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Abstract. Diazotrophic cyanobacteria form extensive sum-
mer blooms in the Baltic Sea driving the surrounding surface
waters into phosphate limitation. One of the main bloom-
forming species is the heterocystous cyanobacteriumNodu-
laria spumigena. N. spumigenaexhibits accelerated uptake
of phosphate through the release of the extracellular enzyme
alkaline phosphatase whose activity also serves as an indica-
tor of the hydrolysis of dissolved organic phosphorus (DOP).
The present study investigated the utilisation of DOP and
its compounds (e.g., ATP) byN. spumigenaduring growth
under different CO2 concentrations, in order to estimate po-
tential consequences of ocean acidification on the cell’s sup-
ply with phosphorus (P). Cell growth, the phosphorus pool,
and four DOP compounds (ATP, DNA, RNA, and phospho-
lipids) were determined in three setups with different CO2
concentrations (average 341 µatm, 399 µatm, and 508 µatm)
during a 15-day batch experiment. The results showed stim-
ulated growth ofN. spumigenaand a rapid depletion of dis-
solved inorganic phosphorus (DIP) in allpCO2 treatments.
DOP uptake was enhanced by a factor of 1.32 at 399 µatm
and of 2.25 at 508 µatm compared to the lowest CO2 con-
centration. Among the measured DOP compounds, none was
found to accumulate preferentially during the incubation or
in response to a specificpCO2 treatment. However, at the
beginning 61.9± 4.3 % of total DOP were not characterised
but comprised the most utilised fraction. This is demon-
strated by the decrement of this fraction to 27.4± 9.9 % of
total DOP during the growth phase with a preference at
high pCO2. Our results indicate a stimulated growth of di-

azotrophic cyanobacteria at increasing CO2 concentrations
which is accompanied by increasing utilisation of DOP as an
alternative P source.

1 Introduction

Cyanobacteria bloom events frequently occur in the Baltic
Sea in summer (Kahru et al., 1994) and they are domi-
nated by the filamentous diazotrophic cyanobacteriaNodu-
laria spumigenaand Aphanizomenonsp. (Sivonen et al.,
1989; Finni, 2001; Vahtera et al., 2005). Calm conditions,
a salinity of 7–8, temperatures>16◦C, and a N : P ratio<8
promote the formation of extensiveNodulariablooms in the
sea surface layer (Wasmund, 1997). Degerholm et al. (2006)
suggested thatNodularia sp. is better adapted thanAphani-
zomenonsp. with respect to phosphorus (P) starvation and
has a higher affinity for dissolved organic phosphorus (DOP),
because of its lower substrate half-saturation constants (KM)

and the higherVmax : KM ratio of the enzyme alkaline phos-
phatase (AP). These findings were confirmed by Vahtera et
al. (2007), who reported that under bloom conditionsNodu-
laria is superior toAphanizomenonin its ability to compete
for phosphorus at low concentrations, more efficient in ac-
quiring phosphate from organic sources, and better able to
grow on intracellular phosphorus stores.

As a constituent of compounds mediating cellular en-
ergy transformation and metabolic processes, P is an es-
sential macronutrient for all living organisms (Karl, 2000;
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1484 J. Unger et al.: Phosphorus turnover as a function ofpCO2

Benitez-Nelson, 2000; Nausch and Nausch, 2011). The ma-
jor dissolved forms of P in aquatic ecosystems are dissolved
inorganic phosphorus (DIP) and dissolved organic phospho-
rus (DOP) (Orchard et al., 2010). Among the different forms
of DIP, orthophosphate (PO3−

4 ) is metabolically preferred by
phytoplankton and bacteria, based on their direct uptake of
this compound through the cell membrane (Løvdal et al.,
2007). As P is the limiting nutrient besides nitrogen (N), its
availability strongly influences primary production (Smith,
1984; Howarth, 1988; Ruttenberg and Dyhrman, 2005; Elser
et al., 2007). After DIP depletion, phytoplankton are able
to utilise DOP, as indicated by the increased activity of AP
which is responsible for hydrolyzing DOP (Ruttenberg and
Dyhrman, 2005; Paytan and McLaughlin, 2007).

DOP, together with dissolved organic carbon and nitro-
gen (DOC and DON, respectively), comprise the dissolved
organic matter (DOM) pool (Karl and Björkman, 2002).
Measurable DOP components include deoxyribonucleic acid
(DNA), ribonucleic acid (RNA) (e.g., Karl and Bailiff, 1989),
adenosine-5′-triphosphate (ATP) (e.g., Björkman and Karl,
2001), and phospholipids (PL) (e.g., Suzumura and Ingall,
2001, 2004). DNA, in addition to its fundamental role in
heredity for all self-replicating organisms (Karl and Bailiff,
1989), gained further attention when DeFlaun et al. (1987)
examined the contribution of its dissolved form to general
DOM dynamics. RNA is involved in protein synthesis, which
is required for growth (Dortch et al., 1983). Both RNA and
DNA are indicators of actively growing, metabolizing cells
(Karl and Bailiff, 1989). As reported by Karl and Bailiff
(1989), the dissolved DNA and RNA concentrations in ma-
rine coastal/estuarine and offshore regions range from 0.56
to 21 µg l−1 and from 4.03 to 31.9 µg l−1, respectively. ATP,
one of the most P-rich organic molecules, mediates energy
transfer in all living organisms. Dissolved ATP occurs in sea-
water in significant concentrations of 0.1–0.6 µg l−1 (Azam
and Hodson, 1977). Radiolabeled ATP is used to measure
the hydrolysis of organic phosphorus compounds and the
uptake of released P (Bentzen and Taylor, 1991; Casey et
al., 2009). Phospholipids are ubiquitous in nature, serving
as structural and functional components of biological mem-
branes (Suzumura and Ingall, 2001). They are classified ac-
cording to their hydrophilic and hydrophobic portions, with
dissolved forms providing a reservoir of organic P. So far,
only a few studies have examined the distribution and abun-
dance of phospholipids in marine environments, such that
our understanding of their function in this respect remains
limited (Suzumura, 2005). Parrish (1987) reported a wide
range (4–88 µg l−1) of dissolved phospholipid concentrations
in coastal waters. In Pacific surface waters, concentrations
of hydrophobic phospholipid-P between 6 and 16 nmol l−1

were measured, thus constituting between 2 and 6 % of the
DOP pool (Suzumura and Ingall, 2004).

The rising atmospheric CO2 concentrations in the world’s
oceans have lowered pH and altered the carbonate chem-
istry of seawater faster than in the previous thousands of

years (Siegenthaler et al., 2005; Hönisch et al., 2009). These
changes are commonly referred to as ocean acidification
(Doney et al., 2009). Since preindustrial times until to-
day, the atmospheric CO2 increased from 280 to 395 ppm
(www.esrl.noaa.gov/gmd/ccgg/trends/). By the end of this
century, the CO2 concentration is expected to reach 800
ppm, assuming that anthropogenically induced CO2 emis-
sions continue to rise at the present rate (IPCC, business-as-
usual emission scenario, 2007). At the same time, the average
pH of ocean surface waters has fallen by approximately 0.1
units and is expected to decrease a further 0.3–0.4 pH units
by 2100 (Orr et al., 2005). At present, the ecological impli-
cations of ocean acidification are largely unknown and are
therefore the subject of numerous ongoing investigations.

So far, there has been little research on the effects of ele-
vatedpCO2 on the marine P cycle as stated in the review of
Hutchins et al. (2009). Based on available literature it seems
more likely that the P cycle is not directly affected by rising
oceanpCO2 (Hutchins et al., 2009 and literature therein).
However, indirect responses to the expected changes in C
and N cycling are likely and, importantly, may serve as a rel-
atively conservative indicator thereof (Hutchins et al., 2009).
Published studies have preferentially concentrated on the cel-
lular P quotas of different cyanobacterial and diatom species.
For example, Burkhardt et al. (1999) analyzed the effect of
low pH on the C : P ratios of six diatom and one dinoflagel-
late species, based on the premise that the increasing atmo-
sphericpCO2 does not affect global ocean Redfield ratios.
Hutchins et al. (2007) and Fu et al. (2007) reported no ef-
fects of a similarpCO2 increase on the cellular P quotas of
the cyanobacteriaTrichodesmium erythtraeum, Synechococ-
cus, andProchlorococcuswhereas Czerny et al. (2009) noted
a slightly increasing trend in cellular P quotas with elevated
pCO2 in their study ofNodularia spumigena. In a Norwegian
fjord mesocosm experiment, AP activity (APA) was mea-
sured as a means to examine33P uptake rates and potential
DOP utilisation under three differentpCO2 concentrations
(Tanaka et al., 2008); however, no statistically significant ef-
fects ofpCO2 on P biogeochemistry were determined.

Since nitrogen fixation rates are supposed to increase un-
der higher CO2 concentrations (Wannicke et al., 2012) addi-
tional P (or changing C : N : P ratios) are required. This will
be studied as part of two other investigations based on the
same experimental setup. Wannicke et al. (2012) and Endres
et al. (2013) focused on N-cycling, and exudation and ex-
tracellular enzyme activities, respectively. Here we investi-
gated dissolved P pools, in particular their variation during
the growth of the diazotrophic cyanobacteriumNodularia
spumigenaunder conditions ofpCO2 elevation, and their
contribution toNodularia nutrition. To gain insight into the
dynamics of DOP and P metabolism in general, we focused
on the changes of DOP and its composition as well as on P
transformation processes.
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Fig. 1. Box plot (n = 12) of the carbonate system for three CO2 treatments (low, medium, high). Range of the measured values:(a) pH, (b)
CT, and of the calculated values:(c) pCO2, (d) AT. The box plots show the range from the start to the end of the experiment (showing each
outlier). Solid lines represent the median. Dashed lines represent the mean value. Statistically significant differences are highlighted using
symbols: (#) between the low and the medium, (*) between the medium and the high, and (+) between the low and the highpCO2 treatment.
Values used are according to Wannicke et al. (2012, Table 1).

2 Materials and methods

2.1 Experimental setup and conditions

The experimental design and preparation is described in de-
tail in Wannicke et al. (2012). In the following we are giv-
ing a short overview. A 15-day batch culture experiment
was conducted with the diazotrophic cyanobacteriumNodu-
laria spumigenain April 2010. In preparation for the ex-
periment, 1000 l of surface water (0–10 m) from the open
Baltic Sea (54.22749◦ N, 12.1748◦ E) were collected and
stored in a HDPE (high-density polyethylene)-tank under
cool and dark conditions. Therein the water was aged for 4
months to allow the removal of inorganic nutrients by phyto-
plankton and bacteria. Afterwards the seawater was filtered
through 0.2 µm cellulose acetate (CA) filters to remove par-
ticulate material and then was UV-sterilised for 5 days. Three
weeks prior to the start of the experiment, axenic parent cul-
tures ofNodularia spumigenawere grown in sterile Baltic
Sea water in a walk-in cooling chamber (15◦C) under con-
trolled light conditions (16: 8 h light : dark cycle, 100 µmol
photons m−2 s−1). One week before the acclimation phase
was started, the parent cultures were allowed to adapt to the
experimental temperature of 23◦C and to the doubled light
supply of 200 µmol photons m−2 s−1. In the meantime, the
sterilised seawater was filtered again through 0.2 µm CA fil-

ters under a clean bench into 10 l Nalgene bottles (39 bottles
in total). Over a period of 3 days,Nodularia maintained in
this water was allowed to acclimate to three different CO2
concentrations by aeration with premixed gases (Linde Gas)
of 180 ppm, 380 ppm, and 780 ppm CO2, representing pre-
industrial, present, and futurepCO2 conditions, respectively.
The acclimated cyanobacteria were then inoculated into thir-
teen 10 l bottles per treatment. These batch cultures were aer-
ated with the respective CO2 gases, continuously for the first
day and then once a day for 1 h (at 02:00 p.m.). The cultures
were routinely mixed by gently shaking the bottles, avoid-
ing aggregate formation and strong turbulence. During sam-
pling, while thepCO2-levels were clearly different from one
another, the determinedpCO2-levels deviated from the tar-
get values (Fig. 1c). Thus, in the following we refer to them
as low (341± 81 µatm), medium (399± 104 µatm), and high
(508± 90 µatm)pCO2 treatments. One bottle per treatment
was used to obtain background information regarding nutri-
ent status. In the remaining 36 bottles, the starting concentra-
tion of chlorophylla (Chl a) of 0.8 µg l−1 was adjusted and
DIP was added to a final concentration of 0.35 µmol l−1. Af-
ter sampling on day 3, an additional 0.35 µmol DIP l−1 was
added because the phosphate concentration in the medium
was nearly depleted. The first set of samples was taken im-
mediately after starting the experiment and then at days 3, 9,

www.biogeosciences.net/10/1483/2013/ Biogeosciences, 10, 1483–1499, 2013
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and 15 of the incubation. On each sampling day, three bottles
perpCO2 treatment were harvested.

In parallel, the same experimental design and sampling
mode were applied to investigate the transformation of DIP,
using [³³P]PO4. The difference was that the cultures were
maintained in 500-ml-bottles (Schott). At the beginning of
the experiment, 50 pM [³³P]PO4 (6.6 MBq l−1) (Hartmann
Analytics, specific activity 110 TBq mmol−1) were added to
each bottle, with the radioactivity in the dissolved and the
particulate fractions then measured at each sampling point.
In addition, biomass parameters such as Chla, particulate
organic carbon (POC), and particulate organic phosphorus
(POP) were measured to compare the growth ofNodularia
in these bottles and in the larger ones.

2.2 Carbonate chemistry

The carbonate system was characterised as described in Wan-
nicke et al. (2012). pH and total dissolved inorganic carbon
(CT) were measured directly after sampling. Total alkalinity
(AT) andpCO2 were calculated with the program CO2SYS
(Lewis et al., 1998). CT, pH, salinity, temperature, total phos-
phate, and total silicate were set as parameters for the calcu-
lations.

2.3 Sample analyses

2.3.1 Biomass and cell counts

A detailed description for the determination of biomass and
cells counts is given in Wannicke et al. (2012). Briefly, the
chlorophylla (Chl a) concentration was determined by filter-
ing 100-ml samples onto Whatman glass-fiber filters (GF/F),
applying a vacuum of 200 mbar. The filters were stored in
liquid nitrogen or at –80◦C until they were extracted with
96 % ethanol for at least 3 h. Chla fluorescence was mea-
sured with a TURNER fluorometer (10-AU-005) at an exci-
tation wavelength of 450 nm and an emission wavelength of
670 nm (HELCOM, 2001). Calculation of the Chla concen-
trations was based on the method of Jeffrey and Welschmeyer
(1997).

The abundance ofNodularia spumigenawas determined
by preserving 50-ml samples with acetic Lugol’s (KI/I2) so-
lution (1 % final concentration). The samples were counted
at 100× magnification using an inverted Leica microscope
(Utermöhl, 1958).

Bacteria were analyzed using a flow cytometer (Facs Cal-
ibur, Becton Dickinson) according to the manual of Gasol
and del Giorgio (2000). The cells were counted at a medium
flow rate and calculations were performed using the software
program “Cell Quest Pro”.

2.3.2 Inorganic nutrient analyses

Inorganic nutrients were determined as reported in Wan-
nicke et al. (2012). Briefly, water samples (60 ml) of the
batch cultures were filtered through combusted (450◦C, 4 h)
Whatman GF/F filters and stored at –20◦C before the in-
organic nutrient concentrations (DIP, nitrate/nitrite, silicate,
and ammonium) were determined using the autoanalyzer
system “Evolution III” (Rohde and Nehring, 1979) and stan-
dard colorimetric methods (Grasshoff et al., 1983) except
for ammonium which was determined manually according to
Grasshoff et al. (1983). The detection limit was 0.02 µmol l−1

for DIP, 0.05 µmol l−1 for nitrate/nitrite, and 0.1 µmol l−1 for
silicate. Ammonium concentrations were below the detection
limit of 0.05 µmol l−1 throughout the experiment. For a quick
estimation of the DIP status of the cultures, DIP concentra-
tions were also determined manually according to Murphy
and Riley (1962). For data analysis, DIP values from both
measurements were pooled.

2.3.3 Organic matter analyses

Organic matter analyses were processed as described in Wan-
nicke et al. (2012). A brief description is given below.

To determine total and dissolved phosphorus (TP and DP,
respectively), 40-ml samples were stored frozen at -20◦C ei-
ther unfiltered or after filtration through 0.2 µm CA filters.
The thawed samples were then oxidized with an alkaline per-
oxodisulfate solution (Grasshoff et al., 1983) in a microwave
(MWS µPrep-A) to convert organic phosphorus into DIP. The
procedure lasted 4 h in total including warming, incubating
1 h at 170◦C, and cooling. Further DIP analysis was done as
described above but using a 10-cm cuvette, which reduced
the detection limit to 0.01 µmol l−1. DOP was calculated as
the difference between DP and DIP. POP was calculated as
the difference between TP and DP and is referred to asNodu-
laria-P hereafter.

Both DOC and total dissolved nitrogen (TDN) were an-
alyzed by collecting subsamples in combusted 20-ml glass
ampoules (8 h, 500◦C), pre-filtered through combusted GF/F
filters, followed by acidification with 80 µl of 85 % phospho-
ric acid, and stored at 0–2◦C until further processing. DOC
and TDN concentrations were determined simultaneously in
the filtrate by high-temperature catalytic oxidation with a
Shimadzu TOC-VCSH analyzer equipped with a Shimadzu
TNM-1 module. DOC and TDN concentrations were mea-
sured as quadruplicates and then averaged. The TDN values
were corrected for nitrate/nitrite and ammonium, and subse-
quently defined as DON.

Particulate organic carbon (POC) and nitrogen (PON)
were analyzed by filtering 200-ml samples onto GF/F filters
which were subsequently stored frozen at –20◦C. Concentra-
tions were measured by means of flash combustion in a Carlo
Erba EA 1108 at 1020◦C and a Thermo Finnigan Delta S
mass-spectrometer.

Biogeosciences, 10, 1483–1499, 2013 www.biogeosciences.net/10/1483/2013/
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2.3.4 Dissolved ATP

Dissolved ATP (dATP) was determined according to
Björkman and Karl (2001) but modified for Baltic Sea con-
ditions. Samples of 200 ml each were pre-filtered through
combusted (4 h, 450◦C) Whatman GF/F filters followed by
filtration through 0.2 µm CA filters. A Mg(OH)2 precipi-
tate including the co-precipitated nucleotides was obtained
by the addition of 1 M NaOH (0.5 % v/v). The precipitate
settled overnight and was then centrifuged for 20 min at
1000× g. The supernatant was aspirated and the precipitate
was transferred into 50-ml Falcon tubes, centrifuged again
(1.5 h, 1680× g) to obtain the final pellet, and then resus-
pended with 5 M HCl, added dropwise. A final pH of 7.2
was reached by the addition of TRIS buffer (pH 7.4, 20 mM,
Sigma-Aldrich, T7693). The final volume was recorded and
standard concentrations were prepared as for the samples,
thus yielding a blank with aged Baltic Sea water and six ATP
concentrations (adenosine 5′-triphosphate disodium salt hy-
drate, Sigma-Aldrich, A2383) ranging from 1 to 20 nmol l−1.

ATP concentrations were measured in triplicates by the
firefly bioluminescence assay using a Sirius Luminometer
(Berthold Detection Systems). Thirty microliter subsamples
were each treated with 240 µl of firefly lantern extract mix-
ture prepared according to Björkman and Karl (2001). The
detection limit was 2.5 pmol ml−1of the concentrated sample
with a precision of<5 % at 40 pmol l−1 dATP in the original
water sample.

The fluorescence slope of the standard concentrations was
used to calculate the dATP concentrations, with correction
for the final sample volume. The P-content was calculated
based on the fact that 1 mol ATP is equivalent to 3 mol P and
is hereafter referred to as dATP-P.

2.3.5 Dissolved phospholipids

The phosphate concentration of dissolved phospholipids
(dPL-P) was analyzed according to Suzumura and Ingall
(2001, 2004), adopting the method to Baltic Sea condi-
tions. For the extraction of dPL-P, 400-ml aliquots of GF/F
(combusted, 4 h, 450◦C) and 0.2 µm CA filtered batch sam-
ples were stored frozen at –20◦C until further process-
ing. The samples were thawed in a water bath at 30◦C
and then extracted twice with 100 ml of chloroform (Merck
1.07024.2500). The chloroform phase was collected and con-
centrated to 5 ml in a rotary evaporator (Heidolph Hei-VAP
Advantage). The concentrate was then transferred into mi-
crowave tubes (suitable for MWS µPrep-A) to completely
evaporate the chloroform in a 60◦C water bath overnight.
Twenty ml of Milli-Q water were added, after which pro-
cessing in a microwave was the same as described for the
analysis of TP and DP. Six standard concentrations rang-
ing from 0 to 125 µg l−1were prepared by adding the appro-
priate amounts of a 5 mg PG (L-α-phosphatidyl-DL-glycerol
sodium salt, Sigma Aldrich, P8318) ml−1stock solution to

aged seawater. A reagent blank of chloroform was also mea-
sured. Based on the slope, the dPL-P concentration was de-
termined. The detection limit was 0.8 nmol l−1.

2.3.6 Dissolved DNA and RNA

Dissolved DNA and RNA were determined according to Karl
and Bailiff (1989). For each sample a volume of 200 ml was
filtered through combusted GF/F (4 h, 450◦C) and 0.2 µm
CA filters. The same volume of ethylenediaminetetracetic
acid (EDTA, 0.1 M, pH 9.3, Merck, 1.08454.1000) and
4 ml of cetyltrimethylammonium bromide (CTAB, Sigma-
Aldrich, H5882) were added. The samples were gently mixed
and stored frozen at –20◦C for at least 24 h. After defrosting
the samples, the precipitate that had formed was collected
onto combusted (450◦C, 4 h) GF/F filters (25 mm, What-
man), placed into annealed vials, and stored frozen at –80◦C
until further analysis. Dissolved DNA and RNA (dDNA
and dRNA) were detected according to Karl and Bailiff
(1989) using the fluorescence-spectrophotometer F2000 (HI-
TACHI) to determine dDNA and the dual-beam UV/VIS-
spectrophotometer U3010 (HITACHI) to determine dRNA.
Coupled standards (DNA+ RNA) with concentrations be-
tween 1–10 µg DNA l−1 (Sigma Aldrich, D3779) and 20–
120 µg RNA l−1 (Sigma Aldrich, R1753) were prepared in
aged seawater as described above. A reagent blank served as
reference and aged seawater as the background control. Dis-
solved DNA and RNA concentrations were translated into P
concentrations by multiplication by a factor of 2.06 nmol P
for 1 µg dDNA and 2.55 nmol P for 1 µg dRNA, detected by
DP determination in the microwave (Trinkler, unpublished).
Hereafter, these amounts are referred to as dDNA-P and
dRNA-P. The detection limit was 10–20 ng for DNA and
250–500 ng for RNA.

The concentrations of the measured DOP fractions (dATP,
dPL-P, dDNA-P and dRNA-P) were totaled and the amount
subtracted from the total DOP concentration. The difference
is defined as the uncharacterised DOP.

2.4 [³³P]PO4 uptake and transformation

Total [³³P]-activity was measured in 1-ml volumes of each of
the nine sub-samplings by liquid scintillation counting (Tri-
Carb 2800TR, Perkin Elmer).

[³³P]PO4 incorporated inNodularia filaments was deter-
mined by filtering a 5-ml sub-sample onto 0.2 µm poly-
carbonate (PC) filters pre-soaked with a 20 mM cold PO4
solution. The filters were rinsed with 5× 1 ml of particle-
free aged seawater. The activity (cpm) on the filters is that
[³³P]PO4 incorporated byNodularia. The filtrate contained
[³³P]PO4 which was not taken up (or released again) and [³³P]
released as DOP. To distinguish between these two phos-
phorus forms, the method described by Ammerman (1993)
for the uptake of dissolved ATP was applied. To detect the
total dissolved activity in the filtrate<0.2 µm (filtrate 1),

www.biogeosciences.net/10/1483/2013/ Biogeosciences, 10, 1483–1499, 2013
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1 ml was transferred into scintillation vials for counting. Ac-
tivated charcoal (20 mg) and 1 ml 0.03 N H2SO4 were then
added to the remaining 4-ml filtrate; the mixture was shaken
for 15 min and then filtered through 0.45 µm filters to re-
move charcoal with the absorbed DOP on the filters. Ac-
tivated charcoal absorbs dissolved organic matter including
[³³P]DOP, [³³P]PO4 remained in the dissolved fraction. One
ml of the 0.45 µm filtrate (filtrate 2) was counted again. Or-
ganic bound [³³P]PO4 was calculated as the difference be-
tween filtrates 1 and 2. The procedure was repeated two
times.

In preliminary tests with sterile Milli-Q and aged seawa-
ter, the dilution of [³³P] by the addition of 1 ml 0.03 N H2SO4
and non-specific binding to charcoal were checked, indicat-
ing that 25 % of the variation can be explained by these ef-
fects. Therefore, the values of filtrate 2 were corrected by this
amount.

2.5 Alkaline phosphatase activity

The activity of alkaline phosphatase was determined as
described in detail by Endres et al. (2013) using 4-
methylumbelliferyl (MUF)-phosphate (Hoppe, 1983). This
fluorescent substrate analogue was added to 180- µl subsam-
ples and incubated in duplicates for 3.5–4.5 h in the dark
at 25◦C. Seven different concentrations ranging from 0 to
150 µmol l−1 were tested. Sample fluorescence was mea-
sured in microtiter plates with a fluorometer (FLUOstar OP-
TIMA, BMG Labtech, excitation 355 nm, emission 460 nm).

2.6 Data and statistical analyses

The data and illustrations shown represent the average values
of the three parallel incubations, except one outlier (sample:
low-II at day 9) in which double the amount of PO4 was in-
advertently added. Statistical significance was tested by an
unpairedt test, with a significance level ofp <0.05. Prior to
the t test, the data were tested for normality by the Shapiro–
Wilk test. If the normality test failed, a Mann–Whitney rank
sum test was used. Correlation analyses were performed us-
ing Spearman’s rank test, assuming a significant correlation
with a correlation coefficient|R|>0.6, andp <0.001. A posi-
tive correlation means that both parameters either increase or
decrease in concert. A negative correlation implies that one
parameter increases while the other one decreases. The oper-
ations were performed with ‘Sigma Plot 11’ (Systat Software
Inc.).

3 Results

3.1 Carbonate system

According to Wannicke et al. (2012, Table 1) average
pH values for the low, medium and highpCO2 treat-
ments were 8.15± 0.08, 8.09± 0.09, and 7.99± 0.07, re- 45 
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Fig. 2. Comparison of the Chlorophylla distribution over incuba-
tion time and for the differentpCO2 treatments (low= white bars,
medium= grey bars, high= black bars) in the 10 l batch bottles
(a) (as shown by Wannicke et al., 2012; Endres et al., 2013), and in
the 0.5 l [33P] bottles(b) (mean values and the respective standard
deviation of 3 replicates).

spectively. The highpCO2 treatment differed significantly
from the low (p <0.001,n = 12) and mediumpCO2 treat-
ments (p = 0.009, n = 12) (Fig. 1a). The means of the
corresponding CT values were 1598± 35, 1613± 30, and
1648± 27 µmol kg−1, respectively. The differences in CT be-
tween the low and high as well as the medium and high
pCO2 treatments were significant (p<0.001 andp = 0.006,
n = 12) (Fig. 1b). The calculated values ofpCO2 resulted
in an average of 341± 81 µatmpCO2 in the low pCO2
treatment, 399± 104 µatmpCO2 in the mediumpCO2 treat-
ment, and 508± 90 µatmpCO2 in the high pCO2 treat-
ment. pCO2 was significantly different between the low
and high as well as the medium and highpCO2 treatments
(p<0.001 andp = 0.009, n = 12) (Fig. 1c). Wannicke et
al. (2012, Supplement Table S2) noted that the calculated
pCO2 was significantly different between all threepCO2 set-
ups (p ≤ 0.001,n = 12) by testing the data with the analy-
sis of variance (ANOVA). Calculated AT showed an average
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Table 1. The phosphorus pool fractions at the four sampling times. Values are means and standard deviations of three replicates except for
DIP where one replicate bottle was excluded (low-II at day 9). Values of DIP and DOP are according to Wannicke et al. (2012).

Date pCO2 TP DP Nodularia-P DIP DOP
(day) treatment (µmol l−1) (µmol l−1) (µmol l−1) (µmol l−1) (µmol l−1)

03/29/2010 Low 0.83± 0.03 0.63± 0.04 0.20± 0.04 0.29± 0.02 0.34± 0.04
(day 0) Medium 0.91± 0.08 0.65± 0.02 0.26± 0.06 0.32± 0.08 0.33± 0.06

High 0.87± 0.08 0.72± 0.04 0.15± 0.07 0.34± 0.02 0.38± 0.06

04/01/2010 Low 0.71± 0.05 0.31± 0.02 0.43± 0.03 0.05± 0.02 0.27± 0.02
(day 3) Medium 0.77± 0.05 0.27± 0.01 0.39± 0.15 0.03± 0.01 0.24± 0.02

High 0.68± 0.03 0.32± 0.08 0.36± 0.09 0.04± 0.00 0.28± 0.07

04/07/2010 Low 1.21± 0.04 0.31± 0.12 0.80± 0.21 0.01± 0.01 0.27± 0.08
(day 9) Medium 1.20± 0.06 0.27± 0.10 0.93± 0.15 0.02± 0.02 0.25± 0.09

High 1.20± 0.02 0.25± 0.05 0.96± 0.06 0.01± 0.00 0.23± 0.05

04/13/2010 Low 1.20± 0.21 0.27± 0.06 0.93± 0.25 0.03± 0.01 0.24± 0.07
(day 15) Medium 1.22± 0.06 0.21± 0.03 1.01± 0.06 0.02± 0.01 0.19± 0.02

High 1.27± 0.07 0.22± 0.05 1.05± 0.06 0.02± 0.01 0.21± 0.04

of 1701± 19 µmol kg−1 AT (low), 1701± 9 µmol kg−1 AT
(medium), and 1714± 13 µmol kg−1 AT (high) (Fig. 1d).

3.2 Nodularia growth and bacterial occurrence

A detailed description concerningNodularia growth and
bacterial occurrence in response to changingpCO2 is given
in Wannicke et al. (2012). Briefly summarised, the abun-
dance ofNodularia spumigenaincreased by a factor of 2.5,
3.4, and 8.5 in the low, medium, and highpCO2 treatment,
respectively, until day 9. Afterwards, cyanobacterial growth
under low and mediumpCO2 proceeded at a lower rate. At
high pCO2, the abundance declined slightly. POC concen-
trations increased by a factor of 3.8 (low), 5 (medium), and
7.7 (high) and PON concentrations showed an increase by a
factor of 4.1 (low), 6.1 (medium), and 9.6 (high) until day
9. After this, POC and PON concentrations declined. A sim-
ilar trend was observed for Chla in the large (10 l) and in
the small bottles (0.5 l) (Fig. 2). The Chla concentrations
increased by a factor of 6.1 (large) and 4.2 (small) at low
pCO2, 5.9 (large) and 6.2 (small) at mediumpCO2, and 10.2
(large) and 9.1 (small) at highpCO2 until day 9 and then
dropped, regardless of the CO2 concentration. Accordingly,
the period between day 0 and day 9 was considered to be the
growth phase (Fig. 2). A comparison of the growth parame-
ters in the large and the small bottles showed significant cor-
relations (p <0.001, n= 36) for Chl a (|R|= 0.691), POC
(|R|= 0.698), PON (|R|= 0.682), andNodularia-P (|R|=

0.765).
Heterotrophic bacteria cell counts at the start of the ex-

periment were below the blank value of 1000 cells l−1 and
never exceed 1 % of cyanobacterial biomass in course of
the experiments (Wannicke et al., 2012). There was no
significant increase of heterotrophic bacteria cell numbers
over time. Cell numbers on average were 4.69± 1.64× 105,

4.54± 1.59× 105, and 4.73± 1.28× 105 cells l−1 for the
low, medium, and high treatment, respectively (Wannicke et
al., 2012, Table 2). In Endres et al. (2013) it is discussed
that if bacteria were attached to each other, toNodularia
or to gel particles we might have underestimated the bac-
terial abundance by flow cytometry. Furthermore, Wannicke
et al. (2012) mentioned the possibility of staining non-viable
bacteria cells with SYBR GREEN which might have been in-
cluded in the enumeration. Standard deviations of cell num-
bers were relatively high, varying between replicates and
over time probably due to methodical constraints (Endres et
al., 2013). Thus, heterotrophic bacteria had only less or no
influence on our measurements.

3.3 Phosphorus pool

The initial TP concentration (day 0) was 0.83± 0.3,
0.91± 0.08, and 0.87± 0.08 µmol l−1 in the low, medium,
and high pCO2 treatment, respectively. An increase of
around 0.36 µmol l−1 at day 9 was due to the additional
PO4 supply after sampling at day 3 (Table 1). The ini-
tial concentrations of the DP pool under low, medium, and
high pCO2 were, respectively, 0.63± 0.04, 0.65 ±0.02, and
0.72± 0.04 µmol l−1. During the 15-day incubation, the DP
concentration declined by 0.35, 0.44, and 0.50 µmol l−1.
Both the initial amount of DIP and the additional amount
of DIP after sampling at day 3 were taken up completely by
Nodularia. From day 3 onwards, DIP concentrations were
below the detection limit (Wannicke et al., 2012, Table 2; this
publication, Table 1). Differences in DIP uptake between the
respectivepCO2 treatments were not significant. DIP cor-
related negatively withNodularia-P, POC, PON, Chla, and
Nodulariaabundance (|R|= –0.843, –0.839, –0.854, –0.822,
and –0.834,p<0.001, n = 35) which indicates the strong
need of DIP for the biomass development.Nodularia-P
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Table 2.Observed dATP values based on literature data from different oceanic regions.

Sample location dATP (ng l−1) Reference

Field observations
Coast, Southern California
(SIO pier to Point Loma) 65–218 Azam and Hodson (1977)
Saanich Inlet, British Columbia 466 Azam and Hodson (1977)
Gulf stream, Florida
(range of several stations; 5 m) 22–306 Hodson et al. (1981)
Bransfield Strait, Antarctica
(Jan 87; range of 5 stations, 0–100 m) 23–1278 Nawrocki and Karl (1989)
Subtropical North Pacific gyre
(range of several stations, 5–125 m) 14.9–41.3 Björkman and Karl (2001)

Laboratory observations
Aged Baltic Sea water (batch 356–1594 present study
experiment)

increased in all treatments in the course of the experiment.
The increment during the growth phase accounted for 0.59,
0.70, and 0.77 µmolNodularia-P l−1 for the low, medium
and high treatments, respectively. The amounts obtained in
response to medium and highpCO2 were 1.19- and 1.30-fold
higher than those measured under lowpCO2 (Fig. 3a), but
differences were not significant. At day 15, there was a slight
increase in theNodularia-P concentration in allpCO2 treat-
ments.Nodularia-P correlated negatively with DOP (|R|=

–0.844,p<0.001, n = 36) and positively with APA (|R|=

0.824,p<0.001,n = 36).
DOP concentrations (Wannicke et al., 2012, Table 2; this

publication, Table 1) decreased from day 0 onwards. During
the growth phase, DOP utilisation seemed to vary as a func-
tion of pCO2, with concentrations declined by 0.06, 0.09,
and 0.14 µmol l−1 at low, medium, and highpCO2, respec-
tively (Fig. 3b), but the differences were not significant due
to high variations between replicates (Endres et al., 2013;
Fig. 7).

The decrement in DIP plus DOP by 0.64, 0.69, and
0.77 µmol l−1 under low, medium, and highpCO2, respec-
tively, was reflected in the increase ofNodularia-P by nearly
the same amount (Fig. 3a). The parallel decline of DIP and
DOP indicated the utilisation of both pools, as confirmed by
the positive correlation between both (|R|= 0.675;p<0.001,
n = 35).

3.4 DOP components

3.4.1 Dissolved ATP

On sampling days 0 and day 3, dATP-P concentrations re-
mained constant at 2.5± 0.4 nmol l−1 in all treatments and
accounted for 0.7± 0.2 % of total DOP. On day 9 dATP-
P concentrations escalated by 5.6, 5.2, and 5.6 nmol l−1 at
low, medium, and highpCO2, thus comprising 3.1, 3.4, and
3.3%, respectively, of the total amount of DOP. However, at

Fig. 3. Changes of the P pool(a) and the DOP pool(b) between
day 9 and day 0 of the 15-day incubation experiment for the three
differentpCO2 treatments

day 15 the dATP-P concentration was reduced by 3.2 (low
pCO2), 2.8 (mediumpCO2), and 3.0 (highpCO2) nmol l−1

(Fig. 4e), without significant differences between treatments.
The dATP-P concentration correlated positively withNodu-
laria-P, POC, PON, andNodulariaabundance (|R|= 0.673,
0.768, 0.816, 0.727,p<0.001,n = 36) and negatively with
DIP (|R|= –0.736,p<0.001,n = 35).
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Table 3.Lipid P concentrations and percentages of total organic P as shown by Suzumura (2005).

Sample Sample description Concentration % of total Reference
organic P

Seawater (coastal) Particulate (> 0.7 µm) 90–750 nM P 5.6–11.6 Miyata and Hattori (1986)
Seawater (coastal) Dissolved (< 0.7 µm) 0.7–6.0 nM P 0.1–0.9 Suzumura and Ingall (2001)

Particulate (> 0.7 µm) 31–294 nM P 3.0–13.5 Suzumura and Ingall (2001)
Seawater (pelagic) Dissolved (< 0.7 µm) 4.0–17.9 nM P 1.7–17.6 Suzumura and Ingall (2004)

Particulate (> 0.7 µm) 0.05–1.72 nM P 0.8–34.4 Suzumura and Ingall (2004)
Seawater (aged, Dissolved (< 0.2 µm) 6.7–28.3 nM P 1.7–12.4 present study
batch experiment)

Table 4.dDNA and dRNA values for marine and freshwater stations adapt from Karl and Bailiff (1989).

Sample location dDNA dRNA
(µg l−1) Reference

Marine: coastal/estuarine
Bombay Harbor, India
(range of four stations) 13.4–80.6 −

b Pillai and Ganguly (1972)

Northern Adriatic Sea
(range of two stations; 0–30 m) 0.05–0.8a

− Breter et al. (1977)

Bayboro Harbor, Florida
(Mar 86) 18.32 (± 1.78) − DeFlaun et al. (1986)

Bransfield Strait, Antarctica
(Dec 86; range of 69 stations) 6–15 − Bailiff and Karl (1987)

Kaneohe Bay, Hawaii
(Mar 88; range of four stations) 2.66–3.15 20.6–31.9 Karl and Bailiff (1989)

Mamala Bay, Hawaii (Mar 88) 1.02 (± 0.08) 6.67 (± 2.67) Karl and Bailiff (1989)

Kahana Bay, Hawaii
(Mar 88; water column) 4.70 51.1 Karl and Bailiff (1989)

Northern Baltic Sea, Sweden 1.3–2.6 −
b Riemann et al. (2009)

(Jun 06, range of four stations, 1 m)

Marine: offshore
N. Pacific Ocean
(33◦ HN, 139◦ W; 0–400 m) 0.56–1.39 4.03–13.9 Karl and Bailiff (1989)

Freshwater
Quarry Pond, Hawaii 3.54 (± 0.03) 23.0 (± 0.16) Karl and Bailiff (1989)

Krauss Pond, Hawaii 88 871 Karl and Bailiff (1989)

Laboratory: batch experiments
Aged Baltic Sea water, Germany
(batch experiment) 0.01–0.04 26–83 present study

a Assumes DNA is 10 % thymine, by weight.
b No data available.

3.4.2 Dissolved phospholipids

The initial concentrations of dPL-P were 6.7± 5.7,
10.5± 4.3, and 15.2± 9.2 nmol l−1 at low, medium, and high
pCO2, accounting for 2.0, 3.2, and 4.0 % of total DOP,
respectively. The concentrations of dPL-P in the low and
medium treatments increased over the first 3 days by a mean

of 10.5 and 17.8 nmol l−1, respectively, without significant
differences between treatments. From day 3 onwards, dPL-P
concentrations decreased again, until they leveled out around
10.1 and 14.5 nmol l−1, respectively. In contrast, dPL-P con-
centrations in the highpCO2 treatment were constant at
around 15.9± 0.6 nmol l−1 until day 9, with a slight in-
crease by 2.9 nmol l−1 at day 15 (Fig. 4d). By this time, the
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Fig. 4. Composition of DOP as %-proportion(a),and absolute values for the uncharacterised fraction, black(b), dRNA-P, white(c), dPL-P,
mid-grey(d), dATP-P, light-grey(e), and dDNA-P, dark-grey(f) over incubation time and for the threepCO2 treatments (low, medium, and
high).

proportion contributed by dPL-P to total DOP was higher in
all three treatments (4.2, 7.6, and 9.3 %, for low, medium,
and high, respectively) compared to the starting proportion,
mainly due to the decrease of total DOP. However, neither a
significant difference between the treatments nor a correla-
tion to any other parameter was noted.

3.4.3 Dissolved DNA

Overall, the concentration of dDNA-P was very low
and represented only a very small proportion of total
DOP (0.07± 0.01 %). The concentration on day 0 was
0.28± 0.02, 0.27± 0.03, and 0.31± 0.05 nmol l−1 at low,
medium, and highpCO2, respectively. At day 9, the
dDNA-P concentration was reduced by half, to 0.14± 0.01,
0.14± 0.01, and 0.16± 0.01 nmol l−1, respectively, and re-
mained constant afterwards (Fig. 4f). Dissolved DNA-P
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correlated positively with DOP (|R|= 0.727,p<0.001,n =

36) and negatively with POP, POC, and PON (|R|= –0.836,
–0.637, –0.688,p<0.001,n = 36).

3.4.4 Dissolved RNA

Starting concentrations of dRNA-P at low, medium, and
highpCO2 were 108± 40, 106± 41, and 145± 18 nmol l−1,
constituting 32, 32, and 38 % of total DOP, respectively.
In the low and mediumpCO2 treatments, the concentra-
tion increased until day 3, by 46 and 55 nmol l−1, respec-
tively, and then fluctuated around 150± 3 nmol l−1 (low) and
151± 14 nmol l−1 (medium). In contrast, the dRNA concen-
tration of the highpCO2 treatment was constant at around
138± 20 nmol l−1 on day 0 and day 3. At day 9 the con-
centration slightly increased by 35 nmol l−1, remaining at
the same level thereafter (Fig. 4c). Thus, the dRNA-P con-
centrations increased slightly over the course of the 15-day
experiment, with the largest increment at lowpCO2 (by
41.7 nmol l−1). At medium and highpCO2, the increases
were minor (28.1 and 12.8 nmol l−1) but differences were not
significant. Due to the decrease of DOP, the proportions of to-
tal DOP contributed by dRNA-P increased with time finally
reaching 63 % (low), 71 % (medium), and 77 % (high) of to-
tal DOP. Therefore, dRNA-P accounted for a major fraction
of DOP.

3.4.5 Uncharacterised DOP

At the beginning of the experiment, uncharacterised DOP ac-
counted for the majority of total DOP, amounting to 65.1,
63.7, and 57.0 % at low, medium, and highpCO2, respec-
tively. During the growth phase ofNodularia, concentrations
of uncharacterised DOP declined by 115± 50, 150± 15, and
171± 22 nmol l−1, respectively. This implied a decrease, al-
beit not significant, by a factor of 1.3 at mediumpCO2 and
1.5 at highpCO2 compared to the lowpCO2 treatment. Un-
til day 15, the decrement proceeded, progressively reduc-
ing the proportions of uncharacterised DOP to 30.8 % (low),
18.6 % (medium), and 11.7 % (high) of total DOP (Fig. 4b).
The uncharacterised DOP fraction correlated positively with
dDNA-P (|R|= 0.738,p<0.001,n = 36) and negatively with
Nodularia-P,Nodulariaabundance, and APA (|R|= –0.82, –
0.682, –0.681;p<0.001,n = 36). This correlation analysis
supports the finding that uncharacterised DOP was the largest
fraction of DOP and thus served as the main source ofNodu-
laria-P after DIP depletion.

3.5 [³³P]PO4 uptake and transformation

The distribution of [³³P] in the three fractions,Nodularia-
P, DOP, and DIP, was similar in all CO2 treatments during
the incubation, despite a few deviations. [³³P]PO4was incor-
porated into biomass during the growth phase (Fig. 5), with
15.9–26.3 % of the added [³³P]PO4 occurring inNodularia
in all treatments after 3.5 h. Thereafter, [³³P]-fixation seemed

Table 5. Quantity of DIP (nmol l−1) transformed to DOP byN.
spumigena.Calculation was done using the proportion of [33P]DOP
to total [33P] at each sampling day considering the initial DIP con-
centration+ DIP concentration added at day 3.

Time pCO2 treatment
Low Medium High

3 days 8.4± 1.7 2.4± 1.5 4.1± 3.9
9 days 21.4± 12 13.9± 0.7 10.2± 2.4
15 days 7.8± 4.5 35.5± 8.8 18.5± 8.8

to be faster in the medium and highpCO2 treatments, based
on the mean at day 3 of 74 % and 58 %, respectively, com-
pared to 28 % in the lowpCO2 treatment. At day 9, nearly
the whole [³³P]PO4 (94.7–97.8 %) was fixed into biomass
independent from thepCO2 treatment. The decline of the
cyanobacteria biomass at day 15 (Fig. 2) was accompanied
by a strong decrease in cellular P in the mediumpCO2 treat-
ment and a weak decrease in the highpCO2 treatment. In the
low treatment, the proportion of [³³P]PO4 in Nodularia re-
mained as high as at the previous sampling time. Thus, the
transition ofNodulariato the senescent state rather occurred
under the medium treatment than in the other treatments.
[³³P] was released fromNodulariapredominantly as DIP ei-
ther directly or after processing by APA; only a small propor-
tion occurred as DOP (Fig. 5). The 81 % decrease inNodu-
laria-P detected in the medium treatment was combined with
a release of 78 % as DIP and 3 % as DOP. The decrease of
Nodularia–P by 6 % in the high treatment consisted of 5 %
as DIP and to 1 % as DOP.

The transformation of [³³P]PO4 into DOP byNodularia
was generally low (1.4–7.7 %), with most already released
after 3.5 h. The calculation of DIP transformed into DOP
based on the DIP additions indicated that the DIP conver-
sion involved nanomolar concentration ranges (Table 5), in
agreement with the decline of DOP (Fig. 3a).

4 Discussion

This joint study investigatedNodularia spumigenagrowth as
well as carbon, nitrogen, and phosphorus transformation un-
der differentpCO2 conditions. Part I focused on growth, pro-
duction and nitrogen cycling (Wannicke et al., 2012). Part II
dealt with exudation and extracellular enzyme activities (En-
dres et al., 2013). Here (Part III), we discuss the turnover of
the dissolved P pool, including DOP composition, to illus-
trate the P-based nutrition ofNodulariaand its P transforma-
tion processes.
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4.1 CO2 effects on phosphorus nutrition of Nodularia
spumigena

During the first 9 days of the experiment,Nodulariagrowth
was significantly enhanced with increasingpCO2, as evi-
denced by the growth rates in terms of biomass increase (Chl
a, POC, PON, and filament abundances) (Wannicke et al.,
2012; Fig. 5). Carbon and nitrogen fixation rates were stimu-
lated as well (Wannicke et al., 2012; Fig. 6). The response of
N. spumigenato pCO2 elevation was similar to that reported
for the oceanic filamentous cyanobacteriumTrichodesmium
(Barcelos e Ramos et al., 2007; Hutchins et al., 2007; Levitan
et al., 2007). When DIP reached the detection limit,Nodu-
laria obtained P from DOP. While the DOP concentration
decreased in all treatments, the decline was most pronounced
at highpCO2. Dissolved phosphorus (DIP and DOP) uptake
was reflected in the P content ofNodularia (Fig. 3a, 5), but
normalised to filament abundanceNodularia-P was lowest
at highpCO2 indicating a more efficient P utilisation (Wan-
nicke et al., 2012, Fig. 3). In the [³³P]-experiments, nearly all
of the DIP (95–98 %) was fixed in biomass during the growth
phase ofNodularia. The uptake seemed to be faster in the
medium and highpCO2 treatment compared to the low treat-
ment, but a higher sampling frequency would be necessary
to make a clear statement. The subsequent release of DIP
from Nodularia was delayed in both, the low and the high
pCO2 treatment compared to the medium treatment. How-
ever, we hypothesise that the mechanisms behind this paral-
lel delay in P release may differ in the treatments tested here.
We have the following explanation: In the lowpCO2 treat-
ment, growth and [³³P]PO4 incorporation were slower than
in the highpCO2 treatment such that senescence, in which
P is released, might not have been reached within the time
limits of the experiment. In contrast, in the highpCO2 treat-
ment, the greater P demand ofNodulariacould have caused
the persistence of P in the cells. This hypothesis needs con-
firmation by further experiments, but if it is correct, an in-
crease in the P demand ofNodulariawill be likely under the
conditions predicted for the Baltic Sea. The slight elevation
in pCO2 in our experiment, from 341 to 399 µatm, already

showed a stimulating growth effect. Accordingly, small vari-
ations in the presentpCO2 (spatially and seasonally) can be
expected to result in changes ofNodulariagrowth, nitrogen
fixation, and P demand. Currently, thepCO2 in the central
Baltic Sea ranges between 100 and 300 µatm during the sum-
mer season (Schneider et al., 2006) and its increase within
the next decades could change the behaviour ofNodularia
spumigena.

4.2 DOP as phosphorus source

The ability of phytoplankton to utilise DOP as an alterna-
tive P source was frequently demonstrated in earlier stud-
ies (e.g., Currie and Kalff, 1984; Cotner and Wetzel, 1992;
Dyhrman et al., 2006). In fact, it is generally accepted that
DOP is the main P source when DIP is exhausted (Nausch
and Nausch, 2004; Vahtera, 2007). Accordingly, a high al-
kaline phosphatase activity (APA) indicates DOP utilisation
(Cembella et al., 1984; Nausch, 1998; Hoppe, 2003) and may
even be an indicator of P stress in cyanobacteria (Paasche and
Erga, 1988; Wu et al., 2012).

In this joint experiment, DIP depletion and DOP decrease
occurred in parallel with enhanced APA, as previously re-
ported by Endres et al. (2013). We not only confirmed the
negative correlation between APA and DIP (|R|= –0.852,
n = 35, p<0.001) as well as DOP (|R|= –0.635,n = 36,
p<0.001) but also found changes of similar range in both,
APA and DOP (by 2.4- and 1.5-fold), in the high and medium
pCO2 treatments, respectively, versus the lowpCO2 treat-
ment. According to Endres et al. (2013), we can assume that
(1) AP was mainly attached toNodularia cell surface and
(2) the uptake of DOP was driven byNodularia while het-
erotrophic degradation of DOP was negligible.

AP preferentially hydrolyzes phosphomonoester bonds,
cleaving orthophosphate from the organic moiety and mak-
ing it available for cellular assimilation (Sebastián et al.,
2004). ATP, DNA, RNA and PL, as the most P-rich organic
compounds, are cycled differently due to their varying re-
activity (Kolowith et al., 2001). ATP, a phosphoanhydride,
is hydrolyzable by AP (Herńandez et al., 1996; Hansen and
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Heath, 2005). Phosphate is released from the terminal of
phosphodiesters of DNA and RNA by AP (Hino, 1989) rather
than from within the DNA or RNA strands. Phospholipids re-
act with AP only if they contain a phosphate monoester group
at the C3 position of glycerol (Blank and Snyder, 1970). In
contrast to these DOP compounds, phosphomonoesters (e.g.,
sugar phosphates) are easily cleaved by AP and thereby are
able to significantly contribute to the bioavailable DOP pool
and, therefore, to P-nutrition. Labry et al. (2005) reported
that in the Gironde plume phosphomonoester concentrations
make up between 11 and 65 % of the total DOP pool. In
our study, an uncharacterised DOP proportion accounted for
20.4 to 61.9 % of total DOP, and may be attributed to phos-
phomonoesters that were not determined during this study.
The importance of the uncharacterised DOP derives from the
fact that it presumably accounted for the bulk P-nutrition in
Nodularia in this study. On the one hand the positive corre-
lation with DOP (|R|= 0.932,p<0.001,n = 36) suggested
that the uncharacterised DOP fraction satisfiesNodularia’s
P demand. Moreover, this relationship is supported by the
negative correlation withNodularia-P and APA (|R|= –0.82
and –0.681,p<0.001,n = 36) which is an indication for the
need of P for growth and the enzymatic degradation of this
pool (Endres et al., 2013).

Phytoplankton is assumed to be the main producer of DOP
as supported by, for example, high DOP concentrations de-
tected during a spring bloom (Lomas et al., 2010). Deduced
from the [³³P]-experiments,Nodularia spumigenareleased
DOP only in nanomolar concentrations (Table 5) under DIP
depleted conditions, which can hardly be detected by pool
size measurements. Therefore, the CO2 dependent variations
of DOP utilisation seem to be influenced rather by the P de-
mand ofNodularia which become evident by the enhanced
[33P]PO4 incorporation into biomass in the medium and high
treatment compared to the low on day 3 (Fig. 5). The higher
formation of [33P]DOP in these treatments at day 15 might
result from a more pronounced senescence, as visible by
Nodularia growth, whereas in the low treatment DIP incor-
porated inNodularia biomass was still high (Fig. 5). Thus,
the influence of CO2 on DOP formation seems to be of indi-
rect nature.

4.3 Composition of DOP underNodularia spumigena
growth

In the laboratory experiment described here, the DOP con-
centration and the composition of aged and UV-light treated
Baltic Sea water changed during the development ofN.
spumigena. The sum of the determined DOP components ac-
counted for 38.1–79.6 % of total DOP during the 15-day in-
cubation.

Dissolved ATP concentrations in the batch culture exper-
iments ranged from 399 to 1563 ng l−1 and constituted 0.6–
3.4 % of the DOP pool and thus were by a factor of 1.8 to 24
higher than those reported by Azam and Hodson (1977) in

surface waters at the coast of Southern California. Nawrocki
and Karl (1989) reported values similar to ours, i.e., between
23 and 1278 ng l−1, in the upper 100 m of five stations in
the Bransfield Strait, whereas the concentrations measured
by Björkman and Karl (2001) in the subtropical North Pa-
cific gyre were lower (Table 2).

As noted by Suzumura (2005), information on the distribu-
tion and abundance of lipid P in marine environments is still
lacking. The studies carried out so far have been limited to
the distribution and abundance of dissolved lipids, e.g. phos-
pholipids, in the North Atlantic Ocean, Tokyo Bay, Corpus
Christi Bay, and Pacific Ocean (Parrish, 1987; Suzumura and
Ingall, 2001, 2004). Ours is the first study focusing on the
Baltic Sea. Moreover, the determined concentrations of lipid
P as well as the percentage of total organic P are in agreement
with the values reported for the dissolved fraction in pelagic
seawater by Suzumura and Ingall (2004) (Table 3).

Dissolved DNA concentrations were very low throughout
the experiment, accounting for a very small proportion of
DOP (∼ 0.08 %). In fact, they were four magnitudes lower
than the measured dDNA concentrations from other marine
and freshwater areas and therefore can be considered as neg-
ligible. The Northern Adriatic Sea is the only site with sim-
ilarly low dDNA concentrations (Table 4). As suggested by
Paul et al. (1990), actively growing phytoplankton might pro-
duce small to undetectable amounts of dDNA, with produc-
tion occurring only in senescent phytoplankton cells. An-
other plausible explanation is that of Løvdal et al. (2007),
who measured accelerated turnover times of dDNA under
conditions of P starvation of about 1.5 h instead of 15.6 h un-
der balanced conditions. This and the observed decrease of
dDNA-P in our study lead to the assumption that dDNA-P
is rapidly used within hours, as it could not be detected with
our sampling strategy of 3 or 6 days. Furthermore, other en-
zymes than AP, e.g. nucleases or phosphodiesterases, could
be responsible for the cleavage of dDNA making it easier for
AP to release phosphate (Hino, 1989). These enzymes were
not determined in this study.

Dissolved RNA has hardly been investigated in aquatic
environments. Karl and Bailiff (1989) measured concentra-
tions ranging from 4.03 to 51.1 µg l−1 at several stations near
Hawaii and the open Pacific Ocean in March 1988. These
concentrations are in the lower range of those determined in
our study (26–83 µg l−1) (Table 4).

In summary, our determined DOP compounds fit in the
range of values demonstrated for other marine areas. How-
ever, further investigations have to confirm the results espe-
cially under natural Baltic Sea conditions.

4.4 Effects of CO2 treatments on individual DOP
components

Our results demonstrate that the various compounds within
the DOP pool developed differentially over time and with
pCO2 (Fig. 4). The dynamic of dATP-P seems to be not or
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only marginally influenced bypCO2. Dissolved ATP-P did
not differ significantly betweenpCO2 treatments at day 0
and day 3. A trend towards a higher release at lowpCO2
than at medium and highpCO2 (by a factor of 1.06 and
1.20, respectively) was noted at day 9. From day 9 to day 15,
the decline in dATP-P (by a mean of 3.04± 0.22 nmol l−1;
Fig. 4e) followed the trend of total DOP (by a mean of
40± 15 nmol l−1). At this stage (day 15),Nodularia cells
were in stationary phase, exhibiting the first signs of decay.
During decay the release of DOP, including dATP, would be
expected. Instead, the opposite was observed which suggests
the possibility of DOP and dATP utilisation in this phase.
However, we have no evidence that dATP is used signifi-
cantly by heterotrophic bacteria, because their abundances
remained at the same low levels as at the start of the experi-
ment (Wannicke et al., 2012, Table 2).

Under low and mediumpCO2 conditions, dPL-P was re-
leased byNodularia from day 0 to day 3, during the pe-
riod of DIP uptake. Afterwards, dPL-P was utilised by the
cyanobacterial cells probably because of the strengthened P
demand. Thus, for these two treatments approximately the
same concentrations were detected at the start and end of the
experiment. In comparison, under highpCO2 conditions a
temporary dPL-P elevation was observed at day 15 and not
before. We sampled in intervals of several days and there-
fore, it is possible that short time elevations of dPL-P were
not detected before day 15. In contrast to dATP-P, dPL-P was
released under highpCO2 (Fig. 4d), whenNodulariagrowth
reached stationary phase or the cells became senescent (Wan-
nicke et al., 2012, Fig. 2).

The starting concentration of dDNA-P in all treat-
ments was 0.29± 0.02 nmol l−1 and leveled out at
0.14± 0.04 nmol l−1 at the end of the 15-day experi-
ment. The uptake of dDNA-P, even though in the nanomolar
range, seemed to be due to the P-rich nature of DNA
(Sterner and Elser, 2002) and the strengthened P demand.
Throughout the experiment, dDNA-P values were generally
low and did not differ significantly between the threepCO2
treatments (Fig. 4f). The turnover of dDNA (Paul et al.,
1987) and other DOP compounds (e.g., dATP, Azam and
Hodson, 1977; Bj̈orkman and Karl, 2005) is very short,
occurring within hours, so that shorter sampling intervals
would have been necessary to estimate the variations. In
addition, as mentioned above, Paul et al. (1990) reported
low dDNA production during the phytoplankton growth
phase. Furthermore, they assumed that phytoplankton DNA
synthesis primarily occurred at night or that dDNA was
released by senescent, dying, or grazed phytoplankton cells.
If the synthesis and release of dDNA occur only at night, our
sampling time, between 08:00 and 09:00 a.m., would have
been unable to detect these changes in dDNA.

In our study, dRNA-P was relatively constant in allpCO2
treatments and was one of the main contributors to total
DOP. However, regardless of thepCO2 the dRNA-P con-
centrations were lower at the beginning of the experiment

than in the following sampling days. From day 0 to day 9,
dRNA-P production was highest in the medium treatment
(49.3 nmol l−1), followed by the low and high treatments
(39.1, and 20.4 nmol l−1, respectively; Fig. 3b). Over the
course of the experiment, dRNA-P release was highest in the
low treatment whereas it was lowest in the high treatment
(41.7 and 12.8 nmol l−1 dRNA-P, respectively), suggesting
that with an elevatedpCO2, the release of dRNA-P is re-
duced due to the strengthened P demand (Fig. 4c).

Overall, DOP is a viable P source besides DIP and an in-
tracellular P pool. Although, with our sampling intervals we
found no significant effects of variablepCO2 conditions on
single metabolic components, some trends were visible.

5 Conclusions

Our results indicate that accelerated P turnover can be ex-
pected during the cyanobacterial growth period under the
pCO2 conditions predicted for the future Baltic Sea. This im-
plies the faster utilisation of DIP as well as DOP. We propose
that the stimulating effect on P utilisation by the filamen-
tous cyanobacteriumNodularia spumigenais indirect, as it
is mediated by elevated carbon fixation and is dependent on
cyanobacterial growth, which induces a stronger P demand.

There is no trend towards the greater use of dissolved ATP-
P, PL-P, RNA-P, and DNA-P under highpCO2 conditions.
These components may be studied in further experiments
where a higher sampling resolution is applied to capture the
changes from release to uptake processes. Components of the
DOP pool other than those quantified in this study were con-
sumed more intensively and dominated the decrease in the
DOP pool.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
1483/2013/bg-10-1483-2013-supplement.pdf.
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