent Arctic Ocean in summer (Guay et al., 2001;
Dmitrenko et al., 2005; Bauch et al., 2009). The vorticity
index is defined by Walsh et al. (1996): During a negative
phase, when the mean summer atmospheric circulation is
predominantly anticyclonic, the freshwater plume spreads

northwards onto the Laptev Sea shelf (Dmitrenko et al.,
2008). During positive vorticity anomalies and cyclonic at-
mospheric circulation, the riverine surface waters are trans-
ported eastward (Dmitrenko et al., 2008). It can be assumed
that the surface distribution of SPM during open water sea-
son is closely connected to the distribution of the riverine
surface waters. However, the relationship between SPM, nu-
trients and the distribution of riverine freshwater as well as
the impact of turbidity on the ecosystem has not yet been
established.

Even though the Arctic shelf seas are important in the con-
text of climate change, especially regarding the increased
export of turbid waters onto the shelves and their effect on
primary productivity, there are only few field studies which
focused on optical properties, mainly in the Canadian Arc-
tic (e.g. Vasseur et al., 2003; Retamal et al., 2007, 2008),
the northern North Atlantic and in the Greenland Sea (e.g.
Stramska et al., 2003; Lund-Hansen et al., 2010). Histori-
cal measurements of SPM on the Laptev Sea shelf during
the open water season are limited: Anoshkin et al. (1995)
and Antonow et al. (1997) used hydro-optical measuring de-
vices, which produced only relative values of SPM concen-
tration on the Laptev Sea shelf, since in situ calibration of
the hydro-optical data was not available at the time. These
authors and others (Hoelemann et al., 1995; Burenkov et
al., 1997; Lisitsin et al., 2000; Wegner et al., 2003, 2005)
described the existence of two nepheloid layers, i.e. layers
with increased SPM concentration. The formation and con-
centration of the surface nepheloid layer are mainly related
to the abundance of phytoplankton and zooplankton (e.g.
Abramova and Tuschling, 2005). However, in the vicinity of
the Lena Delta the surface SPM concentration is strongly
dependent on river discharge (e.g. Burenkov et al., 1997;
Wegner et al., 2003). Most of the sediment transport is tak-
ing place in the bottom nepheloid layer. It is permanently
present during the open water season with decreasing SPM
concentrations from south to north and particles are likely
introduced by river input, coastal erosion or resuspension of
bottom material (Burenkov et al., 1997; Lisitsin et al., 2000;
Wegner et al., 2003, 2005).

To study the interannual variability of SPM on the
Laptev Sea shelf, detailed oceanographic, optical, and hy-
drochemical surveys were carried out during the TRANS-
DRIFT XII and XIV expeditions in the summers 2007 and
2008 within the Russian-German cooperation “Laptev Sea
System”, (Kassens et al., 2010; Fig. 1). In addition, two
year-long oceanographic moorings equipped with Acoustic
Doppler Current Profilers (ADCP), as well as with temper-
ature, salinity, and turbidity recorders were deployed north
of the Lena Delta to study oceanographic processes in the
frontal zone between the river- and shelf-dominated waters
(Fig. 1). For a better spatial resolution of transparency and
attenuation in the water column, we employed Ocean Color
satellite data (MERIS onboard ENVISAT).

Biogeosciences, 10, 1117–1129, 2013 www.biogeosciences.net/10/1117/2013/
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Figure 2: 727 

 728 

729 Fig. 2. Average sea level pressure (slp [hPa]) and prevailing wind directions during August to September 2007 and 2008. NCEP Reanalysis
data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website athttp://www.esrl.noaa.gov/psd/.

Our field studies coincided first, with the anomalous sea
ice extent (Stroeve et al., 2012) and maximum Siberian
river discharge (Shiklomanov and Lammers, 2010) in sum-
mer 2007, and second, covered two summers with opposite
atmospheric circulation patterns over the Laptev Sea: cy-
clonic circulation in summer 2007 and anticyclonic circula-
tion in 2008 (Abrahamsen et al., 2009; Fig. 2). This unique
data set enables us for the first time to analyze and discuss
the interannual variations in SPM dynamics on the Laptev
Sea shelf under different atmospheric forcing and their im-
plication for optical properties.

2 Material and methods

2.1 Suspended matter and turbidity measurements

A seapoint turbidity meter connected to a CTD (Conduc-
tivity Temperature Depth Meter; SBE19plus, Seabird, USA)
was used in order to collect water column turbidity, salin-
ity, and temperature measurements at a total of 177 sta-
tions during TRANSDRIFT XII and XIV expeditions in Au-
gust/September 2007 and 2008. The turbidity meter emits
light of 880 nm wavelength with a sampling rate of 10 s−1.
It detects light scattered by particles within the water column
and generates an output voltage proportional to particles in
the water column. The output is given in Formazine Turbidity
Unit (FTU), a calibration unit based on formazine as a refer-
ence suspension. Generally samples within the upper 1.50 m
may be biased by air bubbles (Johnson et al., 2000; Puleo et
al., 2006) and were hence discarded.

A total of 434 water samples of 0.5 L each were collected
from different water depths to obtain the SPM concentrations
by using the traditional filtering and weighing procedures and
to calibrate the optical backscatter. All SPM concentrations
obtained from water samples (SPMfilter) ≤ 0.3mg L−1 were
set to 0.3 mg L−1, as the elutable portion of the used filters
(MILLIPORE Durapore membrane filters∅ 0.45 microns)
is <0.3 mg L−1. All turbidity measurements were correlated
with corresponding in situ water samples to obtain accuracy

by taking the effects of different mineralogy, varying particle
darkness, and salinity of ambient water on the response of the
turbidity meter into account (Maa et al., 1992; Sutherland et
al., 2000).

Additionally the ADCP’s echo intensity of the bottom-
mooring stations Anabar and Khatanga (see below) have
been used as a relative measure for SPM concentration with
increased echo intensity, indicating increased SPM concen-
tration (e.g. Gartner and Cheng, 2001; Wegner et al., 2006).
As the intensity of the backscattered acoustic signal (echo in-
tensity) provides information on particle concentration, AD-
CPs have gained acceptance for the measurements of SPM
transport dynamics (e.g. Holdaway et al., 1999; Rose and
Thorne, 2001; Wegner et al., 2006).

2.2 Current measurements and the estimation of
threshold current velocity

We analyzed current speed and direction for September 2007
and 2008, obtained with downward-looking ADCPs (WH-
Sentinel 1200 kHz, RD-Instruments) at the bottom-mooring
stations Anabar and Khatanga (Kassens at al., 2010). Current
profiles were collected in 30 min intervals and a bin size of
0.2 m, and resolved the depths between 27.42–31.62 m (An-
abar) and 38.42–42.62 m (Khatanga) in 2007 and between
28.11–32.71 m (Anabar) and 38.11–42.71 m (Khatanga) in
2008. For a detailed description of the ADCP data, refer to
Hoelemann et al. (2011) and Janout et al. (2013).

To examine the implications of currents for sediment
transport, the ADCP data of the long-term mooring stations
Anabar and Khatanga, respectively were used to estimate the
threshold current velocity for incipient grain motion (ucr):

ucr = 7

(
z

d50

)1/7
(g (s − 1)d50θcr)

1/2 ,

wherez is the depth of flow,d50 the median grain diameter,
g the acceleration due to gravity,s is the relative density, and
θcr the threshold shields parameter by Soulsby and White-
house (1997). To estimateucr, grain-size characteristics of

www.biogeosciences.net/10/1117/2013/ Biogeosciences, 10, 1117–1129, 2013
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Table 1.Positions, median grain size (d50) for the surface samples after Lindemann (1994), threshold shields parameter (θcr), and threshold
current velocity for incipient grain motion (ucr) in the vicinity of the respective long-term mooring stations.

Surface samples
Position of surface samples

Water depth [m] Long-term mooring d50 [8] θb
cr ucr [cm s−1]c

Lat. Long.

IK93 42-5a 74◦30.3′ N 127◦19.8′ E 34 Anabar 4 0.135 34.63d

IK93 56-11 75◦ N 123◦ E 42 Khatanga 3.5 0.108 39.82d

a Kassens and Karpiy (1994);b estimated following Soulsby (1997);c estimated following Soulsby and Whitehouse (1997);c z = 1.5mab

surface samples were used (Table 1) according to Lindemann
(1994).

2.3 Oxygen and silicate measurements

Water sampling for silicate (Si) and dissolved oxygen (DO)
concentration was carried out with Niskin bottles. During
both expeditions water samples for DO concentration of
100 mL each were subsampled into glass bottles, fixed by
sequential adding of 1 mL of manganese chloride and 1 mL
of potassium iodide/sodium hydroxide solution. The sam-
ple was mixed until the evenly distributed precipitate was
formed. After precipitating, it was dissolved by the addi-
tion of 2 mL of sulfuric acid. The DO content was deter-
mined by titration with sodium thiosulphate using automatic
burette ABU-80 following the modified Winkler method
(Oradovsky, 1993).

During TRANSDRIFT XII in summer 2007 water sam-
ples for silicate were subsampled in 50 mL plastic bot-
tles, frozen under−20◦C and analyzed photometrically
with a SKALAR Sun Plus nutrient autoanalyzer (in range:
2–100 ppb); this was completed within one month in the
Otto-Schmidt Laboratory, St. Petersburg, Russia, applying
“Skalar” methods (US Environmental Protection Agency,
1983). During TRANSDRIFT XIV silicate water samples
were subsampled in 125-mL plastic bottles, added to Nessler
cylinders at 35 mL for silicate analysis. In silicate samples,
1 mL of mixed reagent was added first. After a 10-min
exposure, 1 mL oxalic and 1 mL of ascorbic acid solution
were added sequentially to the sample. Samples were ana-
lyzed after a 30-min exposure with photo-colorimeter FC-3
(Oradovsky, 1993).

2.4 Riverine fraction of sea water

Water sampling for stable oxygen isotope (δ18O) was con-
ducted with Niskin bottles in parallel to hydrochemical sam-
pling. Sampling procedure and data analysis are described in
detail by Bauch et al. (2010, 2013). The combined interpreta-
tion of δ18O composition of the water and salinity allows for
the quantification of the different freshwater contributions in
polar regions, i.e. river water and sea ice (Bauch et al., 1995).
Both δ18O and salinity are conservative tracers only altered
by phase transitions. River water in the Arctic is highly de-

pleted in itsδ18O stable oxygen isotope composition (Cooper
et al., 2008) relative to marine waters. The contribution of
sea ice processes can be separated from any mixture between
marine and river water since it strongly influences salinity,
whereas theδ18O signal remains nearly unaltered (Melling
and Moore, 1995).

The river water and sea ice meltwater contributions can
be quantified by applying a mass-balance calculation, which
has been carried out in numerous studies in Arctic Ocean
basins (e.g.̈Ostlund and Hut, 1984; Bauch et al., 1995; Ek-
wurzel et al., 2001; Yamamoto-Kawai et al., 2008) and shelf
regions (Macdonald et al., 1995; Cooper et al., 1997; Bauch
et al., 2005). Thereby it is assumed that each sample is a
mixture between marine water (fmar), river runoff (fr) and
sea ice meltwater (fi). Based on measurement precision and
range of endmember values, calculated river water fractions
are derived within±1 %. For further details on the method
and selection of endmembers refer to Bauch et al. (2010).

2.5 Ocean color satellite measurements

For summer 2007 and 2008 ENVISAT-MERIS data of ar-
eas with minimum cloud coverage were processed towards
optical higher level parameters using Beam-Visat4.9© and
the MERIS case2 regional processor (C2R). C2R uses neu-
ral network procedures for the retrieval of the atmospheri-
cally corrected water leaving reflectance and to derive appar-
ent optical parameters such as attenuation coefficients (k),
the penetration depth (Z90) and calculated concentrations
(chlorophyll, total suspended matter, and colored dissolved
organic matter). The calculated optical MERIS C2R param-
eters such as minimum attenuation within the photosynthet-
ically active radiation (PAR), wavelength region,kmin, and
Z90, over which the seawater layer contributes 90 % of the ra-
diant energy emerging from the sea (Gordon and MacCluney,
1975), are useful indicators for transmissivity. For a detailed
description of the ocean color satellite measurements refer to
Heim et al. (2013).

Biogeosciences, 10, 1117–1129, 2013 www.biogeosciences.net/10/1117/2013/



C. Wegner et al.: Sediment transport on the Laptev Sea shelf 1121

3 Results

3.1 Distribution of the river plume and associated SPM
and nutrient dispersion

The surface salinity of the Laptev Sea shelf is strongly in-
fluenced by the high freshwater discharge of the River Lena
and therefore comparably low throughout the shelf. Surface
silicate concentrations>10 µmol L−1 are generally consid-
ered a good indicator for the distribution of riverine waters
during ice-free conditions (Rusanov et al., 1994; Pivovarov
et al., 2004). According to the surface silicate distribution
the river plume in 2007 was limited to latitudes between
75.5◦ N on the eastern shelf and 74.3◦ N north of the Lena
Delta (Fig. 3b). However, during summer 2008 surface sili-
cate concentrations>10 µmol L−1 were observed as far north
as 77.5◦ N on the eastern Laptev Sea shelf, and 76.5◦ N on the
shelf area north of the Lena Delta (Fig. 3e). As an alternative
proxy for the identification of riverine waters in the Laptev
Sea we applied theδ18O/salinity-based water mass analysis,
a well-established method for the Laptev Sea shelf (Bauch
et al., 2005, 2009, 2010). A river water fraction of about
50 % in the surface waters marks the boundary between river-
and shelf-dominated waters. Accordingly, Lena River waters
spread no further than 74.3◦ N in summer 2007 (Fig. 3c). In
2008 waters containing river water fractions<50 % spread
up to 76.5◦ N on the eastern shelf, and up to 75.3◦ N in the
central Laptev Sea (Fig. 3f). Thus, silicate andδ18O-based
definitions of river-influenced surface waters show the same
principal pattern with further northwards spreading of the
river plume during summer 2008 compared to 2007.

We used our vertically interpolated SPM concentration
data to map the extent and thickness of the Lena River plume,
characterized by SPM concentrations of>1 mg L−1. In 2007,
the turbid surface waters of the Lena River plume with a
maximum SPM concentration of 9.1 mg L−1 showed a north-
wards extent to∼75◦ N, with a 10.9 m surface nepheloid
layer in the vicinity of the Lena Delta (Fig. 4a). In 2008, the
turbid surface waters extended further north (76.8◦ north of
the Lena Delta and 77.8◦ N on the eastern shelf), although the
surface nepheloid layer was thinner (2.6 m) and SPM con-
centrations lower (4.2 mg L−1) than in 2007 (Fig. 4e).

The bottom nepheloid layer during summer 2007 was very
prominent, with a maximum thickness of 11.4 m (Fig. 4a).
On the eastern inner shelf, maximum bottom SPM con-
centrations were 59 mg L−1 and coincided with a maxi-
mum Si concentration of 31.4 µmol L−1 and a minimum
DO-concentration of 5 µmol L−1 (Fig. 4a, c, d). A sec-
ond bottom SPM maximum, with concentrations up to
17.2 mg L−1, was observed within the frontal zone between
the riverine surface waters and the shelf waters, coincid-
ing with maximum in Si-concentration of 24.8 µmol L−1

and DO-minimum of 5.5 µmol L−1 (Fig. 4a–d; section dis-
tance 300 km). During summer 2008, the bottom nepheloid
layer reached a thickness of up to 10.6 m, although SPM

Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer - Wegner et al.  
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Figure 3 730 

 731 

732 
Fig. 3.The surface distribution of salinity (a, d; [psu]), silicate con-
centration (b, e; [µmol L−1]), andδ18O-derived river water fraction
fr (c, f; [%]) indicates the different spreading of river-dominated
surface waters during TD XII (summer 2007) and TD XIV (sum-
mer 2008).

concentrations were four times lower (Fig. 4e). The first
maximum of 12.2 mg L−1, coinciding with a maximum in
Si-concentration of 32 µmol L−1 and a minimum in DO-
concentration of 5 µmol L−1, was observed on the eastern in-
ner shelf (Fig. 4e, g, h; section distance 0 km). A second bot-
tom SPM maximum of 7.06 mg L−1, coinciding with max-
imum Si-concentrations of 29 µmol L−1 and minimum DO-
concentrations of 6.1 µmol L−1, was measured beneath the
riverine surface waters north of the Lena Delta (Fig. 4e–h;
section distance 300 km).

3.2 Interannual variability of optical water column
properties

Evaluation of optical properties reveals distinct differences
between 2007 and 2008. A strong correlation between turbid-
ity meter measurements and filter measurements was found

www.biogeosciences.net/10/1117/2013/ Biogeosciences, 10, 1117–1129, 2013
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Figure 4 733 

 734 

735 Fig. 4. A south–north section across the eastern Laptev Sea shelf during TD XII (summer 2007; sampling period in Julian days: 241–255)
and TD XIV (summer 2008; sampling period in Julian days: 249–258) showing the distribution of SPMoptic concentration (a, e; [mg L−1]),

salinity (b, f; [psu]), silicate concentration (c, g; [µmol L−1]), and dissolved oxygen (d, h; [µmol L−1]). As density on Arctic shelf seas is
mainly determined by salinity, salinity instead of density is shown here.

in both years in agreement with previous studies on the
Laptev Sea shelf (Burenkov et al., 1997; Lisitsin et al., 2000;
Wegner et al., 2003; Fig. 5). In summer 2008, the linear re-
lation between the optical backscatter intensityI in SPM
concentration (SPMoptic) can be expressed as SPMoptic =

0.683+ 0.739I . This regression corresponds to measure-
ments from summer 2000 (Wegner et al., 2003), a summer
with prevailing southerly winds and a northward transport
of the Lena freshwater plume similar to 2008. However, dur-
ing the cyclonic summer 2007, characterized by the eastward
spreading of riverine waters, the linear relation betweenI

and SPMoptic concentration was different for stations south
and north of 75◦ N (Fig. 5a, b): SPMoptic = 0.456+ 0.867I
for stations north of 75◦ N, and SPMoptic = 0.858+ 1.772I
for stations south of 75◦ N. The slope of the correlation for
stations south of 75◦ N is two times steeper than the slope of
the correlation found north of 75◦ N. In general, the inten-
sity of the backscattered infrared light of the turbidity me-
ter is primarily a function of SPM concentration in front of
the sensor (e.g. Hatcher et al., 2000; Hatje et al., 2001). Be-
sides SPM concentration, sediment size has a secondary ef-

fect on the backscatter signal (e.g. Sutherland et al., 2000;
Downing, 2006). For silty sediments, the optical backscatter
is about one-tenth higher than for sandy sediments (Suther-
land et al., 2000; Downing, 2006). The absorption of light by
colored dissolved organic matter (CDOM) might addition-
ally affect the measured voltage of the turbidity meters due
to the reduced light energy incident on scattering particles,
as well as backscattered intensity (Downing, 2006). During
summer 2007, the turbid Lena River waters were spread only
on the inner eastern shelf, whereas in summer 2008 these
waters were spread over a larger area (Fig. 4a, e). It can be
assumed that the eastward transport of the turbid freshwater
plume during summer 2007 lead to more turbid waters, with
potentially higher grain sizes and therefore different optical
properties on the inner shelf than on the shelf region north
of 75◦ N. This explains why it is necessary to apply two dif-
ferent algorithms for the inner and outer shelf regions during
cyclonic atmospheric conditions and an associated eastward
transport of the freshwater plume.

A similar pattern is reflected in the transmissivity data
of the MERIS satellite images. The 2007 MERIS C2R data

Biogeosciences, 10, 1117–1129, 2013 www.biogeosciences.net/10/1117/2013/
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Figure 5 736 

 737 

738 Fig. 5. Linear relation between concentrations derived from filtered water samples (SPMfilter) [mg L−1] and optical backscatter measure-
ments in Formazine Turbidity Units [FTU] in September 2007 (a: north of 75◦ N: R2

= 0.949; p = 0.01; n = 101; b: south of 75◦ N:
R2

= 0.889;p = 0.01;n = 86) and in 2008 (c: R2
= 0.96;p = 0.01;n = 154).

Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer - Wegner et al.  
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Figure 6 739 

 740 

741 Fig. 6. ESA MERIS acquisition of the central southern Laptev Sea on 24 August 2007(a) and 12 August 2008(b) showing the different
attenuation patterns in summer 2007 and 2008. The parameters are processed using MERIS Case 2 Regional C2R processor (attenuation:
m−1). Land and clouds are masked in black.

show south-eastwards intrusion of transparent water masses
(kmin<= 0.3 m−1) and well-developed turbidity fringes
around the Lena River delta and the shallows (Fig. 6a). In
contrast, in 2008, the optical water masses in the whole
Laptev Sea Region are considerably less transparent (kmin∼

0.5 m−1; Fig. 6b).

3.3 Bottom currents and echo intensity

During September 2007, mooring Anabar was located di-
rectly within the frontal zone between river- and shelf-
dominated waters, while in 2008 this region was entirely
dominated by Lena River waters. Mooring Khatanga was lo-

cated west of the riverine surface waters during both years.
Generally, peaks in echo intensity coincided with peaks in
currents at both mooring stations. Current velocities and echo
intensity at Anabar were higher compared to Khatanga, as
seen in both maximum and mean values during both years
(Table 2). During September 2007 currents and echo in-
tensity were stronger than during 2008 (Table 2, Fig. 7).
Maximum current speeds of 59.8 cm s−1 were recorded si-
multaneously with maximum echo intensity at Anabar dur-
ing September 2007 following a storm event (Fig. 7). This
was the only period when currents exceeded the critical
shear stress velocity and therefore resuspension of bottom
material took place. Thus it can be assumed that sediment
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Figure 7 742 

 743 

744 
Fig. 7.Time series of one-day average wind speed [m s−1] and direction (a, b), 6-h running mean current speed [cm s−1], and echo intensity
[dB] during August to September 2007 and 2008 at bottom moorings Anabar (c, d) and Khatanga (e, f). Current directions are given
for the peaks in echo intensity when most sediment transport is assumed to take place. The directions are one-day averaged u- and v-
current components. NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at
http://www.esrl.noaa.gov/psd/. The grey shaded area marks the measuring period of the section in Fig. 4.

entrainment due to resuspension of bottom material takes
place mainly after storm events. The predominant mode of
transport in this area is suspended load. During 2007 high
bottom currents, coinciding with peaks in echo intensity
at both moorings, were associated with southwesterly high
speed winds (Fig. 7). Bottom currents during these periods
were directed towards northeast. In contrast, the predomi-
nant bottom current direction at mooring Anabar during pe-
riods with high bottom currents and peaks in echo intensity
in 2008 was southwest (Fig. 7). Only during one period was
a peak in echo intensity detected when bottom currents were
low (Fig. 7d). This is associated to a storm event with wind
from north. Therefore turbid bottom waters were probably
advected from the inner shelf area, causing higher SPM con-
centration in the bottom nepheloid layer.

4 Discussion

During the summer 2007, the surface salinity over the eastern
Laptev Sea shelf exceeded the climatic mean by∼ 2 standard
deviations (Dmitrenko et al., 2010), likely associated with
the eastward wind-forced diversion of the Lena River fresh-
water plume because of a low sea level-pressure cell cen-
tered over the central Laptev Sea. The mean (0–15 m) salin-
ity along the cross-shelf transect was 24.6 in 2007 and 17.9 in
2008 (Fig. 4), while the lower layer (>20 m) salinities were

nearly similar, hence stratification in 2008 was far stronger
than in 2007. As opposed to 2007, when only a small pro-
portion of riverine waters was transported onto the mid- and
outer shelf, much of the shelf was dominated by the Lena
River plume in summer 2008. This is consistent with sta-
tistical evaluations of historical ocean data by Dmitrenko et
al. (2008), who suggest that approximately 500–600 km3 of
freshwater is lost from the eastern Siberian shelf towards the
deep Arctic Ocean through the northeastern Laptev Sea dur-
ing anticyclonic summers. During cyclonic summers it is as-
sumed that the freshwater is equally distributed between the
Laptev and the east Siberian seas.

The transport of SPM in the upper water column is clearly
linked to the distribution of the riverine surface waters. This
is reflected in the overall SPM surface concentration of the
surface nepheloid layer as well as in the spatial distribution of
turbid waters. In general, the surface nepheloid layer on the
Laptev Sea shelf is mainly related to the abundance of phy-
toplankton and zooplankton (e.g. Abramova and Tuschling,
2005). However, in the river-dominated shelf region, the sur-
face layer is composed of both SPM and algal material (Bu-
renkov et al., 1997; Wegner et al., 2003). Direct (SPMfilter) as
well as indirect SPM measurements (SPMoptic) clearly reflect
the same concentration and distribution patterns. SPMoptic
concentration in the surface layer (upper 12 m) on the inner
shelf was considerably higher in 2007 and exceeded the mean
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Table 2.Summary of current speed [cm s−1] and echo intensity of the acoustic backscatter [dB] as a relative measure of SPM concentration
at the bottom mooring stations Anabar and Khatanga for September 2007 and 2008 at different depth levels.

Bottom mooring Time Bin/depth Current speed max Mean current speed Echo intensity max
mm/dd/yy [cm s−1] [cm s−1] [dB]

Anabar, 1200 kHz 09/03-09/30/07 bin 1/27.42 m 59.8 12.16 207
4.58 mab

bin 13/29.82 m 58.9 11.34 178
2.18 mab

bin 22/31.62 m 41.5 8.64 176
0.38 mab

Khatanga 1200 kHz 09/03–09/31/07 bin 1/38.42 m 25.0 8.78 182
5.2 mab

bin 13/40.82 m 24.8 8.26 150
2.18 mab

bin 22/42.62 m 20.0 7.1 154
0.38 mab

Anabar 1200 kHz 09/12–09/30/08 bin 1/28.11 m 27.3 9.03 192
4.89 mab

bin 13/30.51 m 28.2 7.55 166
2.49 mab

bin 24/32.71 m 23.4 7.14 166
0.29 mab

Khatanga 1200 kHz 09/12–09/30/08 bin 1/38.11 m 23.0 8.07 183
4.89 mab

bin 13/40.51 m 20.0 7.2 150
2.49 mab

bin 24/42.71 m 20.0 6.54 130
0.29 mab

SPMoptic concentration in 2008 by a factor of 2 (Fig. 4a, e).
But on the other hand, the surface nepheloid layer in the
anticyclonic summer 2008 reached further north, suggest-
ing an increased surface SPM transport onto the mid-shelf
(Fig. 4a, e).

Noticeably, maximum near-bottom current speeds in 2007
were twice as high as in 2008, exceedingucr and causing re-
suspension of bottom material (Table 2, Fig. 7). The mean
SPMoptic concentration in the bottom nepheloid layer (the
lowest 12 m) along the transect in Fig. 4 was 3.5 mg L−1 and
about 1.2 times higher than in 2008 (Fig. 4a, e). The bot-
tom SPM maximum coincided with Si-maximum and DO-
minimum, a typical characteristic for resuspension of bottom
material. Furthermore, the time series of echo intensity from
the ADCPs show sudden increases in echo intensity when
current velocities peak, which is most likely associated with
the resuspension of bottom material. Thus it can be assumed
that sediment entrainment due to resuspension of bottom ma-
terial takes place mainly after storm events. Besides riverine
input and bottom currents, waves are assumed to be a third
principal factor to control sediment transport on the Laptev
Sea shelf during the ice-free season. Wave parameters in the
Laptev Sea are dependent on the extent of open water, thus
from the wind fetch (Pavlov et al., 1996). However, model
results from the coastal zone along Beaufort Sea point to

the greater importance of storms than of fetch (Overdeem et
al., 2011). Applying the only available wave parameters from
Timokhov (1994) and Pavlov et al. (1996) suggest that waves
during the ice-free conditions generally start to strongly in-
fluence the bottom only up to about 4 m water depth (Wegner
et al., 2005). All studied stations were in water depths>15 m.
Thus, the influence of waves for sediment transport processes
is assumed to be moderate for this study.

Additionally, lateral advection of turbid bottom waters
from the inner shelf seems to increase the SPM concentra-
tion within the bottom nepheloid layer as well. Furthermore,
the overall proportion of resuspended material in the bot-
tom layer was larger during 2007 compared to summer 2008,
as well as the maximum SPMoptic concentration, which ex-
ceeded the 2008 measurements with concentrations up to
three times higher in 2007 (Fig. 8). Therefore it appears
likely that both the surface and the bottom SPM transport are
tightly coupled to the surface distribution of riverine waters
on the Laptev Sea shelf. During the cyclonic summer 2007,
turbid mixing, resuspension and enhanced transport of bot-
tom material took place associated to the eastwards spread-
ing of the freshwater plume. The prevailing transport direc-
tion near the bottom after storm events was towards north-
east. During the anticyclonic summer of 2008, the north-
wards spreading of riverine waters and the resulting stronger
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Figure 8 745 

 746 
Fig. 8.Scatter plot of SPMoptic and riverine fraction along the section in Fig. 4 during TD XII (summer 2007) and TD XIV (summer 2008).
Green circles mark the typical fr/SPMoptic relation for the bottom nepheloid layer. Purple circles mark the characteristic relation for the
riverine-influenced surface nepheloid layer.

stratification on the central Laptev Sea shelf seem to prevent
turbulent mixing and thus limits bottom SPM transport.

In general, the surface salinity east of the Lena Delta is
assumed to be relatively stable with a standard deviation be-
tween 2 and 4 psu and invariant to atmospheric forcing and
unaffected by river runoff on an annual basis (Dmitrenko et
al., 2005). However, the surface SPM distribution and con-
centration show interannual variations also on the southeast-
ern shelf: the surface SPMoptic concentrations are higher dur-
ing the cyclonic summer 2007 (Fig. 8). Nevertheless, the
difference between the 2007 and 2008 SPM concentrations,
within both the surface and the bottom nepheloid layers, are
highest on the central Laptev Sea shelf (Fig. 4a, e), coin-
ciding with interannual salinity variations (Dmitrenko et al.,
2005). The middle shelf is assumed to be the area most vari-
ant to the atmospheric circulation and mainly controlled by
the wind-driven distribution of the river water.

The different SPM transport dynamics have an impact on
the optical properties of the water column, as revealed in
the turbidity measurements as well as in the Ocean Colour
MERIS satellite data, with higher turbidity, less transmissiv-
ity and increased light absorption on the eastern inner shelf
during cyclonic summers. Future multi-disciplinary studies,
in combination with remote sensing, will improve our knowl-
edge regarding the impact of the optical properties and im-
prove the algorithms to translate remote sensing data in e.g.,
chlorophyll SPM and CDOM (Colored Dissolved Organic
Matter) concentrations (see also Heim et al., 2013).

5 Summary

Sampling carried out during two Laptev Sea summer expe-
ditions in 2007 and 2008 allows for new insights regarding

the role of Lena River freshwater on sediment dynamics on
this shelf. The prevailing atmospheric conditions were oppo-
site during these two years, with predominantly shoreward-
directed winds (cyclonic) in 2007 and northwards winds (an-
ticyclonic) in 2008, which had immediate consequences for
the distribution of the Lena freshwater plume and the sed-
iment dynamics in the surface and bottom nepheloid lay-
ers. During summers with cyclonic atmospheric circulation
patterns and an eastward transport of the Lena freshwater
plume, it can be assumed that the surface SPM concentration
on the southeastern shelf is increased, causing less transmis-
sivity and probably increased light absorption, while surface
SPM concentrations in the central and northern Laptev Sea
are relatively low. Due to a weakly stratified water column
and higher bottom current velocities, the bottom transport of
SPM as well as the SPM concentration within the bottom
nepheloid layer can be expected to be considerably higher.
During anticyclonic summers, the surface SPM transport in-
creases and reaches far out onto the middle-shelf, whereas
the bottom transport and SPM concentration is diminished.
Therefore we assume that the SPM dynamics in both the sur-
face and bottom nepheloid layers are associated with the dis-
tribution of river-dominated surface waters and thus linked
to the prevailing atmospheric circulation patterns over the
Laptev Sea and the adjacent Arctic Ocean during summer.

During the last two decades there has been a positive trend
in mean cyclone depth and radius over the Eurasian Basin
(Simmonds and Keay, 2009), inducing cyclonic circulation
patterns and an eastward transport of the riverine waters on
the Laptev Sea shelf. A continuation of this trend might not
only impact the sediment budget but could also have negative
consequences for the sensitive ecosystem on this shelf due to
changes in nutrient availability and light penetration.
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