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Abstract. This paper presents the application of the Linearear system. For the cost function, a model-data fit in least-
Quadratic Optimal Control (LQOC) method to a parametersquares formulation can be used, and thus the method is ap-
optimization problem for a one-dimensional marine ecosys-plicable to parameter optimization or model calibration prob-
tem model of NPZD (N for dissolved inorganic nitrogen, lems. The optimal time-dependent parameters are obtained
P for phytoplankton, Z for zooplankton and D for detritus) via an algorithm that basically uses the system matrices of
type. This ecosystem model, developed by Oschlies and Gathe underlying linear model. When applying the method to
con, simulates the distribution of nitrogen, phytoplankton, a non-linear dynamical system (as most marine ecosystem
zooplankton and detritus in a water column and is driven bymodels), the linearization of the system is essential. For this
ocean circulation data. The LQOC method is used to intro-purpose, a reference trajectory of model variables and param-
duce annually periodic model parameters in a linearized vereters is needed, which can be based on observational data and
sion of the model. We show that the obtained version of theparameter guesses. By an appropriate choice of the parame-
model gives a significant reduction of the model-data mis-ter trajectory, periodic parameters can be obtained. These can
fit, compared to the one obtained for the original model with then be used to improve the original non-linear model.
optimized constant parameters. The found inner-annual vari- Marine ecosystem models describe biogeochemical pro-
ability of the optimized parameters provides hints for im- cesses in the ocean and are used, e.g., for calculating the
provement of the original model. We use the obtained opti-effect of marine photosynthesis on the global carbon cycle.
mal periodic parameters also in validation and prediction ex-Typically, such kind of models have several parameters, for
periments with the original non-linear version of the model. example, growth and mortality rates for the different types of
In both cases, the results are significantly better than thosplankton taken into account. Since most of these parameters
obtained with optimized constant parameters. are not known exactly and are difficult to measure, parameter
identification or estimation is an important tool to calibrate a
model. Parameter identification or estimation is usually done
by performing a parameter optimization in order to minimize
1 Introduction the misfit between model output and given data, commonly
represented by a least-squares type cost functional. Addi-
In this paper we present an application of the LQOC (Lin- tionally, uncertainty estimates corresponding to data errors
ear Quadratic Optimal Control) method on a parameter opti-may be computed. A parameter optimization may improve a
mization in a marine ecosystem model. This method (see foyggel's quality also to another extent: If a model still shows
exampleKwakernaak and Sivari972 Lewis and Syrmas  geficiencies after the parameters have been optimized, rea-
1999 is a mathematical technique to compute time depen-ons other than inappropriate parameter values are likely to

dent parameters (in some applications also called controlsye responsible for remaining poor model behavior, see for
in linear dynamical systems. The key goal of the method is

to minimize a given quadratic cost function subject to a lin-
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exampleFasham and Evand 995, Hurtt and Armstromg temporally changing parameters, but without imposing an-
(1996, Fennel et al(2001), Prunet et al(1996. nual periodicity.

The computational effort to perform such kind of opti-  We use the annual periodicity constraint on the parameters
mization runs for the coupled system of ocean circulation andn order to allow for some temporal flexibility of the parame-
marine biogeochemistry that describes a marine ecosystem ters but at the same time to retain the temporal universality of
quite high, especially in three space dimensions. Thus, sewthe optimized model, e.g., for application to time periods out-
eral simplifications may be used: One of them is to computeside the range of observations. The LQOC used here does not
the marine biogeochemistry in a so-called offline mode, i.e. require a prescribed periodic parameterization of the parame-
to solve the transport equations for the tracers with precomters, it will automatically generate an optimal periodic func-
puted ocean circulation fields (velocity, temperature, salin-tion for each parameter. Moreover, it allows to balance the
ity) as forcing or input. Another approach is to use one-two aims of a good model—data fit on one hand and parameter
dimensional models, which simulate a single water columnperiodicity on the other by introducing weighting matrices.
only. This simplification is motivated by the fact that most  We verify our approach in validation and prediction ex-
of the ecosystem processes (as for example growth and dyperiments employing the optimized periodic parameters in
ing) are happening locally in space and that the main spatiathe original non-linear model.
interactions are vertical mixing and sinking of organic mat- The structure of the paper is as follows: in Settwe
ter. Moreover, it has been shown that parameters obtained ibriefly describe the model, the data and the cost function
a one-dimensional optimization can also be beneficial wherwhich we use for optimization. In Se&we briefly describe
used in three-dimensional computations, §€=hlies and the LQOC method and its application on the NPZD model.
Schartay2005. In Sect.4 we present our results obtained by the LQOC

The motivation for this paper is based on the results ob-method with respect to the quality of the model-data misfit
tained for a typical marine ecosystem model, namely anand the periodicity of the parameters. We furthermore show
NPZD model (N for dissolved inorganic nitrogen, P for phy- results for validation and prediction with the original non-
toplankton, Z for zooplankton and D for detritus) introduced linear model using the optimized periodic parameters. Sec-
in Oschlies and Garg¢oli1999. As was reported in sev- tion5ends the paper with some conclusions.
eral publications with different optimization algorithms, the
quality of the model fit to observations was not optimal, . o
and in some cases it was difficult to identify the parameters> Model equation and optimization problem

uniquely, see for examplé/ard (2009, Ward et al (2010, The model used here, as example, is a one-dimensional ma-

Ruckelt et al(2010h. In most cases (and in all these studies), fine ecosvstem model presented @schlies and Garcon
the parameters of the marine ecosystem models are assum? 99. It yis of NPZD ti)/pe ie it simulates the ir:;ter-
to be temp(_)rally c_onstant. Th|s_ reflec_t S th_e aim to obtain 8action of dissolved inorganic nitrogen (N), phytoplankton
model that is applicable for arbitrary time intervals. In con- (P), zooplankton (Z) and detritus (D), whose concentra-
trast, in our work we allow the parameters to vary temporally ;. ”’ P y

. . - tions (in mmol N n13) are denoted by the model variables
over the year while remaining periodic over all years of the |, ) . ok -
considered time interval. (»)i=N, Pz, D=:y. These four variables are functions:

Our main research question is if such kind of relaxation [0, 7e] x [~ H, 0] — R of space and time, withl denoting the

. S . depth of the water column anglthe total integration time.
is able to significantly improve the model-to-data Eknes . : . .

The model is then given as the following system of partial
and Evenserf2002 and Schartau et al(2001) have exam- . . LS
. o X . ... differential equations:
ined the possibility of using a sequential data assimilation
method for state estimation in a biological model. On the 3! a9 l

imatiop— = —' = L) 4 g (y,w),l =N, P, Z,D (1
other hand, there are several papers on parameter estimatioj, = ~« 35—+ 7«5~ | +4 0w, [=N. P, 2, (1)
only, seeSchartau et al(2001), Fasham and Evand995,
Hurtt and Armstromg(1996, Fennel et al(2001), Prunet  herez denotes the vertical spatial coordinate. Thare the
et al. (1996, Matear (1995, Spitz et al.(1998. Work by biogeochemical coupling terms which depend on space and
Losa et al.(2003 combined state and parameter estimationtime via light intensity and also on temperature, and on most
using a sequential weak constraint parameter estimation in aaf the parameters summarized in the veator
ecosystem model. An example for time-dependent parame- In this spatially one-dimensional setting, the only phys-
tersis introduced in the work iMattern(2012, where a sta-  ical process taken into account is vertical diffusion, which
tistical emulator technique to estimate time-dependent valappears as a space and time-dependent mixing coefficient
ues for two parameters of a 3-dimensional biological oceanc, taken (as well as temperature) from the Ocean Circula-
model is used. The author demonstrated that emulator techtion and Climate Advanced Model OCCAM (s&mha and
niques are valuable tools for data assimilation and for ana¥Yool, 2009 in hourly profiles. The equation for detritus also
lyzing and improving biological ocean models. He also usedcontains a sinking term with constant spegd > 0, which
is also optimized asi1», whereasoN = wP =w? =0 in
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3. Vertically integrated mesozooplankton biomags©Ps
(mmol m2) corresponding to

Eqg. ). Intotal, we havep = 12 parameterg = (uy, ...
to be optimized.
The biogeochemical coupling (or source-minus-sink) .
terms are taken fror®schlies and Garcof1999 and read / y© - 0'096504dz _. <z 3)
Ny u) = =T (N3P + uay? + uaoy®, 12344
qP(y.u) = J(N)yP — ugy” — G(us, u7)y*,
z _ zZ_ ., Z_ ., 72
q=(y,u) = u1G(ue, u7)y~ —uay u9y2 )
q°(y, u) = (1= u1)G(ug, u7)y* + ugy?” + ugy” — u1oy®.

71417)

@ Here, an additional assumption about the relation of
mesozooplankton biomag$: Me°to total zooplankton
biomassyZ according to the formula

HereJ is the daily averaged phytoplankton growth rate as a
function of depth; and timet, andG is the grazing function:

TN
p2

G(ug, u7) = ~—;.

uztuegy 5
The circulation data (taken from an ocean model) are the
turbulent mixing coefficient = « (z, ) and the temperature
T = T(z,t), which is used in the non-linear tered where
¢ = 1.066 is kept constant. Tabldists the model parameters
with their original symbols as i®schlies and Gar¢di1999.
For more details see alSchartau and Oschli€20033.

y% = 1.2344. y% MeS04 0096504

Particulate organic nitroges: °°S (mmol N m—3) cor-
responding toP + yZ 4 yP =: 5P,

:min(f(z,t),uch o ), 4.

ugp+yN

. Carbon fixation or primary production (PP) as carbon
uptakey”P °Sn mmol C n3d~1. As modeled primary
production, the temporal mean of the model outptt
multiplied by the phytoplankton growth ragig yN)yP.

2.2 The optimization problem

The aim of the optimization is to fit the model outputhat

was aggregated, in the above mentioned way, to the given
observational data°Ps over a chosen time interval gfnax
years. We denote bjy; ; the number of observational data

The observational data used here, denoteg®¥, is taken  for y1:%bs for each observed quantif=N, P, Z, D, PP in
from the Bermuda Atlantic Time-series Study (called BATS) year j =1, ..., jmax These numbers may be different for
as a part of the US Joint Global Ocean Flux Study, seggch; and j. The i-th observational in yeay of y"°bS is
Michaels and Knap(1999. __ denoted byyiﬁ?bs, and the corresponding aggregated model
The BATS data are prowdeq by the_ Bermuda B_|0Iog|cal output value bx" ). We now firstly compute the averaged
Station for Research (BBSR) situated in the Atlantic Ocean’annual misfit e}v%()ldel outbut/tracer. weighted using the in-
700 miles from the East Coast of the US at coordinaté$\31 fih f dard devi tp tak ’ frﬁgin ; go
64° W (seehttp://bats.bios.ed)/ verse of the standard deviations taken artau and Os-

In this work, each observational data has to be compare& hlies(20039 and summarized in the vector
to an equivalent value generated by the model. For this pury — (;),_y p 7. p, pp= (0.1,0.01,0.01, 0.0357,0.025),
pose, the model output is interpolated in time and space to
match the observational data. In addition, some transformaand by the numbeN; ; of observational per tracer and year:
tions have to be done: modeled zooplankton has to be inte- »
grated in space, and chlorophglivalues are calculated by o Z O = V)i
multiplying the nitrogen-based concentration of the modeled b= ~ 0PN

phytoplankton by a factor of 1.59 mg Chl/(mmol N), which l ) _ _
corresponds to a chlorophyll to carbon mass ratio of 1: 5olf there are no observational data for a state variable/tracer in

2.1 Observational data and corresponding model
output

Ny j I,obs)z

,I1=N,P,Z,D,PRj=1,...

» Jmax-

and a C: N mole ratio of 106 : 16. For more details ¥¢ésd
(2009.

ayear (i.e.N; ; = 0), the sum is set to zero. The overall cost
function is then calculated as

Summarizing, there are five types of observational data 1 Jmax PP

yobs.— (yl’Ob%lzN, p.z.D,Pr Which correspond to aggre- F =

gated valuey := (y’)l:N, p, z, 0, ppOf the model output. The
used data and their corresponding model variables are

1. Dissolved inorganic nitrogep™: °°S(mmol m~3) corre-
sponding to model variablgN =: jN.

2. Chlorophyll a yP S (mgm3) corresponding to the
scaled model variablg®/1.59=: 5",
Here wusing a constant conversion
1.59 mg (Chlk)/(mmol N).

factor

www.biogeosciences.net/10/1169/2013/

of

YD R @)

whereNyota) is the total number of non-zero ternfig ; actu-
ally occurring in the sum. In the usual case we hayg, =
5jmax. If everN; ; = 0 and thus; ; = 0 for ayear and tracer,
Niotal i decreased accordingly.
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Table 1. Parameters of the ecosystem model to be optimized with the LQOC methodugieréug ;);—1, .. 12 is the vector of parameters
taken fromOschlies and Gar¢ai1999, min(u;) and maxu; ) their respective upper and lower bounds useSidhartau and Oschli¢20033.

Parameter uj ug, Units Min(u;)  Max(u;)
Assimilation efficiency of zooplankton y1 0.75 0.3 0.93
Growth rate parameter a 0.6 day?! 0.2 1.46
Initial slop of P-I Curve « 0025 nw2d-1 0.001 0.256
Zooplankton excretion y2 003 dayl 0.01 0.955
Light attenuation by phytoplankton ke 0.03 nrlimmolm=3)-1 0.01 0.073
Pry capture efficiency € 1 (mmolnm3)=2d-1  0.025 1.6
Maximum grazing rate g 2 d1 0.04 2.56
Specific mortality rate pnp 0.03  day? 0.01 0.635
Zooplankton quadratic mortality puz 0.2 (mmolm3)~1d-1  0.01 0.955
Remineralization rate parameter of detritustp  0.05 day® 0.02 0.146
Sinking velocity of detritus ws 5 mday 1 1 128
Half-saturation constant for N uptake rate Ky 0.5 mmol nT3 0.1 0.730

3 Application of linear quadratic optimal control to the (discretized by an upstream scheme), respectively,lard
NPZD model the identity matrix.
The interpretation of the scheme (E4).is the following:
In this section we apply the LQOC method to the discretizedm every time Stefk —>k+ 1' at first the non-linear Coup"ng
version of the NPZD model. The LQOC method is Wldely termsgq; = (qli\l’qlf)’ qkz’qu) are Computed at every Spatia|
used in engineering applications and well studied from thegrid point and integrated by four explicit Euler steps with

mathematical side, see e.dinderson and Moord1971),  step sized!, each of which is described by the operator
Casti(1987, Lunze (1997, Sima(1996. Non-linear prob- A

; i ati t
lems can be trea_ted by Im_eanzgtlo_n, sdemeng1993.We BZ (Ve ug) = [| + = e (ks uk)} . (6)
present the details of the linearization and enforcement of the 4
periodicity of the parameters. Then, an explicit Euler step with full step-size is formed

for the sinking term, represented by the maftix ArL$"K].

3.1 Discretization scheme This matrix does only depend on the time stefithe sinking

We here give a brief description of the temporal and spatialyelocny ws IS 10 be pptimized. Finally, an implicit E}Jler step
discretization of the model equations described in E. ( is applied for the diffusion operator, discretized w!th second
The vertical grid consists of 32 layers with thickness increas—o_rOIer centraldgflfferences. Dueo=k (z, 1) the resulting ma-
ing with depth. InRilckelt et al.(20103 it has already been trix [I - _Atl‘k 1 depends on the current time s@ép
demonstrated that, at least from the point of view of the opti- 1 1€ discrete system can now be formally written as
mization results, the vertical model grid can be reduced toy, ., =[I — AtLgiﬁ]—lﬂ + A;Lii"k]gg o B! o B! o B! (yx, uy),
this number instead of the originally employed 66. It has — fOnu), k=1,..M—1, @
been demonstrated that optimization of the model yield prac-
tically identical results w.r.t. parameter match and quality of where f is a non-linear function.
the optimal solution. Anyhow, the method used here can as
well be applied for the original 66 layers. 3
The model is discretized in time using an operator splitting
method: given a time-step sizer (one hour in the model),
the discretized scheme reads

.2 Reference tracer trajectory

In order to apply the LQOC method to the discretized non-

linear system (Eq7), we perform a linearization around ref-

_ _ erence trajectories of stagé®’ and control"®". The latter is

0 —ArL{™ yerg = [1 + ArLF™B] o B o B o B{ (yx.ux),  described in Sec8.5. The relation between model variables
k=1,....M—1. (5) and observational data described in S@ct.can be used to

define the reference trajectop}f' as follows

_(wN (P . Z Dy i
Here yi = (y;. ¥, ¥i» y¢ ) is the vector of all four tracers N.ref ._ N, obs

anduy, the parameter vector (which is here already assumed 1. ¥ Yy
to be time-varying), both at the current time stehe total 2. yP.ref.= yP obs 1 5g
number of time steps i&. The matrice4 {, L 3"k are 4x 4 ' ' R
block-diagonal and represent the discretization of diffusion 3. y% ' is taken as constant over the whole water col-
(discretized by second order central differences) and sinking ~ umn such that the integral equals the value of the
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observational dataZ: °°S (which is a mean value). Here

the formula (Eq3) is used. tji Te Thtl tjit+1
4. yD, ref .— yD, obs__ yZ, ref _ yP, obs I } } } i } } } } } I
At

Because the data for the different tracers are not given for the

same instances of time, we o_nly use those |nstan_ces Wherl‘—e'lg. 1.Example for an interval on which the linearization is applied.
data for all four tracers are available. Only for those instances

reference values for all tracers can be computed by the above

transformations. To describe this procedure, we define for ev- Here

eryyearj =1,..., jmax
— x; € R™ is the deviation of the model output (i.e., all
— Ny j: number of data fop'-°°S, =N, P, Z, D. Xk out (

tracers over the whole water column) from the reference
- yif?bs‘. thei-th observational data,= 1,..., Ny ;. trajectory,

— v, € R? is the deviation of the actual parameters from

l,obs . )
oi =1...,Ny j, rounded the reference parameter trajectory.

[ ;
— 1; ;- instance of time ofy ™, i

to an integer number.
_The dimensiom: of x; is determined by the number of trac-
ers (in our case 4) and the numbers of grid cells in the wa-
ter column (in our case 32), which resultsin=4-32. The
Ij:={tji}i=1..N; = ﬂ{té’i}izl ,,,,, Npjo dimensionp of v is determined by the number of model
l parameters, herg = 12.

The matriceA; € R™*™ andB; € R™*? are called sys-
tem matrix and input matrix, respectively. For this example,
Because we have no reference vajii®l at the end of each they were generated by Algorithmic or Automatic Differenti-

year, we use linear interpolation between the d§8§ and ation (AD), seeGriewank (2000. Here we used the software
o TAF (Transformations of Algorithms in Fortran), sééring

and Kaminski(1998.
Summarizing, the state equation reads

— I;: set of instances where data for all tracers are avail
able:

— Nj: number of elements in this intersection.

obs
Y3111 to generate such value, denoted;t;S’fNjH.

Since there are no data for every vertical layer, we addi-
tionally interpolate the data linearly in space to obtain a ref-
erence trajectory in every grid point. Xpt1=Axxp +Brvg +bi, k=tj;t;:+1,... 1541 (8)

3.3 Linearization This is the typical form of a discrete linear system with state

. o L variablex; and parameter (or contrad),.
We apply the linearization on each time interiigl;, ¢; ; 411

separately. For this purpose, we split the interval into sectionsy 4 Application of the LQOC theory
of the lengthAr (hereAr =1 h), as shown in FidL.

The discrete time stepg in this interval are The theory of linear quadratic optimal control gives a for-
mula for the optimal parameter trajectosythat minimizes

T =1tji, :
T = the cost function
Tl =Tk + AL, k=tj;,....tji+1. ,
Ji+l
They correspond to the steps used in the temporal discretizay (v) = = Z kaQka + vaRk Vi 9
tion, see SecB. 2 k=t;

Now we linearize the model around the dg§${+1 and the

parameter vectan,rff (described below in Sed3.5). For this under the constraint E¢B. Here for everyk

purpose, we introduce — Q; € R™*m js a positive semi-definite diagonal weight-
af ing matrix for the state vector,
Ap = —( ref uref)
k 9 y],l+1’ k /s . . L . . .
Y — Ry € RP*7 is a positive definite diagonal weighting ma-
B, — % ref ref trix for the parameter vector.
k- o (J’,,l+1»uk ),
by = f(yref 1,u,'ff)—y'.ef . The matricesQ, and R; are usually chosen to be diago-
””rref Jr nal. They reflect the relative importance of keeping tracer
Xk =Yk~ Vjit1 variables and parameters, respectively, close to their refer-
v o= g — ule, ence trajectories. In our case, this translates to quality of

the model-to-data fit and periodicity of the parameters, see

www.biogeosciences.net/10/1169/2013/ Biogeosciences, 10, 11622013
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the next subsection. Selecting large elements of either matrixhe requirements for the LQOC method and algorithm 1 —

will emphasize the corresponding effect. where theR; have to be positive definite — are not satisfied.
At end of the optimization on all intervals; ;, t; ; 111, j = As a consequence, it is desirable to choserfﬂar the first

1...,jmax i =1,..., Nj, we obtain the optimal state vari- year as small as possible.

able and the optimal periodic parameteys, u;), for k = On the other hand, the choice of thg in the first year

1,...,M — 1. The realization of the LQOC method is pre- can be used to keep the parameters in the admissible bounds:

sented in algorithm 1. Since they can be forced to keep in the vicinity of the initial

guess in the first year and to stay close due to the periodicity
3.5 Choice of the reference parameter trajectory enforcement in the following years, by a careful setting of the

X in the first year both aims (periodicity and boundedness)

A main objective of this work is to enforce periodicity of 5, he halanced. This effect is not guaranteed by the LQOC
the parameters. To obtain annually periodic parameters, We,athod, but turned out to be realizable in our case, see the
denote the length of a time period — which in our case iSp .t section.

one year — measured in time stepsBy= 11y, +1. We now Summarizing, for our computations we chose foe
choose the reference trajectory for the parameter to be 1

,..., p, the values
ueh— uo, k=T
k ur_r, k>T.

10 L k<T
(10) rrllc — { \(Mo,nl)l (11)

—, k>T+1,
Hereug € R” is an initial guess, in our case we took the |Gtt=.0)]
values fromOschlies and Garc¢o(1999, compare Tabld. whereug is as listed in Tabld.
These values are used in the first ydag(T) only. As a re-
sult, in the first year the choice of the cost function (Ej.
will force periodicity to the constant reference parameters.

This effect can be reduced by choosing appropriate small valz . . . .
. . : . . In this section we present the results of the parameter opti-
ues in the matriceR;, in the first year. In the following years,

the difference of the current parametgrto its counterpart mization runs performed with the LQOC method. We show
current p nd Part —oth the obtained fit of the linearized model output (with op-
from the year before is minimized. This enforces periodicity.

. S o . timal parameters) to the data and the annual periodicity of
Thus the gru_mal_ point n adjusting the .matrldég. through- the obtained parameters. Note that we only compare values
out an optimization run is to allow both:

of the original cost functiorF, the functionJ actually mini-
— for sufficiently large deviation from the constant refer- mized in the LQOC setting is just a tool of the method.

ence parameters in the first year, to enable their tempo- ) ) )
ral variation, 4.1 Fit of linear model output to observational data

4 Optimization results

— and for smaller deviation and thus more or less strict This section shows a comparison between the optimized
periodicity in the following years. model output, obtained by the LQOC method with peri-
odic parameters, and the observational data. As a reference
we also compare the results to those obtained by a direct

optimization of the original non-linear model using con-
stant parameters with a Sequential Quadratic Programming
(SQP) method that takes into account parameter bounds. This
method was used iRickelt et al.(20108.

Figure2 shows the model results, obtained by the LQOC
method with periodic parameters, for aggregated model out-
o ~ puty and the observational das&®s for the years 1994 to
whereo; are the standard dey|at|0ns taken from the original 1998 for the uppermost layer at depths: 5m. Shown are
cost function (Eq4). The matrice®, are taken as results for a part of the whole time interval at some distinct
Ry = diagrt),—1 N depth layers or_lly: The total numb_er of depth layers consid-

" bt ered in the optimization process is 32 and the total number

These values are chosen differently in the first year (onof time steps is 43800. In contrast to the results obtained
one hand) and in all subsequent years (on the other hand). lfor constant model parameters with the original non-linear
all years except the first one (i.¢.> T), theR; are used to  model, the LQOC method with periodic parameters gives a
enforce periodicity of the parameters. The biggerthéor nearly perfect fit of the data. Even substantial concentration
these years are, the better periodicity of the parameters is exchanges that occur between some neighboring observational
pected. Following this idea, the optimal choice for Rgein data points (e.g., foy" ™4 in 1994, 1995 or 1997) can
the first year would be just zero matrices. But, by this choice,be captured by the optimized trajectory. We performed the

3.6 Particular choice of Q,, Ry

In our example, the weighting matric€s are taken as con-
stant for allk, namely

. 1
Qk=Q=d|ag;)l=N,P,Z,D,PR k=1...,M,
i

Biogeosciences, 10, 11691482 2013 www.biogeosciences.net/10/1169/2013/
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Algorithm 1. Algorithm of the LQOC method.

forjzl,...,jmaxdo
fori=1,...,N;do

(a) Given the equation system as
Xpp1=Arxp +Brvogp + by, k= tjistji+ 1, e bt
and the cost function as

1 ¢ T
J@)=35 > x; Qrxy+v, Ryvg.

k=tj1,'

1. Solve the first matrix difference Riccati equation
P = Qi + Al Prp1Ar — Al PriaBre(Re + B PrpaBO IAB A, k=101 115
with final conditionPy; ., =Q;, .,

2. Solve the second matrix difference Riccati equation
hi = A (Pyabi + by DA] PeiaBi(Re: +B] Pry1Bo) ™1B] (Psabi + hygn), k=tj;01—1....1);
with final conditionk;; ., =0.

3. Solve the two auxiliary matrix difference equations
Ki =—Ri+B/ Pry1Bo) 1B PryaAr, k=1ji,....1j41— 1.
S =—(Rr +B; Pk+1Bk)_lBk (Prt1be +hi1), k=tji,..., tjiv1— 1.

4. Compute the optimal stasg’ from
._ ref
Vi1 = xi}ﬁy,‘,m f
=¥+ A+ Bk E =y ) +BeSk, k=tji .ty i1 -1

5. Obtain the optimal parameters vectgrfrom

— ref
up i=vg +uy

=u,r{ef+Kk(yZ—y;‘?lf+l)+Sk, k=tji...., tiiv1—1.
end
end

optimization for the years 1994 to 1998, in contrast to theand thus also of the linearized model and the obtained opti-
years 1991 to 1996 that were usedRiackelt et al.(20108), mal parameters.
since no zooplankton data are available at BATS for the years Figure4 shows the LQOC results with periodic parameters
1991 to 1993. This would be disadvantageous for the lin-and the observational day®s for the years 1994 to 1998
earization procedure in the LQOC method. for the lower layer at depths~ 18432 m. Here the LQOC

In Riuckelt et al.(2010H, a minimum value of the cost method with the periodic parameters provides a nearly per-
function (Eqg.4) of F ~ 70 was obtained for optimized con- fect fit, in contrast to the one obtained with constant parame-
stant parameters for the time 1991 to 1996. For the time 1994ers.
to 1998, the value obtained by the SQP method and constant
parameters is very similar. Also the quality of the fit — de- 4.2 Sensitivity with respect to the weighting matrices R
picted in Fig.2 — is comparable. The better fit obtained by
the LQOC method also results in a significantly lower value
(F ~ 1.35) of the original cost function (Eqt). Figure 3

To examine the effect of the weighting matrid@g in the
first year, on the behavior of the parameters and the cost

shows the mismatch between model output and the referendNCtion ¥, we have additionally performed sensitivity ex-

data — which are interpolated values of the sparse observd2€Timents with different entrieg’ of the weighting matri-
tional data — for all points in time and space. cesRy for k < T. We present two additional experiments for

Figure 3 also shows — except for dissolved inorganic ni- * = L....pwith
trogenyN — a better fit at the surface than in deeper layer. 1 _ r<T
The possible reason for this is the lack of observational data} = | minGe,) |2 v - T
on the lower layers, which requires interpolation over rela- Imaxu,)|?” © =

tively large space intervals. Thus, the interpolation error thereThe values of mitwu, ) and maxu,,) are listed in Tabld. The
is bigger than in upper layers where the database is denseorresponding values of thé for these two choices and the
This, naturally, affects the quality of the reference trajectory, ¢ from Eq. (L1) (here called reference simulation) are shown

www.biogeosciences.net/10/1169/2013/ Biogeosciences, 10, 11622013
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Fig. 2. Observational datg”ObS,l =N, P, Z, D, and aggregated model trajectorjés/ = N, P, Z, D, optimized with periodic parameters
obtained by the LQOC method and with a sequential quadratic programming (SQP)method. Values are shown for the upper layer at depth

z~5m and years 1994-1998.
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Fig. 3. Model-to-data misfit for four tracers with respect to space and time obtained by the LQOC method.
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Dissolved inorganic nitrogen (N) [mmol m™] o ‘ Chlorophyll a (P) [TQ m ]‘

—— model output b model output
o 0 BATS data 045 o BATS data
{ A

0 I L LY I I L L @ L I L 0.05 L L L L L L L L
1994 1994.5 1995 1995.5 1996 1996.5 1997 1997.5 1998 1998.5 1999 1994 19945 1995 19955 1996 19965 1997  1997.5 1998 19985 1999

time [years] time [years]

Zooplankton (Z) [mmol m'z] Particulate organic nitrogen (D) [mmol N m‘3]

model output model output
O BATS data o BATS data

o )
580 v o1l

o

| | L L I I I I I I 0.05 L L L L L L L L I
0 1994 1994.5 1995 1995.5 1996 1996.5 1997 1997.5 1998 1998.5 1999 1994 1994.5 1995 1995.5 1996 1996.5 1997 1997.5 1998 1998.5 1999
time [years] time [years]

Fig. 4. Observational dath’ObS,l =N, P, Z, D, and aggregated model trajectorjés = N, P, Z, D, optimized withperiodic parameters
obtained by the LQOC methodalues are shown for the lower layer at depttts 18432 m.

in Table2. The trajectories of the tracepsthe parameterns, Table 2. Values ofr/" for the reference simulation (second column)

and the value of the cost functian, depend heavily on the and the two additional sensitivity experiments.

choice of the corresponding entriéSin the matrixRy. Fig-

ure5 shows the trajectories for three tracers and differgnt i =1 -1 n___1
. : . i w2 T Iminwp2 T T Tmax(uy)|?

All experiments show only minor differences from the refer-

ence simulation with the,’; from Eq. (L1). The results show 1 177 11 115
that a decrease in the entr{ can lead to a small decrease 2 277 25 0.469
. . S o3 1600 16 15.25
in the cost function. The sensitivities of the parameters with 4 1111 1¢ 1.09
respect to the choice of can be seen in Fig. It is obvious 5 1111 16 187
that for smaller values oft the variability of the parameters 1 1600 0.39
is getting larger. 7 0.25 625 0.152

8 1111 14 42.48
4.3 Periodicity of the parameters 9 25 1¢ 1.09

10 400 2500 46
In this section we show that the above model-to-data fit can 11 0.04 1 61017°
be achieved with parameters that are almost annually pe- 12 4 100 1.876
riodic. Enforcement of periodicity was achieved by an ap- costF 1.35 1.9 0.95
propriate adjustment of the matricBs in the cost function see Eq.4)

(Eg. 9) used in the LQOC framework, see Se8t.It was

also possible to keep the parameters in their desired bounds

(see Tabld), although the LQOC method does not to impose it is obvious that for a smallef’, the amplitude of the param-

these bounds explicitly. eters increases, but it always remains almost periodic. Since
Figuresé6 illustrates the temporal behavior of the param- the periodicity of the parameters is nearly perfect, then it is

eters that were optimized with the LQOC method. Depictedenough to plot for 2 yr.

are only the ten that show a temporal variation. Two param- The parameters controlling growth of phytoplankton,

eters remain constant in time. These figures show differenhamely the maximum growth rateand the initial slope of

trajectories for each parameter for two years with the differ-the P-1 curvea, show in Fig.6 both maximum values in

ent choices of theX, compare Tabl@. As mentioned above, early summer and in winter, with a clear minimum value

n?
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Disoteg nargancrivogen () ol ] model parameters do not seem to be able to reach observed
levels of primary production in the surface layer, Sahar-
tau and Oschlie$2003h. In the current study, the carbon-
to-nutrient factor used to convert simulated (nitrogen-based)
primary production to observed (carbon-based) primary pro-
duction is constant as well. However, the seasonally varying
parameters can contribute to maintain high levels of primary
production during summer in the absence of substantial in-
puts of new nutrients. This is realized by enhanced recycling
of biomass, evident by high maximum grazing rates, high
assimilation efficiencies, high prey capture efficiencies and
high zooplankton excretion in late spring and early summer.
Similarly, remineralization of detritus is highest in late spring
as well. These high rates all contribute to fast recycling of
- nutrients in the surface ocean, which helps to maintain ob-
. e e e served high rates of primary production and thereby reduces
the model—-data misfit function. The relative deviations of the

Fig. 5. Model output trajectories with differentf, the reference  calculated parameters are shown in Fig.
simulation (dashed), with largef (solid) and with smaller’ (dot-

ted) for the upper layer at depth~ 5 m and years 1994-1998. 4.4 Validation of the non-linear model with periodic
parameters

Particulate organic nitrogen (D) [mmol N m™]
T T T

in spring during the peak of the annual chlorophyll signal. IN_this section, the periodic parameters obtained by the
This is consistent with earlier assimilation studies that, for FQOC method are used in a validation experiment using the
assumed constant parameters, tended to overestimate plarfd9inal non-linear NPZD model. We run the original non-
ton production at BATS during the bloom end of winter and, Ilnear_ model using these parameters without further opti-
at the same time, tended to underestimate production in oligiization for the years 1994 to 1998 and analyze the corre-
otrophic summer conditions and in early winter, Sghar-  SPonding model-data misfit.

tau et al.(200]). Such a trend to relatively high values of ~ Figure8 shows a comparison of the model output using
« has also been found in earlier studies that optimized pa_op'umal periodic parameters and optimal constant parameters

rameter values by data assimilation, $@sham and Evans (0btained by the SQP method), as well as the observational
(1999, Schartau et a(2007). Earlier studies assuming time- dat@ in the uppermostlayer. The use of periodic parameters in
independent parameter values have attributed relatively higifomparison to constant parameters F[esultlen a significantly
values ofx to the absence of a dial cycle in the turbulent mix- P€tter model-data fit. The results fof and y™ are almost
ing, which might allow for substantial phytoplankton growth Perfect, whereas for the other two tracers they are slightly
even in winter during reduced daytime mixing, sgehar-  WOrse. The results look similar for all layers.

tau and Oschlie§2003a. This is consistent with the find- [N order to allow for a quantitative comparison between
ings of the current study, that also suggest high values oPU" results and those obtained with constant parameters by

« during the period of deep mixing in winter. In addition, RUCkelt et al.(2010p, we give the corresponding values of
our optimized model predicts even higher values of the ini-th€ original cost function (Ecd) in Table3. The better fit
tial slope parametera for late spring and early summer, with periodic parameters also results in a significantly re-

where the mixed layer is usually shallow and growth is lim- duced valuer ~ 1505 of the cost function (Ecd). We are
ited by nutrients rather than light in the surface mixed layer, N0t @ble to obtain the same value of the cost function as with

A large value ofa can, however, help to establish a sub- the linearized model, see Se4tl, which is reasonable since
surface chlorophyll ma{ximum in ’better agreement with thethere we have used the observational data for the reference

observations. This was also noted 8ghartau and Oschlies TJectory. _ o

(20031. Our results reported here indicate that high values '€ quality of the obtained periodic parameters depends
of @ may, at BATS, be more important for the establishment©" the length of the time intervals; ;, 7 ;+1] on which the

of the deep chlorophyll in late spring than for the mainte- linearization (with a constant reference value for the model

nance of phytoplankton production during periods of deepPUtPut) is applied. If no data are available as referesiee _
mixing in winter. Maintenance of high primary production these intervals have to be enlarged, which presumably will

during summer has been difficult to achieve by earlier mod-reduce the quality of the optimized parameters. This in turn

els run at BATS (Schartau et al., 2001). As nutrient supply to'ill influence the quality of the validation.
the surface waters is low during the stratified season, mod-
els with fixed carbon-to-nutrient stoichiometry and constant

Biogeosciences, 10, 11691482 2013 www.biogeosciences.net/10/1169/2013/
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Fig. 6. Periodicity of optimal parameter@& ,),=1,.... 10 oObtained by the LQOC method, niin), max(u) are, respectively, the upper and
lower bounds listed in Tablg, P! is the optimal parameter obtained Bjickelt et al.(20108. We point out that miti) and maxu) are

not shown in all plots. Because the values are very low or high.
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Fig. 7. Relative temporal variations of some of the model parameters in a typical year. Since the periodicity of the parameters is nearly

perfect, no difference between the five years is visible.
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Table 3. Values of the cost function for each year: for the optimization (with constant and periodic parameters), the validation presented in

Sect.4.4, and the prediction presented in Sekb.

Experiment Model Parameters 1994 1995 1996 1997 1998 TotaFcost
Optimization (SQP) non-linear  constant 7191 6850 64.14 65.39 80.06 70
Optimization (LQOC) linear periodic 2.09 1.18 1.94 0.53 0.98 1.35
Validation non-linear periodic 9.77 9.82 15.37 2466 15.62 15.05
Prediction non-linear periodic - - 16.7 20.8 30.15 22.55
Dissolved inorganic nitrogen(N) [mmol m’a] Chlorophyll a (P) [mg m’a]
" ‘ ‘ ‘ —— model output with periodic parameters °° ‘ " [——model output with periodic parameters
1k - - - model output with constant parameters o7} ~ ~ ~model output with constant parameters
o BATS data o BATS data

NN | ol | o o o, | . . . . . . . . .
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Fig. 8. Observational BATS datgmbs,l =N, P, Z, D, and aggregated model trajectorjésl =N, P, Z, D, obtained by using the optimal
(SQP) method at depth~ 5 m for the years 1994—-1998.

periodic parameters in the non-linear model, and the optimal trajectories for the constant parameters with a sequential quadratic programming

4.5 Prediction experiment similar. Table3 shows the resulting values of the cost func-
tion.

The fit of the predicted output is slightly worse than for the
In this section we present a prediction experiment with theOutputin the validation experiment described in Séet, but

optimal periodic parameters in the original non-linear NPZD still much better than the results obtained with the optimized
model. We now use only a part (two years, 1994 and 1995f0nstant parameters.

of the time interval to determine optimal periodic parameters

using the LQOC method. Then we use these parameters on

the remaining part (three years, 1996 to 1998) of the time in5 Conclusions

terval. In these three years, the periodic parameters obtained

during the first two years are applied without further opti- In this paper, we use the method of linear quadratic optimal

mization. control (LQOC) to determine optimal periodic parameters
Figure9 shows a comparison between the predicted modein a one-dimensional marine ecosystem model. We demon-
output and the observational data for the years 1996 to 1998trate that the LQOC method can be applied on the consid-
in the uppermost layer. The fit is quite good. The qualitative ered parameter optimization problem for a non-linear NPZD
behavior of the tracers at different times and spatial layers igype model using a linearization technique around reference

Biogeosciences, 10, 1169482 2013 www.biogeosciences.net/10/1169/2013/
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Fig. 9. Observational BATS daty’"’bs,l =N, P, Z, D, and aggregated model trajectorjés = N, P, Z, D, obtained by using the optimal
periodic parameters in the non-linear model as a prediction at depthm for the years 1996—-1998.
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