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Abstract. A comprehensive assessment of nitrogen (N) flows
at the landscape scale is fundamental to understand spatial
interactions in the N cascade and to inform the develop-
ment of locally optimised N management strategies. To ex-
plore these interactions, complete N budgets were estimated
for two contrasting hydrological catchments (dominated by
agricultural grassland vs. semi-natural peat-dominated moor-
land), forming part of an intensively studied landscape in
southern Scotland. Local scale atmospheric dispersion mod-
elling and detailed farm and field inventories provided high
resolution estimations of input fluxes. Direct agricultural in-
puts (i.e. grazing excreta, N2 fixation, organic and synthetic
fertiliser) accounted for most of the catchment N inputs, rep-
resenting 82 % in the grassland and 62 % in the moorland
catchment, while atmospheric deposition made a significant
contribution, particularly in the moorland catchment, con-
tributing 38 % of the N inputs. The estimated catchment N
budgets highlighted areas of key uncertainty, particularly N2
exchange and stream N export. The resulting N balances sug-
gest that the study catchments have a limited capacity to store
N within soils, vegetation and groundwater. The “catchment
N retention”, i.e. the amount of N which is either stored
within the catchment or lost through atmospheric emissions,
was estimated to be 13 % of the net anthropogenic input in
the moorland and 61 % in the grassland catchment. These
values contrast with regional scale estimates: Catchment re-
tentions of net anthropogenic input estimated within Europe
at the regional scale range from 50 % to 90 %, with an aver-

age of 82 % (Billen et al., 2011). This study emphasises the
need for detailed budget analyses to identify the N status of
European landscapes.

1 Introduction

Human activities dominate the global nitrogen (N) budget by
adding reactive forms of nitrogen (Nr) to the environment
(Galloway et al., 2004). The main forms of anthropogenic
Nr are reduced (e.g. NH3, NH+

4 ), oxidised (e.g. NO2, N2O,
NO−

3 ) and organic forms of N (e.g. urea). Between 1995 and
2005 alone, the anthropogenic production of Nr increased
by 20 %, which is largely due to agricultural activities (Gal-
loway et al., 2008). The environmental consequences of Nr
input can be significant, such as a loss of biodiversity in ter-
restrial and aquatic ecosystems through eutrophication and
acidification (Vitousek et al., 1997). Nitrogen budgets as in-
dicators of environmental pressure have recently been devel-
oped and applied at various scales (de Vries et al., 2011a),
ranging from the farm and field level (e.g. Ammann et al.,
2009; Schr̈oder et al., 2003) to the regional catchment (e.g.
Billen et al., 2009; Howarth et al., 1996) and global scale
(e.g. Bouwman et al., 2005; Seitzinger et al., 2005).

The assessment of budgets at the landscape scale is a crit-
ical part of quantifying the impact of disturbance on nu-
trient cycling (McDowell and Asbury, 1994). A landscape
is defined as a spatially heterogeneous area that includes
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120 E. Vogt et al.: Estimation of nitrogen budgets for contrasting catchments

interacting ecosystems and extends from hectares to many
square kilometres (Turner and Gardner, 1994). Nitrogen is
transported between those ecosystems by atmospheric, hy-
drological and human transfers (Cellier et al., 2011). Fluxes
of Nr at the landscape scale are particularly relevant as both
management decisions (e.g. through farm activities) and the
environmental impacts occur at this scale, particularly in Eu-
ropean rural landscapes (Cellier et al., 2011; Dalgaard et al.,
2011; Kros et al., 2011; Sutton et al., 2007). This makes de-
termining landscape Nr fluxes important for environmental
protection and policy makers, since a good understanding of
the quantities and dynamics of N fluxes at the landscape scale
is essential for designing effective regulations aimed at re-
ducing environmental impacts. However, accurate estimation
of N fluxes at high spatial resolution poses a significant chal-
lenge (de Vries et al., 2011a), e.g. the estimation of spatially
variable N dry deposition represents one of the key uncertain-
ties in quantifying N inputs to terrestrial ecosystems (Tang et
al., 2009).

In this study, we estimated N budgets for two adjacent
catchments at the landscape scale. The catchments contrast
in their land use: one is dominated by semi-natural moor-
land, the other by grazed grassland. To the authors’ knowl-
edge, this is the first such study which includes high reso-
lution atmospheric modelling combined with a detailed spa-
tial landscape inventory of field-specific agricultural activi-
ties and intensive measurements of fluvial export. The study
aims to assess how landscape N budget analysis provides an
insight into the main N flux terms, key uncertainties asso-
ciated with these terms, and the overall implications for the
environmental status of the landscape.

2 Methods

2.1 Study landscape

As part of the NitroEurope Integrated Project (Sutton et al.,
2007), a landscape study area of 6 km× 6 km was estab-
lished in southeast Scotland for detailed inventory of agri-
cultural activities, Nr concentration and flux measurements
(see Vogt et al., 2012a, 2012b for further details). The area
has a temperate oceanic climate with an annual mean tem-
perature of∼ 8 ◦C and a typical rainfall of∼ 1000 mm. The
study landscape was located to include the two contrasting
catchments. The moorland peat-dominated catchment cov-
ered 621 ha, while the grassland dominated catchment cov-
ered 895 ha. Together these two catchments represent 42 %
of the study landscape (Fig. 1).

1 ©The James Hutton Institute 2011 (license MI/2008/296).
Soil types are based on the Scottish Soil Survey, the equivalent
FAO names are: brown forest soil= cambisol, mineral alluvial
soil= fluvisol, noncalcareous gley= gleysol, peaty gley= humic
gleysol, peaty podzol= humic podzol, peat= histosol, peaty allu-
vial soil= humic fluvisol.

Fig. 1. Maps of land cover(a) and soil types1 (b) within the study
landscape with outlines of the two studied catchments2.

A detailed local survey of all farms and fields in the study
landscape was conducted throughout 2008. This provided
land cover and farm activity data, which were collated into a
relational database and spatially represented in a geographi-
cal information system (ArcGIS, ESRI). Land cover and soil
types within the landscape, together with the boundaries of
the two studied catchments, are shown in Fig. 1. Moorland
and rough grass, including peat cutting and areas of both
deciduous and coniferous afforestation, dominate the north-
western part of the landscape and the Black Burn catch-
ment, whereas the southeast and the Lead Burn catchment
is dominated by agricultural land (henceforth referred to as
the Moorland and the Grassland catchments, respectively,
Table 1). Agricultural activities in the landscape range from
extensive beef cattle and sheep farming to intensive poultry

2Some features of these maps are based on data licensed from In-
termap Technologies Inc.© 2010 Intermap Technologies Inc. All
Rights Reserved.
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Table 1. Characteristics of the Moorland and the Grassland catch-
ment.

Moorland Grassland
catchment catchment

Area (km2) 6.2 8.9
Average altitude 270 280
% main land cover types

Grassland 11 59
Rough grass 10 10
Moorland 63 5
Peat cutting 12 2
Woodland 2 14

% main soil types
Brown forest soils 16 48
Peat 67 21
Peaty gleys 10 2
Noncalcareous gleys 5 22

farming, with poultry houses in the study area containing
nearly 1.5 mio. laying hens.

2.2 Catchment N budgets

Several recent studies have compared different budgetary ap-
proaches to quantify N balances in agricultural systems. Oen-
ema et al. (2003) presented farm gate, soil surface and soil
system budget methodologies, de Vries et al. (2011b) and
Leip et al. (2011) presented regional farm, land and soil N
budgets, all studies delineated inputs and outputs for each
of these approaches. In our study, the Moorland and Grass-
land catchment annual N budgets were assessed for 2008 us-
ing a soil budgeting approach which most closely matches
the soil N budget approach of de Vries et al. (2011b) (ex-
cept the N pool changes), i.e. all N that enters and leaves the
soil was accounted for. This type of approach was chosen as
the inputs and outputs are directly associated with the catch-
ment soils and linked to the downstream flux. The balance of
the N input and output terms indicate the change in N stor-
age within the catchment over time. There were significant
N fluxes occurring in connection with the poultry housing,
i.e. housing emissions and farming operations such as feed
import, manure export or livestock export within one of the
catchments, but for the purpose of a soil budget approach,
housing emissions and farming operations not affecting the
catchment land surface were considered decoupled from the
soil. Thus they were excluded from this approach, except via
the N deposition fluxes resulting from housing emissions.

The soil N budget was derived as follows:

1N/1t = NNH3 dry dep+ NNHx wet dep+ NNOy dep+ Nsyn fert+ Norg fert+ Nexcreta

+Nbio fix − NNH3 − NN2O − NNO − NN2 − Nharvest− Ngrass− Nstream, (1)

where1N/1t is the change in N balance (1N) over time
(1t); NNH3 dry dep is the atmospheric dry deposition of am-
monia (NH3); NNHx wet depis the atmospheric wet deposition

Table 2.Uncertainty classification.

Uncertainty class Error Associated budget
terms

Accurate ±10 % Nsyn fert
Low ±20 % NNH3 dry dep

NNHx wet dep
NNOy dep
NNH3
Nharvest
Nstream

Moderate ±30 % Norg fert
High ±50 % Nexcreta

Ngrass
NN2O
NNO

Exceptionally high Individually set Nbio fix
NN2

of reduced nitrogen (NHx); NNOy dep is the atmospheric dry
and wet deposition of oxidised nitrogen (NOy); Nsyn fert is
the N content in applied synthetic fertiliser; Norg fert is the N
content in applied organic fertiliser; Nexcretais the amount of
N excreted by grazing livestock; Nbio fix is the biological N2
fixation; NNH3, NN2O, NNO and NN2 are emissions of NH3,
nitrous oxide (N2O), nitric oxide (NO) and N2 to the atmo-
sphere; Nharvest is the N offtake through harvested vegeta-
tion for silage and hay production; Ngrass is the N offtake
through harvested grass by grazing livestock; Nstream is the
downstream export flux of total dissolved nitrogen (TDN).

Uncertainty classes were assigned to individual budget
terms depending on the accuracy of the data source (Table 2)
using a similar classification scheme as in Kros et al. (2012).
The overall uncertainty of the N balance (E1N/1t ) was cal-
culated as the square root of the sum of the error (E) squares,
hereby accounting for the depending variables Ngrass and
Nexcreta:

E1N/1t = sqrt[(ENH3 dry dep)
2
+ (ENHx wet dep)

2
+ (ENOy dep)

2

+(Esyn fert)
2
+ (Eorg fert)

2
+ (Egrass− Eexcreta)

2
+ (Ebio fix)

2 (2)

+(ENH3)
2
+ (EN2O)2

+ (ENO)2
+ (EN2)

2
+ (Eharvest)

2
+ (Estream)

2
].

In the following sections the method of quantifying indi-
vidual budget terms and their uncertainties is described.

2.3 Catchment N inputs

2.3.1 Atmospheric deposition

The spatial and temporal variability of atmospheric NH3
across the landscape, in which the two catchments are con-
tained, was described in detail by Vogt et al. (2012b).
Monthly mean NH3 concentrations at 31 sites were mea-
sured through 2008 with ALPHA passive diffusion samplers
(Tang et al., 2001). Sites were distributed across the study
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landscape with an emphasis on capturing high and low emis-
sion areas as well as the variability around sources. Ammonia
emissions were calculated for each individual field, manure
store and livestock house, based on the field and farm activ-
ities recorded on a monthly basis, combined with emission
rates for each activity (manure housing, storage and spread-
ing, grazing and fertiliser application, Vogt et al., 2012b).
The emission estimates were used in the Local Area Disper-
sion and Deposition model (LADD) (Hill, 1998; Loubet et
al., 2009) at a resolution of 25 m× 25 m to model spatial con-
centrations and dry deposition of NH3 within the study land-
scape. Measured annual mean concentrations of the 31 sam-
pling sites were used for verification of the LADD model. As
NH3 has a high dry deposition rate (Cellier et al., 2011) and
is thus expected to be driven by local sources, NH3 dry de-
position inputs to the studied catchments (NNH3 dry dep) were
calculated from fluxes modelled by LADD within the study
landscape only (accounting for atmospheric NH3 import to
the landscape using national modelling). The N budget term
is considered to carry a low uncertainty of±20 % in this in-
stance, due to the detailed local study involving an intensive
measurement programme and local atmospheric dispersion
modelling.

Catchment atmospheric inputs due to NHx wet deposition
(NNHx wet dep) and dry and wet deposition of NOy (NNOy dep),
which are expected to be largely driven by non-local sources
(e.g. Hertel et al., 2011; Sutton et al., 1998), were sim-
ulated by the UK national model FRAME (Fine Resolu-
tion Atmospheric Multi-pollutant Exchange) (Dore et al.,
2012; Dore et al., 2007; Hallsworth et al., 2010) at a res-
olution of 1 km× 1 km. The contribution of particulate am-
monium (NH+

4 ) to NHx dry deposition is considered minor
compared to NH3 (e.g. Asman et al., 1998; Duyzer, 1994).
FRAME simulations were combined with land cover data of
25 m × 25 m resolution in order to apply land cover specific
deposition rates to different land cover types, as described
in detail by Vogt et al. (2012b). For the atmospheric inputs
of NHx wet deposition and the dry and wet deposition of
NOy, national modelling at a relatively fine-scale resolution,
applied to local land cover data, is considered to deliver ade-
quate deposition estimates for this purpose with a low uncer-
tainty in the range of±20 %.

2.3.2 Agricultural land surface input

Agricultural inputs to the land surface through applications
of synthetic fertiliser (Nsyn fert), organic fertiliser (Norg fert)
and excreta of grazing livestock (Nexcreta) were derived from
farm activity data (Vogt et al., 2012a). A typical N content
was used for the different manure types (Defra, 2010). The
N input from grazing livestock was estimated using grazing
records and daily N excretion data as used in the UK NH3
inventory (Misselbrook et al., 2009). Nitrogen inputs from
applications of synthetic fertiliser are considered accurate, as
this value is known by individual farmers (estimated uncer-

tainty ±10 %). A moderate uncertainty of±30 % is associ-
ated with the N input through applications of organic fer-
tiliser, as a typical N content was applied to different manure
types as specified by the farmer. The uncertainty associated
with the N input through grazing livestock excreta is esti-
mated to be high (±50 %) as the N content of the grazed
grass is not known.

2.3.3 Biological N2 fixation

Experimentally derived data on biological N2 fixation are
rare in the literature. DeLuca et al. (2008) measured fixa-
tion rates to mainly range between 1 and 2 kg N ha−1 yr−1

in a Swedish boreal forest; Limmer and Drake (1996)
cite a mean fixation rate of 1 kg N ha−1 yr−1 from stud-
ies conducted in European and North American forests and
Waughman and Bellamy (1980) measured a fixation rate of
0.7 kg N ha−1 yr−1 in German bogs. The catchment N input
through biological N2 fixation (Nbio fix) was thus estimated
to be 1 kg N ha−1 yr−1 for the Moorland catchment. As there
was little or no clover in most of the grassland, Nbio fix for the
Grassland catchment was estimated to be 5 kg N ha−1 yr−1.
This is in agreement with grassland fixation rates used by var-
ious N budget models compared by de Vries et al. (2011b).
The N input through biological N2 fixation carries an excep-
tionally high uncertainty (−70/+300 %) as this term is esti-
mated from only a few experimentally derived literature val-
ues.

2.4 Catchment N outputs

2.4.1 Gaseous emissions from land surfaces

Ammonia emissions were calculated by applying UK aver-
age emission factors (EFs) of the UK emission inventory to
the land surface inputs from synthetic and organic fertiliser
and grazing excreta (Misselbrook et al., 2009). The hous-
ing emissions and manure storage emissions were excluded
from the calculation of catchment budgets as discussed in
Sect. 2.2. As calculations of NH3 emissions are based on the
local farm inventory and national emission factors, the un-
certainty is estimated to be low (±20 %).

Direct N2O emissions are associated with soil N input
(NNH3 dry dep+ NNHx wet dep+ NNOy dep+ Nsyn fert+ Norg fert
+ Nexcreta) and were calculated using the method of Less-
chen et al. (2011), which uses specific EFs depending on
the source of N input, soil type and annual precipitation.
The clay soil EF parameterisation in Lesschen et al. (2011)
was selected linked to the modification of the catchment
surface soils by agricultural activity. The local 2008 annual
precipitation of 1208 mm was used to derive a precipita-
tion adjustment factor (fp) in the method of Lesschen et
al. (2011) of 2.16. Peat cutting areas and other peat bog
areas without agricultural activities are assumed to have
insignificant N2O emissions due to soil C/N ratios exceeding
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25 (Klemedtsson et al., 2005). Also, measurements within
the Moorland catchment showed negligible N2O emissions
(Drewer et al., 2010). Indirect N2O emissions, i.e. degassing
of N2O from waters resulting from soil leaching, were
estimated using the 2009 IPCC Guidelines (De Klein et al.,
2009).

Emissions of NO were derived by applying a Tier 1 EF of
2.6 % to synthetic fertiliser N applied as recommended in the
EEA/EMEP guidelines (McGlade and Vidic, 2009). As there
is no specific EF recommended for applications of organic
fertiliser and grazing livestock excreta a literature value of
0.5 % was applied (Bouwman et al., 2002).

The uncertainty of N2O and NO emissions is estimated to
be high (±50 %), as they are based on data from the farm
inventory and also literature emission factors. Emissions are
known to vary substantially depending on soil conditions.

Emission factors of N2 are highly uncertain. Recently,
Ammann et al. (2009) applied a literature-derived EF of
12.5 % to N inputs from fertilisation and biological N2 fix-
ation for a Swiss grassland with an error of±100 %. For a
grazed grassland in southeast Scotland (< 10 km from this
study landscape), N2 emissions were modelled and an EF of
10 % of applied N through grazing excreta and synthetic and
organic fertilisation calculated (U. M. Skiba, personal com-
munication, 2011). This N2 EF was applied to all fields with
agricultural activities in our study catchments. It is noted that
there is an exceptionally high uncertainty (−50/+200 %) as-
sociated with this budget term (Sects. 3.3 and 3.4).

2.4.2 Harvested vegetation

Nitrogen output also occurs via removal of vegetation by
harvesting (Nharvest) and by grazing livestock (Ngrass). The
amount of harvested crop and grass removed by farmers for
silage and hay production was derived from the farm survey
activity data with a specific N content applied to each main
crop type (Møller et al., 2005). The uncertainty of Nharvestis
thus estimated to be low (±20 %). The amount of N removed
through grass consumption by grazing livestock (Ngrass) was
estimated as follows:

Ngrass= Nexcreta+ Nanimal− Nfeed, (3)

where Nexcreta is the amount of N excreted by grazing live-
stock (Sect. 2.3.2), Nanimal is the N content in the exported
wool and meat, calculated using N content values in Roche
(1995) and Flindt (2003) and Nfeed is the N content of the
supplementary animal feed, derived by farm activity data and
a specific N content of different feed types (Møller et al.,
2005). Both Nanimal and Nfeed are estimated to have a low
uncertainty of±20 %, however considering the high uncer-
tainty associated with Nexcreta, the uncertainty of Ngrassis es-
timated to be high (±50 %).

Fig. 2. N inputs (kg N ha−1 yr−1) to the Moorland (left) and the
Grassland catchment (right).

2.4.3 Fluvial export

Annual downstream fluxes (Nstream) of total dissolved nitro-
gen (TDN), which is the sum of ammonium (NH+

4 -N), ni-
trate (NO−

3 -N) and dissolved organic nitrogen (DON), were
established by Vogt et al. (2012a) by sampling at gauged out-
lets of the two catchments at both fortnightly and hourly in-
tervals during selected high flow events through 2008. As
Nstream is based on local measurements conducted through-
out the study year, it is considered to carry a low uncertainty,
conservatively estimated at±20 %. Additional information
on sources of streamwater N concentrations within the catch-
ments was derived by spatial sampling at stable low flow con-
ditions, conducted in July, September and December 2008.

3 Results and discussion

The outcomes are explored here using spatially differentiated
results of the agricultural land surface N input, the associated
land surface N emissions and atmospheric N deposition and
fluvial N export. In addition, the catchment N inputs and out-
put terms are summarised and the overall catchment N bud-
gets are given with a discussion of uncertainty.

3.1 N inputs to land in the study catchments

The various components which contribute N inputs to the
two study catchments are summarised in Fig. 2 (input es-
timates expressed per hectare). Overall, the inputs to the
Grassland catchment (69.2 kg N ha−1 yr−1) were more than
three times higher than those to the Moorland catchment
(21.3 kg N ha−1 yr−1). Inputs were largely driven by direct
agricultural land surface inputs. In the Grassland catchment,
82 % of all N inputs originated from direct agricultural land

www.biogeosciences.net/10/119/2013/ Biogeosciences, 10, 119–133, 2013
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Fig. 3. Map of estimated total N deposition within the study land-
scape. Source: Vogt et al. (2012b).

surface inputs and 18 % from atmospheric N deposition. At-
mospheric deposition accounted for a larger contribution in
the Moorland catchment with 38 % of all N inputs. How-
ever, the majority (62 %) originated from direct agricultural
land surface inputs. Grazing livestock excreta represented the
largest single input source, contributing 41 % to the inputs
in the Moorland and 38 % in the Grassland catchment. The
fraction of the grazing excreta subject to gaseous emissions
to the atmosphere (Sect. 3.2.1) was estimated to be around
21 %, thus the majority of the catchment input through graz-
ing excreta stayed either within the system, i.e. in soil or veg-
etation, or was leached into surface or groundwaters.

3.1.1 Atmospheric N deposition

The total atmospheric N deposition to the two studied catch-
ments was estimated to be 8.2 kg N ha−1 yr−1 in the Moor-
land and 12.3 kg N ha−1 yr−1 in the Grassland catchment
(Fig. 3). The dry deposition of NH3 to the study catchments
(NNH3 dry dep) was estimated by modelling emissions of all
agricultural NH3 sources within the study landscape, in-
cluding housing and manure storage emissions (Sect. 2.3.1).
Dry deposition of NH3 showed a high spatial variability
at 25 m× 25 m grid resolution within the catchments, rang-
ing from 0.1 to 23 kg N ha−1 yr−1 in the Moorland (mean:
2.4 kg N ha−1 yr−1) and from 0.2 to> 100 kg N ha−1 yr−1

in the Grassland catchment (mean: 6.4 kg N ha−1 yr−1). The
larger input to the Grassland catchment was due to the catch-
ment containing six intensive poultry farming houses with a
total NH3 emission of 28 t N yr−1.

Catchment inputs from NHx wet deposition were sim-
ilar for both catchments (2.5 and 2.6 kg N ha−1 yr−1, re-
spectively), as were inputs from NOy deposition (both
3.3 kg N ha−1 yr−1). Atmospheric deposition to the Moor-
land catchment was estimated to be driven by non-local
sources with NNHx wet dep and NNOy dep contributing 71 %

to the total N deposition, while 52 % of deposition to the
Grassland catchment was estimated to originate from lo-
cal sources (NNH3 dry dep) and 48 % from non-local sources
(NNHx wet dep+ NNOy dep).

3.1.2 Agricultural land surface N input

Agricultural N inputs to the land surface (Nsyn fert, Norg fert,
Nexcreta, Nbio fix) were dominated by grazing excreta in both
catchments: in the Moorland catchment, grazing excreta con-
tributed 67 %, organic fertiliser 16 %, synthetic fertiliser 9 %
and N2 fixation 8 % to the land surface input; in the Grass-
land catchment, grazing excreta contributed 46 %, organic
fertiliser 29 %, synthetic fertiliser 16 % and N2 fixation 9 %.
Most of the N in grazing excreta originated from sheep
with contributions of 89 % in the Moorland and 69 % in
the Grassland catchment. Fields within the Grassland catch-
ment received more than four times the land surface N input
(56.9 kg N ha−1 yr−1) than fields in the Moorland catchment
(13.1 kg N ha−1 yr−1). The range of land surface inputs be-
tween fields was large, varying from 1 to 262 kg N ha−1 yr−1

in the Moorland and up to 351 kg N ha−1 yr−1 in the Grass-
land catchment.

No fields of the study landscape are located within a Ni-
trate Vulnerable Zone (NVZ), thus agricultural practice is
not restricted by the Nitrate Directive (Defra, 2012), un-
der which a maximum of 170 kg N ha−1 yr−1 of organic ma-
nures is set. In the present study, only 1 % of the Moorland
and 4.5 % of Grassland catchment received manure, through
organic fertiliser applications or grazing excreta, exceeding
170 kg N ha−1 yr−1, although it is noted that there are signif-
icant uncertainties associated with the calculation of these N
inputs.

3.2 N outputs from land in the study catchments

Catchment outputs are shown as per hectare values
in Fig. 4. The gaseous land surface emissions of Nr
(NNH3 + NN2O + NNO) led to losses of 1.7 kg N ha−1 yr−1

from the Moorland and 7.3 kg N ha−1 yr−1 from the Grass-
land catchment. Whereas emissions of N2O are similar to
those of NH3 in the Moorland catchment, emissions from
the Grassland catchment were dominated by NH3 emissions
(62 %). Emissions of NO were relatively insignificant in
both catchments: 0.1 kg N ha−1 yr−1 in the Moorland and
0.3 kg N ha−1 yr−1 in the Grassland. The estimated N2 emis-
sions were large compared with the Nr fluxes of the catch-
ments, contributing 42 % to the overall N emission flux from
both catchments. However, the uncertainty within the N2
emission estimations is large (see Table 3).

Grazed grass (Ngrass) constituted a large output term in
both catchments, contributing 45 % to the overall catchment
output in the Moorland and 46 % in the Grassland catch-
ment. However, these losses were mostly recycled back to
the soil by grazing livestock excreta (Nexcreta) with Nexcreta
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Fig. 4. N outputs (kg N ha−1 yr−1) to the Moorland (left) and the
Grassland catchment (right). Stream TDN export fluxes (Nstream)
are split into the dissolved inorganic flux (Nstream DIN= fluxes of
NH+

4 and NO−

3 ) and the dissolved organic flux (Nstream DON).

representing 83 % of Ngrass in the Moorland and 96 % of
Ngrass in the Grassland catchment. Thus, the main impor-
tance of this “grazing livestock N cycle” are increased rates
of soil N cycling associated with the grazing excreta, which
lead to gaseous and streamwater losses. When considering
the grazed grass as a recycling budget term, the largest out-
put fluxes of both catchments were the stream exports.

3.2.1 Atmospheric N emissions

Gaseous NH3 emissions from the catchment land sur-
face (excluding housing and manure store emissions) are
shown in Fig. 5a. In the Moorland catchment, field-
based emissions ranged from 0 to 48 kg N ha−1 yr−1 (mean:
0.9 kg N ha−1 yr−1) with 58 % originating from applications
of organic fertiliser, 40 % from grazing excreta and 2 % from
synthetic fertiliser. In the Grassland catchment, NH3 emis-
sions ranged from 0 to 53 kg N ha−1 yr−1 between individ-
ual fields (mean: 4.5 kg N ha−1 yr−1) with 66 % arising from
organic fertiliser, 30 % from grazing excreta and 4 % from
synthetic fertiliser. Despite most of the agricultural land sur-
face input originating from grazing excreta (Sect. 3.1.2), the
dominant source of NH3 emissions were applications of or-
ganic fertiliser in both catchments, due to high NH3 volatil-
isation losses. In contrast, almost all N in grazing excreta
(∼ 95 %) can be expected to enter the catchment soils and
thus contribute to soil emissions of N2O and N2 or can be
leached. Overall, 7 % of the agricultural land surface input of
N to the Moorland catchment was estimated to be emitted as
NH3 compared with 9 % from the Grassland catchment.

Direct N2O emissions from the Moorland catchment aver-
aged to 0.8 kg N ha−1 yr−1 with field emissions ranging from

Fig. 5. Field-specific land surface emission maps of(a) NH3 emis-
sions,(b) direct N2O emissions, and(c) direct N2 emissions.
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0 to 7.0 kg N ha−1 yr−1 (Fig. 5b). The Grassland catchment
emitted 2.4 kg N ha−1 yr−1 as N2O with emissions ranging
from 0.4 to 12.5 kg N ha−1 yr−1 between fields. Most of
the direct N2O emissions were from grazing excreta (79 %
in the Moorland and 75 % in the Grassland catchment).
Around 7 % of the grazing excreta were estimated to be lost
as N2O in both catchments. Figure 5c shows field emis-
sions of N2 within the catchments. In the Moorland catch-
ment, N2 emissions (1.2 kg N ha−1 yr−1) are estimated to be
similar to N2O emissions, whereas in the Grassland catch-
ment, N2 emissions (5.3 kg N ha−1 yr−1) are about 2.5 times
higher than N2O emissions. Emissions per field ranged from
0 to 26.3 kg N ha−1 yr−1 in the Moorland and from 0 to
36.2 kg N ha−1 yr−1 in the Grassland catchment. However,
the uncertainties within those field-based emission estimates
were relatively large (Table 3) as there is substantial within
field variation of N2O and N2 emissions due to the hetero-
geneity of soil processes (e.g. Hofstra and Bouwman, 2005).

Soil NO emissions were estimated to be insignificant for
both catchments with emissions of 0.1 kg N ha−1 yr−1 in the
Moorland and of 0.3 kg N ha−1 yr−1 in the Grassland catch-
ment. The field with the highest NO emission was common
to both catchments, thus the field-specific emission range of
0 to 1.8 kg N ha−1 yr−1 was the same for both catchments.

3.2.2 Fluvial N export

Both catchments were characterised by highly variable
stream flow with high discharge events making an impor-
tant contribution to annual downstream fluxes (Vogt et al.,
2012a). For example, in 2008, the highest 10 % of the
discharge data contributed 53 % to the total discharge in
the Moorland and 40 % in the Grassland catchment. The
annual downstream flux (Nstream) of total dissolved nitro-
gen (TDN) was 8.7 kg N ha−1 yr−1 in the Moorland and
14.4 kg N ha−1 yr−1 in the Grassland catchment. The dif-
ference in the TDN flux was mainly due to the signif-
icantly larger nitrate (NO−3 ) flux in the Grassland catch-
ment. Dissolved organic nitrogen (DON) contributed 81 %
to the TDN flux in the Moorland and 49 % in the Grass-
land catchment. However, the absolute annual DON flux of
7.0 kg N ha−1 yr−1 was very similar in both catchments.

Maps of annual mean concentrations of NO−

3 , NH+

4 and
DON measured during the three spatial sampling campaigns
are shown in Fig. 6, together with the underlying land cover.
The streamwater NO−3 concentrations of both catchments
have been shown to be significantly positively related to N in-
put through agricultural land surface and atmospheric depo-
sition (Vogt et al., 2012a). Ammonium concentrations were
significantly negatively related to N input and could be re-
lated to the coverage of wet peaty soils (Vogt et al., 2012a).
However, local point source contributions, such as suspected
sewage discharge observed while collecting samples, may
also contribute to the large spatial variability of NH+

4 con-
centrations within the Grassland catchment. The sources of

Fig. 6. Maps of annual mean concentrations derived from spatial
samplings in July, September and December 2008:(a) NO−

3 , (b)

NH+

4 , and(c) DON. Source: Vogt et al. (2012a).
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Fig. 7. Relationships between % area of peat soil(a), (b) and peat
cutting (c), (d) in eight subcatchments of the Moorland catchment
and spatial concentrations of DON(a), (c) and DOC(b), (d) at sub-
catchment outlets. The results are shown for July (black squares
and line), September (grey triangles and line) and December (black
circles and dotted line) and fitted asy = A ·exp(x/t) + y0). Coeffi-
cients of determinations (r2) are given for each campaign.

DON can vary widely and differed between the catchments
(Vogt et al., 2012a). In both catchments, flushing of organic-
rich soil water contributed to streamwater DON concentra-
tions, however in the Grassland catchment, there were addi-
tional major sources, such as agricultural runoff.

To analyse the potential contribution of the peat cutting
area to the DON as well as to the linked dissolved organic
carbon (DOC) export flux of the Moorland catchment, the
catchment was divided into eight subcatchments based on the
drainage pattern. A regression analysis between the % area of
peat soil in these subcatchments and DON and DOC concen-
trations at the subcatchment outlets mostly showed a posi-
tive relationship between DOC and DON concentrations and
the % area of peat soil (Fig. 7a and b). This relationship was
more pronounced for DOC than DON, however, in both cases
there was substantial scatter in the relationship. Other studies
(e.g. Aitkenhead et al., 1999) have shown that the area of peat
soil in a catchment is directly related to streamwater DOC
concentration. Clark et al. (2004) found DON concentrations
to be positively related to peat cover in the summer only. In
this study, the relationship between DON concentrations and
% area of peat soil was also strongest in July. The same re-
gression analysis with % peat cutting area also showed a sim-
ilar positive relationship to DOC and DON concentrations
(Fig. 7c and d) with a slightly stronger relationship observed
between concentrations and % peat cutting area (compared to
% peat area). This is likely to be a reflection of peat cutting
taking place in the areas of deepest peat in the catchment,
leading to the enhanced effect shown in Fig. 7c and d. The
areas affected by peat cutting are mostly in the upper parts of
the catchment, with the effect decreasing significantly down-

stream. Also, a previous study in the Moorland catchment
noted that DOC concentrations were not significantly differ-
ent in a large tributary originating from an area of peat cutting
compared to concentrations in the main stream (Dinsmore
et al., 2010). Thus, peat-rich areas (whether cut or not) are
considered to be the main source of streamwater DOC and
DON concentrations. However, peat cutting and associated
drainage will change hydrological flow paths, which may en-
hance the “peat effect” on DOC and DON concentrations and
contribute to higher annual fluxes because of greater runoff
due to drainage. The longer term effect of peat cutting on the
catchment fluvial N flux remains a question for further study.

3.3 Total N budgets for the study catchments

The overall nitrogen budgets for two catchments are com-
pared in Table 3 and Fig. 8. The Moorland catchment
showed a negative N balance of−1.6+3.8/−3.4 (er-
ror) kg N ha−1 yr−1, potentially indicating a small loss of N
from catchment storage to the stream, however, within the
uncertainty estimates the catchment N budget could also be
in balance. Reynolds and Edwards (1995) stated that N ac-
cumulation is to be expected in moorland catchments. How-
ever, that study did not take stream exports of DON into ac-
count due to lack of data. The present study thus shows the
importance of DON as a component of stream export: DON
accounted for 81 % of TDN export. The N loss calculated for
the Moorland catchment is in agreement with an overall N
budget of−2.4 kg N ha−1 yr−1, derived for a field site within
the Moorland catchment (Drewer et al., 2010).

Nitrogen saturation has been defined for “an ecosystem
where N losses approximate or exceed the inputs of N”
(Ågren and Bosatta, 1988; Butterbach-Bahl et al., 2011).
Thus, according to our catchment soil budget approach, the
Moorland catchment showed signs of N saturation. If the
Moorland catchment is losing N, it is of interest to know
whether carbon (C) loss is also occurring. Recently, Dins-
more et al. (2010) showed the DOC downstream flux to be a
significant loss within the C budget of the Moorland catch-
ment, although the moorland was still found to act as a strong
C sink, mainly due to a large C uptake from the atmosphere.
However, in the past, the same moorland has also been found
to be either C neutral or a small C source (Billett et al.,
2004). The differing C balances reflect large interannual vari-
ability in flux terms, particularly C uptake from the atmo-
sphere, which in turn is influenced by the annual fluctuations
in weather. Thus, the studied Moorland catchment may shift
at an annual level from acting as a net C sink to a source,
while at the same time releasing a significant amount of C
from the catchment via downstream DOC export. The effects
of future climate change on catchment scale C and N budgets
remain highly uncertain.

The Grassland catchment had a positive N balance
of 9.9+ 16.5/−12.8 (error) kg N ha−1 yr−1, indicating that
the catchment stored N inputs in soil, vegetation and
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Table 3. Soil N budgets for the Moorland (621 ha) and the Grassland (895 ha) catchment with fluxes and errors shown in kg N ha−1 yr−1

(see subsections under Sects. 2.3 and 2.4 for details of individual error estimations).

Moorland catchment Grassland catchment

Fluxes Error Fluxes Error

Catchment N inputs
NH3 dry deposition NNH3 dry dep 2.4 ±0.5 6.4 ±1.3
NHx wet deposition NNHx wet dep 2.5 ±0.5 2.6 ±0.5
NOy deposition NNOy dep 3.3 ±0.7 3.3 ±0.7
Synthetic fertiliser applications Nsyn fert 1.2 ±0.1 9.3 ±0.9
Organic fertiliser applications Norg fert 2.1 ±0.6 16.3 ±4.9
Grazing livestock excreta Nexcreta 8.8 ±4.4 26.3 ±13.2
Biological N2 fixation Nbio fix 1.0 +3.0/−0.7 5.0 +15.0/−3.5

Total N input 21.3 69.2

Catchment N outputs
NH3 emission NNH3 0.9 ±0.2 4.5 ±0.9
N2O emission NN2O 0.8 ±0.4 2.4 ±1.2
NO emission NNO 0.1 ±0.0 0.3 ±0.2
N2 emission NN2 1.2 +2.5/−0.6 5.3 +10.6/−2.6
Harvested silage and hay Nharvest 0.7 ±0.1 5.0 ±1.0
Harvested grass by grazing livestock Ngrass

∗ 10.6 ±5.3 27.4 ±13.7
Stream export Nstream 8.7 ±1.7 14.4 ±2.9

Total N output 22.9 59.3

N balance −1.6 +3.8/−3.4 +9.9 +16.5/−12.8

∗Ngrass= Nexcreta+ Nanimal− Nfeed.
Nanimal is N exported via wool and meat production.
Nfeed is N imported via supplementary animal feed.
Moorland catchment: Nanimal= 2.0 kg N ha−1 yr−1, Nfeed= 0.2 kg N ha−1 yr−1.
Grassland catchment: Nanimal= 5.4 kg N ha−1 yr−1, Nfeed= 4.3 kg N ha−1 yr−1.

groundwater for this study year. However, as with the Moor-
land catchment, the error bars overlap the balance point. The
stream export of the Grassland catchment represented a rel-
atively large budget term compared with the other terms. By
comparison with other European regional catchment budgets
reported by Billen et al. (2011), the retention of N was low
(Sect. 3.5).

3.4 Uncertainties in the catchment nitrogen budgets

For both catchments, the budget terms with the largest er-
ror bars were the outputs through grazed grass (Ngrass) and
the input through grazing excreta (Nexcreta), as noted above.
However, as those terms are interdependent and it is the dif-
ference between them that contributes to the overall uncer-
tainty of the N balance calculation, the net error is smaller
than the individual errors. In the Moorland catchment, the
budget terms contributing the most to the uncertainty of the
N balance were biological N2 fixation, stream export and
N2 emissions. In the Grassland catchment, the most impor-
tant terms contributing to uncertainty were biological N2 fix-
ation and N2 emissions, followed by applied organic fer-
tiliser and stream export. The overall uncertainty of the N

balances were large, the Moorland catchment balance being
−1.6 kg N ha−1 yr−1 with estimated upper and lower balance
values of+2.2 and−5.0 kg N ha−1 yr−1, accounting for un-
certainties. Similarly, the upper and lower estimates of the
Grassland catchment of+9.9 kg N ha−1 yr−1 range between
+26.4 and−2.9 kg N ha−1 yr−1. Hence, although we present
a detailed budget analysis, the uncertainties remain inher-
ently large.

There are several terms still missing from the N budget
calculation, which may add further uncertainty to the cur-
rent balance estimate. In particular, atmospheric deposition
of gaseous and particulate organic N compounds were not
quantified nor estimated due to lack of information, although
organic deposition may be an important input (Cape et al.,
2004; Neff et al., 2002). Moreover, fluvial N export through
particulate organic N (PON) was not measured, although the
PON flux is likely to be insignificant compared to the DON
flux, as was the POC flux to the DOC flux measured in the
Moorland catchment by Dinsmore et al. (2010).

Although our study was detailed, it was carried out over
a relatively short time period (one year), which may affect
some of the conclusions drawn from the data. In particular,
stream export fluxes are known to vary year-on-year due to
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Fig. 8. Catchment soil N budgets for the Grassland catchment (top) and the Moorland catchment (bottom). Inputs and outputs are shown
as positive and negative N exchanges (kg N ha−1 yr−1) with the overall N balance shown at the bottom. Error bars represent the estimated
uncertainty for the individual budget terms (see subsections under Sects. 2.3 and 2.4) with the N balance error calculated accordingly (see
Sect. 2.2).

climatic fluctuations (Gascuel-Odoux et al., 2010). Further
study on the N budgets of these catchments is needed to clar-
ify the role of annual variation. Another source of uncertainty
is the assumption that land use and N input remain approx-
imately constant with time, allowing the balancing of N ex-
ported through the aqueous system with the N exchange at
the surface.

3.5 Comparison with a regional catchment N budget
approach

Regional scale catchment N budgets have been estimated for
many European catchments (Billen et al., 2011). The ap-
proach combines a calculation of the net anthropogenic input
of reactive nitrogen (NANI, Howarth et al., 1996; Swaney et
al., 2012) to the catchment with data on atmospheric NOy
deposition, crop N fixation, fertiliser use and import of food
and feed. This is a simple approach which can be applied to
large regions, but does not account for processes like NH3
volatilisation or soil denitrification. In European regional
catchments, NANI ranges between 0 and 84 kg N ha−1 yr−1

(mean: 37 kg N ha−1 yr−1) (Billen et al., 2011). The rela-
tive difference of NANI to the stream export of total N
(TN = DIN + DON+ PON) is then associated with catch-

ment N retention. Catchment retention refers to the amount
of N which is either stored in soils and groundwater or lost
through emissions to the atmosphere. In regional European
catchments, catchment N retention varies between 50 % and
90 % of NANI (mean: 82 %) (Billen et al., 2011). There is
some evidence that the fraction of NANI exported by the
stream is larger in catchments with high discharges (Howarth
et al., 2006).

These regional budget calculations differ substantially to
the one presented here, (e.g. coarser scale data, no NHx depo-
sition, no land emissions, no organic fertiliser applications);
however, the catchment retention calculated as the percent-
age of N input which is stored or emitted using our budget
terms for the landscape scale may emphasise the differences
of regional and landscape scale N budgets. Thus, theagricul-
tural surplusas the difference between N inputs to catchment
soils and outputs via harvested or grazed crops (Lassaletta et
al., 2012) was calculated (see Sect. 2.2 for budget term defi-
nitions):

agricultural surplus= NNH3 dry dep+ NNHx wet dep+ NNOy dep

+Nsyn fert+ Norg fert+ Nexcreta+ Nbio fix − Nharvest− Ngrass. (4)
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The agricultural surplusdiffers to the budget calculation
of Eq. (1) in that the land emissions and stream export are not
taken into account. Atmospheric emissions were excluded
in order to calculate what hydrologists term “catchment re-
tention”, i.e. the fraction that is not exported in streamwa-
ter (which includes N losses to the atmosphere). Theagri-
cultural surpluswas calculated to be 10.0 kg N ha−1 yr−1

for the Moorland and 36.8 kg N ha−1 yr−1 for the Grassland
catchment. The stream N export (not including PON) repre-
sented, therefore, 87 % ofagricultural surplusin the Moor-
land, compared with 39 % in the Grassland catchment. This
implies a catchment retention of 13 % in the Moorland and
61 % in the Grassland catchment. These values are low, par-
ticularly the retention of the Moorland catchment, compared
to the catchment retention calculated at regional scale in Eu-
rope with an average of 82 % (Billen et al., 2011). Reasons
for the difference between these two budget approaches are
likely to be the finer scale resolution of our landscape scale
study allowing, firstly, for more accurate quantification of
the N budget terms and secondly, for the calculation of more
budget terms to account for the N input related to catchment
soils.

Expressed in terms of our comprehensive land-
scape N budgets, the actual “net nitrogen retention”
([all N input− all Noutput]/all N input · 100) would be+14.3 %
and −7.6 % for the Grassland and Moorland catchments,
respectively.

4 Conclusions

Nitrogen budgets for two adjacent catchments with con-
trasting land use within a single landscape unit were cal-
culated taking into account all agricultural activity and
each of the important gaseous and aqueous inputs and
outputs. This allowed a detailed analysis of catchment
inputs and outputs at a much higher spatial resolution
than before. Within the errors associated with compo-
nents of the N budget, the best estimates suggested a
tendency for the Grassland catchment to gain nitrogen
(+10 [−3,+26] kg N ha−1 yr−1) and for the Moorland catch-
ment to lose nitrogen (−2 [−5,+2] kg N ha−1 yr−1). The key
uncertainties of our N budget approach were biological N2
fixation, N2 emissions and stream N export. This empha-
sises, firstly the need for more studies addressing the quan-
tification of N2 exchange and, secondly the importance of
estimating downstream fluxes accurately when compiling N
budgets. Even the well-established downstream fluxes of this
study (including DON) introduce a key uncertainty to the
budget calculations as the stream exports represent large bud-
get terms.

The N budgets of the two study catchments indicate that
both catchments have a limited capacity to store nitrogen
within soils, vegetation and groundwater. This important
finding contrasts with regional scale estimates. The “catch-

ment retention” of N, calculated as the percentage of N in-
put which is not lost in streamwater (i.e. stored within the
catchment or emitted to the atmosphere), amounted to 13 %
in the Moorland and 61 % in the Grassland catchment. These
values are relatively small compared with estimated catch-
ment retentions in European catchments at the regional scale,
ranging from 50 % to 90 % (Billen et al., 2011). Whereas
larger, regional scale approaches to estimating catchment in-
put/output may be important for a global overview, these ap-
proaches tend to hide the landscape scale N dynamics and
thus the local scale environmental impact of human activi-
ties.

This work on compiling landscape scale nitrogen budgets
represents the beginning of a better understanding of the an-
thropogenic impact via agricultural activities on European
landscapes. Within the NitroEurope Integrated Project (Sut-
ton et al., 2007), the outcomes of this study are being further
analysed in the context of nitrogen fluxes and budgets quan-
tified in different landscapes across Europe, with differing
agricultural land use and climate. This will provide a quan-
titative comparison of the key N fluxes and their spatial dy-
namics across European landscapes, providing a basis to tune
locally optimised management strategies.
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Ågren, G. I. and Bosatta, E.: Nitrogen saturation of terrestrial
ecosystems, Environ. Pollut., 54, 185–197, 1988.

Aitkenhead, J. A., Hope, D., and Billett, M. F.: The relationship
between dissolved organic carbon in stream water and soil or-
ganic carbon pools at different spatial scales, Hydrol. Process.,
13, 1289–1302, 1999.

Ammann, C., Spirig, C., Leifeld, J., and Neftel, A.: Assessment of
the nitrogen and carbon budget of two managed temperate grass-
land fields, Agr. Ecosyst. Environ., 133, 150–162, 2009.

Asman, W. A. H., Sutton, M. A., and Schjørring, J. K.: Ammo-
nia: emission, atmospheric transport and deposition, New Phy-
tol., 139, 27–48, 1998.

Billen, G., Thieu, V., Garnier, J., and Silvestre, M.: Modelling the
N cascade in regional watersheds: The case study of the Seine,
Somme and Scheldt rivers, Agr. Ecosyst. Environ., 133, 234–
246, 2009.

Billen, G., Silvestre, M., Grizzetti, B., Leip, A., Garnier, J., Voß, M.,
Howarth, R., Bouraoui, F., Lepistö, A., Kortelainen, P., Johnes,
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