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Abstract. One of the largest sources of uncertainties in mod-
elling of the future global climate is the response of the ter-
restrial carbon cycle. Studies have shown that it is likely that
the extant land sink of carbon will weaken in a warming cli-
mate. Should this happen, a larger portion of the annual car-
bon dioxide emissions will remain in the atmosphere, and
further increase global warming, which in turn may further
weaken the land sink. We investigate the potential sensitivity
of global terrestrial ecosystem carbon balance to differences
in future climate simulated by four general circulation mod-
els (GCMs) under three different CO2 concentration scenar-
ios. We find that the response in simulated carbon balance
is more influenced by GCMs than CO2 concentration scenar-
ios. Empirical orthogonal function (EOF) analysis of sea sur-
face temperatures (SSTs) reveals differences among GCMs
in simulated SST variability leading to decreased tropical
ecosystem productivity in two out of four GCMs. We ex-
tract parameters describing GCM characteristics by param-
eterizing a statistical emulator mimicking the carbon balance
response simulated by a full dynamic ecosystem model. By
sampling two GCM-specific parameters and global temper-
atures we create 60 new “artificial” GCMs and investigate
the extent to which the GCM characteristics may explain the
uncertainty in global carbon balance under future radiative
forcing. Differences among GCMs in the representation of
SST variability and ENSO and its effect on precipitation and
temperature patterns explain the majority of the uncertainty
in the future evolution of global terrestrial ecosystem car-
bon in our analysis. We suggest that the characterisation and
evaluation of patterns and trends in simulated SST variabil-

ity should be a priority for the further development of GCMs,
in particular as vegetation dynamics and carbon cycle feed-
backs are incorporated.

1 Introduction

Discussion about climate change uncertainties has tended
to focus on climate sensitivity, i.e. the global mean warm-
ing induced by an increased atmospheric CO2 concentration
([CO2]), which differs among climate models (atmosphere-
ocean general circulation models, AOGCMs, hereafter
“GCM”) depending on the assumed strength and sign of
feedbacks that may dampen or amplify the direct radiative
forcing of CO2 through the greenhouse effect (Knutti and
Hegerl, 2008). The terrestrial biosphere and surface layers
of the oceans together sequester around 50–60 % of anthro-
pogenic CO2 emissions. The fate of these sinks in future
decades constitutes a feedback that may significantly influ-
ence future climate change, but is not accounted for by many
current GCMs (Canadell et al., 2007; Denman et al., 2007;
Meehl et al., 2007b; Le Qúeŕe et al., 2009).

Studies with dynamic global vegetation models (DGVMs)
have shown a considerable spread among models in the fu-
ture trajectory of terrestrial biosphere carbon balance when
forced with identical output fields from climate models
(Cramer et al., 2001; Sitch et al., 2008). Studies in which
a single DGVM is forced with data from an ensemble of
GCMs likewise show a considerable spread in carbon bal-
ance, in this case stemming from differences in the climate
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1518 A. Ahlström et al.: GCM based carbon balance uncertainty

simulated by different GCMs under the same CO2 emission
scenarios (Berthelot et al., 2005; Schaphoff et al., 2006). The
spread among models – either DGVMs or the GCMs used
to force them – may often be traced to contrasting simu-
lated dynamics in a few specific regions, such as the Amazon
Basin, where vegetation dieback and associated depletion of
ecosystem carbon pools (Cox et al., 2000; Malhi et al., 2008)
is simulated by some model combinations, but not by oth-
ers (Berthelot et al., 2005; Schaphoff et al., 2006; Sitch et
al., 2008). The impacts may be particularly dramatic when
feedbacks of vegetation changes to the atmosphere through
the carbon and hydrological cycles are accounted for by cou-
pling the models to each other, simulated climate forcing the
evolution of vegetation patterns and carbon pools, and vice-
versa (Friedlingstein et al., 2006). In short, the available evi-
dence suggests that the uncertainties induced by knowledge-
and data gaps on both climate sensitivity (as encapsulated by
different GCMs) and carbon cycle response (as encapsulated
by different DGVMs) are large and of similar importance in
terms of the limitations they impose on our current ability to
project changes in the global climate.

While studies have demonstrated and quantified the un-
certainty in the evolution of global terrestrial carbon bal-
ance over the coming century stemming from differences
among GCMs (Berthelot et al., 2005; Schaphoff et al., 2006;
Morales et al., 2007), the model characteristics and simulated
mechanisms underlying this uncertainty have not been sys-
tematically analysed. In this paper, we employ a statistical
emulator of a global terrestrial carbon cycle model (DGVM)
as a tool to characterize GCM-based uncertainty in projected
21st century ecosystem–atmosphere carbon exchange, iden-
tifying major model characteristics underlying such uncer-
tainty, and suggesting priorities for the further development
and improvement of the GCMs.

2 Method and materials

2.1 Overview of approach

Here we summarise the methodological steps used in this pa-
per to investigate and quantify the uncertainty induced by
GCM characteristics on simulated carbon fluxes.

1. To characterise patterns and variability in global car-
bon cycle response to GCM-simulated climate change
as accurately as possible, we first simulate future car-
bon fluxes by forcing a full process-based DGVM, LPJ-
GUESS (Lund-Potsdam-Jena General Ecosystem Sim-
ulator) (see Sect. 2.2), with output data from four GCMs
(Sect. 2.3) under three [CO2] pathways (A2, A1B, B1).
This results in 12 different trajectories of future carbon
fluxes.

2. DGVM simulations often result in widely different re-
sults in terms of carbon balance depending on the choice

of forcing GCM. Based on the initial results from Step
1, we hypothesised that differences in SST variabil-
ity account in part for the observed discrepancies in
simulated carbon fluxes among DGVM simulations.
To evaluate this hypothesis, we applied EOF (empir-
ical orthogonal function) analysis to simulated SSTs
from each of the GCMs to separate the long-term trend
(mainly warming) seen in all the GCM projections from
other aspects of variability (Sect. 2.4). SST variation
in space and time emerges as the most important com-
ponent of this residual variability in all the GCM pro-
jections analysed. By correlating the dominating pat-
terns of SST variability, as characterised by the second
EOF mode in our analysis to carbon fluxes simulated by
LPJ-GUESS, we analysed the impact of differences be-
tween the GCMs originating from differences in simu-
lated SSTs and their influence – via circulation patterns
– on local land surface climate.

3. Having established GCM-simulated warming and SST
variability as important determinants (factors) of change
in global terrestrial ecosystem carbon balance, as simu-
lated by LPJ-GUESS, we wished to quantify the relative
contribution of, and the residual variation not explained
by, each factor. As global simulations with a full DGVM
and the subsequent analysis of the considerable out-
put dataset generated are expensive, we parameterised a
statistical emulator mimicking the LPJ-GUESS results
when forced by global temperature and [CO2] as sole
drivers (Sect. 2.5). To account for GCM-dependent dif-
ferences in carbon balance response, proxies for two
GCM-dependent factors were included as parameters in
the emulator model. The first of these parameters,α, is a
modifier on global gross primary production (GPP) and
reflects the character or intensity of SST variability as
simulated by different GCMs. The second parameter,γ ,
is a scalar which translates the anomaly of global mean
surface temperature in a GCM climate projection rela-
tive to a modern baseline to the corresponding anomaly
in global land temperatures.

4. In the last step we employed a factorial simulation ap-
proach using the statistical carbon cycle model emu-
lator to attribute and partition variability (uncertainty)
in future carbon balance changes to variability in the
main global drivers and uncertainty stemming from dif-
ferences in GCM behaviour, as encapsulated byα and
γ (Sect. 2.5). An analysis of variance (ANOVA) was
applied to the output of 192 synthetic simulations with
the emulator model, spanning the observed space in
the drivers (CO2 concentration and associated temper-
ature change from the original ensemble of GCM pro-
jections),α andγ .
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2.2 Carbon cycle model

LPJ-GUESS is an individual-based, globally-applicable
model of vegetation dynamics and biogeochemistry. It com-
bines features of the Lund-Potsdam-Jena (LPJ) DGVM
(Sitch et al., 2003; Gerten et al., 2004) with a more de-
tailed treatment of plant resource competition and demog-
raphy based on simulated interactions of plant individuals
co-occurring in patches (Smith et al., 2001). Vegetation is
represented by a mixture of plant functional types (PFTs,
11 in this study), differentiated by bioclimatic limits, growth
form, phenology, photosynthetic pathway (C3 or C4) and
life history strategy. LPJ-GUESS has been evaluated ex-
tensively and exhibits comparable skill to other approaches
and models in reproducing observed temporal and spatial
variation in large-scale vegetation patterns and ecosystem–
atmosphere carbon exchange (Piao et al., 2013). Simulated
carbon and evaporative fluxes have been compared to ecosys-
tem flux measurements (Morales et al., 2005; Wramneby et
al., 2008), forest inventory data and site-based measurements
of NPP, leaf area index and biomass, spanning many of the
world’s biomes (Hickler et al., 2006; Zaehle et al., 2006;
Smith et al., 2008, 2011; Tang et al., 2010, 2012). See Smith
et al. (2001) for a detailed description of the model. The
version used in this study includes the updates detailed in
Hickler et al. (2012), and the same PFT set and configuration
as described in Ahlström et al. (2012a).

Our analysis was based on the simulated ecosystem car-
bon fluxes output by LPJ-GUESS, specifically gross primary
production (GPP, i.e. the annual sum of canopy-level net pho-
tosynthesis for the vegetation in a grid cell), net primary
production (NPP, i.e. GPP minus autotrophic [plant] respira-
tion), ecosystem respiration (Er, i.e. the sum of, autotrophic
and heterotrophic respiration), and biomass burning through
wildfires (Fire). Net Biome Production (NBP) is the small
difference between GPP and the release fluxes, Er and Fire.
The total terrestrial carbon pool (Cpool) is the sum of the car-
bon residing in standing biomass and the organic layers of the
soil. The cumulative sum of NBP over time is analogous to
the change in Cpool.

2.3 Climate data

The LPJ-GUESS simulations were initialised with data from
the CRU TS3.0 (Climatic Research Unit time series) ob-
served climate database (Mitchell and Jones, 2005) cov-
ering the period 1901–2000. From 2001, we forced LPJ-
GUESS with simulations by four different GCMs, each with
three atmospheric [CO2] pathways based on the SRES emis-
sion scenarios (A2, A1B, B1) (Nakicenovic et al., 2000),
giving in total twelve simulations. The data were obtained
from the World Climate Research Programme’s (WCRP)
Coupled Model Intercomparison Project phase 3 (CMIP3)
multimodel dataset (Meehl et al., 2007a). Four represen-
tative GCMs were chosen: CCSM3 (Community Climate

System Model version 3) (Collins et al., 2006), UKMO-
HadCM3 (United Kingdom Meteorological Office Hadley
Center Coupled Model version 3) (Gordon et al., 2000),
IPSL-CM4 (Institut Pierre Simon Laplace Coupled Model
version 4) (Marti et al., 2005) and ECHAM5/MPI-OM (Eu-
ropean Centre-Hamburg model version 5/Max Planck Insti-
tute Ocean Model) (Roeckner et al., 2003). Further details of
the simulation set up and forcing are provided in the Supple-
ment, Text S1.

2.4 EOF analysis

We focused on sea surface temperature (SSTs) as an over-
all indicator of those aspects of GCM-simulated climate of
importance in terms of impacts on global ecosystem carbon
balance. SST records for recent decades clearly reflect the
general trend in global temperatures (Dai, 2013). Addition-
ally, variability in SSTs has been shown to have a large influ-
ence on regional precipitation trends (Hoerling et al., 2009)
and low latitude precipitation in general (Dai, 2006). ENSO
is the dominant process of SST variability. ENSO has been
shown to be the strongest controlling factor for global pre-
cipitation variability (Dai et al., 1997).

We characterized the relationship between SST patterns
from a given GCM and NPP simulated by LPJ-GUESS when
forced by that GCM by performing a singular value decom-
position (SVD) analysis of the global SST field. SVD is the
generalization of the diagonalisation process that EOF anal-
ysis does for square matrixes, but since the SST matrix is
not square we used SVD to calculate the EOFs (Uvo and
Berndtsson, 1996). EOF analysis, sometimes also referred to
as principal component analysis (PCA; although definitions
vary), can be used to capture and illustrate important spa-
tial and temporal patterns of geophysical fields (e.g. Wallace
et al., 1993; Uvo et al., 1998; Quadrelli and Wallace, 2004).
Central to EOF analysis methods is the concept of transform-
ing the original data via composite expressions (the EOFs or
“modes”) ordered by the proportion of the total variability in
the original dataset they explain. The information encapsu-
lated in a particular mode may be visualised as a spatial pat-
tern (often a map) indicating the spatial loading of that mode,
e.g. where in space the variability is centered, a time series
representing variability or a trend in the mode, or a scalar
value (eigenvalue, singular value) representing the amount
of variability explained by that mode. Hereinafter the term
“mode” in this paper denotes the sense outlined above.

The time series of the different modes, which are vectors
the same length (here 80 yr) as the original data, are orthog-
onal (uncorrelated, independent), and often but not always
reflect the influence of different physical processes on spatial
and temporal variability in the original data.

We derived EOF modes from the standardised annual SST
field (transformed to a mean of 0 and standard deviation of 1)
of the SRES A2 simulations for each of the four GCMs con-
sidered in our study (Sect. 2.3). Due to corrections (see Text
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S1 in Supplement) of the variability and trend applied to the
climate data between 2001 and 2020, we confined the analy-
sis to data from the period 2020–2099. We chose to present
the results of the EOF analysis as correlation maps, both for
SSTs and for NPP. The correlation maps share features with
the spatial loading patterns for the SST modes. Because they
are unitless they may be directly compared with the corre-
sponding NPP maps.

For the three first modes, we calculated the correlation be-
tween the resultant time series and both the original SSTs
and the simulated NPP in every gridcell (only first and sec-
ond modes are presented in this paper). The resulting spatial
pattern of correlations between modes and original GCM-
simulated SSTs shows how much of the variability of the
GCM-simulated SSTs is related to the interannual variability
described by each mode. The pattern of correlations between
modes and NPP may be taken to reflect the impact of that
aspect of SST variability captured by each mode on the NPP
of different regions. The statistical significance of the calcu-
lated correlations was estimated using a bootstrap technique
with 500 repetitions (Wilks, 2006).

The fraction of the total SST variation explained by a
given mode was quantified as the squared covariance frac-
tion (SCF):

SCFi =
l2i∑
l2i

, (1)

whereli is the singular value of thei-th mode.
The analysis was repeated for NBP, and for precipitation

and temperature to better understand the underlying driver of
the resulting NPP and NBP patterns.

2.5 Partitioning uncertainty in future carbon balance

We wished to partition uncertainty in terrestrial ecosystem
carbon balance change due to temperature, [CO2], and GCM
characteristics. A model statistically emulating LPJ-GUESS
was defined as a tool to enable uncertainty propagating from
the four GCMs investigated to be extrapolated to a wider
“space” of GCM behaviour by deterministic parameter re-
sampling. To characterise the influence of GCM-dependent
SST variability, we defined a parameter,α. To relateα to the
GCMs SST variability, we needed a scenario-independent
measure of SST variability. The global mean warming trend
is well separated from other variability – not directly due to
increased radiative forcing – in the EOF analysis of the SSTs
of the SRES A2 simulations. The inverse of the SCF of the
first mode could therefore be used as a proxy for the rela-
tive importance of variability not directly related to climate
change. The global warming is, by contrast, not always well
separated in the SSTs of the lower emission scenarios, A1B
and B1, and the SCF was not found to be a useful proxy of
SST variability for these scenarios. Therefore, to be able to
compare theα values from the statistical carbon cycle emu-
lator with a scenario-independent measure of SST variability

we calculated the global average standard deviation of all the
detrended SST time series. For each grid cell we removed
the 2015–2085 trend (based on a 30-yr moving average of
the global SST time series) using linear regression. We then
computed the standard deviation (SD) over the period 2015
through 2085 in the resultant trend-free time series, averag-
ing the SDs among all grid cells to produce a global aver-
age SST variability for each GCM simulation used except
for CCSM3-B1 (SSTs for the latter were not available in the
CMIP3 database).

Simple polynomials were fitted to global sums of GPP, Er,
Fire and Cpool simulated by LPJ-GUESS under GCM forc-
ing, with global average land temperature and atmospheric
[CO2] as the predictor variables. For GPP (in Pg C), the re-
sultant function has the form

GPPt = β1 + β2Tt + β3T
2
t + β4CO2t + β5CO2

2t
(2)

+β6Cpoolt + β7Cpool2t + α,

wheret indicates the time step in years,βi are coefficients
fitted to the data (see below),T (◦C) is the global land tem-
perature and Cpool (Pg C) is the total terrestrial carbon pool
from Eq. (4). The last term in the equation,α, is a simulation-
specific parameter (Pg C) that is allowed to vary between the
12 simulations used for the calibration. As outlined above,
it represents factors influencing GPP not captured by land
temperature and [CO2], e.g. regional patterns of tempera-
ture, variability and variables not included in the forcing data
for the statistical emulator, such as precipitation and short-
wave radiation.α was set to zero during the historical period
(1901–2000), it was then linearly interpolated until 2020,
similar to the forcing climate data. After 2020 it was held
constant until the end of each simulation.

Equation 3 describes the sum of the global carbon fluxes
from ecosystem respiration and wild fires (Pg C) as a func-
tion of global land temperature, GPP from Eq. (2) and Cpool
from Eq. (4).

Er+Firet = β8+β9Tt +β10T
2
t +β11GPPt +β12Cpoolt . (3)

In Eq. (4) the total carbon pool of the next time step (year)
is calculated as the present year’s carbon pool plus the current
year’s net carbon exchange, NBP.

Cpoolt+1 = Cpoolt + GPPt − (Er+ Fire)t . (4)

The coefficientsβ1−12 (Eqs. 2 and 3) were estimated si-
multaneously by minimizing the sum of the square of the
errors (SSE) between the resulting GPP, Er+ Fire, Cpool
and the corresponding LPJ-GUESS simulation results; see
Table S1 for parameter values in the Supplement. Cpool
was initialised with the total carbon pool of year 1901, the
first year after the initial (“spin-up”) phase of the relevant
LPJ-GUESS simulation (see Supplement, Text S1). We per-
formed a separate validation study by excluding one scenario
from each GCM in the calibration of the statistical emula-
tor. This showed (Supplement, Text S2 and Figs. S1 and S2)
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that the emulator is robust even after exclusion of about one
third of the calibration data, and that there are no changes
that would affect the conclusions drawn in this paper if only
a subset of the data were used in the calibration. Because the
estimated parameters (α) were crucial for the analysis in this
paper, however, we use all available data in our calibration.

To better separate the CO2 signal from the temperature sig-
nal we used the full length of the climate data series, includ-
ing the “stabilization” period after 2100 when [CO2] were
held constant, but temperatures continued to evolve. The
length of the stabilization period varied between the datasets
of the A1B scenario, resulting in a slightly uneven weighting
of the four GCMs.

The emulator uses the area-weighted average of land tem-
peratures,T , as a predictor variable. However, land tempera-
tures may evolve at a different rate than the global mean sur-
face temperature – which also accounts for temperatures over
the oceans, inland water bodies and ice sheets – in GCM sim-
ulations. We calculated a factor,γ , that expresses the degree
of amplification in the temperature trend over land relative to
the global mean surface temperatures, with 1961–1990 mean
temperatures as a baseline:

1LTt = γ × 1GTt + εt , (5)

where1LTt is the mean land temperature change by year
t compared with the 1961–1990 average.1GTt is the
global mean surface temperature change compared with the
1961–1990 average. Now, land temperatureT in the replace-
ment model (Eqs. 2 and 3) can be calculated from global
mean surface temperature following

Tt = T 61−90+ γ × 1GTt , (6)

whereT 61−90 represents the average 1961–1990 land tem-
perature in the CRU dataset.

To partition the variation in future terrestrial carbon bal-
ance suggested by our simulations to underlying factors in
the GCMs and [CO2] pathways providing the forcing, we
adopted a permutation approach, using the statistical emula-
tor (Eqs. 2–4) to generate 192 synthetic time series, corre-
sponding to all possible combinations of the main indepen-
dent forcing factors encompassed by our analysis, namely the
three [CO2] pathways, the four corresponding global tem-
perature change time series (1GT) (one simulated by each
GCM), four GCM average values of the simulation-specific
parameterα in Eq. (2), and four GCM average values of the
land-to-global warming ratio,γ , from Eq. (5).

For each [CO2] pathway (A2, A1B, B1) we thus created
64 (43) combinations ofα, γ and1GT. Four of these cor-
respond to the original models, while the remaining 60 may
be thought of as “artificial” models with different, plausible
GCM characteristics. Applying the ensemble of the 60 “arti-
ficial” GCMs plus the original four in combination with the
three [CO2] pathways produced a suite of 192 plausible car-
bon balance trajectories.
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Fig. 1. Evolution of the global terrestrial ecosystem carbon pool
(Cpool) under twelve future scenario simulations with LPJ-GUESS.

To attribute variation in the resultant carbon balance time
series to underlying forcing factors, we performed analysis
of variance (ANOVA; Draper and Smith 1998) withα, γ ,
and [CO2] pathway (A2, A1B, B1) as independent factors.
The ANOVA gives information on which factor induces the
largest spread in simulated total carbon pool by the statis-
tical emulator. It separates the total sum of squares in the
simulated change in total carbon stock from 2000–2099 into
sum of squares due to each of the three factors above and
a residual term that contains effects due to interactions be-
tween factors and an unexplained component, such as tem-
perature. Since the temperature depends on the specific CO2
scenario, it is non-trivial to quantify the effect of different
temperatures, forcing us to limit the ANOVA to the three fac-
torsα, γ , and CO2.

3 Results

3.1 Carbon cycle simulations

The LPJ-GUESS simulations forced by different GCMs and
[CO2] pathways result in a wide range of trajectories for
Cpool (Fig. 1). Simulations forced by climate data from the
same GCM under different CO2 emission scenarios tend to
cluster, indicating that differences between GCMs exert a
stronger control on Cpool than [CO2] pathways. By 2099,
the largest difference between the simulations, 247 Pg C, is
found between the simulation forced by CCSM3 under the
A1B and HadCM3 under the B1 emissions scenario. Regard-
less of emissions scenario, the largest contrast is found be-
tween the simulations forced by CCSM3 and HadCM3.

www.biogeosciences.net/10/1517/2013/ Biogeosciences, 10, 1517–1528, 2013



1522 A. Ahlström et al.: GCM based carbon balance uncertainty

Fig. 2. Spatial patterns of correlation (Pearsonr) between the first two EOF modes of GCM-simulated SST under the A2 scenario and the
original simulated SST and simulated NPP.(a) Correlations between original SST and the time series of the first EOF mode (TS1; green line
in (e)). (b) Correlations between original SST and the time series of the second EOF mode (TS2; red line in(e)). (c) Correlations between
simulated NPP and the time series of the first EOF mode.(d) Correlations between simulated NPP and the time series of the second EOF
mode.(e) Standardized time series (Z-scores) with mean zero and standard deviation one, of the first EOF mode, TS1, (green), second EOF
mode, TS2, (red) and global land temperature (black). The correlations presented in colours are all statistically significant at 5 % level.

3.2 GCM climate–carbon cycle relationships

The EOF time series of the first two modes, the SST spa-
tial correlation patterns and the NPP correlation patterns for
the time period 2020–2099 are illustrated in Fig. 2. The first
mode is closely related to the global temperature trend and
variability as indicated by the overall strong correlation over
all the world’s oceans (Fig. 2a). The temporal variability and
trend of the first mode show similarities with the standard-
ized global land temperatures (Fig. 2e). The SCF differs be-
tween the GCMs. A high SCF in the first mode implies a rel-
atively uniform pattern of SST variability across the globe,
as seen for CCSM3, while a lower SCF in the first mode, as
seen for HadCM3 and ECHAM5, implies that differences in
SST variability in different areas of the world’s oceans more
strongly contribute to the total variability globally.

The second mode of variability (Fig. 2b) explains around
an order of magnitude less of the total variance of the simu-
lated SSTs for all four GCMs, and is generally characterized
by El Niño-Southern Oscillation (ENSO) like patterns, domi-

nated by variability in the central tropical Pacific. The ENSO
patterns are more prominent in the SSTs of ECHAM5 and
HadCM3 compared with the other GCMs, while for CM4
they are more pronounced in the third mode (not shown here)
than in the second mode, indicating that other variation, not
primarily associated with ENSO, is influencing the second
mode of variability for this GCM. Time series for the first two
modes (Fig. 2e) show, as expected, a uniform up-going trend
in the first mode consistent with global warming response to
rising greenhouse gas concentrations, while the second mode
exhibits continuous fluctuations with no obvious trends for
any of the models.

The third and fourth columns (Fig. 2c–d) show the cor-
relation between the modes and simulated NPP. Global tem-
perature increase, together with the covarying [CO2] (closely
related to the first mode of variability of the simulated SSTs)
are associated with increasing NPP in most areas, except in
some tropical regions, where a negative correlation is seen.
The tropical NPP decline is most pronounced in the sim-
ulation forced by HadCM3, where parts of tropical South
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Fig. 3. Global terrestrial ecosystem carbon pool (Cpool) as simu-
lated by LPJ-GUESS (colours) and the dynamic replacement model
with averageα (grey) or simulation-specific fit forα (black).

America and western North Africa see a decreased NPP re-
sulting from the negative impacts of decreased precipitation
and/or increased evapotranspiration under higher tempera-
tures on plant water relations (Supplement Fig. S3).

The correlation patterns between the second mode and
NPP (Fig. 2d) illustrate the impact of ENSO-related regional
climate patterns on land ecosystems, particularly water re-
lations. For HadCM3, ENSO leads to pronounced decrease
of NPP in the tropics and Australia and increased NPP in
western North America and the Middle East. In ECHAM5
the negative impact is more pronounced in Australia but less
pronounced in the tropics. The regions that show increased
NPP are similar for both GCMs. The direct cause of the NPP
declines in HadCM3 and ECHAM5 is decreased precipita-
tion and increased temperature (Supplement Fig. S3).

CCSM3 shows a similar but considerably weaker corre-
lation pattern compared to ECHAM5, while CM4 shows no
strong patterns, probably because ENSO dynamics for that
GCM are expressed mainly in the third mode. Correlation
patterns between SST modes and NBP, shown in Fig. S4, are
generally reminiscent of the results for NPP, reflecting the
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Fig. 4. Relation between the simulation-specific parameterα and
global SST variability.

driving role of vegetation productivity in the carbon cycling
of ecosystems as a whole.

3.3 GCM-dependent uncertainty in carbon balance

GCM-simulated global mean land temperature and the [CO2]
pathway of the underlying emission scenario explain part,
but not all, of the variation between simulations in the evo-
lution of the terrestrial carbon pool over the 21st century,
as simulated by LPJ-GUESS. The remaining, unexplained,
source of variation, signified byα in Eq. (2), encapsulates
the regional patterns of carbon balance and their evolu-
tion over time, specific to each GCM× emissions scenario
combination (Fig. 3). The displacement between the black
(simulation-specific fit forα) and grey (α set to the average
of the twelve simulation-specific values) curve in each frame
of Fig. 3 represents the effect of this unexplained variation in
each individual simulation.

The EOF analysis reveals differences in the impact on sim-
ulated NPP and NBP, induced by differences among GCMs
related to SST variability and associated weather patterns
(see Fig. 2). We found a strong relationship betweenα and
global SST variability (Fig. 4). Theα values cluster accord-
ing to GCMs and not according to CO2 emission scenar-
ios, signifying a strong GCM dependence for this parameter.
The CCSM3 simulations show the largest uptake of carbon
(Fig. 1). The correspondingα values are also the least nega-
tive (Fig. 4). The CM4 simulations group in the middle, and
show a decrease of about 7 Pg C in GPP per year compared
to the historical simulation. ECHAM5 and HadCM3 show
larger SST variability compared to CM4 and CCSM3, and
the simulations forced with these models also have the most
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negativeα values of all the simulations. All simulations have
an α value lower than the historical simulation (for which
α = 0).

3.4 Global versus land temperature

The ratio of land to global warmingγ varied from 1.26 to
1.46 between the 12 datasets for 2001–2009 (Fig. 5). CCSM3
shows the lowestγ (least amplification of warming over
land) among all scenarios while HadCM3 shows the largest
γ among all scenarios. A single GCM-specific factor seems
to be enough to explain most variation inγ as long as the cli-
mate forcing is increasing. In the longest dataset used here,
the CM4 A1B, top, middle column in Fig. 5, where [CO2]
has been held constant since 2100, land temperatures have
started to diverge from the constant warming amplification
seen during the 21st century, approaching the global tem-
peratures. The range in A2 global temperature (2095–2099)
is 0.27◦C, while the range in land temperatures is more
than double this at 0.57◦C. The global average temperature
change,1GT, (2095–2099) in the HadCM3 model’s A2 sce-
nario is the lowest among the four GCMs (3.9◦C), while the
land temperature,1LT, for the same period, GCM and sce-
nario is the highest among the GCMs (5.7◦C).

3.5 Partitioning uncertainty in carbon balance

Using the statistical carbon balance emulator to sample
across 192 combinations of GCM and scenario characteris-
tics (see Methods), we came up with the distribution of car-
bon balance trajectories shown in Fig. 6. For this ensemble
of [CO2] pathways and GCMs, and given the carbon cycle
representation in LPJ-GUESS, total terrestrial carbon stocks
may increase or decrease by the end of the 21st century, but
are more likely to increase. Note that the percentiles and the
medians shown in Fig. 6 are partly a result of the sampling.
It is apparent that much of the uncertainty represented by the
spread among trajectories propagates from different charac-
teristics and behaviour of GCMs. According to the ANOVA
analysis, 91 % of the variability among trajectories could be
explained by the two GCM-specific factorsα (87 %) andγ
(5 %). The choice of CO2 emission scenario explains just 2 %
of the variation, while 7 % remains unexplained (Fig. 6).

4 Discussion

The LPJ-GUESS simulations forced by the ensemble of
GCMs and CO2 emission scenarios chosen for this study re-
sult in a considerable spread in the future evolution of car-
bon balance. Our results demonstrate that the majority of this
spread can be traced to a GCM-specific parameter (α) closely
related to global SST variability.

As seen in Fig. 4, all the GCMs show a negativeα value
(α was set to 0 for CRU). One interpretation could be that
all GCMs show increasing climate variability or other cli-
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mate characteristics that negatively influence GPP. However,
the offset of theα values in comparison to CRU can also
be explained by the offset between the GCMs and CRU as
a result of different trends since the 1961–1990 climatology.
Additionally, as a result of station data limitations, around
13 % of the CRU gridcells used in this study show at least
one consecutive 10-yr period with no interannual variability
(see Supplement Fig. S5). Although the importance of these
episodes in the CRU data for the simulated carbon balance
is unknown, it is difficult to draw conclusions about theα

values.
Our results are based on four GCMs. While these were

chosen to provide a representative range of climate responses
to future emissions, we do not know whether the results or
the overall conclusions would have been different, had we
chosen a larger sample of CMIP3 GCMs. If the relationships
found apply to other GCMs (or later versions of the four we
have explicitly considered) remains to be tested. The carbon
balance spread shown is this paper is likely to increase if un-
certainties surrounding land use and land use change were
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Fig. 6.Results of the 192 replacement model simulations using “ar-
tificial GCM” input. The total spread of the A2 scenario simula-
tions in total terrestrial carbon pool (Cpool) is illustrated in red.
Blue shows the A1B scenario and green the B1 scenario. The box-
plots show the median, 25th and 75th percentile, and maximum and
minimum values of the 2099 total terrestrial carbon pool (Pg C),
for each CO2 scenario and all simulations. The pie chart shows the
proportion of 2099 total carbon pool variability explained by,α, γ ,
CO2 scenarios and residual unexplained variation (res.).

also considered. Different land use projections, as well as dif-
ferent treatment of land use and land use change in DGVMs
and carbon cycle models, constitute a large source of uncer-
tainty as to future carbon balance (e.g. Zaehle et al., 2007).
Still, our results provide some quantification of GCM dis-
crepancies and their impact on carbon balance as simulated
by our model.

By applying different GCMs and scenarios to force a sin-
gle ecosystem model, LPJ-GUESS, we have focused on the
uncertainties arising from differences in the climate as pro-
jected by the GCMs. Previous studies show that different
DGVMs can project substantially different carbon balance in
response to the same forcing (Cramer et al., 2001; Sitch et al.,
2008; Piao et al., 2013). This carbon cycle model-dependent
aspect of the overall uncertainty has not been addressed in
this study. However, LPJ-GUESS shows comparable skill
and behaviour to other DGVMs and may be regarded as rep-
resentative of DGVMs as a group in terms global carbon bal-
ance response to climate and [CO2] forcing. For example,
a recent study comparing ten DGVMs with each other and
with independent datasets (Piao et al., 2013) shows that LPJ-
GUESS predicts present day global GPP in the middle of
the range of other models, in agreement with an observation-
based estimate, and exhibits comparable sensitivity to pre-
cipitation as suggested by upscaled ecosystem flux measure-
ments.

When applying the statistical emulator with combinations
of the GCM-specific parameters and variables we assume
that they are independent. When averagingγ andα across
GCMs (n = 4), they show no significant correlation (r =

−0.93, n.s.) but when we use all simulations (n = 12), they
show a significant correlation (r = −0.92, P < 0.00005).
However, this high correlation could be a coincidence result-

ing from the specific selection of GCMs. Amongst many fac-
tors and processes it is plausible that GCM differences, for
example in the partitioning of latent and sensible heat fluxes
between the surface and atmosphere can influence bothα

andγ . Other possible differences between GCMs, such as
differences in ocean overturning or the melting of sea ice af-
fecting ocean warming, potentially influencingγ are likely
to have smaller effect onα. ENSO is the dominant deter-
minant of global precipitation variability (Dai et al., 1997).
A prominent effect of warm ENSO events is negative pre-
cipitation anomalies in large parts of the tropics, but also
significant precipitation anomalies in other regions can be
traced back to ENSO (Dai and Wigley, 2000). Patterns of
correlation between pacific SST variability and precipitation
reminiscent of ENSO have been found to emerge in GCM
simulations. The EOF analysis of sea surface temperatures
presented here reveals carbon cycle patterns similar to those
found by Dai (2006) when analysing rainfall patterns and
tropical SST variability in HadCM3, ECHAM5 and CCSM3,
amongst other GCMs. Although the “strength” of representa-
tion of ENSO differs between GCMs, a strong dependency of
low latitude precipitation and tropical SST variability is typ-
ically simulated on interannual and longer timescales (Dai,
2006).

The effects of droughts on carbon fluxes in the Amazon
Basin have been debated. Satellite-based studies have re-
ported a “green up” in the Amazon rainforest during dry
conditions as a result of increased incoming solar radiation
when cloud cover decreases (Huete et al., 2006; Saleska et
al., 2007). However, field studies have reported increased tree
mortality and carbon loss during severe droughts (Nepstad et
al., 2007; Brando et al., 2008; Phillips et al., 2009), result-
ing from decreased plant available water and/or heat stress
(Toomey et al., 2011). Recent studies employing a satellite-
based model and a DGVM have suggested a strong NPP
dependency on plant available water and susceptibility to
droughts in tropical regions over the last decade (Zhao and
Running, 2010; Ahlstr̈om et al., 2012a). Impacts of droughts
on tropical vegetation have been demonstrated to be a major
uncertainty in carbon balance in modelling studies applying
several GCMs to force ecosystem models (Berthelot et al.,
2005; Schaphoff et al., 2006; Ahlström et al., 2012b). The
negative NPP and NBP anomalies found have either been ex-
plained by decreased precipitation (Schaphoff et al., 2006) or
increased temperatures (Berthelot et al., 2005), leading to in-
creased plant respiration and/or exerting an indirect negative
effect on plant available water by increasing the atmospheric
demand for water vapour. The results presented here concur
with previous studies in attributing the majority of the uncer-
tainties in future global terrestrial carbon cycle to decreased
plant available water mainly in the tropics, a result of re-
occurring droughts, induced by SST variations accompanied
by more static regional differences in future climatology.
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5 Conclusions

Our results point to a marked dependency of the future de-
velopment of global terrestrial ecosystem carbon balance on
climate characteristics, particularly SST variability and its
impact on weather patterns, simulated differently among dif-
ferent GCMs. A further GCM characteristic, the degree of
enhancement of warming over land relative to global warm-
ing generally, accounts for the second largest proportion of
uncertainty in carbon balance response. Uncertainty stem-
ming from the choice of CO2 emission scenario is much less
marked. Finally, our results suggest that improved represen-
tations of ENSO dynamics and low-latitude precipitation pat-
terns are important to narrow the uncertainties in future cli-
mate change projections using ESMs or uncoupled DGVMs
forced by GCM-simulated climate projections.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
1517/2013/bg-10-1517-2013-supplement.pdf.
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A., Cardozo, N. D., Czimczik, C. I., Feldpausch, T. R., Freitas,
M. A., Gloor, E., Higuchi, N., Jiḿenez, E., Lloyd, G., Meir, P.,
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