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* now at: CREAF, Universitat Autònoma de Barcelona, Barcelona, Spain

Correspondence to:O. Sus (o.sus@creaf.uab.es)

Received: 31 July 2012 – Published in Biogeosciences Discuss.: 20 August 2012
Revised: 15 March 2013 – Accepted: 18 March 2013 – Published: 12 April 2013

Abstract. Agroecosystem models are strongly dependent on
information on land management patterns for regional appli-
cations. Land management practices play a major role in de-
termining global yield variability, and add an anthropogenic
signal to the observed seasonality of atmospheric CO2 con-
centrations. However, there is still little knowledge on spatial
and temporal variability of important farmland activities such
as crop sowing dates, and thus these remain rather crudely
approximated within carbon cycle studies.

In this study, we present a framework allowing for spatio-
temporally resolved simulation of cropland carbon fluxes
under observational constraints on land management and
canopy greenness. We apply data assimilation methodology
in order to explicitly account for information on sowing dates
and model leaf area index. MODIS 250 m vegetation index
data were assimilated both in batch-calibration for sowing
date estimation and sequentially for improved model state
estimation, using the ensemble Kalman filter (EnKF), into
a crop carbon mass balance model (SPAc). In doing so, we
are able to quantify the multiannual (2000–2006) regional
carbon flux and biometry seasonality of maize–soybean crop
rotations surrounding the Bondville Ameriflux eddy covari-
ance site, averaged over 104 pixel locations within the wider
area.

(1) Validation at the Bondville site shows that growing sea-
son C cycling is simulated accurately with MODIS-derived
sowing dates, and we expect that this framework allows for
accurate simulations of C cycling at locations for which
ground-truth data are not available. Thus, this framework
enables modellers to simulate current (i.e. last 10 yr) car-
bon cycling of major agricultural regions. Averaged over

the 104 field patches analysed, relative spatial variability for
biometry and net ecosystem exchange ranges from∼ 7 % to
∼ 18 %. The annual sign of net biome productivity is not sig-
nificantly different from carbon neutrality. (2) Moreover, ob-
serving carbon cycling at one single field with its individ-
ual sowing pattern is not sufficient to constrain large-scale
agroecosystem carbon flux seasonality. Study area average
growing season length is 20 days longer than observed at
Bondville, primarily because of an earlier estimated start of
season. (3) For carbon budgeting, additional information on
cropland soil management and belowground carbon cycling
has to be considered, as such constraints are not provided by
MODIS.

1 Introduction

Agricultural ecosystems are of major importance to hu-
mankind. There are clear links between climate change, pop-
ulation growth (Zhang et al., 2011), and fluctuations in agri-
cultural production (Lee et al., 2008). Global food demand is
expected to double by 2050 (Tilman et al., 2001). Further
agricultural intensification might have considerable detri-
mental effects on several crucial ecosystem services, includ-
ing food production itself (Foley et al., 2005). Moreover, the
biological dynamics of managed landscapes affect the fluctu-
ations of atmospheric CO2 levels on annual and inter-annual
scales (Moureaux et al., 2008), and thus they need to be con-
sidered when quantifying, understanding, and regulating the
global carbon (C) cycle (Sus et al., 2010).
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Land management practices play a major role in deter-
mining global yield variability, of which only∼ 30 % was
found to be attributable to climate variables (Lobell and
Field, 2007). However, still little is known about how impor-
tant farmland activities such as crop sowing dates, cultivar
selection, and fertilisation application vary in space and time
(see Sacks et al., 2010; Siebert et al., 2005, as global ex-
amples). Uncertain crop phenology and sowing dates prop-
agate into uncertain controls of food production (Sacks and
Kucharik, 2011) and C cycling (McGuire et al., 2001) within
large-scale agroecosystem models. This undermines progress
in isolating natural from anthropogenic variability in atmo-
spheric CO2 concentrations, understanding the terrestrial C
cycle, and predicting food security.

Measurements using eddy covariance (EC) to quantify net
C fluxes are now being combined with simultaneous ob-
servations of crop biometry. These constraints on cropland
C budgeting and climate controls are currently being used
to improve biogeochemical models (BGCMs) on various
scales (e.g.Bondeau et al., 2007; de Noblet-Ducoudŕe et al.,
2004; Kucharik and Twine, 2007; Sus et al., 2010), which
traditionally lacked a crop-specific plant functional type.
Generally, BGCMs would benefit from a better representa-
tion of interannual phenological variability, which is poorly
understood (Richardson et al., 2012; Stöckli et al., 2008).

As one attempt to overcome these shortcomings, remote
sensing (RS) data have been used in crop growth modelling
studies to estimate cropland management parameters (e.g.
sowing or emergence date,Brown and de Beurs, 2008; Dente
et al., 2008; Doraiswamy et al., 2004) and initial conditions
(e.g. soil water content,Inoue and Olioso, 2006), mostly ap-
plying batch-calibration data assimilation (DA) techniques.
MODIS 250 m vegetation index (VI) data have been used
for crop type classification (e.g.Wardlow and Egbert, 2008;
Chang et al., 2007) and yield estimations (e.g.Doraiswamy
et al., 2004). However, no study so far has attempted to as-
similate RS time series of various field patches into a crop
model simulating agroecosystem C exchange. In a recent
study (West et al., 2010), cropland inventory data were com-
bined with the MODIS land cover product to calculate spa-
tially resolved estimates of C budgeting for the conterminous
USA. However, as no mechanistic crop model has been ap-
plied and consequently no MODIS data were assimilated, the
authors could not provide estimates of the seasonality of up-
scaled C fluxes. To date, upscaled model estimates of crop-
land net ecosystem exchange (NEE) fluxes have been forced
with uncertain information on land management. In particu-
lar the variability of sowing dates in space and time remains
rather crudely approximated within C cycle studies.

Here, we present a framework for spatio-temporally re-
solved simulation of cropland C fluxes under observational
constraints on land management and canopy greenness. We
apply DA methodology in order to explicitly account for in-
formation on sowing dates and model leaf area index (LAI).
Sequential DA techniques such as the ensemble Kalman fil-

ter (EnKF, Evensen, 2003) have been developed and ap-
plied successfully within BGCMs (e.g.Quaife et al., 2008;
Williams et al., 2005). We acquired 104 MODIS 250 m
VI data time series, with pixel coordinates centred on field
patches of sufficient size of 500 m× 500 m surrounding the
Ameriflux Bondville (Illinois, US) EC flux tower site. We
then sequentially assimilated these data at observational time
steps, using the EnKF, into a crop C mass balance model
(SPAc, Sus et al., 2010) for improved C flux and biometry
estimation, and compared model outputs against independent
validation data sets.

In this study, we address the following research questions:
(1) do MODIS 250 m VI time series contain appropriate in-
formation for improving crop C fluxes at the point scale? (2)
Are the Bondville EC flux data representative of regional
cropland C exchange, considering spatial heterogeneity in
land use? (3) Are the region’s maize–soybean crop rotations
(MSCRs) a net sink or source of C?

2 Data and methods

2.1 Step 1: crop model calibration and application at
the point scale

2.1.1 Study area and C flux data

We selected a study area of approximately 800 km2 (32 km
E–W, 25 km N–S), the centre pixel of which is close to
the Ameriflux Bondville EC flux tower site (Ameriflux site
ID: US-Bo1, latitude: 40.01◦ N, longitude: 88.29◦ W, Cham-
paign, Illinois (USA), Fig.1). The Bondville agricultural site
has been used in no-till management of a soybean (Glycine
max)–maize (Zea mays) crop rotation, with maize grown in
odd years and the crop residues left on the field after har-
vest. The area surrounding the flux tower is characterised
by predominantly well-drained silt loam soils with little sur-
face slope (Wilson and Meyers, 2007). MSCRs have been
analysed in various studies for their C sequestration po-
tential under reduced or no-till management (Grant et al.,
2007; Hollinger et al., 2004; Verma et al., 2005; Baker and
Griffis, 2005), and can be considered as a model ecosystem
for biogeochemical studies due to the flat terrain, homoge-
neous land-use pattern, and independent data sets available
(Hollinger et al., 2004) for the wider Bondville region. The
local climate is, according to the K̈oppen climate classifica-
tion scheme, humid continental (class Dfa). Annual average
precipitation over the period 2000 to 2006 is 754 mm.

At Bondville, half-hourly C exchange fluxes between the
atmosphere and the biosphere have been measured continu-
ously from 1996–present. Half hourly meteorological forcing
data for radiation, temperature, wind speed, humidity, and
precipitation have been recorded for diagnostics (seeMeyers
and Hollinger, 2004, for a detailed description). For several
years, measurements have been taken of several aboveground

Biogeosciences, 10, 2451–2466, 2013 www.biogeosciences.net/10/2451/2013/
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Fig. 1. (a) Location of the Bondville EC-flux tower site, study area, and NASS crop progress report
districts. (b) The Bondville flux tower site. The selected MODIS composite centre location is indicated,
together with approximated at-nadir extents of one 250 m MODIS pixel, and one 500 m MODIS pixel.
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Fig. 1. (a)Location of the Bondville EC-flux tower site, study area, and NASS crop progress report districts.(b) The Bondville flux tower
site. The selected MODIS composite centre location is indicated, together with approximated at-nadir extents of one 250 m MODIS pixel,
and one 500 m MODIS pixel.

plant biometric variables, and farmer reported values on har-
vested biomass are available.

The flux data analysed in this study are half-hourly obser-
vations of NEE which were gap-filled based on a light use ef-
ficiency model for daytime values and on a respiration func-
tion for nighttime values (Bernacchi et al., 2005; Hollinger
et al., 2004) to derive daily sums. The higher sink strength
of the maize crop growing periods largely reflects the differ-
ence between C3 (soybean) and C4 (maize) net photosynthe-
sis rates (Hollinger et al., 2004; Baldocchi, 1994).

2.1.2 Crop model: structure, parameterization, and
initial conditions

The Soil Plant Atmosphere (SPA) model (Williams et al.,
1996, 2001) is a process-based model that simulates ecosys-
tem photosynthesis and water balance at fine temporal and
spatial scales (30 min time step, up to 10 canopy and 20 soil
layers). SPA employs some well-tested theoretical represen-
tations of ecophysiological processes, such as for the calcu-
lation of photosynthesis (the Farquhar model,Farquhar and
von Caemmerer, 1982) and leaf-level transpiration (Penman–
Monteith equation,Jones, 1992). These two processes are
linked by a model of stomatal conductance, which optimises
the daily gain of C per unit of leaf nitrogen within the lim-
its of canopy water storage and soil to canopy water transport
(Williams et al., 1996). A C mass balance model as described
in Williams et al.(2005) has been added to SPA, and a C4
photosynthesis model based onCollatz et al.(1992) was in-
tegrated.

Moreover, a crop C partitioning scheme and a develop-
mental model have been added (SPA version 2 – Crop,Sus

et al.(2010), hereafter referred to as SPAc). The C partition-
ing scheme is based on empirical values of field crop growth
analyses (Penning de Vries et al., 1989), and is a function
of crop developmental stage (DS). The model representation
of DS is introduced into SPAc by a new state variable, vary-
ing between 0 at emergence, 1 at flowering, and 2 at matu-
rity. The duration of the phase between sowing and emer-
gence is calculated through growing degree days, and lasts
typically around 1 week. The progression of DS is based on
non-linear functions for temperaturef (T ) and photoperiod
f (P ), with 0 < f (T ,P ) < 1 (Streck et al., 2008; Sus et al.,
2010; Setiyono et al., 2007). DS is calculated as the cumu-
lative sum of daily maximum developmental rate (DRmax)
multiplied byf (T ) andf (P ). For maize,f (T ) is the only
control on developmental rate throughout the crop’s life cycle
within SPAc (Streck et al., 2008). For soybean, crop devel-
opment is affected byf (T ) from sowing to maturity, and by
f (P ) until DS = 1 (as inSetiyono et al.(2007), but simpli-
fied). Based on this development-linked C allocation pattern,
SPAc simulates the allocation of C to roots, foliage, stems,
and storage organs. Around emergence, C gained through
photosynthesis is mainly allocated to leaves and roots at ap-
proximately equal amounts. However, C allocation begins
to favour growth of stems as the crop matures throughout
spring (0.3< DS< 1), until before all assimilated C is allo-
cated to storage organs in the reproductive phase (DS> 1).
Leaf senescence for both crops is calculated as the bigger
value of leaf senescence rate due to mutual shading (SRsh,
if LAI > 5) and leaf senescence rate as a function of phys-
iological maturity or age (SRage, if DS> 1, van Laar et al.,
1997). We set SRage to increase exponentially with DS, and
50 % of senesced C mass is reallocated to storage organs.

www.biogeosciences.net/10/2451/2013/ Biogeosciences, 10, 2451–2466, 2013
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Fig. 2. The crop data layer of the study area. Selected MODIS composite coordinates are indicated (grey
crosses). The study area is dominated by maize (yellow) and soybean (green) cultivations.
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Fig. 2.The crop data layer of the study area. Selected MODIS com-
posite coordinates are indicated (grey crosses). The study area is
dominated by maize (yellow) and soybean (green) cultivations.

SPAc sensitivity to parameters controlling crop establish-
ment and development has been analysed for cereal crops
in Sus et al.(2010). Particularly small changes in cumulative
NEE were found for a 25 % change in model parameters con-
trolling timing of emergence (< 0.1 % change in cumulative
NEE), critical LAI beyond which self-shading senescence
is triggered (< 5 %), and maximum senescence rate due to
self-shading (< 1 %). SPAc is particularly sensitive towards
changes in DRmax (< 20 %), and temperature (< 29 %) and
photoperiod (< 30 %) developmental parameters.

SPAc runs were conducted for three different plant func-
tional types: maize, soybean, and C3 weed grasses grow-
ing in fallow periods between harvest and sowing. The ini-
tial conditions for the SPAc modelling runs were a soil or-
ganic matter (SOM) C content of 1300 g C m−2 for which
modelled SOM C is in equilibrium, an adjusted litter C con-
tent of 400 g C m−2 to reflect annual variability in litter C as
observed byVerma et al.(2005), and a labile C content of
10 g C m−2 at sowing for soybean and maize (i.e. the seed
C content, approximated fromAubinet et al., 2009) and of
1 g C m−2 after harvest for the fallow period C3 weed crop
(approximated value).

2.2 Step 2: selection of field patches

For the identification of MODIS VI time series coordinates
that are centred over single field MSCRs, USDA-NASS (US
Department of Agriculture–National Agricultural Statistics
Service) Cropland Data Layers (CDLs) were used as a clas-
sification basis (30 m ground resolution, total crop mapping
accuracies range from 85 % to 95 % for major crop cate-
gories, Boryan et al., 2011). The seven NASS CDL raster
images (one for each year in 2000–2006) served to extract
time series of those MODIS pixels for which we find mini-
mum requirements of crop type coverage to be satisfied (i.e.
> 95 % coverage of crop type within a 500 m×500 m search

window). We found 104 pixels that met the defined require-
ments, 59 with maize sown in year 2000 (and with alternating
crop types in following years), and 45 with soybean (Fig.2).

2.3 Step 3: extracting single-field crop VI time series

We downloaded MODIS Terra (MOD13Q1) and Aqua
(MYD13Q1) collection 5 (C5) 250 m data subsets from the
Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL, 2010). Apart from vegetation indices, these
MODIS data products also contain the red and NIR re-
flectance values themselves. We decided to remove all
MODIS observations with a viewing angle> 40◦, which
eliminates all pixel distortions of factor> 1.6 (Wolfe et al.,
1998). Thus, we expect only minor neighbouring effects in
the retrieved Bondville MODIS data time series. Note that at
the Bondville site our criterion for minimum crop type cov-
erage as defined earlier is not strictly met (Fig.1b).

We extracted MODIS time series information for all 104
selected pixels and all study years. We applied a filter to
screen for pixel values affected by thick clouds by excluding
all composite data with a blue reflectance value of> 10 %
(Sakamoto et al., 2005), and removed all composite data with
a reliability of> 1 (i.e. pixels most probably cloudy,ORNL,
2010). To improve temporal accuracy of the retrieved VI time
series, all MODIS data were associated with their true obser-
vation date using the “composite day of year” information
(Solano et al., 2010).

To scale from modelled LAI to modelled VI, we applied an
empirical relationship based on the renormalized difference
vegetation index (RDVI, developed byHaboudane et al.,
2004, for maize and soybeans grown in Ottawa, Canada).
The RDVI has been developed in order to attain a more
linearised relationship with vegetation biophysical variables
compared to the NDVI (Roujean and Breon, 1995). The
RDVI is defined as

RDVI =
ρNIR − ρred

√
ρNIR + ρred

, (1)

and the empirical relationship as

LAI = 0.0918× exp6.0002×RDVI . (2)

When comparing RDVI-derived LAI with ground truth
measurements,Haboudane et al.(2004) found anR2 of 0.90–
0.95 and an overestimation of LAI values> 5 m2 m−2. The
coupling of a canopy transfer model to the crop C mass bal-
ance model for the provision of a modelled VI output is be-
yond the scope of this study, but has been tested byQuaife
et al. (2008), who assimilated MODIS spectral reflectance
rather than LAI-product data into an ecosystem model.

2.4 Step 4: determination of individual sowing dates for
each pixel

We ran SPAc 80 times in forward mode (i.e. no data assim-
ilated, forced with Bondville observed meteorology) for all

Biogeosciences, 10, 2451–2466, 2013 www.biogeosciences.net/10/2451/2013/
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Fig. 3. Left panels: Model LAI curves are shown for maize (top) and soybean (bottom) and 5 different
sowing dates (DOY 90, 110, 130, 150, 170, black lines) for one study area example field patch. MODIS
LAI values are shown as grey dots. Model LAI with lowest squared residuals is shown as coloured line.
Right panels: Squared residuals between model LAI and MODIS LAI for each of the 80 sowing dates
and maize (top) and soybean (bottom). The coloured dot depicts the lowest squared residuals value.
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Fig. 3. Left panels: model LAI curves are shown for maize (top)
and soybean (bottom) and 5 different sowing dates (DOY 90, 110,
130, 150, 170, black lines) for one study area example field patch.
MODIS LAI values are shown as grey dots. Model LAI with lowest
squared residuals is shown as coloured line. Right panels: squared
residuals between model LAI and MODIS LAI for each of the 80
sowing dates and maize (top) and soybean (bottom). The coloured
dot depicts the lowest squared residuals value.

104 selected pixels and each year of the study period, but
each time with a different sowing date. These sowing dates
span a range of day of year (DOY) from 90 to 170, thus
encompassing reported usual values for maize and soybean
in Illinois (USDA, 1997). We expect that the application of
uniform meteorology over the study area has negligible ef-
fects on model performance regarding spatially continuous
climate variables such as temperature and vapour pressure
deficit. However, the spatial distribution of precipitation is
not accounted for. Modelled field patches are located less
than∼ 16 km away from the flux tower, and so their water
balance is subjected to manageable uncertainty. Out of the
resulting 80 modelled LAI curves, we solved for the sowing
date with the minimum sum of squared residuals between its
corresponding modelled LAI and the MODIS-derived LAI
data over the entire calendar year. In order to compare our
estimation of modelled sowing dates with general patterns of
land management within the wider area, we referred to NASS
crop progress reports for two neighbouring census districts,
but note the study area’s limitation in spatial representivity
with respect to the crop census districts (Fig.1a).

2.5 Step 5: model upscaling through MODIS VI DA

DA can be considered as a set of techniques that aims at
finding an optimal combination of observations and models,
referred to as the “analysis” (Mathieu and O’Neill, 2008).
For this study, we selected – apart from batch-calibration of
sowing dates – the EnKF approach for model state estima-
tion as such a DA technique (Evensen, 2003; Williams et al.,
2005). We expected considerable changes in model perfor-

mance after DA updates only of LAI and root C mass, but
for the purpose of model diagnosis and validation, the state
vector contained all above- and belowground biometric vari-
ables and the RDVI. We selected a model uncertainty of 1 %
for all biometric variables, and a higher uncertainty of 10 %
for the RDVI in order to account for additional uncertainties
in scaling from LAI to RDVI. We used the temporal separa-
tion approach (Hollinger and Richardson, 2005) to estimate
RDVI uncertainty, defining any differences in MODIS val-
ues that are< 4 days apart as data uncertainty originating
from various sources such as sensor calibration and atmo-
spheric conditions. This approach produced an uncertainty
value of ±0.017 s.d. for the RDVI, which is comparable
to the MODIS Land Discipline Team (MODLAND,http:
//modis-land.gsfc.nasa.gov/) values for the NDVI (±0.025)
and EVI (± 0.015). We chose an ensemble size of 50 mem-
bers, for which we found stabilising RMSE between SPAc
modelled and observed NEE in a previous study (Sus, 2011,
Sect. 4). Similarly,de Wit and van Diepen(2007) found that
the soil moisture ensemble mean of a crop model can be well
estimated with an ensemble size of 50, and improvements are
small when this metric is increased to 100.

3 Results

3.1 Simulated sowing dates

Sowing date is a key control of LAI magnitude and sea-
sonality. A model run initialised at the earliest sowing date
(DOY = 90) of maize produces a maximum LAI value about
twice as large compared to a model run initiated by the end of
the plausible range of values (DOY = 170, Fig.3). The tim-
ing of these maximum LAI, dependent on sowing date, can
be up to 2 months apart. For soybean, maximum LAI is less
sensitive to sowing date, but a strong control on seasonality is
obvious as well. Due to its sensitivity to day length and its in-
determinate character (meaning that vegetative and reproduc-
tive phases overlap), soybean is, phenologically speaking,
more stable than maize. The duration of leaf growth and thus
maximum LAI are less strongly affected by delays in sow-
ing date. There is a clear minimum of squared residuals as
a function of sowing date for the example maize field patch,
whereas a range of sowing dates spanning about 1 week ap-
pears plausible for soybean (Fig.3). The example illustrates
both the model’s sensitivity to sowing dates, and that an op-
timal sowing date can be determined within an uncertainty
range of±3 days. It remains to be determined whether a sow-
ing date optimisation for seasonality rather than magnitude
would further improve the phase agreement of observed and
modelled LAI.

Study-area-modelled sowing dates broadly reflect ob-
served trends of planting progress as reported by NASS for
the two crop census districts, but discrepancies exist (Fig.4).
Except for 2003, modelled soybean sowing dates are at least

www.biogeosciences.net/10/2451/2013/ Biogeosciences, 10, 2451–2466, 2013
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Fig. 4. Crop sowing progress for the study area and the two surrounding NASS census districts (East
and East-South East) for the seven study years (2000–2006). MODIS-derived model estimates (circles)
and NASS reported values (triangles and squares) are shown as percentage of crops sown within the
respective regions. Reported sowing dates for the Bondville EC flux site are indicated by dashed vertical
lines (red: maize, green: soybean).
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Fig. 4. Crop sowing progress for the study area and the two sur-
rounding NASS census districts (east and east–south east) for the
seven study years (2000–2006). MODIS-derived model estimates
(circles) and NASS reported values (triangles and squares) are
shown as percentage of crops sown within the respective regions.
Reported sowing dates for the Bondville EC flux site are indicated
by dashed vertical lines (red: maize; green: soybean).

1–2 weeks later than maize (as also reported by NASS and
USDA, 1997). NASS observations and MODIS-derived sow-
ing dates are closest in 2005 for both crops (< 1 week dif-
ference). Soybean sowing dates appear better reproduced by
MODIS than those of maize, which are generally premature.
100 % sowing progress of maize is often reached by end of
April, whereas reported sowing activity often lasts well into
May. Model–observations differences are most obvious in
2002 and 2003.

In contrast to the above, a comparison of farmer reported
(i.e. directly observed, not NASS-derived) and simulated
sowing dates for the Bondville site shows that modelled
maize sowing DOYs, except for 2001, are overestimates (re-
ported+ modelled DOY (year): 109+108 (2001), 106+118
(2003), 116+127 (2005)), whilst soybean sowing DOYs are
only slightly underestimated (153+ 152 (2002), 127+ 123
(2004)). The Bondville data also show that reported sowing
of the 2002 soybean crop is clearly delayed due to abnormal
precipitation in April–June, which is well reproduced by the
MODIS-based model value. Except for 2003, Bondville ob-
servations are within the 40–80 % range of modelled sowing
progress (vertical coloured lines in Fig.4).

3.2 Proof of concept – sequential assimilation
of MODIS RDVI time series at Bondville

Our assessment in this section is twofold: firstly, to analyse
whether sequential MODIS DA improves C flux and biomass
estimation when SPAc is driven with reported sowing dates.
Secondly, we conduct the same analysis for SPAc outputs
under satellite-derived (i.e. modelled) sowing dates. We con-
ducted the following 4 model experiments: (1) model for-

ward (no sequential DA) run forced with farmer reported
sowing dates (FWrep), (2) as FWrep but with sequential
MODIS DA (DArep), (3) model forward run forced with
modelled sowing dates (FWmod), and (4) as FWmod but
with sequential MODIS DA (DAmod).

Ground-observed and MODIS-derived LAI generally
agree well with each other at Bondville (R2

= 0.74), but
MODIS data are negatively biased (mean error (ME, i.e.
mean of MODIS LAI minus Bondville ground-truth)=
−0.49 m2 m−2, RMSE= 1.08 m2 m−2, Fig. 5). The agree-
ment is particularly strong with regards to the observed sea-
sonality of LAI evolution of maize and soybean, which is in
turn largely controlled by site-specific sowing dates. How-
ever, maximum ground-observed LAI values are often un-
derestimated by MODIS, e.g. by∼ 0.5–1 m2 m−2 for maize
2003 and soybean 2005, but note overestimation in 2004.
MODIS-derived LAI is mostly< 0.3 m2 m−2 during fallow
periods.

The sequential assimilation of MODIS RDVI data gen-
erally improves the simulation of LAI by reducing a neg-
ative bias (ME= −0.45 m2 m−2 (FWrep),−0.41 (DArep),
−0.57 (FWmod),−0.40 (DAmod)) and constraining sea-
sonality (Fig. 5), which is generally better captured than
overall magnitude. With the assimilation of MODIS RDVI
(DAmod), modelled LAI is now generally closer to ground-
truth data (R2 increased by 0.10, RMSE reduced by∼ 20 %).
Growth of C3 grass is reduced due to the assimilation of rel-
atively low RDVI during fallow periods. Sequential DA suc-
cessfully informed about rapid growth following late sow-
ing of the soybean crop in 2002 (which was underestimated
by FWmod, Fig.5), and thus appears suitable for correcting
model deficiencies during anomalous years.

Growing season observed NEE data are generally well re-
produced in terms of magnitude and seasonality, with rel-
atively similar model fits for all experiments:R2

= 0.55
(FWrep), 0.53 (DArep), 0.56 (FWmod), 0.55 (DAmod).
Model bias is reduced through sequential DA (ME (mod. –
obs.)= 0.99 g C m−2 d−1 (FWrep), 0.65 (DArep), 1.15 (FW-
mod), 0.76 (DAmod)). However, there are still discrepancies
in terms of a delayed start of the crop C assimilation phase
(2002), timing/rate of senescence (data not shown), and of an
overall underestimation of the growing season sink strength
as indicated by biases. Sequential MODIS DA appears gener-
ally useful to correct for model deficiencies during growing
seasons, but the informational content about fallow season
C3 grass growth and C assimilation needs further validation.

Cumulative all-year NEE is generally overestimated by
model experiments (by∼ 600 g C m−2 after 5 yr), with this
overestimation being∼ 100 g C m−2 larger for experiments
with modelled sowing dates (data not shown). In general,
there is little difference in final estimates between FW and
DA experiments (< 30 g C m−2). Observations and experi-
mental data are rather close until before weed grass growth
in spring 2003. A careful analysis of these data should bear
in mind that “observed” cumulative NEE is estimated on the

Biogeosciences, 10, 2451–2466, 2013 www.biogeosciences.net/10/2451/2013/
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Fig. 5. Observed (black circles), MODIS-derived (red circles), and modelled LAI (experiments FWmod
and DAmod, black and red lines) for the Bondville EC flux tower site, 2001–2006. The vertical dashed
lines denote farmer reported sowing and harvest dates for the flux site. The red arrow in July 2004
denotes the location of maximum MODIS-derived LAI (∼ 9.1 m2m−2, not shown in figure).
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Fig. 5. Observed (black circles), MODIS-derived (red circles), and modelled LAI (experiments FWmod and DAmod, black and red lines)
for the Bondville EC flux tower site, 2001–2006. The vertical dashed lines denote farmer reported sowing and harvest dates for the flux site.
The red arrow in July 2004 denotes the location of maximum MODIS-derived LAI (∼ 9.1 m2 m−2, not shown in figure).

basis of both measured and gap-filled half-hourly NEE. Of
the data analysed here,∼ 51 % of half-hourly NEE is gap-
filled.

Whereas Bondville measurements suggest that this no-till
agroecosystem is still a C sink after accounting for harvested
C mass (NBP = 209 g C m−2, with NBP defined as net biome
productivity,= −NEE− Cstor), model data suggest that the
MSCRs are about C neutral at best (NBP= −17 (FWrep),
−58 (DArep), −64 (FWmod),−256 (DAmod) g C m−2).
The gap between FW and DA model data primarily results
from the failure of sequential MODIS DA to inform about
fallow season C uptake and upward corrections of simulated
yield (see also Fig.6, but note that model data are study area
averages, and Bondville-only model data are not shown).

3.3 Upscaling – cropland C cycling within the study
area after sequential MODIS DA

3.3.1 Statistical assessment of study area model
averages and observations

Averaged over 104 pixels, the annual cumulative NBP of
the study area is positive for soybean (13 g C m−2 yr−1)
and negative for maize (−58 g C m−2 yr−1, Table 1).
Through DA, we are able to quantify a considerable spa-
tial variability of cumulative NEE (mean standard devia-
tion: 62 g C m−2 yr−1 (maize), 38 g C m−2 yr−1 (soybean))
and NBP (72 g C m−2 yr−1 (maize), 47 g C m−2 yr−1 (soy-
bean)) within the study area. This shows that the NBP
of both crop rotations is not significantly different from
0, which is also true for most individual growing seasons
including fallow periods.

Observed NBP is negative for four years, but strongly pos-
itive in 2003. The strong sink in 2003 alone is largely re-

sponsible for overall positive observed NBP after five years,
as the ecosystem loses on average∼ 59 g C m−2 yr−1 during
other years. Observed NEE is clearly lower than modelled for
maize, but equal to or larger during soybean years. In terms
of NEE, simulated sink size is larger for maize than soybean
(by ∼ 54 g C m−2 yr−1), but maize is a stronger source of C
(by ∼ 71 g C m−2 yr−1) in terms of NBP (Table 1).

Model yield is on average∼ 130 g C m−2 higher for maize
than soybean. Yield variability is∼ 9 % of the study area
mean for both crops. Compared to Bondville observations,
model Cstor is on average∼ 130 g C m−2 lower for maize,
and about equal to larger for soybean (by∼ 24 g C m−2 on
average, but note differences to farmer reported yield). Max-
imum LAI of soybean is on average∼ 2.6 m2 m−2 greater
than that of maize, and study area variabilities of both
crops are comparable (∼ 0.5 m2 m−2). Differences between
model values and observations are, except for 2004, within
0.5 m2 m−2 (Table 1).

In general, assimilation of RDVI data through the EnKF
resulted in considerable updates in state variables LAI, leaf,
and root C mass. Whereas LAI (but not leaf C mass) changes
have significant consequences on gross primary productivity
(GPP) and thus C cycling, changes in root C mass slightly
altered model sensitivity to drought. Stem and storage or-
gan C mass showed only small to moderate updates, and
are not physiologically integrated into the model. Biomet-
ric updates had no immediate consequences on autotrophic
respiration, which within SPA is simulated through the
gradual turnover of a respiration C pool and thus is not
directly biomass dependent.

www.biogeosciences.net/10/2451/2013/ Biogeosciences, 10, 2451–2466, 2013
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Table 1. Observed (at Bondville) and study area model averages and standard deviations for maximum LAI (m2 m−2), storage organ C at
maturity (StOrg (g C m−2)), and all-year cumulative NEE and NBP (g C m−2 yr−1). Observed storage organ C is shown for field dry matter
samples, and farmer reported values (in parentheses). Bold model values are same crop types as at Bondville. Model values (experiment
DAmod) are averages of all soybean (SB) or maize (MZ) field patches in a given year. Data are only shown for years when Bondville dry
matter data are available for comparison (2001–2005).

2001 2002 2003 2004 2005 mean
∑

LAI
obs 4.7 5.6 6.0 6.3 4.5 – –
SB 7.3± 0.3 6.1± 0.6 7.4± 0.4 7.9± 0.5 7.7± 0.5 7.4± 0.5 –
MZ 5.2± 0.4 3.8± 0.7 5.5± 0.3 4.9± 0.3 4.1± 0.4 4.8± 0.5 –

StOrg
obs 487 (474) 217 (174) 545 (542) 267 (169) 635 (463) – –
SB 278± 24 204± 24 297± 22 329± 34 312± 29 290± 27 –
MZ 441± 38 239± 45 472± 36 509± 33 383± 38 420± 38 –

NEE
obs −405 −143 −992 −252 −570 −316 −2362
SB −287± 42 −139± 27 −342± 40 −358± 48 −357± 34 −297± 38 −1483± 87
MZ −333± 72 −204± 73 −492± 48 −430± 49 −296± 66 −351± 62 −1755± 140

NBP
obs −82 (−69) −74 (−31) 447 (450) −15 (83) −65 (107) 29 (95) 211 (540)
SB 9± 48 −65± 36 45± 46 29± 59 45± 45 13± 47 63± 106
MZ −108± 81 −35± 86 20± 60 −79± 59 −87± 76 −58± 72 −210± 164

3.3.2 Time series analysis of modelled and
observed NEE and NBP

Simulated study area average values are 240 to 300 g C m−2

lower than the Bondville cumulative NEE flux data value
(∼ −2970 g C m−2) after the seven study years and when
only considering the growing season C balance (sowing–
harvest, Fig.6a). For all season NEE data however (Fig.6b),
the gap between modelled and observed NEE by end of
2006 is somewhat smaller and its sign has changed (∼ 108 to
224 g C m−2 higher than Bondville observations). The study
area-wide modelled NEE variability has a standard devia-
tion of ∼ ±87 to 140 g C m−2 after 7 yr. Observed cumu-
lative NBP data indicate a net sink of∼ 211 g C m−2 after
five years, however with changing sign so that observations
are a mix of source and sink years. Modelled crop rotations
indicate a net source of∼ 12 to 208 g C m−2 (Fig. 6c). Note
that these values are similar to values shown for specific crop
types (i.e. not crop rotations) in Table 1. Model data are close
to Bondville observations until after autumn 2001 (dashed
line in Fig. 6c), but subsequently a gap continuously builds
up during fallow periods (especially spring 2003).

Most importantly, model data suggest clear differences
in the seasonality of MSCR C fluxes within the study area
compared to observations. These differences are mainly at-
tributable to earlier estimated start of season (SoS, i.e. tim-
ing of sink-crossover after sowing using a 10 day moving av-
erage of the time series analysed) values. Study area aver-

ages of modelled soybean–maize rotations generally reflect
interannual patterns in SoS and end of season (EoS, i.e. tim-
ing of source-crossover after SoS) as observed at Bondville
(Table 2), but discrepancies exist. Model-derived SoS are
generally earlier than Bondville values (by∼ 2 weeks on
average, soybean–maize (SM) rotations in Table 2), and
DOYs are closer to Bondville values for soybean than maize
years. This prematurity in SoS is even larger for maize–
soybean (MS) rotations (∼ 25 days) and the study area flux
average (AV,∼ 23 days). In 2002, model SoS values are
> 1.5 months premature (MS and AV). These discrepancies
are smaller for EoS estimates, which are again generally
earlier than “observed” by∼ 5 days (SM),∼ 11 days (MS),
and∼ 4 days (AV). Consequently, modelled average grow-
ing season length (GSL= EoS− SoS) is about 9 to 20 days
longer than derived from Bondville measurements.

Moreover, the Bondville flux data appear representative of
SM rotations within the study area. The magnitude of mod-
elled growing season C fluxes reflects observed patterns well
(green line in Fig.7a). Fallow season weed growth (C uptake)
and decay (C emission) are not reproduced, but post-harvest
NEE fluxes (dominated by crop residue decomposition) are
close to measurements. As expected, modelled MS rotations
(red line in Fig.7a) clearly differ in growing season C uptake
magnitude and seasonality during all study years.

The pattern of study area mean model fluxes reveals the
year-to-year variability in regional ecosystem sink strength
(black line in Fig.7b, which is the average of all maize and
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Table 2. Observed (obs., at Bondville) and modelled (mod.) start of season (SoS), end of season (EoS) DOYs, and growing season length
(GSL) in days. Model data (experiment DAmod) are shown for pixels with soybean grown in even years (soybean–maize (SM), as Bondville
site rotation), with soybean grown in odd years (maize–soybean (MS)), and averaged over all pixels (AV). ME = mean error (mod.− obs.).

2000 2001 2002 2003 2004 2005 2006 mean ME

Bondville crop soy maize soy maize soy maize soy

SoS
obs. 166 139 184 155 152 150 155 157 –
mod. (SM) 160 123 182 127 145 130 132 143−14
mod. (MS) 126 139 130 132 110 156 128 132−25
mod. (AV) 145 131 131 130 131 135 130 134−23

EoS
obs. 238 242 254 236 231 242 259 243 –
mod. (SM) 244 216 256 229 249 215 256 238 −5
mod. (MS) 216 246 212 252 219 252 227 232−11
mod. (AV) 225 239 241 236 243 244 245 239 −4

GSL
obs. 72 103 70 81 79 92 104 86 –
mod. (SM) 84 93 74 102 104 85 124 100 14
mod. (MS) 90 107 82 120 109 96 99 95 9
mod. (AV) 80 108 110 106 112 109 115 106 20

soybean pixels for each year), rather than sink strength vari-
ability due to C3/C4 crop type rotation. The magnitude of
C sink strength in 2002, when sowing dates have been re-
ported to be particularly late, is considerably lower compared
to other years. As expected, model data show larger (lower)
C uptake during Bondville soybean (maize) growing periods
than observed. Clear seasonality shifts towards earlier DOYs
are most obvious during Bondville soybean years (especially
2002).

4 Discussion

4.1 Does MODIS DA improve model reproduction of
Bondville ground-truth data?

4.1.1 Model improvement through simulated
sowing dates

Modelled sowing dates allow for a realistic simulation of
NEE seasonality (R2

= 0.56 (FWmod) at Bondville site).
However, C sink underestimation increases simultaneously
by ∼ 100 g C m−2 (data not shown). MODIS RDVI was used
as an independent constraint on crop LAI for finding the
model sowing date which best reproduces observed season-
ality in green aboveground biomass. This procedure clearly
constrains the seasonality of cropland NEE. Most probably,
we could have produced a better agreement between ob-
served and modelled sowing dates by using only (and tem-
porally more highly resolved) MODIS data of the vegeta-
tive phase. However, this approach would probably be detri-

mental for the merits of our sequential DA procedure during
senescence, the simulated timing and rate of which still need
improvement (Kucharik and Twine, 2007; Sus et al., 2010).

Upscaled differences between MODIS-derived sowing
dates and NASS-observed values are indicative of deficien-
cies in model LAI and photosynthetic potential under ambi-
ent climatic conditions (Fig.4). As modelled maize sowing
dates are mostly premature, we conclude that forward mode
green biomass is probably underestimated. In other words, a
negative model bias in maize LAI is compensated by an ear-
lier start of the growing season. Even though discrepancies
with observations exist (2000 and 2003), MODIS-derived
soybean sowing dates appear more realistic. The reported
delay in sowing progress in 2002 is well captured for soy-
beans, but is not reflected for maize. A more detailed anal-
ysis of the quality of modelled sowing dates is not possi-
ble, as scale differences between sub-county model data and
census district-level observations (Fig.1a) are prohibitively
large. More steps need to be taken to move from a qualitative
to a more quantitative validation of satellite-derived sowing
dates (Wardlow et al., 2006). Progress in this respect is prob-
ably most hindered by the lack of reliable, spatially resolved
validation data.

The general applicability of MODIS data for sowing date
assessment has been successfully demonstrated in other stud-
ies. Using MODIS NDVI and rainfall data,Brown and
de Beurs(2008) were able to produce high relationships be-
tween derived sowing dates and observations for West Africa
(R2

= 0.89). MODIS-derived sowing dates were consistent

www.biogeosciences.net/10/2451/2013/ Biogeosciences, 10, 2451–2466, 2013
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Fig. 6. Study area model averages (experiment DAmod) and Bondville EC data of (a) cumulative NEE
for growing periods only, (b) cumulative NEE (±1 σ study area model variability, shown as shaded
areas), (c) cumulative NBP. Maize-soybean rotations: maize sown in even years, and vice versa for
soybean-maize rotations.
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Fig. 6. Study area model averages (experiment DAmod) and Bondville EC data of(a) cumulative NEE for growing periods only,(b)
cumulative NEE (±1 σ study area model variability, shown as shaded areas),(c) cumulative NBP. Maize–soybean rotations: maize sown in
even years, and vice versa for soybean–maize rotations.

with the relative order of sowing of major crops in Kansas
(US, Wardlow et al., 2006).

Even though we expect mixed-pixel effects on retrieved
MODIS time series for Bondville (Fig.1b), there is clear ev-
idence that forward model runs with modelled sowing dates
(FWmod) reproduce the agreement of model runs with re-
ported sowing dates (FWrep) with independent validation
data (NEE). These findings suggest that modelled sowing
dates themselves are suitable constraints for agroecosystem
C cycling and biomass growth at the point scale, and also
partly compensate for model shortcomings in simulating
young crop establishment as indicated by bias towards pre-
mature sowing in Fig.4. Despite this compensation, the qual-
itative agreement of the temporal development of modelled
sowing progress with NASS observations suggests that a re-
alistic spatial pattern of study area sowing dates is captured
nonetheless.

4.1.2 Model improvement through sequential
MODIS DA

Sequential MODIS DA reduces a bias in estimating grow-
ing season C fluxes at Bondville (data not shown). This bias
is partly a consequence of running SPAc with modelled in-
stead of reported sowing dates: in contrast to overall sea-
sonality, the magnitude of observed LAI and NEE is then
less well reproduced. Using simulated sowing dates in model
runs is necessary for capturing the overall observed sea-
sonality, whereas sequential DA is necessary to compensate
generic model deficiencies and additional biases introduced.
However, understanding to what extent this improvement is

caused by an increase in GPP, brought about by an increase
in LAI, or a decrease in weed litter mineralization is compli-
cated by the lack of observational constraints. We found clear
indications that forward model GPP is an underestimate, and
sequential DA brought GPP closer to EC-derived observa-
tions through increasing LAI (data not shown). Moreover, as
published field data suggest (Buyanovsky et al., 1987), lit-
ter mineralization during the growing period is rather small
(∼ 15 g C m−2 growing period−1 assuming a litter C input
of ∼ 200 g C m−2 before sowing) compared to GPP and au-
totrophic respiration, and thus of second-order importance.

We further acknowledge that our current model–DA
scheme is not exploiting the full potential of MODIS VI
data for constraining agroecosystem C cycling. One defi-
ciency in our model scheme is the representation of crop
senescence. Adopting a simple modelling approach (van
Laar et al., 1997), simulated crop senescence appears pre-
mature for soybean (Fig.5), and thus reduces sequential
MODIS DA potential during this developmental phase. Con-
sequently, an improved senescence model is necessary that
provides a better forward model agreement with observa-
tions. We expect further considerable benefits from the as-
similation of MODIS data with higher temporal resolution
(e.g. MOD09GQ). Moreover, scaling from MODIS RDVI to
LAI using an empirical relationship is a considerable source
of uncertainty in this study. However, we expect the influence
on derived seasonality metrics to be comparably small, as
timing of Bondville observed biomass growth and decay are
clearly reproduced. Nonetheless, the application of a canopy
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Fig. 7. Study area averages of modelled NEE fluxes (lines) and as observed at Bondville EC site (grey
circles). Model data shown are (a) crop rotations with soybean sown in even years (green line, soybean-
maize (SM), as Bondville site rotation), soybean sown in odd years (red line, MS), and (b) means over
all 104 MODIS pixel locations (black line, average (AV), i.e. not crop type specific). Vertical dashed
lines in (b) denote SoS and EoS dates as estimated from model data (black) and observations (grey).
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Fig. 7. Study area averages of modelled NEE fluxes (lines) and as observed at Bondville EC site (grey circles). Model data shown are(a)
crop rotations with soybean sown in even years (green line, soybean–maize (SM), as Bondville site rotation), soybean sown in odd years (red
line, MS), and(b) means over all 104 MODIS pixel locations (black line, average (AV), i.e. not crop type specific). Vertical dashed lines in
(b) denote SoS and EoS dates as estimated from model data (black) and observations (grey).

reflectance model could provide improved estimates of Cstor
(Doraiswamy et al., 2004).

MODIS data allow for spatio-temporal applications of
SPAc without a priori knowledge on sowing dates. Certain
model deficiencies remain unresolved after DA. SPAc sim-
ulations are less reliable for yield than NEE and LAI, and
improvements in representing yield formation are warranted
for further study. AsDente et al.(2008) show, considerable
improvements can be expected through DA. Nonetheless, we
are confident that our methodology provides a representative
upscaled estimate of agroecosystem C cycling. Our results
confirm previous findings that MODIS data contain enough
useful information for correcting some deficiencies in global
BGCMs, such as a∼ 40 % reduction of RMSE in modelled
agricultural C fluxes and improved estimation of GSL (De-
marty et al., 2007). The benefits of MODIS DA are particu-
larly considerable during years of abnormal sowing patterns
(as observed here in 2002, Fig.5), and their influence on crop
establishment and growth are still rather poorly represented
within SPAc. RS DA is also a suitable tool for mitigating un-
certainties due to model parameters and weak understanding
of phenological processes (Stöckli et al., 2008). There is clear
value in making use of MODIS’ full spatiotemporal richness
when addressing current key uncertainties of upscaled crop
modelling. The applicability of our DA approach is limited
by the availability of crop type classification data outside of
the US. However, MODIS seasonality has been used to pro-
vide such classification data in the US (Wardlow and Egbert,
2010) and Ukraine (Becker-Reshef et al., 2010), and is ap-

plicable to all agricultural regions with sufficient ground ele-
ment (i.e. field patch) sizes given appropriate training data.

4.2 Are point-scale cropland C flux observations
spatially representative?

Based on regionally resolved MODIS data, we explored the
spatial variation in cropland C fluxes. Our results show that,
next to local meteorology, regional patterns of land manage-
ment are important drivers of agricultural C cycling and ma-
jor sources of uncertainty if not appropriately accounted for
(Tables 1 and 2). Average relative spatial variability for Cstor,
LAI, and NEE for both crops ranges from∼ 7 % to∼ 18 %
per year, which propagates into an NBP variability that is
larger than NBP magnitude. Consequently, observing C cy-
cling at one single field with its individual sowing pattern
is not sufficient to constrain large-scale agroecosystem be-
haviour in its total, land management-driven variability.

Bondville data considerably deviate from the pattern of C
flux seasonality produced by spatial heterogeneity in crop-
land management (Fig.7, Table 2). However, they are com-
parably representative of the large-scale growing season C
budget (Fig.6). The EC data underestimate upscaled GSL by
20 days. Mean study area NEE fluxes contain crop-rotation
“signals” not observed at Bondville. It is plausible that mean
GSL increases when cropland NEE is averaged over sev-
eral field locations: few “premature” sites will decrease mean
NEE considerably, as their quickly increasing sink strength
is soon larger than the comparably small C losses of fal-
low sites (and vice versa around maturity). That is partly
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why modelled SM rotations show little NEE phase shifts
compared to observations (Fig.7a), even though growing
season metrics differ (Table 2). The accurate quantification
of GSL is important, as GSL influences microclimatic vari-
ables through the longevity of vegetation cover (de Noblet-
Ducoudŕe et al., 2004; Kucharik and Twine, 2007), indicates
farmers adopting longer season cultivars in order to max-
imise yield (Sacks and Kucharik, 2011), and affects seasonal
atmospheric CO2 amplitudes (Keeling et al., 1996) and pos-
sibly the terrestrial C balance (Piao et al., 2007).

Differences between Bondville and upscaled NEE are es-
pecially large in years with non-optimal climatic sowing con-
ditions (here in 2002, Fig.7b). When intense spring precip-
itation delays field work, NASS reports suggest that farmers
use at times relatively short time windows with drier weather
conditions for crop sowing. This can lead to potentially large
differences in maize and soybean sowing progress, as their
usual time windows for sowing do not overlap. Cool and wet
conditions are favourable for pest development, and poten-
tially affect the timing of major phenological events of rain-
fed crops. DAmod data suggest that this was the case in 2002,
when maize sowing and establishment was about normal, but
soybean progress was negatively affected by strong precipita-
tion. If this modelled difference in NEE seasonality between
the two crops were merely an artefact due to weaknesses in
MODIS-derived sowing dates for maize, early maize growth
and C uptake would have been restricted through the sequen-
tial assimilation of low MODIS RDVI data. Instead, model
results suggest that the 2002 NEE seasonality shift (Fig.7) is
realistic and supported by empirical evidence (NASS).

As the seasonality and regional variability of agroecosys-
tem C cycling is considerably sensitive to sowing dates,
the timing of this land management action needs particu-
lar attention in large-scale simulation runs. Models driven
with sowing dates that are either static (e.g. soybean within
LPJml, Bondeau et al., 2007) or estimated through tempera-
ture thresholds (e.g. 10◦C for maize in ORCHIDEE-STICS,
de Noblet-Ducoudŕe et al., 2004) would not be able to re-
produce the observed NEE phase shift and its consequence
on C budgeting and biometry in 2002. Large-scale applica-
tions of cropland BGCMs certainly necessitate these simpli-
fications, but associated uncertainties are large and need to be
quantified. In contrast to natural ecosystems whose C cycling
primarily responds to climatic constraints and disturbances,
croplands carry an additional “disturbance” signal provided
by human management. Sowing progress is clearly linked to
atmospheric variables, but their relationship is poorly quan-
tified and difficult to predict from time series analysis of cli-
matic data alone.

Future large-scale applications such as for the contermi-
nous US could provide a thorough assessment of the current
state of agroecosystem C cycling and an improved quantifi-
cation of the relationship between climate variables and sow-
ing dates. Further, our DA scheme could allow for a detailed
assessment of the “yield gap” (i.e. climatic potential yield

– actual yield, Licker et al., 2010), or possibly the “C se-
questration gap” (modelled GSL might correlate with terres-
trial C uptake, Piao et al., 2007) of major agricultural ar-
eas. DA-derived “observed” GSL metrics could be compared
with maximum potential GSL to see to what extent farmers
exploit the full time period allowing for crop cultivation.

4.3 Are study area croplands a sink or source
of carbon?

Our results are a considerable improvement compared to
a previous study, where SPAc reproduced daily cropland C
fluxes observed at six different European flux tower sites
with high accuracy, but growing season cumulative NEE was
clearly overestimated (by∼ 123 g C m−2 yr−1 on average,
Sus et al., 2010; Wattenbach et al., 2010). Here, assuming
measured Bondville C budget is spatially representative, ob-
served growing season cumulative NEE is underestimated by
∼ 240 to 300 g C m−2 after 7 yr (Fig.6), which corresponds
to∼ 10 % of the observed value or an annual underestimation
of just 34 to 43 g C m−2 yr−1. All-season cumulative NEE on
the other hand is overestimated and closer to the observed
value, with a deviation of now∼ 110 to 220 g C m−2. This
shows that fallow season weed grass C uptake is underes-
timated by SPAc by∼ 350 to 520 g C m−2, as model soil
C is in equilibrium. A large fraction of this discrepancy is
explained by model–observations differences in 2003, when
pre-sowing weed growth was particularly intense. Conse-
quently, the underestimation of cumulative NBP falls within
that range (∼ 420 g C m−2; see green line in Fig.6c, which is
for the same crop rotation as at Bondville).

Hollinger et al. (2004) (but see also Hollinger et al.,
2005) assessed the regional C sequestration potential of no-
till MSCR based on the Bondville flux data (1997–2002).
Their analysis showed that the annual C sink strength is
rather small (NBP∼ 30 g C m−2 yr−1). Cumulated over the
5 study years for which Cstor observations are available (Ta-
ble 1), this estimate is comparable to the observed NBP data
presented here (∼ 211 g C m−2 after 5 yr). However, their
published estimate of cumulative NEE for years 2000–2002
is considerably lower (by∼ 266 g C m−2) than what we de-
rived from the FLUXNET database. EC studies of other
maize and/or soybean agroecosystems indicate C neutrality
at best: a maize–fennel crop rotation in Italy was found to
lose∼ 417 g C m−2 yr−1 under organic manure fertilisation
(Kutsch et al., 2010), and rainfed no-till MSCRs were found
to be approximately C neutral (Verma et al., 2005) or net
sources of C (40 to 80 g C m−2 yr−1, Grant et al., 2007;
Baker and Griffis, 2005).

The observations analysed provide no clear constraints
on the sign of NBP, and generic uncertainties in EC data
have been documented (Anthoni et al., 2004; Falge et al.,
2001). The role of fallow season C sequestration necessi-
tates more detailed analysis. Model data indicate a source
of C, but the magnitude of NBP is smaller than its spatial
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variability. However, wind-velocity corrections of Bondville
EC data were published recently (Kochendorfer et al., 2012),
involving an overall increase in flux magnitude of∼ 11 %.
We expect only minor effects of this correction on our results
about observed flux seasonality, but the gap between mod-
elled and observed all-year cumulative NEE will further in-
crease by∼ 230 g C m−2 (2000–2006). Regarding these un-
certainties, we are as yet not able to firmly establish the mag-
nitude and sign of NBP for the MSCR agroecosystems of the
study area. However, under the assumption of soil C equilib-
rium, our model data suggest that the region’s no-till crop-
lands (∼ 40 % of US croplands are no-till,Kucharik and
Twine, 2007) are unlikely to be sinks of C. Fallow weed
grass C uptake might have been responsible for converting
the Bondville-observed C balance into a sink.

5 Conclusions

In this study, we developed and tested a model–DA frame-
work for the simulation of spatio-temporally resolved crop-
land C fluxes for maize–soybean rotations close to the
Bondville (IL, US) FLUXNET site. MODIS RDVI data were
assimilated both for the batch-calibration of sowing dates
and for improved model state estimation using the EnKF.
A comparison with NASS land management data showed
that MODIS-derived sowing dates appear realistic and thus
will probably allow for more accurate simulations of agroe-
cosystem C fluxes at locations for which ground-truth sowing
dates are not available. The EnKF analysis provides further
information on seasonality of C fluxes and biometry through
MODIS constraints on crop establishment and senescence,
which is especially important in anomalous years when the
forward model performs poorly. This framework is readily
applicable for simulating current C cycling of major agri-
cultural regions as long as crop type classification data are
available and/or minimum requirements on field patch size
are satisfied. However, model results do not allow for firm
conclusions on whether the agroecosystems of the study area
are net sources or sinks of C. Additional data on land man-
agement and belowground C cycling remain mandatory, as
such information is not provided by MODIS.

The relative spatial variability of yield, LAI, and NEE for
both crops ranges from∼ 7 % to ∼ 18 %, and is consider-
ably larger for NBP, which is negative but close to C neu-
trality. These results show that regional patterns of land man-
agement are important drivers of agricultural C cycling and
major sources of uncertainty if not appropriately accounted
for. Observing C cycling at one single field with its individ-
ual sowing pattern is not sufficient to constrain large-scale
agroecosystem behaviour. Whereas EC data appear represen-
tative for a particular crop type rotation, upscaled phenology
shows considerable differences due to land-use heterogene-
ity. Study-area GSL is 20 days longer than observed, primar-
ily because of an earlier estimated SoS. Anomalies in sowing

dates as observed here in 2002 add a particularly strong an-
thropogenic signal to large-scale C exchange fluxes. The DA
scheme developed and tested here appears suitable for ac-
counting for human intervention and its knock-on effects on
ecosystem services such as fluxes of C, water, and energy.
Our approach is a step forward in improving large-scale ap-
plications of BGCMs.
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