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Abstract. This paper presents the application of the Linear
Quadratic Optimal Control (LQOC) method to a parameter
optimization problem for a one-dimensional marine ecosys-
tem model of NPZD (N for dissolved inorganic nitrogen,
P for phytoplankton, Z for zooplankton and D for detritus)
type. This ecosystem model, developed by Oschlies and Gar-
con, simulates the distribution of nitrogen, phytoplankton,
zooplankton and detritus in a water column and is driven by
ocean circulation data. The LQOC method is used to intro-
duce annually periodic model parameters in a linearized ver-
sion of the model. We show that the obtained version of the
model gives a significant reduction of the model-data mis-
fit, compared to the one obtained for the original model with
optimized constant parameters. The found inner-annual vari-
ability of the optimized parameters provides hints for im-
provement of the original model. We use the obtained opti-
mal periodic parameters also in validation and prediction ex-
periments with the original non-linear version of the model.
In both cases, the results are significantly better than those
obtained with optimized constant parameters.

1 Introduction

In this paper we present an application of the LQOC (Lin-
ear Quadratic Optimal Control) method on a parameter opti-
mization in a marine ecosystem model. This method (see for
exampleKwakernaak and Sivan, 1972; Lewis and Syrmos,
1995) is a mathematical technique to compute time depen-
dent parameters (in some applications also called controls)
in linear dynamical systems. The key goal of the method is
to minimize a given quadratic cost function subject to a lin-

ear system. For the cost function, a model-data fit in least-
squares formulation can be used, and thus the method is ap-
plicable to parameter optimization or model calibration prob-
lems. The optimal time-dependent parameters are obtained
via an algorithm that basically uses the system matrices of
the underlying linear model. When applying the method to
a non-linear dynamical system (as most marine ecosystem
models), the linearization of the system is essential. For this
purpose, a reference trajectory of model variables and param-
eters is needed, which can be based on observational data and
parameter guesses. By an appropriate choice of the parame-
ter trajectory, periodic parameters can be obtained. These can
then be used to improve the original non-linear model.

Marine ecosystem models describe biogeochemical pro-
cesses in the ocean and are used, e.g., for calculating the
effect of marine photosynthesis on the global carbon cycle.
Typically, such kind of models have several parameters, for
example, growth and mortality rates for the different types of
plankton taken into account. Since most of these parameters
are not known exactly and are difficult to measure, parameter
identification or estimation is an important tool to calibrate a
model. Parameter identification or estimation is usually done
by performing a parameter optimization in order to minimize
the misfit between model output and given data, commonly
represented by a least-squares type cost functional. Addi-
tionally, uncertainty estimates corresponding to data errors
may be computed. A parameter optimization may improve a
model’s quality also to another extent: If a model still shows
deficiencies after the parameters have been optimized, rea-
sons other than inappropriate parameter values are likely to
be responsible for remaining poor model behavior, see for
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exampleFasham and Evans(1995), Hurtt and Armstromg
(1996), Fennel et al.(2001), Prunet et al.(1996).

The computational effort to perform such kind of opti-
mization runs for the coupled system of ocean circulation and
marine biogeochemistry that describes a marine ecosystem is
quite high, especially in three space dimensions. Thus, sev-
eral simplifications may be used: One of them is to compute
the marine biogeochemistry in a so-called offline mode, i.e.,
to solve the transport equations for the tracers with precom-
puted ocean circulation fields (velocity, temperature, salin-
ity) as forcing or input. Another approach is to use one-
dimensional models, which simulate a single water column
only. This simplification is motivated by the fact that most
of the ecosystem processes (as for example growth and dy-
ing) are happening locally in space and that the main spatial
interactions are vertical mixing and sinking of organic mat-
ter. Moreover, it has been shown that parameters obtained in
a one-dimensional optimization can also be beneficial when
used in three-dimensional computations, seeOschlies and
Schartau(2005).

The motivation for this paper is based on the results ob-
tained for a typical marine ecosystem model, namely an
NPZD model (N for dissolved inorganic nitrogen, P for phy-
toplankton, Z for zooplankton and D for detritus) introduced
in Oschlies and Garçon(1999). As was reported in sev-
eral publications with different optimization algorithms, the
quality of the model fit to observations was not optimal,
and in some cases it was difficult to identify the parameters
uniquely, see for exampleWard (2009), Ward et al.(2010),
Rückelt et al.(2010b). In most cases (and in all these studies),
the parameters of the marine ecosystem models are assumed
to be temporally constant. This reflects the aim to obtain a
model that is applicable for arbitrary time intervals. In con-
trast, in our work we allow the parameters to vary temporally
over the year while remaining periodic over all years of the
considered time interval.

Our main research question is if such kind of relaxation
is able to significantly improve the model-to-data fit.Eknes
and Evensen(2002) andSchartau et al.(2001) have exam-
ined the possibility of using a sequential data assimilation
method for state estimation in a biological model. On the
other hand, there are several papers on parameter estimation
only, seeSchartau et al.(2001), Fasham and Evans(1995),
Hurtt and Armstromg(1996), Fennel et al.(2001), Prunet
et al. (1996), Matear (1995), Spitz et al.(1998). Work by
Losa et al.(2003) combined state and parameter estimation
using a sequential weak constraint parameter estimation in an
ecosystem model. An example for time-dependent parame-
ters is introduced in the work byMattern(2012), where a sta-
tistical emulator technique to estimate time-dependent val-
ues for two parameters of a 3-dimensional biological ocean
model is used. The author demonstrated that emulator tech-
niques are valuable tools for data assimilation and for ana-
lyzing and improving biological ocean models. He also used

temporally changing parameters, but without imposing an-
nual periodicity.

We use the annual periodicity constraint on the parameters
in order to allow for some temporal flexibility of the parame-
ters but at the same time to retain the temporal universality of
the optimized model, e.g., for application to time periods out-
side the range of observations. The LQOC used here does not
require a prescribed periodic parameterization of the parame-
ters, it will automatically generate an optimal periodic func-
tion for each parameter. Moreover, it allows to balance the
two aims of a good model–data fit on one hand and parameter
periodicity on the other by introducing weighting matrices.

We verify our approach in validation and prediction ex-
periments employing the optimized periodic parameters in
the original non-linear model.

The structure of the paper is as follows: in Sect.2 we
briefly describe the model, the data and the cost function
which we use for optimization. In Sect.3 we briefly describe
the LQOC method and its application on the NPZD model.
In Sect. 4 we present our results obtained by the LQOC
method with respect to the quality of the model–data misfit
and the periodicity of the parameters. We furthermore show
results for validation and prediction with the original non-
linear model using the optimized periodic parameters. Sec-
tion 5 ends the paper with some conclusions.

2 Model equation and optimization problem

The model used here, as example, is a one-dimensional ma-
rine ecosystem model presented inOschlies and Garçon
(1999). It is of NPZD type, i.e., it simulates the inter-
action of dissolved inorganic nitrogen (N), phytoplankton
(P), zooplankton (Z) and detritus (D), whose concentra-
tions (in mmol N m−3) are denoted by the model variables
(yl)l=N, P, Z, D=: y. These four variables are functionsyl

:

[0, te]×[−H,0] → R of space and time, withH denoting the
depth of the water column andte the total integration time.

The model is then given as the following system of partial
differential equations:

∂yl

∂t
= −ωl ∂y

l

∂z
+

∂

∂z

(
κ

∂yl

∂z

)
+ q l(y,u), l = N, P, Z, D,(1)

herez denotes the vertical spatial coordinate. Theq l are the
biogeochemical coupling terms which depend on space and
time via light intensity and also on temperature, and on most
of the parameters summarized in the vectoru.

In this spatially one-dimensional setting, the only phys-
ical process taken into account is vertical diffusion, which
appears as a space and time-dependent mixing coefficient
κ, taken (as well as temperature) from the Ocean Circula-
tion and Climate Advanced Model OCCAM (seeSinha and
Yool, 2006) in hourly profiles. The equation for detritus also
contains a sinking term with constant speedωD > 0, which
is also optimized asu12, whereasωN

= ωP
= ωZ

= 0 in
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Eq. (1). In total, we havep = 12 parametersu = (u1, . . . ,up)

to be optimized.
The biogeochemical coupling (or source-minus-sink)

terms are taken fromOschlies and Garçon(1999) and read

qN(y,u) = −J̄ (yN)yP
+ u4y

Z
+ u10y

D,

qP(y,u) = J̄ (yN)yP
− u8y

P
− G(u6,u7)y

Z,

qZ(y,u) = u1G(u6,u7)y
Z

− u4y
Z

− u9y
Z2

,

qD(y,u) = (1− u1)G(u6,u7)y
Z

+ u9y
Z2

+ u8y
P
− u10y

D.

(2)

HereJ̄ is the daily averaged phytoplankton growth rate as a
function of depthz and timet , andG is the grazing function:

J̄ (yN) = min
(
J̄ (z, t),u2c

T yN

u12+yN

)
,

G(u6,u7) =
u7u6y

P2

u7+u6y
P2 .

The circulation data (taken from an ocean model) are the
turbulent mixing coefficientκ = κ(z, t) and the temperature
T = T (z, t), which is used in the non-linear termcT where
c = 1.066 is kept constant. Table1 lists the model parameters
with their original symbols as inOschlies and Garçon(1999).
For more details see alsoSchartau and Oschlies(2003a).

2.1 Observational data and corresponding model
output

The observational data used here, denoted byyobs, is taken
from the Bermuda Atlantic Time-series Study (called BATS)
as a part of the US Joint Global Ocean Flux Study, see
Michaels and Knap(1996).

The BATS data are provided by the Bermuda Biological
Station for Research (BBSR) situated in the Atlantic Ocean,
700 miles from the East Coast of the US at coordinates 31◦ N
64◦ W (seehttp://bats.bios.edu/).

In this work, each observational data has to be compared
to an equivalent value generated by the model. For this pur-
pose, the model output is interpolated in time and space to
match the observational data. In addition, some transforma-
tions have to be done: modeled zooplankton has to be inte-
grated in space, and chlorophylla values are calculated by
multiplying the nitrogen-based concentration of the modeled
phytoplankton by a factor of 1.59 mg Chl/(mmol N), which
corresponds to a chlorophyll to carbon mass ratio of 1 : 50
and a C : N mole ratio of 106 : 16. For more details seeWard
(2009).

Summarizing, there are five types of observational data
yobs

:= (yl,obs)l=N, P, Z, D, PP, which correspond to aggre-
gated values̄y := (ȳl)l=N, P, Z, D, PPof the model output. The
used data and their corresponding model variables are

1. Dissolved inorganic nitrogenyN, obs(mmol m−3) corre-
sponding to model variableyN

=: ȳN.

2. Chlorophyll a yP, obs (mg m−3) corresponding to the
scaled model variableyP/1.59=: ȳP.
Here using a constant conversion factor of
1.59 mg (Chla)/(mmol N).

3. Vertically integrated mesozooplankton biomassyZ, obs

(mmol m−2) corresponding to∫
yZ

− 0.096504

1.2344
dz =: ȳZ. (3)

Here, an additional assumption about the relation of
mesozooplankton biomassyZ, mesoto total zooplankton
biomassȳZ according to the formula

yZ
= 1.2344· yZ, meso

+ 0.096504.

4. Particulate organic nitrogenyD, obs (mmol N m−3) cor-
responding toyP

+ yZ
+ yD

=: ȳD.

5. Carbon fixation or primary production (PP) as carbon
uptakeyPP, obsin mmol C m−3d−1. As modeled primary
production, the temporal mean of the model outputyP

multiplied by the phytoplankton growth ratēJ (yN)yP.

2.2 The optimization problem

The aim of the optimization is to fit the model outputȳ that
was aggregated, in the above mentioned way, to the given
observational datayobs over a chosen time interval ofjmax
years. We denote byNl,j the number of observational data
for yl,obs for each observed quantityl = N, P, Z, D, PP in
year j = 1, . . . , jmax. These numbers may be different for
eachl and j . The i-th observational in yearj of yl,obs is
denoted byyl,obs

j,i , and the corresponding aggregated model

output value by(ȳl
j,i). We now firstly compute the averaged

annual misfit per model output/tracer, weighted using the in-
verse of the standard deviations taken fromSchartau and Os-
chlies(2003a) and summarized in the vector

σ = (σl)l=N, P, Z, D, PP= (0.1,0.01,0.01,0.0357,0.025),

and by the numberNl,j of observational per tracer and year:

Fl,j :=

Nl,j∑
i=1

(ȳl
j,i − y

l,obs
j,i )2

σ 2
l Nl,j

, l = N, P, Z, D, PP,j = 1, . . . , jmax.

If there are no observational data for a state variable/tracer in
a year (i.e.,Nl,j = 0), the sum is set to zero. The overall cost
function is then calculated as

F =
1

Ntotal

jmax∑
j=1

PP∑
l=N

Fl,j , (4)

whereNtotal is the total number of non-zero termsFl,j actu-
ally occurring in the sum. In the usual case we haveNtotal =

5jmax. If everNl,j = 0 and thusFl,j = 0 for a year and tracer,
Ntotal is decreased accordingly.

www.biogeosciences.net/10/1169/2013/ Biogeosciences, 10, 1169–1182, 2013
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Table 1.Parameters of the ecosystem model to be optimized with the LQOC method. Hereu0 = (u0,i)i=1,...,12 is the vector of parameters
taken fromOschlies and Garçon(1999), min(ui) and max(ui) their respective upper and lower bounds used inSchartau and Oschlies(2003a).

Parameter ui u0,i Units Min(ui) Max(ui)

Assimilation efficiency of zooplankton γ1 0.75 0.3 0.93
Growth rate parameter a 0.6 day−1 0.2 1.46
Initial slop of P-I Curve α 0.025 m2 W−2 d−1 0.001 0.256
Zooplankton excretion γ2 0.03 day−1 0.01 0.955
Light attenuation by phytoplankton kc 0.03 m−1(mmol m−3)−1 0.01 0.073
Pry capture efficiency ε 1 (mmol m−3)−2 d−1 0.025 1.6
Maximum grazing rate g 2 d−1 0.04 2.56
Specific mortality rate µp 0.03 day−1 0.01 0.635
Zooplankton quadratic mortality µz 0.2 (mmol m−3)−1 d−1 0.01 0.955
Remineralization rate parameter of detritusµD 0.05 day−1 0.02 0.146
Sinking velocity of detritus ws 5 m day−1 1 128
Half-saturation constant for N uptake rate KN 0.5 mmol m−3 0.1 0.730

3 Application of linear quadratic optimal control to the
NPZD model

In this section we apply the LQOC method to the discretized
version of the NPZD model. The LQOC method is widely
used in engineering applications and well studied from the
mathematical side, see e.g.,Anderson and Moore(1971),
Casti (1987), Lunze(1997), Sima(1996). Non-linear prob-
lems can be treated by linearization, seeClemens(1993).We
present the details of the linearization and enforcement of the
periodicity of the parameters.

3.1 Discretization scheme

We here give a brief description of the temporal and spatial
discretization of the model equations described in Eq. (1).
The vertical grid consists of 32 layers with thickness increas-
ing with depth. InRückelt et al.(2010a) it has already been
demonstrated that, at least from the point of view of the opti-
mization results, the vertical model grid can be reduced to
this number instead of the originally employed 66. It has
been demonstrated that optimization of the model yield prac-
tically identical results w.r.t. parameter match and quality of
the optimal solution. Anyhow, the method used here can as
well be applied for the original 66 layers.

The model is discretized in time using an operator splitting
method: given a time-step size1t (one hour in the model),
the discretized scheme reads

[I − 1tLdiff
k ]yk+1 = [I + 1tLsink

k ]Bq
k ◦Bq

k ◦Bq
k ◦Bq

k (yk,uk),

k = 1, . . . ,M − 1. (5)

Hereyk = (yN
k ,yP

k ,yZ
k ,yD

k ) is the vector of all four tracers
anduk the parameter vector (which is here already assumed
to be time-varying), both at the current time stepk. The total
number of time steps isM. The matricesLdiff

k , Lsink
k are 4×4

block-diagonal and represent the discretization of diffusion
(discretized by second order central differences) and sinking

(discretized by an upstream scheme), respectively, andI is
the identity matrix.

The interpretation of the scheme (Eq.5) is the following:
In every time stepk → k + 1, at first the non-linear coupling
termsqk = (qN

k ,qP
k ,qZ

k ,qD
k ) are computed at every spatial

grid point and integrated by four explicit Euler steps with
step size1t

4 , each of which is described by the operator

Bq
k (yk,uk) :=

[
I +

1t

4
qk(yk,uk)

]
. (6)

Then, an explicit Euler step with full step-size1t is formed
for the sinking term, represented by the matrix[I +1tLsink

k ].
This matrix does only depend on the time stepk if the sinking
velocityws is to be optimized. Finally, an implicit Euler step
is applied for the diffusion operator, discretized with second
order central differences. Due toκ = κ(z, t) the resulting ma-
trix [I − 1tLdiff

k ] depends on the current time stepk.
The discrete system can now be formally written as

yk+1 = [I − 1tLdiff
k ]

−1
[I + 1tLsink

k ]Bq
k ◦Bq

k ◦Bq
k ◦Bq

k (yk,uk),

=: f (yk,uk), k = 1, ...,M − 1, (7)

wheref is a non-linear function.

3.2 Reference tracer trajectory

In order to apply the LQOC method to the discretized non-
linear system (Eq.7), we perform a linearization around ref-
erence trajectories of stateyref and controluref. The latter is
described in Sect.3.5. The relation between model variables
and observational data described in Sect.2.1 can be used to
define the reference trajectoryyref as follows

1. yN, ref := yN, obs.

2. yP, ref := yP, obs
· 1.59.

3. yZ, ref is taken as constant over the whole water col-
umn such that the integral equals the value of the

Biogeosciences, 10, 1169–1182, 2013 www.biogeosciences.net/10/1169/2013/
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observational datayZ, obs(which is a mean value). Here
the formula (Eq.3) is used.

4. yD, ref := yD, obs
− yZ, ref

− yP, obs.

Because the data for the different tracers are not given for the
same instances of time, we only use those instances where
data for all four tracers are available. Only for those instances
reference values for all tracers can be computed by the above
transformations. To describe this procedure, we define for ev-
ery yearj = 1, . . . , jmax:

– Nl,j : number of data foryl,obs, l = N, P, Z, D.

– y
l,obs
j,i : thei-th observational data,i = 1, . . . ,Nl,j .

– t lj,i : instance of time ofyl,obs
j,i , i = 1, . . . ,Nl,j , rounded

to an integer number.

– Ij : set of instances where data for all tracers are avail-
able:

Ij := {tj,i}i=1,...,Nj
:=

⋂
l

{t lj,i}i=1,...,Nl,j
,

– Nj : number of elements in this intersection.

Because we have no reference valueyref at the end of each
year, we use linear interpolation between the datayobs

j,Nj
and

yobs
j+1,1 to generate such value, denoted byyref

j,Nj +1.
Since there are no data for every vertical layer, we addi-

tionally interpolate the data linearly in space to obtain a ref-
erence trajectory in every grid point.

3.3 Linearization

We apply the linearization on each time interval[tj,i, tj,i+1]

separately. For this purpose, we split the interval into sections
of the length1t (here1t = 1 h), as shown in Fig.1.

The discrete time stepsτk in this interval are

τtj,i = tj,i,

τk+1 = τk + 1t, k = tj,i, . . . , tj,i+1.

They correspond to the steps used in the temporal discretiza-
tion, see Sect.3.

Now we linearize the model around the datayref
j,i+1 and the

parameter vectoruref
k (described below in Sect.3.5). For this

purpose, we introduce

Ak :=
∂f

∂y
(yref

j,i+1,u
ref
k ),

Bk :=
∂f

∂u
(yref

j,i+1,u
ref
k ),

bk := f (yref
j,i+1,u

ref
k ) − yref

j,i+1,

xk := yk − yref
j,i+1,

vk := uk − uref
k .

M. El Jarbi et al.: Periodic parameters and linear quadratic optimal control 5

number of time steps is M . The matrices Ldiff
k , Lsink

k are 4×4

block-diagonal and represent the discretization of diffusion

(discretized by second order central differences) and sinking

(discretized by an upstream scheme), respectively, and I is

the identity matrix.

The interpretation of the scheme (5) is the following: In

every time step k→ k+ 1, at first the non-linear coupling

terms qk = (qN
k ,q

P
k ,q

Z
k ,q

D
k ) are computed at every spatial

grid point and integrated by four explicit Euler steps with

stepsize ∆t
4 , each of which is described by the operator

Bq
k(yk,uk) :=

[
I+

∆t

4
qk(yk,uk)

]
. (6)

Then, an explicit Euler step with full step-size ∆t is formed

for the sinking term, represented by the matrix [I +∆tLsink
k ].

This matrix does only depend on the time step k if the sink-

ing velocity ws is to be optimized. Finally, an implicit Euler

step is applied for the diffusion operator, discretized with sec-

ond order central differences. Due to κ=κ(z,t) the resulting

matrix [I−∆tLdiff
k ] depends on the current time step k.

The discrete system can now be formally written as

yk+1 = [I−∆tLdiff
k ]−1[I +∆tLsink

k ]Bq
k ◦B

q
k ◦B

q
k ◦B

q
k(yk,uk),

=: f(yk,uk), k= 1,...,M−1, (7)

where f is a non-linear function.

3.2 Reference Tracer Trajectory

In order to apply the LQOC method to the discretized non-

linear system (7), we perform a linearization around refer-

ence trajectories of state yref and control uref . The latter is

described in Section 3.5. The relation between model vari-

ables and observational data described in Section 2.1 can be

used to define the reference trajectory yref as follows:

1. yN,ref := yN,obs.

2. yP,ref := yP,obs ·1.59.

3. yZ,ref is taken as constant over the whole water column

such that the integral equals the value of the observa-

tional data yZ,obs (which is a mean value). Here the

formula (3) is used.

4. yD,ref := yD,obs−yZ,ref −yP,obs.

Because the data for the different tracers are not given for the

same instances of time, we only use those instances where

data for all four tracers are available. Only for those instances

reference values for all tracers can be computed by the above

transformations. To describe this procedure, we define for

every year j= 1,...,jmax:

• Nl,j : number of data for yl,obs,l=N,P,Z,D.

• yl,obs
j,i : the i-th observational data, i= 1,...,Nl,j .

• tlj,i: instance of time of yl,obs
j,i , i= 1,...,Nl,j , rounded to

an integer number.

• Ij : set of instances where data for all tracers are avail-

able:

Ij := {tj,i}i=1,...,Nj
:=
⋂
l

{tlj,i}i=1,...,Nl,j
,

• Nj : number of elements in this intersection.

Because we have no reference value yref at the end of each

year, we use linear interpolation between the data yobs
j,Nj

and

yobs
j+1,1 to generate such value, denoted by yref

j,Nj+1.

Since there are no data for every vertical layer, we addi-

tionally interpolate the data linearly in space to obtain a ref-

erence trajectory in every grid point.

3.3 Linearization

We apply the linearization on each time interval [tj,i,tj,i+1]

separately. For this purpose, we split the interval into sections

of the length ∆t (here ∆t = 1h), as shown in Figure 1. The

tj,i tj,i+1τk

-�
∆t

τk+1

Fig. 1. Example for an interval on which the linearization is ap-

plied.

discrete time steps τk in this interval are

τtj,i = tj,i,

τk+1 = τk +∆t, k= tj,i,...,tj,i+1.

They correspond to the steps used in the temporal discretiza-

tion, see Section 3.

Fig. 1.Example for an interval on which the linearization is applied.

Here

– xk ∈ Rm is the deviation of the model output (i.e., all
tracers over the whole water column) from the reference
trajectory,

– vk ∈ Rp is the deviation of the actual parameters from
the reference parameter trajectory.

The dimensionm of xk is determined by the number of trac-
ers (in our case 4) and the numbers of grid cells in the wa-
ter column (in our case 32), which results inm = 4 · 32. The
dimensionp of vk is determined by the number of model
parameters, herep = 12.

The matricesAk ∈ Rm×m andBk ∈ Rm×p are called sys-
tem matrix and input matrix, respectively. For this example,
they were generated by Algorithmic or Automatic Differenti-
ation (AD), seeGriewank (2000). Here we used the software
TAF (Transformations of Algorithms in Fortran), seeGiering
and Kaminski (1998).

Summarizing, the state equation reads

xk+1 = Akxk + Bkvk + bk, k = tj,i, tj,i + 1, . . . , tj,i+1. (8)

This is the typical form of a discrete linear system with state
variablexk and parameter (or control)vk.

3.4 Application of the LQOC theory

The theory of linear quadratic optimal control gives a for-
mula for the optimal parameter trajectoryv that minimizes
the cost function

J (v) =
1

2

tj,i+1∑
k=tj,i

x>

k Qkxk + v>

k Rkvk (9)

under the constraint Eq. (8). Here for everyk

– Qk ∈ Rm×m is a positive semi-definite diagonal weight-
ing matrix for the state vector,

– Rk ∈ Rp×p is a positive definite diagonal weighting ma-
trix for the parameter vector.

The matricesQk and Rk are usually chosen to be diago-
nal. They reflect the relative importance of keeping tracer
variables and parameters, respectively, close to their refer-
ence trajectories. In our case, this translates to quality of
the model-to-data fit and periodicity of the parameters, see
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the next subsection. Selecting large elements of either matrix
will emphasize the corresponding effect.

At end of the optimization on all intervals[tj,i, tj,i+1],j =

1, . . . , jmax, i = 1, . . . ,Nj , we obtain the optimal state vari-
able and the optimal periodic parameters(y∗

k,u
∗

k), for k =

1, . . . ,M − 1. The realization of the LQOC method is pre-
sented in algorithm 1.

3.5 Choice of the reference parameter trajectory

A main objective of this work is to enforce periodicity of
the parameters. To obtain annually periodic parameters, we
denote the length of a time period – which in our case is
one year – measured in time steps byT = t1,N1+1. We now
choose the reference trajectory for the parameter to be

uref
k :=

{
u0, k ≤ T

uk−T , k > T .
(10)

Here u0 ∈ Rp is an initial guess, in our case we took the
values fromOschlies and Garçon(1999), compare Table1.
These values are used in the first year (k ≤ T ) only. As a re-
sult, in the first year the choice of the cost function (Eq.9)
will force periodicity to the constant reference parameters.
This effect can be reduced by choosing appropriate small val-
ues in the matricesRk in the first year. In the following years,
the difference of the current parameteruk to its counterpart
from the year before is minimized. This enforces periodicity.
Thus the crucial point in adjusting the matricesRk through-
out an optimization run is to allow both:

– for sufficiently large deviation from the constant refer-
ence parameters in the first year, to enable their tempo-
ral variation,

– and for smaller deviation and thus more or less strict
periodicity in the following years.

3.6 Particular choice of Qk,Rk

In our example, the weighting matricesQk are taken as con-
stant for allk, namely

Qk = Q = diag(
1

σ 2
l

)l=N, P, Z, D, PP, k = 1, . . . ,M,

whereσl are the standard deviations taken from the original
cost function (Eq.4). The matricesRk are taken as

Rk = diag(rk
n)n=1,...,p, rk

n > 0.

These values are chosen differently in the first year (on
one hand) and in all subsequent years (on the other hand). In
all years except the first one (i.e.,k ≥ T ), theRk are used to
enforce periodicity of the parameters. The bigger therk

n for
these years are, the better periodicity of the parameters is ex-
pected. Following this idea, the optimal choice for theRk in
the first year would be just zero matrices. But, by this choice,

the requirements for the LQOC method and algorithm 1 –
where theRk have to be positive definite – are not satisfied.
As a consequence, it is desirable to chose therk

n for the first
year as small as possible.

On the other hand, the choice of therk
n in the first year

can be used to keep the parameters in the admissible bounds:
Since they can be forced to keep in the vicinity of the initial
guess in the first year and to stay close due to the periodicity
enforcement in the following years, by a careful setting of the
rk
n in the first year both aims (periodicity and boundedness)

can be balanced. This effect is not guaranteed by the LQOC
method, but turned out to be realizable in our case, see the
next section.

Summarizing, for our computations we chose forn =

1, . . . ,p, the values

rk
n =

{ 1
|(u0,n)|2

, k ≤ T

1
|(uk−T ,n)|2

, k ≥ T + 1,
(11)

whereu0 is as listed in Table1.

4 Optimization results

In this section we present the results of the parameter opti-
mization runs performed with the LQOC method. We show
both the obtained fit of the linearized model output (with op-
timal parameters) to the data and the annual periodicity of
the obtained parameters. Note that we only compare values
of the original cost functionF , the functionJ actually mini-
mized in the LQOC setting is just a tool of the method.

4.1 Fit of linear model output to observational data

This section shows a comparison between the optimized
model output, obtained by the LQOC method with peri-
odic parameters, and the observational data. As a reference
we also compare the results to those obtained by a direct
optimization of the original non-linear model using con-
stant parameters with a Sequential Quadratic Programming
(SQP) method that takes into account parameter bounds. This
method was used inRückelt et al.(2010b).

Figure2 shows the model results, obtained by the LQOC
method with periodic parameters, for aggregated model out-
put ȳ and the observational datayobs for the years 1994 to
1998 for the uppermost layer at depthsz ≈ 5 m. Shown are
results for a part of the whole time interval at some distinct
depth layers only. The total number of depth layers consid-
ered in the optimization process is 32 and the total number
of time steps is 43 800. In contrast to the results obtained
for constant model parameters with the original non-linear
model, the LQOC method with periodic parameters gives a
nearly perfect fit of the data. Even substantial concentration
changes that occur between some neighboring observational
data points (e.g., foryN, mod, in 1994, 1995 or 1997) can
be captured by the optimized trajectory. We performed the
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Algorithm 1. Algorithm of the LQOC method.

for j = 1, . . . , jmax do
for i = 1, . . . ,Nj do

(a) Given the equation system as
xk+1 = Akxk + Bkvk + bk, k = tj,i , tj,i + 1, . . . , tj,i+1,
and the cost function as

J (v) =
1
2

tj,i+1∑
k=tj,i

x>
k

Qkxk + v>
k

Rkvk .

1. Solve the first matrix difference Riccati equation
Pk = Qk + A>

k
Pk+1Ak − A>

k
Pk+1Bk(Rk + B>

k
Pk+1Bk)

−1AkB>
k

Ak, k = tj,i+1 − 1, . . . , tj,i
with final conditionPtj,i+1 = Qtj,i+1.

2. Solve the second matrix difference Riccati equation
hk = A>

k
(Pk+1bk + hk+1)A>

k
Pk+1Bk(Rk;+B>

k
Pk+1Bk)

−1B>
k

(Pk+1bk + hk+1), k = tj,i+1 − 1, . . . , tj,i
with final conditionhtj,i+1 = 0.

3. Solve the two auxiliary matrix difference equations
Kk = −(Rk + B>

k
Pk+1Bk)

−1B>
k

Pk+1Ak, k = tj,i , . . . , tj,i+1 − 1.
Sk = −(Rk + B>

k
Pk+1Bk)

−1B>
k

(Pk+1bk + hk+1), k = tj,i , . . . , tj,i+1 − 1.

4. Compute the optimal statey∗
k

from
y∗

k+1 := x∗
k+1 + yref

j,i+1
= yref

j,i+1 + (Ak + BkKk)(y
∗
k
− yref

j,i+1) + BkSk, k = tj,i , . . . , tj,i+1 − 1.

5. Obtain the optimal parameters vectoru∗
k

from
u∗

k
:= vk + uref

k

= uref
k

+ Kk(y
∗
k
− yref

j,i+1) + Sk, k = tj,i , . . . , tj,i+1 − 1.

end
end

optimization for the years 1994 to 1998, in contrast to the
years 1991 to 1996 that were used inRückelt et al.(2010b),
since no zooplankton data are available at BATS for the years
1991 to 1993. This would be disadvantageous for the lin-
earization procedure in the LQOC method.

In Rückelt et al.(2010b), a minimum value of the cost
function (Eq.4) of F ≈ 70 was obtained for optimized con-
stant parameters for the time 1991 to 1996. For the time 1994
to 1998, the value obtained by the SQP method and constant
parameters is very similar. Also the quality of the fit – de-
picted in Fig.2 – is comparable. The better fit obtained by
the LQOC method also results in a significantly lower value
(F ≈ 1.35) of the original cost function (Eq.4). Figure 3
shows the mismatch between model output and the reference
data – which are interpolated values of the sparse observa-
tional data – for all points in time and space.

Figure3 also shows – except for dissolved inorganic ni-
trogenȳN – a better fit at the surface than in deeper layer.
The possible reason for this is the lack of observational data
on the lower layers, which requires interpolation over rela-
tively large space intervals. Thus, the interpolation error there
is bigger than in upper layers where the database is denser.
This, naturally, affects the quality of the reference trajectory,

and thus also of the linearized model and the obtained opti-
mal parameters.

Figure4 shows the LQOC results with periodic parameters
and the observational datayobs for the years 1994 to 1998
for the lower layer at depthsz ≈ 184.32 m. Here the LQOC
method with the periodic parameters provides a nearly per-
fect fit, in contrast to the one obtained with constant parame-
ters.

4.2 Sensitivity with respect to the weighting matrices Rk

To examine the effect of the weighting matricesRk in the
first year, on the behavior of the parameters and the cost
function F , we have additionally performed sensitivity ex-
periments with different entriesrk

i of the weighting matri-
cesRk for k ≤ T . We present two additional experiments for
n = 1, . . . ,p with

rk
n =

{
1

|min(un)|2
, k ≤ T

1
|max(un)|2

, k ≥ T .

The values of min(un) and max(un) are listed in Table1. The
corresponding values of therk

n for these two choices and the
rk
n from Eq. (11) (here called reference simulation) are shown
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Fig. 2. Observational data yl,obs,l=N,P,Z,D and aggregated model trajectories ȳl,l=N,P,Z,D , optimized with periodic parameters

obtained by the LQOC method and with a Sequential Quadratic Programming (SQP)method. Values are shown for the upper layer at depth

z≈ 5m and years 1994-1998.

Fig. 2. Observational datayl,obs, l = N, P, Z, D, and aggregated model trajectoriesȳl, l = N, P, Z, D, optimized with periodic parameters
obtained by the LQOC method and with a sequential quadratic programming (SQP)method. Values are shown for the upper layer at depth
z ≈ 5 m and years 1994–1998.
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Fig. 3. Model-to-data misfit for four tracers with respect to space and time obtained by the LQOC method.

Fig. 3.Model-to-data misfit for four tracers with respect to space and time obtained by the LQOC method.
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obtained by the LQOC method. Values are shown for the lower layer at depths z≈ 184.32m.

Fig. 4. Observational datayl,obs, l = N, P, Z, D, and aggregated model trajectoriesȳl, l = N, P, Z, D, optimized withperiodic parameters
obtained by the LQOC method. Values are shown for the lower layer at depthsz ≈ 184.32 m.

in Table2. The trajectories of the tracersy, the parametersu,
and the value of the cost functionF , depend heavily on the
choice of the corresponding entriesrk

n in the matrixRk. Fig-
ure5 shows the trajectories for three tracers and differentrk

n .
All experiments show only minor differences from the refer-
ence simulation with therk

n from Eq. (11). The results show
that a decrease in the entryrk

n can lead to a small decrease
in the cost function. The sensitivities of the parameters with
respect to the choice ofrk

n can be seen in Fig.6. It is obvious
that for smaller values ofrk

n the variability of the parameters
is getting larger.

4.3 Periodicity of the parameters

In this section we show that the above model-to-data fit can
be achieved with parameters that are almost annually pe-
riodic. Enforcement of periodicity was achieved by an ap-
propriate adjustment of the matricesRk in the cost function
(Eq. 9) used in the LQOC framework, see Sect.3. It was
also possible to keep the parameters in their desired bounds
(see Table1), although the LQOC method does not to impose
these bounds explicitly.

Figures6 illustrates the temporal behavior of the param-
eters that were optimized with the LQOC method. Depicted
are only the ten that show a temporal variation. Two param-
eters remain constant in time. These figures show different
trajectories for each parameter for two years with the differ-
ent choices of therk

n , compare Table2. As mentioned above,

Table 2.Values ofrn
i

for the reference simulation (second column)
and the two additional sensitivity experiments.

i rn
i

=
1

|(u0,i )|
2 rn

i
=

1
|min(ui )|

2 rn
i

=
1

|max(ui )|
2

1 1.77 11 1.15
2 2.77 25 0.469
3 1600 104 15.25
4 1111 104 1.09
5 1111 104 187
6 1 1600 0.39
7 0.25 625 0.152
8 1111 104 42.48
9 25 104 1.09
10 400 2500 46
11 0.04 1 6.101−5

12 4 100 1.876
costF 1.35 1.9 0.95
see Eq. (4)

it is obvious that for a smallerrk
n , the amplitude of the param-

eters increases, but it always remains almost periodic. Since
the periodicity of the parameters is nearly perfect, then it is
enough to plot for 2 yr.

The parameters controlling growth of phytoplankton,
namely the maximum growth ratea and the initial slope of
the P-I curveα, show in Fig.6 both maximum values in
early summer and in winter, with a clear minimum value
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Fig. 5. Model output trajectories with different rk
n, the reference simulation (dashed), with larger rk
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the upper layer at depth z≈ 5m and years 1994-1998.
Fig. 5. Model output trajectories with differentrk

n , the reference
simulation (dashed), with largerrk

n (solid) and with smallerrk
n (dot-

ted) for the upper layer at depthz ≈ 5 m and years 1994–1998.

in spring during the peak of the annual chlorophyll signal.
This is consistent with earlier assimilation studies that, for
assumed constant parameters, tended to overestimate plank-
ton production at BATS during the bloom end of winter and,
at the same time, tended to underestimate production in olig-
otrophic summer conditions and in early winter, seeSchar-
tau et al.(2001). Such a trend to relatively high values of
α has also been found in earlier studies that optimized pa-
rameter values by data assimilation, seeFasham and Evans
(1995), Schartau et al.(2001). Earlier studies assuming time-
independent parameter values have attributed relatively high
values ofα to the absence of a dial cycle in the turbulent mix-
ing, which might allow for substantial phytoplankton growth
even in winter during reduced daytime mixing, seeSchar-
tau and Oschlies(2003a). This is consistent with the find-
ings of the current study, that also suggest high values of
α during the period of deep mixing in winter. In addition,
our optimized model predicts even higher values of the ini-
tial slope parametersα for late spring and early summer,
where the mixed layer is usually shallow and growth is lim-
ited by nutrients rather than light in the surface mixed layer.
A large value ofα can, however, help to establish a sub-
surface chlorophyll maximum in better agreement with the
observations. This was also noted bySchartau and Oschlies
(2003b). Our results reported here indicate that high values
of α may, at BATS, be more important for the establishment
of the deep chlorophyll in late spring than for the mainte-
nance of phytoplankton production during periods of deep
mixing in winter. Maintenance of high primary production
during summer has been difficult to achieve by earlier mod-
els run at BATS (Schartau et al., 2001). As nutrient supply to
the surface waters is low during the stratified season, mod-
els with fixed carbon-to-nutrient stoichiometry and constant

model parameters do not seem to be able to reach observed
levels of primary production in the surface layer, seeSchar-
tau and Oschlies(2003b). In the current study, the carbon-
to-nutrient factor used to convert simulated (nitrogen-based)
primary production to observed (carbon-based) primary pro-
duction is constant as well. However, the seasonally varying
parameters can contribute to maintain high levels of primary
production during summer in the absence of substantial in-
puts of new nutrients. This is realized by enhanced recycling
of biomass, evident by high maximum grazing rates, high
assimilation efficiencies, high prey capture efficiencies and
high zooplankton excretion in late spring and early summer.
Similarly, remineralization of detritus is highest in late spring
as well. These high rates all contribute to fast recycling of
nutrients in the surface ocean, which helps to maintain ob-
served high rates of primary production and thereby reduces
the model–data misfit function. The relative deviations of the
calculated parameters are shown in Fig.7.

4.4 Validation of the non-linear model with periodic
parameters

In this section, the periodic parameters obtained by the
LQOC method are used in a validation experiment using the
original non-linear NPZD model. We run the original non-
linear model using these parameters without further opti-
mization for the years 1994 to 1998 and analyze the corre-
sponding model–data misfit.

Figure8 shows a comparison of the model output using
optimal periodic parameters and optimal constant parameters
(obtained by the SQP method), as well as the observational
data in the uppermost layer. The use of periodic parameters in
comparison to constant parameters results in a significantly
better model–data fit. The results foryP andyD are almost
perfect, whereas for the other two tracers they are slightly
worse. The results look similar for all layers.

In order to allow for a quantitative comparison between
our results and those obtained with constant parameters by
Rückelt et al.(2010b), we give the corresponding values of
the original cost function (Eq.4) in Table3. The better fit
with periodic parameters also results in a significantly re-
duced valueF ≈ 15.05 of the cost function (Eq.4). We are
not able to obtain the same value of the cost function as with
the linearized model, see Sect.4.1, which is reasonable since
there we have used the observational data for the reference
trajectory.

The quality of the obtained periodic parameters depends
on the length of the time intervals[tj,i, tj,i+1] on which the
linearization (with a constant reference value for the model
output) is applied. If no data are available as referenceyref

k ,
these intervals have to be enlarged, which presumably will
reduce the quality of the optimized parameters. This in turn
will influence the quality of the validation.
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Table 3.Values of the cost function for each year: for the optimization (with constant and periodic parameters), the validation presented in
Sect.4.4, and the prediction presented in Sect.4.5.

Experiment Model Parameters 1994 1995 1996 1997 1998 Total costF

Optimization (SQP) non-linear constant 71.91 68.50 64.14 65.39 80.06 70
Optimization (LQOC) linear periodic 2.09 1.18 1.94 0.53 0.98 1.35
Validation non-linear periodic 9.77 9.82 15.37 24.66 15.62 15.05
Prediction non-linear periodic – – 16.7 20.8 30.15 22.55
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Fig. 8. Observational BATS datayl,obs, l = N, P, Z, D, and aggregated model trajectoriesȳl, l = N, P, Z, D, obtained by using the optimal
periodic parameters in the non-linear model, and the optimal trajectories for the constant parameters with a sequential quadratic programming
(SQP) method at depthz ≈ 5 m for the years 1994–1998.

4.5 Prediction experiment

In this section we present a prediction experiment with the
optimal periodic parameters in the original non-linear NPZD
model. We now use only a part (two years, 1994 and 1995)
of the time interval to determine optimal periodic parameters
using the LQOC method. Then we use these parameters on
the remaining part (three years, 1996 to 1998) of the time in-
terval. In these three years, the periodic parameters obtained
during the first two years are applied without further opti-
mization.

Figure9 shows a comparison between the predicted model
output and the observational data for the years 1996 to 1998
in the uppermost layer. The fit is quite good. The qualitative
behavior of the tracers at different times and spatial layers is

similar. Table3 shows the resulting values of the cost func-
tion.

The fit of the predicted output is slightly worse than for the
output in the validation experiment described in Sect.4.4, but
still much better than the results obtained with the optimized
constant parameters.

5 Conclusions

In this paper, we use the method of linear quadratic optimal
control (LQOC) to determine optimal periodic parameters
in a one-dimensional marine ecosystem model. We demon-
strate that the LQOC method can be applied on the consid-
ered parameter optimization problem for a non-linear NPZD
type model using a linearization technique around reference
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Fig. 9. Observational BATS datayl,obs, l = N, P, Z, D, and aggregated model trajectoriesȳl, l = N, P, Z, D, obtained by using the optimal
periodic parameters in the non-linear model as a prediction at depthz ≈ 5 m for the years 1996–1998.

trajectories of model variables (biogeochemical tracers) and
parameters, where the system matrices were obtained by au-
tomatic differentiation.

We show how a reference tracer trajectory can be built
from sparse data, and how an appropriate choice of reference
parameter trajectory can be used to obtain annual periodic
parameters that additionally stay in prescribed bounds.

The linearized model obtained in this way gives a very
good model–data fit with almost perfect annually periodic
parameters. Even with the available small number of obser-
vational data typical to oceanographic time series sites, the
quality of the fit is very high. Specifically, it is much better
than the one previously obtained by optimization of the non-
linear model with fixed model parameters.

The obtained periodic parameters are used in the original
non-linear model. Using them, the model is able to repro-
duce and predict the real data much better than the non-linear
model with optimized constant parameters.

The method allows to further analyze temporal deviations
of individual parameters about the annual mean. This may
help in making inferences about processes that the model
cannot describe well when constant parameters are used.
This latter analysis should contribute to a better understand-
ing of model deficiencies and, eventually, help to improve
marine ecosystem models.
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