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Abstract. Agroecosystem models are strongly dependent orthe 104 field patches analysed, relative spatial variability for
information on land management patterns for regional appli-biometry and net ecosystem exchange ranges front to
cations. Land management practices play a major role in de=~ 18 %. The annual sign of net biome productivity is not sig-
termining global yield variability, and add an anthropogenic nificantly different from carbon neutrality. (2) Moreover, ob-
signal to the observed seasonality of atmospherig €@h- serving carbon cycling at one single field with its individ-
centrations. However, there is still little knowledge on spatial ual sowing pattern is not sufficient to constrain large-scale
and temporal variability of important farmland activities such agroecosystem carbon flux seasonality. Study area average
as crop sowing dates, and thus these remain rather crudelyrowing season length is 20days longer than observed at
approximated within carbon cycle studies. Bonadville, primarily because of an earlier estimated start of

In this study, we present a framework allowing for spatio- season. (3) For carbon budgeting, additional information on
temporally resolved simulation of cropland carbon fluxes cropland soil management and belowground carbon cycling
under observational constraints on land management anbas to be considered, as such constraints are not provided by
canopy greenness. We apply data assimilation methodologiODIS.
in order to explicitly account for information on sowing dates
and model leaf area index. MODIS 250 m vegetation index
data were assimilated both in batch-calibration for sowing
date estimation and sequentially for improved model state )
estimation, using the ensemble Kalman filter (EnKF), into 1 Introduction
a crop carbon mass balance model (SPAc). In doing so, we
are able to quantify the multiannual (2000—2006) regionalAgricultural ecosystems are of major importance to hu-
carbon flux and biometry seasonality of maize—soybean cropnankind. There are clear links between climate change, pop-
rotations surrounding the Bondville Ameriflux eddy covari- ulation growth Zhang et al.2011), and fluctuations in agri-
ance site, averaged over 104 pixel locations within the widercultural productioni(ee et al, 2008. Global food demand is
area. expected to double by 2050i[man et al, 2007). Further

(1) Validation at the Bondville site shows that growing sea- agricultural intensification might have considerable detri-
son C cycling is simulated accurately with MODIS-derived mental effects on several crucial ecosystem services, includ-
sowing dates, and we expect that this framework allows forind food production itselffoley et al, 20035. Moreover, the
accurate simulations of C cycling at locations for which Piological dynamics of managed landscapes affect the fluctu-
ground-truth data are not available. Thus, this frameworkations of atmospheric Cevels on annual and inter-annual
enables modellers to simulate current (i.e. last 10yr) car-Scales¥Moureaux et al.2008, and thus they need to be con-

bon cycling of major agricultural regions. Averaged over Sidered when quantifying, understanding, and regulating the
global carbon (C) cycleSus et al.2010.
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Land management practices play a major role in deterter (EnKF, Evensen 2003 have been developed and ap-
mining global yield variability, of which only~30% was  plied successfully within BGCMs (e.gQuaife et al, 2008
found to be attributable to climate variablelsobell and ~ Williams et al, 2005. We acquired 104 MODIS 250 m
Field, 2007). However, still little is known about how impor- VI data time series, with pixel coordinates centred on field
tant farmland activities such as crop sowing dates, cultivampatches of sufficient size of 500500 m surrounding the
selection, and fertilisation application vary in space and timeAmeriflux Bondville (lllinois, US) EC flux tower site. We
(see Sacks et a).201Q Siebert et al.2005 as global ex- then sequentially assimilated these data at observational time
amples). Uncertain crop phenology and sowing dates propsteps, using the EnKF, into a crop C mass balance model
agate into uncertain controls of food producti@atks and (SPAc, Sus et al.2010 for improved C flux and biometry
Kucharik 2011) and C cycling cGuire et al, 2007 within estimation, and compared model outputs against independent
large-scale agroecosystem models. This undermines progresalidation data sets.
in isolating natural from anthropogenic variability in atmo-  In this study, we address the following research questions:
spheric CQ concentrations, understanding the terrestrial C(1) do MODIS 250 m VI time series contain appropriate in-
cycle, and predicting food security. formation for improving crop C fluxes at the point scale? (2)

Measurements using eddy covariance (EC) to quantify nefAre the Bondville EC flux data representative of regional
C fluxes are now being combined with simultaneous ob-cropland C exchange, considering spatial heterogeneity in
servations of crop biometry. These constraints on croplandand use? (3) Are the region’s maize—soybean crop rotations
C budgeting and climate controls are currently being usedMSCRs) a net sink or source of C?
to improve biogeochemical models (BGCMs) on various
scales (e.gBondeau et a]2007 de Noblet-Ducoudk et al,

2004 Kucharik and Twine 2007, Sus et al. 2010, which 2 Data and methods

traditionally lacked a crop-specific plant functional type.

Generally, BGCMs would benefit from a better representa-2.1  Step 1: crop model calibration and application at
tion of interannual phenological variability, which is poorly the point scale

understoodRichardson et al2012 Stockli et al, 2008.

As one attempt to overcome these shortcomings, remot@.1.1 Study area and C flux data
sensing (RS) data have been used in crop growth modelling
studies to estimate cropland management parameters (e.We selected a study area of approximately 808 kB2 km
sowing or emergence datBrown and de Beur2008 Dente  E-W, 25km N-S), the centre pixel of which is close to
et al, 2008 Doraiswamy et a).2004 and initial conditions  the Ameriflux Bondville EC flux tower site (Ameriflux site
(e.g. soil water contentnoue and Oliosp2006, mostly ap-  ID: US-Bol, latitude: 40.01N, longitude: 88.29W, Cham-
plying batch-calibration data assimilation (DA) techniques. paign, lllinois (USA), Fig.1). The Bondville agricultural site
MODIS 250 m vegetation index (VI) data have been usedhas been used in no-till management of a soyb&iyci{ne
for crop type classification (e.g§Vardlow and Egber2008 max—maize Zea may}scrop rotation, with maize grown in
Chang et a].2007) and yield estimations (e.gdoraiswamy  odd years and the crop residues left on the field after har-
et al, 20049. However, no study so far has attempted to as-vest. The area surrounding the flux tower is characterised
similate RS time series of various field patches into a cropby predominantly well-drained silt loam soils with little sur-
model simulating agroecosystem C exchange. In a recerfiace slope Wilson and Meyers2007). MSCRs have been
study West et al.2010, cropland inventory data were com- analysed in various studies for their C sequestration po-
bined with the MODIS land cover product to calculate spa-tential under reduced or no-till manageme@trgnt et al.
tially resolved estimates of C budgeting for the conterminous2007 Hollinger et al, 2004 Verma et al. 2005 Baker and
USA. However, as no mechanistic crop model has been apériffis, 2005, and can be considered as a model ecosystem
plied and consequently no MODIS data were assimilated, thdor biogeochemical studies due to the flat terrain, homoge-
authors could not provide estimates of the seasonality of upneous land-use pattern, and independent data sets available
scaled C fluxes. To date, upscaled model estimates of cropHollinger et al, 2004 for the wider Bondville region. The
land net ecosystem exchange (NEE) fluxes have been forcddcal climate is, according to thedppen climate classifica-
with uncertain information on land management. In particu-tion scheme, humid continental (class Dfa). Annual average
lar the variability of sowing dates in space and time remainsprecipitation over the period 2000 to 2006 is 754 mm.
rather crudely approximated within C cycle studies. At Bonadville, half-hourly C exchange fluxes between the

Here, we present a framework for spatio-temporally re-atmosphere and the biosphere have been measured continu-
solved simulation of cropland C fluxes under observationalously from 1996—present. Half hourly meteorological forcing
constraints on land management and canopy greenness. Wata for radiation, temperature, wind speed, humidity, and
apply DA methodology in order to explicitly account for in- precipitation have been recorded for diagnostics (degers
formation on sowing dates and model leaf area index (LAI).and Hollinger 2004 for a detailed description). For several
Sequential DA techniques such as the ensemble Kalman filyears, measurements have been taken of several aboveground
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Fig. 1. (a) Location of the Bondville EC-flux tower site, study area, and NASS crop progress report digiriciee Bondville flux tower
site. The selected MODIS composite centre location is indicated, together with approximated at-nadir extents of one 250 m MODIS pixel,
and one 500 m MODIS pixel.

plant biometric variables, and farmer reported values on haret al.(2010, hereafter referred to as SPAc). The C partition-
vested biomass are available. ing scheme is based on empirical values of field crop growth
The flux data analysed in this study are half-hourly obser-analyses Penning de Vries et al1989, and is a function

vations of NEE which were gap-filled based on a light use ef-of crop developmental stage (DS). The model representation
ficiency model for daytime values and on a respiration func-of DS is introduced into SPAc by a new state variable, vary-
tion for nighttime valuesBernacchi et aJ.2005 Hollinger ing between 0 at emergence, 1 at flowering, and 2 at matu-
et al, 2004 to derive daily sums. The higher sink strength rity. The duration of the phase between sowing and emer-
of the maize crop growing periods largely reflects the differ- gence is calculated through growing degree days, and lasts
ence between £Xsoybean) and £(maize) net photosynthe- typically around 1 week. The progression of DS is based on

sis rateslollinger et al, 2004 Baldocchj 1994). non-linear functions for temperatuy®7) and photoperiod
f(P),with 0 < f(T, P) <1 (Streck et al.2008 Sus et al.
2.1.2 Crop model: structure, parameterization, and 2010 Setiyono et al.2007). DS is calculated as the cumu-
initial conditions lative sum of daily maximum developmental rate (R

multiplied by f(T) and f(P). For maize,f (T) is the only
control on developmental rate throughout the crop’s life cycle

The Soil Plant Atmosphere (SPA) modé&Vifliams et al, L
1996 200]) is a process-based model that simulates ecosys\!vIthln SPAc Gtreck et al. 2008. For soybean, crop devel-

tem photosynthesis and water balance at fine temporal an p?e:;'t?l anfSe Etid(gg?r?s)g{ior;]nzogg?(tz%g]; t%ﬂiy’si]]d"l?y
spatial scales (30 min time step, up to 10 canopy and 20 soi}. (P) o Y . ' simp
layers). SPA employs some well-tested theoretical represen-'ed)' B‘?‘SEd on this development—llnked C aIIocqtlon pattern,
tations of ecophysiological processes, such as for the Ca'CUéfﬁitigugtgf ;hnes ag?gitr:zne?;; tgnrgeotsé fog%geed ‘:’:ﬁ:ﬂf’h
lation of photosynthesis (the Farquhar modegrquhar and ge organs.. 9 > 9 9
von Caemmeref.982 and leaf-level transpiration (Penman— photosynthesis is mainly allocated to leaves and roots at ap-

Monteith equation, Jones 1992, These two processes are proximately equal amounts. However, C allocation begins

linked by a model of stomatal conductance, which optimisestO favour growth of stems as the crop matures throughout

the daily gain of C per unit of leaf nitrogen within the lim- >7'!"J tgojérgsgolr)'alilt':nbteggrfea'r'o?jisé?v"eatefageﬁn?;&

its of canopy water storage and soil to canopy water transporE 9 9 P P .
(Williams et al, 1996. A C mass balance model as described eaf senescence for both crops is calculated as the bigger
in Williams et’al (20'03 has been added to SPA, and & C value of leaf senescence rate due to mutual shadingy(SR

photosynthesis model based Gollatz et al. (1992 was in- if LAl >5) and leaf senescence rate as a function of phys-
tegrated ' iological maturity or age (SRe if DS> 1, van Laar et a.

oreover, rop G parting scheme end a deveop {900, 1€ 59 SRei0 Heeete oporeiab BB 0
mental model have been added (SPA version 2 — C3o, 0 9 gans.
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88°25'W 88°15'W window). We found 104 pixels that met the defined require-
togend o || X ) e z ments, 59 with maize sown in year 2000 (and with alternating
Smee g i o) PehedCl. - 5 crop types in following years), and 45 with soybean (Rg.
o = Pk . [
Bondville r - FeThc : R 2.3 Step 3: extracting single-field crop VI time series
flux tower g & & £
g e . AT § We downloaded MODIS Terra (MOD13Q1) and Aqua
3, BT IP R g - L N (MYD13Q1) collection 5 (C5) 250 m data subsets from the
e Y = Oak Ridge National Laboratory Distributed Active Archive
=8 S | r Yot B ” z Center ORNL, 2010. Apart from vegetation indices, these
i 4 T o b MODIS data products also contain the red and NIR re-
/\ 5 3"“-%; oy T L ‘@ . " flectance values themselves. We decided to remove all
N 0o 5 10 20 MODIS observations with a viewing angte 40°, which
— Kilometers eliminates all pixel distortions of factor 1.6 (Wolfe et al,

Fig. 2. The crop data layer of the study area. Selected MODIS com-lgga' '!'hus, we expect only minor n_eighbo_uring effects in
posite coordinates are indicated (grey crosses). The study area € retrieved Bondville MODIS data time series. Note that at

dominated by maize (yellow) and soybean (green) cultivations. ~ theé Bondville site our criterion for minimum crop type cov-
erage as defined earlier is not strictly met (Hil).
We extracted MODIS time series information for all 104

SPAC sensitivity to parameters controlling crop establish-S€lected pixels and all study years. We applied a filter to
ment and development has been analysed for cereal crop%creen for pixel values affected by thick clouds by excluding

in Sus et al(2010. Particularly small changes in cumulative 2l composite data with a blue reflectance value-0t0%
NEE were found for a 25 % change in model parameters con(S""k""mOt0 etal2009, and removed all composite data with

trolling timing of emergence< 0.1 % change in cumulative 2 reliability of> 1 (i.e. pixels most probably cloudf)RNL,
NEE), critical LAl beyond which self-shading senescence 2010. Toimprove temporal accuracy of the retrieved VI time
is triggered & 5%), and maximum senescence rate due toSeries, all MODIS data were associated with their true obser-
self-shading € 1 %). SPAc is particularly sensitive towards Vation date using the “composite day of year” information

changes in DRax (< 20 %), and temperature<(29 %) and (Solano et al.2010). .
photoperiod & 30 %) developmental parameters. To scale from modelled LAl to modelled VI, we applied an

SPAC runs were conducted for three different plant func_empiricgl re_lationship based on the renormalized difference
tional types: maize, soybean, and @eed grasses grow- vegetation mt_jex (RDVI, developed by-_laboudane et al.
ing in fallow periods between harvest and sowing. The ini- 2004 for maize and soybeans grown in Ottawa,. Canada).
tial conditions for the SPAc modelling runs were a soil or- The RDVl has. beer_l deyeloped n ordgr to gttaln a more
ganic matter (SOM) C content of 1300 g Cfnfor which linearised relationship with vggetatlon biophysical variables
modelled SOM C is in equilibrium, an adjusted litter C con- cOmpared to the NDVIRoujean and Breqnl993. The

tent of 400 g C m? to reflect annual variability in litter C as RDV!is defined as

observed byverma et al.(2009, and a labile C content of ppy/ — _PNIR — Pred )
10gCnt? at sowing for soybean and maize (i.e. the seed VPNIR F Pred’

C content, approximated froubinet et al, 2009 and of
1gCnr?2 after harvest for the fallow periodzGveed crop 0002«
(approximated value). LAl = 0.0918x expP-0002<RDVI, (2)

When comparing RDVI-derived LAl with ground truth
measurementsjaboudane et a{2004 found ank? of 0.90—
0.95 and an overestimation of LAl values5 m? m=2. The
X . coupling of a canopy transfer model to the crop C mass bal-
that are centred over single field MSCRs, USDA-NASS (Usance model for the provision of a modelled VI output is be-

Department of Agriculture—National Agricultural Statistics yond the scope of this study, but has been teste@ugife

Service) Cropland Data Layers (CDLs) were used as a Clasét al. (2009, who assimilated MODIS spectral reflectance

S|f|cat|or_1 basis (30 m ground resolution, total Crop mapping aiher than LAl-product data into an ecosystem model.
accuracies range from 85% to 95% for major crop cate-

gories, Boryan et al, 2011). The seven NASS CDL raster 2.4 Step 4: determination of individual sowing dates for
images (one for each year in 2000-2006) served to extract  each pixel

time series of those MODIS pixels for which we find mini-

mum requirements of crop type coverage to be satisfied (i.eWe ran SPAc 80 times in forward mode (i.e. no data assim-
> 95 % coverage of crop type within a 500500 m search ilated, forced with Bondville observed meteorology) for all

and the empirical relationship as

2.2 Step 2: selection of field patches

For the identification of MODIS VI time series coordinates

Biogeosciences, 10, 2452466 2013 www.biogeosciences.net/10/2451/2013/
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mance after DA updates only of LAl and root C mass, but
for the purpose of model diagnosis and validation, the state
vector contained all above- and belowground biometric vari-
ables and the RDVI. We selected a model uncertainty of 1 %
for all biometric variables, and a higher uncertainty of 10 %
for the RDVI in order to account for additional uncertainties
in scaling from LAl to RDVI. We used the temporal separa-
tion approachHKollinger and Richardsqr2005 to estimate
RDVI uncertainty, defining any differences in MODIS val-
ues that are< 4 days apart as data uncertainty originating

. ° from various sources such as sensor calibration and atmo-
« “O"%@M&f spheric conditions. This approach produced an uncertainty
o l=owe ®o e N value of £0.017 s.d. for the RDVI, which is comparable

Mar May il Sep Nov  Apr ey o to the MODIS Land Discipline Team (MODLANDAttp:

Fig. 3. Left panels: model LAI curves are shown for maize (top) /Imodis-land.gsfc.nasa.ggwalues for the NDVI £0.025)

and soybean (bottom) and 5 different sowing dates (DOY 90, 110@nd EVI (& Q-015)- We chose an Qnsemble size of 50 mem-
130, 150, 170, black lines) for one study area example field patchbers, for which we found stabilising RMSE between SPAc

MODIS LAl values are shown as grey dots. Model LAl with lowest modelled and observed NEE in a previous stuslyg 2011,
squared residuals is shown as coloured line. Right panels: square8ect. 4). Similarlyde Wit and van Diepe(007) found that
residuals between model LAl and MODIS LAl for each of the 80 the soil moisture ensemble mean of a crop model can be well
sowing dates and maize (top) and soybean (bottom). The coloure@stimated with an ensemble size of 50, and improvements are
dot depicts the lowest squared residuals value. small when this metric is increased to 100.

60

40

20
squared residuals [(m? m™)?]

LAI[m? m™3

10 20 30 40 50 0

0

104 selected pixels and each year of the study period, buy Results

each time with a different sowing date. These sowing dates

span a range of day of year (DOY) from 90 to 170, thus3.1 Simulated sowing dates

encompassing reported usual values for maize and soybean

in lllinois (USDA, 1997). We expect that the application of Sowing date is a key control of LAl magnitude and sea-
uniform meteorology over the study area has negligible ef-sonality. A model run initialised at the earliest sowing date
fects on model performance regarding spatially continuougDOY =90) of maize produces a maximum LAl value about
climate variables such as temperature and vapour pressutaice as large compared to a model run initiated by the end of
deficit. However, the spatial distribution of precipitation is the plausible range of values (DOY =170, F8). The tim-

not accounted for. Modelled field patches are located lessng of these maximum LAI, dependent on sowing date, can
than~ 16 km away from the flux tower, and so their water be up to 2 months apart. For soybean, maximum LAl is less
balance is subjected to manageable uncertainty. Out of theensitive to sowing date, but a strong control on seasonality is
resulting 80 modelled LAI curves, we solved for the sowing obvious as well. Due to its sensitivity to day length and its in-
date with the minimum sum of squared residuals between itgleterminate character (meaning that vegetative and reproduc-
corresponding modelled LAI and the MODIS-derived LAl tive phases overlap), soybean is, phenologically speaking,
data over the entire calendar year. In order to compare oumore stable than maize. The duration of leaf growth and thus
estimation of modelled sowing dates with general patterns oimaximum LAI are less strongly affected by delays in sow-
land management within the wider area, we referred to NASSng date. There is a clear minimum of squared residuals as
crop progress reports for two neighbouring census districtsa function of sowing date for the example maize field patch,
but note the study area’s limitation in spatial representivity whereas a range of sowing dates spanning about 1 week ap-

with respect to the crop census districts (Fig). pears plausible for soybean (FR). The example illustrates
both the model’s sensitivity to sowing dates, and that an op-
2.5 Step 5: model upscaling through MODIS VI DA timal sowing date can be determined within an uncertainty

range oft3 days. It remains to be determined whether a sow-
DA can be considered as a set of techniques that aims dhg date optimisation for seasonality rather than magnitude
finding an optimal combination of observations and models,would further improve the phase agreement of observed and
referred to as the “analysisMathieu and O’Neil] 2008. modelled LAI.
For this study, we selected — apart from batch-calibration of Study-area-modelled sowing dates broadly reflect ob-
sowing dates — the EnKF approach for model state estimaserved trends of planting progress as reported by NASS for
tion as such a DA techniqu&yensen2003 Williams et al, the two crop census districts, but discrepancies exist @fig.
2005. We expected considerable changes in model perforExcept for 2003, modelled soybean sowing dates are at least

www.biogeosciences.net/10/2451/2013/ Biogeosciences, 10, 24%5-2013
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ward (no sequential DA) run forced with farmer reported
sowing dates (FWrep), (2) as FWrep but with sequential
MODIS DA (DArep), (3) model forward run forced with
modelled sowing dates (FWmod), and (4) as FWmod but
with sequential MODIS DA (DAmod).

Ground-observed and MODIS-derived LAl generally
agree well with each other at Bondvill&R{ = 0.74), but
MODIS data are negatively biased (mean error (ME, i.e.
o oD mean of MODIS LAl minus Bondville ground-truthy=
- s —0.49 P m~2, RMSE= 1.08 m* m~2, Fig. 5). The agree-

soypean ment is particularly strong with regards to the observed sea-
T NRSE sonality of LAI evolution of maize and soybean, which is in
" e turn largely controlled by site-specific sowing dates. How-

ever, maximum ground-observed LAl values are often un-
Fig. 4. Crop sowing progress for the study area and the two sur-dereStIrnated by MODIS, e.g. by 0.5-1 mf mTZ fo_r mglze
rounding NASS census districts (east and east—south east) for te003 and soybean 2005, but note overestimation in 2004.
seven study years (2000-2006). MODIS-derived model estimateODIS-derived LAl is mostly< 0.3 m? m~2 during fallow
(circles) and NASS reported values (triangles and squares) ar@eriods.
shown as percentage of crops sown within the respective regions. The sequential assimilation of MODIS RDVI data gen-
Reported sowing dates for the Bondville EC flux site are indicatederally improves the simulation of LAl by reducing a neg-
by dashed vertical lines (red: maize; green: soybean). ative bias (ME= —0.45 me m—2 (FWrep), —0.41 (DArep),
—0.57 (FWmod),—0.40 (DAmod)) and constraining sea-
sonality (Fig.5), which is generally better captured than
1-2 weeks later than maize (as also reported by NASS andverall magnitude. With the assimilation of MODIS RDVI
USDA, 1997. NASS observations and MODIS-derived sow- (DAmod), modelled LAl is now generally closer to ground-
ing dates are closest in 2005 for both cropsi(week dif- truth data R? increased by 0.10, RMSE reduced-y20 %).
ference). Soybean sowing dates appear better reproduced I&yrowth of G grass is reduced due to the assimilation of rel-
MODIS than those of maize, which are generally premature atively low RDVI during fallow periods. Sequential DA suc-
100 % sowing progress of maize is often reached by end otessfully informed about rapid growth following late sow-
April, whereas reported sowing activity often lasts well into ing of the soybean crop in 2002 (which was underestimated
May. Model-observations differences are most obvious inby FWmod, Fig.5), and thus appears suitable for correcting
2002 and 2003. model deficiencies during anomalous years.

In contrast to the above, a comparison of farmer reported Growing season observed NEE data are generally well re-
(i.e. directly observed, not NASS-derived) and simulatedproduced in terms of magnitude and seasonality, with rel-
sowing dates for the Bondville site shows that modelledatively similar model fits for all experimentsk2 = 0.55
maize sowing DOYs, except for 2001, are overestimates (re{FWrep), 0.53 (DArep), 0.56 (FWmod), 0.55 (DAmod).
ported+ modelled DOY (year): 109108 (2001), 108-118 Model bias is reduced through sequential DA (ME (mod. —
(2003), 116+ 127 (2005)), whilst soybean sowing DOYs are obs.)=0.99 g Cnt2d~1 (FWrep), 0.65 (DArep), 1.15 (FW-
only slightly underestimated (158152 (2002), 124 123 mod), 0.76 (DAmod)). However, there are still discrepancies
(2004)). The Bondville data also show that reported sowingin terms of a delayed start of the crop C assimilation phase
of the 2002 soybean crop is clearly delayed due to abnormal2002), timing/rate of senescence (data not shown), and of an
precipitation in April-June, which is well reproduced by the overall underestimation of the growing season sink strength
MODIS-based model value. Except for 2003, Bondville ob- as indicated by biases. Sequential MODIS DA appears gener-
servations are within the 40-80 % range of modelled sowingally useful to correct for model deficiencies during growing

20 40 60 80 100

0

-
©
S .

crops sown [%)]

20 40 60 80 100

[o]

progress (vertical coloured lines in Fig). seasons, but the informational content about fallow season
C3 grass growth and C assimilation needs further validation.
3.2 Proof of concept — sequential assimilation Cumulative all-year NEE is generally overestimated by
of MODIS RDVI time series at Bondville model experiments (by- 600 g C nT2 after 5yr), with this

overestimation being- 100 g C nt2 larger for experiments
Our assessment in this section is twofold: firstly, to analysewith modelled sowing dates (data not shown). In general,
whether sequential MODIS DA improves C flux and biomassthere is little difference in final estimates between FW and
estimation when SPAc is driven with reported sowing dates.DA experiments £« 30 g C nT2). Observations and experi-
Secondly, we conduct the same analysis for SPAc outputsnental data are rather close until before weed grass growth
under satellite-derived (i.e. modelled) sowing dates. We conin spring 2003. A careful analysis of these data should bear
ducted the following 4 model experiments: (1) model for- in mind that “observed” cumulative NEE is estimated on the

Biogeosciences, 10, 2452466 2013 www.biogeosciences.net/10/2451/2013/
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Fig. 5. Observed (black circles), MODIS-derived (red circles), and modelled LAl (experiments FWmod and DAmod, black and red lines)
for the Bondville EC flux tower site, 2001-2006. The vertical dashed lines denote farmer reported sowing and harvest dates for the flux site.
The red arrow in July 2004 denotes the location of maximum MODIS-derived +/4.1 m?m~2, not shown in figure).

basis of both measured and gap-filled half-hourly NEE. Ofsponsible for overall positive observed NBP after five years,
the data analysed here,51 % of half-hourly NEE is gap- as the ecosystem loses on average9 g C n2yr—1 during
filled. other years. Observed NEE is clearly lower than modelled for
Whereas Bondville measurements suggest that this no-tilmaize, but equal to or larger during soybean years. In terms
agroecosystem is still a C sink after accounting for harvestedf NEE, simulated sink size is larger for maize than soybean
C mass (NBP = 209 g C nf, with NBP defined as net biome (by ~ 54 g C nT2yr—1), but maize is a stronger source of C
productivity, = —NEE — Cstor), model data suggest that the (by ~ 71gCnr2yr-1) in terms of NBP (Table 1).
MSCRs are about C neutral at best (NBR-17 (FWrep), Model yield is on average 130 g C nT2 higher for maize
—58 (DArep), —64 (FWmod),—256 (DAmod) g C nT?). than soybean. Yield variability is- 9% of the study area
The gap between FW and DA model data primarily resultsmean for both crops. Compared to Bondville observations,
from the failure of sequential MODIS DA to inform about model Gy is on average~ 1309Cn‘r2 lower for maize,
fallow season C uptake and upward corrections of simulatedind about equal to larger for soybean (by24gCnt2 on
yield (see also Figs, but note that model data are study area average, but note differences to farmer reported yield). Max-
averages, and Bondville-only model data are not shown). imum LAl of soybean is on average 2.6 m2 m—2 greater
than that of maize, and study area variabilities of both

3.3 Upscaling — cropland C cycling within the study crops are comparable-(0.5 m? m—2). Differences between
area after sequential MODIS DA model values and observations are, except for 2004, within
o 0.5nfm—2 (Table 1).
3.3.1 Statistical assessment of study area model In general, assimilation of RDVI data through the EnKF
averages and observations resulted in considerable updates in state variables LA, leaf,

and root C mass. Whereas LAl (but not leaf C mass) changes
have significant consequences on gross primary productivity
(GPP) and thus C cycling, changes in root C mass slightly
altered model sensitivity to drought. Stem and storage or-
gan C mass showed only small to moderate updates, and
are not physiologically integrated into the model. Biomet-
ric updates had no immediate consequences on autotrophic
respiration, which within SPA is simulated through the
gradual turnover of a respiration C pool and thus is not
directly biomass dependent.

Averaged over 104 pixels, the annual cumulative NBP of
the study area is positive for soybean (13gCiyr—1)
and negative for maize (58gCnr2yr1, Table 1).
Through DA, we are able to quantify a considerable spa-
tial variability of cumulative NEE (mean standard devia-
tion: 62gCnT2yr~1 (maize), 38gCm?yr-1 (soybean))
and NBP (72gCm?yr—1 (maize), 47gCm?yr-1 (soy-
bean)) within the study area. This shows that the NBP
of both crop rotations is not significantly different from
0, which is also true for most individual growing seasons
including fallow periods.

Observed NBP is negative for four years, but strongly pos-
itive in 2003. The strong sink in 2003 alone is largely re-
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Table 1. Observed (at Bondville) and study area model averages and standard deviations for maximun® Imlzomstorage organ C at

maturity (StOrg (g C m2)), and all-year cumulative NEE and NBP (g CRyr—1). Observed storage organ C is shown for field dry matter
samples, and farmer reported values (in parentheses). Bold model values are same crop types as at Bondville. Model values (experimer
DAmod) are averages of all soybean (SB) or maize (MZ) field patches in a given year. Data are only shown for years when Bondville dry
matter data are available for comparison (2001-2005).

2001 2002 2003 2004 2005 mean >
LAI
obs 4.7 5.6 6.0 6.3 4.5 - -
SB 7.3+ 0.3 6.1+ 0.6 74+04 7.9+ 0.5 7.7£0.5 7.4+ 0.5 -
MZ 52+04 38+£07 55+03 49+03 41+£04 48+£05 -
StOrg
obs 487 (474) 217 (174)  545(542) 267 (169) 635 (463) - -
SB 278+ 24 204+ 24 297+ 22 329+ 34 312+ 29 290+ 27 -
Mz 441+ 38 239+ 45 472+ 36 509+ 33 383+ 38 420+ 38 -
NEE
obs —405 —143 —992 —252 —-570 —-316 —2362
SB —287+42 —-139+27 —-342+40 —-358+48 —-357+34 —-297+38 —1483+87
Mz —333+£72 -204+73 —-492+48 —-430+49 —-296+66 —351+62 —1755+ 140
NBP
obs —82(—69) —74(-31) 447(450) —15(83) —65(107) 29 (95) 211 (540)
SB 9+48 —65+36 45+ 46 29+ 59 45+ 45 13+ 47 63+ 106
MZ  -108+81 35486  20+60 —79+59 —87+76 -58+72 —210+164
3.3.2 Time series analysis of modelled and ages of modelled soybean—maize rotations generally reflect
observed NEE and NBP interannual patterns in SoS and end of season (EoS, i.e. tim-

ing of source-crossover after SoS) as observed at Bondville

Simulated study area average values are 240 to 300T7C m (Table 2), but' discrepancies .exist. Model-derived SoS are
lower than the Bondville cumulative NEE flux data value 9€nerally earlier than Bondville values (by 2weeks on

(~ —2970gCnT2) after the seven study years and when 3Verage, soybean—maize (SM) rotations in Table 2), and

only considering the growing season C balance (sowing—DOYS are closer to Bondville values for soybean than maize

harvest, Fig6a). For all season NEE data however (Fél), years. This premat.urity in SoS is even larger for maize—
the gap between modelled and observed NEE by end ofPyPean (MS) rotationsx(25 days) and the study area flux

2006 is somewhat smaller and its sign has changeth@to ~ average (AV,~23days). In 2002, model SoS values are
2249 C 2 higher than Bondville observations). The study > 1.5months premature (MS and AV). These discrepancies

area-wide modelled NEE variability has a standard devia-2"€ smaller for EoS estimates, which are again generally
tion of ~+87 to 140gCm? after 7yr. Observed cumu- €arlier than “observed” by- 5 days (SM)~ 11 days (MS),
lative NBP data indicate a net sink 6f211gCnv2 after ~ @nd~ 4days (AV). Consequently, modelled average grow-

five years, however with changing sign so that observationdnd séason length (GSk EoS— SoS) is about 9 to 20 days

are a mix of source and sink years. Modelled crop rotationd®nger than derived from Bondville measurements.
indicate a net source of 12 to 208 g C m? (Fig. 6¢c). Note Moreover, the Bondville flux data appear representative of

that these values are similar to values shown for specific cropp™ rotations within the study area. The magnitude of mod-

types (i.e. not crop rotations) in Table 1. Model data are closef!!€d growing season C fluxes reflects observed patterns well
to Bondville observations until after autumn 2001 (dashed(9réen linein Fig7a). Fallow season weed growth (C uptake)

line in Fig. 6¢), but subsequently a gap continuously builds 2nd décay (C emission) are not reproduced, but post-harvest
up during fallow periods (especially spring 2003). NEE fluxes (dominated by crop residue decomposition) are

Most importantly, model data suggest clear differencestose to measurements. As expected, modelled MS rotations
in the seasonality of MSCR C fluxes within the study area ("ed line in Fig.7a) clearly differ in growing season C uptake

compared to observations. These differences are mainly af'@gnitude and seasonality during all study years.
tributable to earlier estimated start of season (SoS, i.e. tim- 1€ pattern of study area mean model fluxes reveals the

ing of sink-crossover after sowing using a 10 day moving av-Y&2ar-to-year variability in regional ecosystem sink strength
erage of the time series analysed) values. Study area avefP!ack line in Fig.7b, which is the average of all maize and
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Table 2. Observed (obs., at Bondville) and modelled (mod.) start of season (SoS), end of season (EoS) DOYs, and growing season length
(GSL) in days. Model data (experiment DAmod) are shown for pixels with soybean grown in even years (soybean—maize (SM), as Bondville
site rotation), with soybean grown in odd years (maize—soybean (MS)), and averaged over all pixels (AV). ME = mearodrroobs.).

2000 2001 2002 2003 2004 2005 2006 mean ME

Bondville crop soy maize soy maize soy maize soy

SoS

obs. 166 139 184 155 152 150 155 157 -
mod. (SM) 160 123 182 127 145 130 132 143-14
mod. (MS) 126 139 130 132 110 156 128 132-25
mod. (AV) 145 131 131 130 131 135 130 134-23
EoS

obs. 238 242 254 236 231 242 259 243 -
mod. (SM) 244 216 256 229 249 215 256 238 -5
mod. (MS) 216 246 212 252 219 252 227 232-11
mod. (AV) 225 239 241 236 243 244 245 239 -4
GSL

obs. 72 103 70 81 79 92 104 86 -
mod. (SM) 84 93 74 102 104 85 124 100 14
mod. (MS) 90 107 82 120 109 96 99 95 9
mod. (AV) 80 108 110 106 112 109 115 106 20

soybean pixels for each year), rather than sink strength varimental for the merits of our sequential DA procedure during
ability due to G/C4 crop type rotation. The magnitude of senescence, the simulated timing and rate of which still need
C sink strength in 2002, when sowing dates have been reimprovement Kucharik and Twing2007 Sus et al.2010).
ported to be particularly late, is considerably lower compared Upscaled differences between MODIS-derived sowing
to other years. As expected, model data show larger (lowerflates and NASS-observed values are indicative of deficien-
C uptake during Bondville soybean (maize) growing periodscies in model LAl and photosynthetic potential under ambi-
than observed. Clear seasonality shifts towards earlier DOY&nt climatic conditions (Figd). As modelled maize sowing
are most obvious during Bondville soybean years (especiallydates are mostly premature, we conclude that forward mode
2002). green biomass is probably underestimated. In other words, a
negative model bias in maize LAI is compensated by an ear-
_ _ lier start of the growing season. Even though discrepancies
4 Discussion with observations exist (2000 and 2003), MODIS-derived
, ) soybean sowing dates appear more realistic. The reported
4.1 Does MODIS DA improve model reproduction of  ya|ay in sowing progress in 2002 is well captured for soy-
Bondville ground-truth data”? beans, but is not reflected for maize. A more detailed anal-
411 Model improvement through simulated ysis of the quglity of modelled sowing dates is not possi-
sowing dates ble, as sqalg differences between sub-county mo'd.el. data and
census district-level observations (Fi) are prohibitively
Modelled sowing dates allow for a realistic simulation of 'arge- More steps need to be taken to move from a qualitative
NEE seasonality K2 = 0.56 (FWmod) at Bondville site). to a more quantitative validation of satellite-derived sowing

However, C sink underestimation increases simultaneouslyiates (ardlow et al, 2008. Progress in this respect is prob-
by ~ 100 g C nr2 (data not shown). MODIS RDVI was used ably most hindered by the lack of reliable, spatially resolved

as an independent constraint on crop LAI for finding the validation data. . .
model sowing date which best reproduces observed season- | N€ general applicability of MODIS data for sowing date

ality in green aboveground biomass. This procedure Cbarlfssessment has been successfully demonstrated in other stud-

constrains the seasonality of cropland NEE. Most probably €S- Using MODIS NDVI and rainfall dataBrown and

we could have produced a better agreement between otf€ Beurs2008 were able to produce high relationships be-
served and modelled sowing dates by using only (and temtween derived sowing dates and observations for West Africa

2 _ . . .
porally more highly resolved) MODIS data of the vegeta- (R< =0.89). MODIS-derived sowing dates were consistent
tive phase. However, this approach would probably be detri-
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cumulative NEE 41 o study area model variability, shown as shaded aréas(umulative NBP. Maize—soybean rotations: maize sown in
even years, and vice versa for soybean—maize rotations.

with the relative order of sowing of major crops in Kansas caused by an increase in GPP, brought about by an increase
(US, Wardlow et al, 2006. in LAI, or a decrease in weed litter mineralization is compli-
Even though we expect mixed-pixel effects on retrievedcated by the lack of observational constraints. We found clear
MODIS time series for Bondville (Fidlb), there is clear ev- indications that forward model GPP is an underestimate, and
idence that forward model runs with modelled sowing datessequential DA brought GPP closer to EC-derived observa-
(FWmaod) reproduce the agreement of model runs with re-tions through increasing LAI (data not shown). Moreover, as
ported sowing dates (FWrep) with independent validationpublished field data suggedyyanovsky et a).1987), lit-
data (NEE). These findings suggest that modelled sowinger mineralization during the growing period is rather small
dates themselves are suitable constraints for agroecosystefry 15g C nT2growing period? assuming a litter C input
C cycling and biomass growth at the point scale, and alsmf ~ 200 g C nm2 before sowing) compared to GPP and au-
partly compensate for model shortcomings in simulatingtotrophic respiration, and thus of second-order importance.
young crop establishment as indicated by bias towards pre- We further acknowledge that our current model-DA
mature sowing in Figd. Despite this compensation, the qual- scheme is not exploiting the full potential of MODIS VI
itative agreement of the temporal development of modelleddata for constraining agroecosystem C cycling. One defi-
sowing progress with NASS observations suggests that a reciency in our model scheme is the representation of crop
alistic spatial pattern of study area sowing dates is capturedenescence. Adopting a simple modelling approaen (

nonetheless. Laar et al, 1997, simulated crop senescence appears pre-
mature for soybean (Figh), and thus reduces sequential
4.1.2  Model improvement through sequential MODIS DA potential during this developmental phase. Con-
MODIS DA sequently, an improved senescence model is necessary that

. L L provides a better forward model agreement with observa-
Sequential MODIS DA reduces a bias in estimating grow-jons \we expect further considerable benefits from the as-

ing season C fluxes at Bondville (data not shown). This biagsjmijation of MODIS data with higher temporal resolution
is partly a consequence of running SPAc with modelled iN-(e.g. MODO9GQ). Moreover, scaling from MODIS RDVI to
stead of reported sowing dates: in contrast to overall seaf A ysing an empirical relationship is a considerable source

sonality, the magnitude of observed LAI and NEE is then ot ncertainty in this study. However, we expect the influence
less vyeII reproduced. Using smulated sowing dates in mode}, yerived seasonality metrics to be comparably small, as
runs is necessary for capturing the overall observed seajming of Bondville observed biomass growth and decay are

sonality, whereas sequential DA is necessary to compensal§early reproduced. Nonetheless, the application of a canopy
generic model deficiencies and additional biases introduced.

However, understanding to what extent this improvement is

Biogeosciences, 10, 2452466 2013 www.biogeosciences.net/10/2451/2013/
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Fig. 7. Study area averages of modelled NEE fluxes (lines) and as observed at Bondville EC site (grey circles). Model data gapwn are
crop rotations with soybean sown in even years (green line, soybean—maize (SM), as Bondville site rotation), soybean sown in odd years (rec
line, MS), and(b) means over all 104 MODIS pixel locations (black line, average (AV), i.e. not crop type specific). Vertical dashed lines in

(b) denote SoS and EoS dates as estimated from model data (black) and observations (grey).

reflectance model could provide improved estimatesfyC plicable to all agricultural regions with sufficient ground ele-

(Doraiswamy et aJ.2004). ment (i.e. field patch) sizes given appropriate training data.
MODIS data allow for spatio-temporal applications of

SPAc without a priori knowledge on sowing dates. Certaing 2  Are point-scale cropland C flux observations

model deficiencies remain unresolved after DA. SPAc sim- spatially representative?

ulations are less reliable for yield than NEE and LAI, and

improvements in representing yield formation are WarrantedBased on regionally resolved MODIS data, we explored the
for further study. AsDente et al(200§ show, considerable g aia variation in cropland C fluxes. Our results show that,

improvements can be expected through D A. Nonetheless, Whext to local meteorology, regional patterns of land manage-
are confldent.that our methodology provides arepresentativig, o are important drivers of agricultural C cycling and ma-
upsgaled est_lmat? %f. agroEcols\z/étST;g cycling. Qur resurl1tf,or sources of uncertainty if not appropriately accounted for
confirm previous Tindings t gt at.a.con.taln. enoug (Tables 1 and 2). Average relative spatial variability faff
useful information for correcting some deficiencies in global | A, 41d NEE for both crops ranges from 7 % to~ 18 %
BG.CN:S' smluéhﬂas & 40‘;/;)_reduct|oc? of RMS_E mfmé)gféled per year, which propagates into an NBP variability that is
agricu tural uxeshanb |m?_rov?c estimation o .( larger than NBP magnitude. Consequently, observing C cy-
marty et al, 2009. T e beneiits o MODIS DA are particu- cling at one single field with its individual sowing pattern
larly considerable QUrmg years of abnqrmal sowing patteinyg ot gy fficient to constrain large-scale agroecosystem be-
(as 0b§erved here in 2002, Fig, and theirinfluence oncrop ooy in jts total, land management-driven variability.
es_:ta_bllshment and g_rovvth are S?t'" rather poorly_rep_r esented Bondville data considerably deviate from the pattern of C
W'th”.] S.PAC‘ RS DA s also a suitable tool for mitigating UN- fux seasonality produced by spatial heterogeneity in crop-
certainties due to model parameters and weak understandlqgnd management (Fig, Table 2). However, they are com-
of phe.nologlgal processeStockIJ etal, 20.08' There |s_clear parably representative of the large-scale growing season C
value in makmg use of MODIS’ full spgﬂqtemporal richness budget (Fig6). The EC data underestimate upscaled GSL by
when a_lddressmg cu_rren_t_key uncertainties of up_sca_lleq roBg days. Mean study area NEE fluxes contain crop-rotation
modellmg._Thg_appl|cab|I|ty of our DA approach IS "”?'ted “signals” not observed at Bondville. It is plausible that mean
by the availability of crop type classification data outside OfGSL increases when cropland NEE is averaged over sev-
thg US. EOYveVi.r’ M.O D:jS se_ascr)]natlité h?jls been du;e(g 10 PrOg 4 field locations: few “premature” sites will decrease mean
\2” e sucdc al1<55|_ |cat|onk ata 'nL ef dlrz owan q 9 et NEe considerably, as their quickly increasing sink strength
010 and Ukraine Becker-Reshef et 212010, and is ap- is soon larger than the comparably small C losses of fal-

low sites (and vice versa around maturity). That is partly

www.biogeosciences.net/10/2451/2013/ Biogeosciences, 10, 24%6-2013
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why modelled SM rotations show little NEE phase shifts — actual yield, Licker et al, 2010, or possibly the “C se-
compared to observations (Figa), even though growing questration gap” (modelled GSL might correlate with terres-
season metrics differ (Table 2). The accurate quantificatiortrial C uptake, Piao et al. 2007 of major agricultural ar-

of GSL is important, as GSL influences microclimatic vari- eas. DA-derived “observed” GSL metrics could be compared
ables through the longevity of vegetation coveée (Noblet-  with maximum potential GSL to see to what extent farmers
Ducoude et al, 2004 Kucharik and Twing2007), indicates  exploit the full time period allowing for crop cultivation.
farmers adopting longer season cultivars in order to max-

imise yield Sacks and Kucharjlk011), and affects seasonal 4.3 Are study area croplands a sink or source
atmospheric C@amplitudes Keeling et al, 1996 and pos- of carbon?

sibly the terrestrial C balanc®iao et al. 2007).

Differences between Bondville and upscaled NEE are esOur results are a considerable improvement compared to
pecially large in years with non-optimal climatic sowing con- a previous study, where SPAc reproduced daily cropland C
ditions (here in 2002, Figrb). When intense spring precip- fluxes observed at six different European flux tower sites
itation delays field work, NASS reports suggest that farmerswith high accuracy, but growing season cumulative NEE was
use at times relatively short time windows with drier weather clearly overestimated (by- 123gCnt2yr—1 on average,
conditions for crop sowing. This can lead to potentially large Sus et al.201Q Wattenbach et g§l2010. Here, assuming
differences in maize and soybean sowing progress, as themeasured Bondville C budget is spatially representative, ob-
usual time windows for sowing do not overlap. Cool and wet served growing season cumulative NEE is underestimated by
conditions are favourable for pest development, and poten=- 240 to 300 g C m? after 7 yr (Fig.6), which corresponds
tially affect the timing of major phenological events of rain- to~ 10 % of the observed value or an annual underestimation
fed crops. DAmod data suggest that this was the case in 2002 just 34 to 43 g C m?yr~1. All-season cumulative NEE on
when maize sowing and establishment was about normal, buhe other hand is overestimated and closer to the observed
soybean progress was negatively affected by strong precipitasalue, with a deviation of now 110 to 220 g C m2. This
tion. If this modelled difference in NEE seasonality betweenshows that fallow season weed grass C uptake is underes-
the two crops were merely an artefact due to weaknesses itimated by SPAc by~ 350 to 520gC m?, as model soil
MODIS-derived sowing dates for maize, early maize growth C is in equilibrium. A large fraction of this discrepancy is
and C uptake would have been restricted through the sequermxplained by model-observations differences in 2003, when
tial assimilation of low MODIS RDVI data. Instead, model pre-sowing weed growth was particularly intense. Conse-
results suggest that the 2002 NEE seasonality shift @ig.  quently, the underestimation of cumulative NBP falls within
realistic and supported by empirical evidence (NASS). that range{ 420 g C nT2; see green line in Figic, which is

As the seasonality and regional variability of agroecosys-for the same crop rotation as at Bondville).
tem C cycling is considerably sensitive to sowing dates, Hollinger et al. (2009 (but see also Hollinger et al,
the timing of this land management action needs particu-2005 assessed the regional C sequestration potential of no-
lar attention in large-scale simulation runs. Models driventill MSCR based on the Bondville flux data (1997-2002).
with sowing dates that are either static (e.g. soybean withinTheir analysis showed that the annual C sink strength is
LPJmI, Bondeau et al2007) or estimated through tempera- rather small (NBP~ 30 g C n2yr—1). Cumulated over the
ture thresholds (e.g. 2@ for maize in ORCHIDEE-STICS, 5 study years for which &, observations are available (Ta-
de Noblet-Ducoudr et al, 2004 would not be able to re- ble 1), this estimate is comparable to the observed NBP data
produce the observed NEE phase shift and its consequenqeesented here~(211gCnt? after 5yr). However, their
on C budgeting and biometry in 2002. Large-scale applicapublished estimate of cumulative NEE for years 2000—-2002
tions of cropland BGCMs certainly necessitate these simpli-is considerably lower (by- 266 g C nT2) than what we de-
fications, but associated uncertainties are large and need to biwved from the FLUXNET database. EC studies of other
quantified. In contrast to natural ecosystems whose C cyclingnaize and/or soybean agroecosystems indicate C neutrality
primarily responds to climatic constraints and disturbancesat best: a maize—fennel crop rotation in Italy was found to
croplands carry an additional “disturbance” signal providedlose ~ 417 g C nt2yr—1 under organic manure fertilisation
by human management. Sowing progress is clearly linked tqKutsch et al.2010, and rainfed no-till MSCRs were found
atmospheric variables, but their relationship is poorly quan-to be approximately C neutraVérma et al. 2005 or net
tified and difficult to predict from time series analysis of cli- sources of C (40 to 80gCMyr—!, Grant et al. 2007
matic data alone. Baker and Griffis2005.

Future large-scale applications such as for the contermi- The observations analysed provide no clear constraints
nous US could provide a thorough assessment of the currerdn the sign of NBP, and generic uncertainties in EC data
state of agroecosystem C cycling and an improved quantifihave been documentedrfthoni et al, 2004 Falge et al.
cation of the relationship between climate variables and sow2001). The role of fallow season C sequestration necessi-
ing dates. Further, our DA scheme could allow for a detailedtates more detailed analysis. Model data indicate a source
assessment of the “yield gap” (i.e. climatic potential yield of C, but the magnitude of NBP is smaller than its spatial

Biogeosciences, 10, 2452466 2013 www.biogeosciences.net/10/2451/2013/
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variability. However, wind-velocity corrections of Bondville dates as observed here in 2002 add a particularly strong an-
EC data were published recentigchendorfer et al2012), thropogenic signal to large-scale C exchange fluxes. The DA
involving an overall increase in flux magnitude of11 %. scheme developed and tested here appears suitable for ac-
We expect only minor effects of this correction on our resultscounting for human intervention and its knock-on effects on
about observed flux seasonality, but the gap between modecosystem services such as fluxes of C, water, and energy.
elled and observed all-year cumulative NEE will further in- Our approach is a step forward in improving large-scale ap-
crease by~ 230 g C n12 (2000-2006). Regarding these un- plications of BGCMs.
certainties, we are as yet not able to firmly establish the mag-
nitude and sign of NBP for the MSCR agroecosystems of the
study area. However, under the assumption of soil C equilib-AcknowledgementsiNVe acknowledge support from the Scottish
rium, our model data suggest that the region’s no-till crop-AIIiance of Geoscience, Environment and Society (SAGES) and the
lands ¢ 40% of US croplands are no-till Kucharik and University of Edinburgh School of Geosciences (Torrance Bequest
Twine, 2007 are unlikely to be sinks of C. Fallow weed St;gilmsmp)' Obszg’agf&iggta( were provided by NOtAA/AgD?f

: . : rogram, - Cro rogress reports an ata
grass C uptake might have been responsible for convertin yers),pang ORNL DAAC (MODIS sSbgetS). P
the Bondville-observed C balance into a sink.

Edited by: J. Pongratz
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