

1 Biomarkers for aerobic methanotrophy in the water  
2 column of the stratified Gotland Deep (Baltic Sea) – do  
3 they enter the sedimentary record?

4

5 Christine Berndmeyer<sup>a</sup>, Volker Thiel<sup>a</sup>, Oliver Schmale<sup>b</sup>, Martin  
6 Blumenberg<sup>a,\*</sup>

7

8 <sup>a</sup> *Geobiology Group, Geoscience Centre, Georg-August-University Göttingen,  
9 Goldschmidtstr. 3, 37077 Göttingen, Germany*

10 <sup>b</sup> *Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestr. 15,  
11 18119 Rostock-Warnemünde, Germany*

12

13 \*Corresponding author: Tel.: +49-(0)551-3913756; fax: +49-(0)551-397918.

14 *E-mail address: [martin.blumenberg@geo.uni-goettingen.de](mailto:martin.blumenberg@geo.uni-goettingen.de)* (M. Blumenberg)

15

## 16 ABSTRACT

17 Filter samples from the oxic and suboxic zone of the physically stratified  
18 water column and sediment samples of the Gotland Deep, Baltic Sea, were  
19 analyzed for bacteriohopanepolyol (BHP) and phospholipid fatty acid  
20 (PLFA) concentrations. In total, eight BHPs were identified, with the  
21 greatest diversity in the suboxic zone. There, 35-aminobacteriohopane-  
22 31,32,33,34-tetrol (aminotetrol) and 35-aminobacteriohopane-

23 30,31,32,33,34-pentol (aminopentol) indicated (type I) methanotrophic  
24 bacteria and thus aerobic consumption of methane, whose concentrations  
25 decreased concurrently from the anoxic to the suboxic zone. The presence  
26 and activity of type I aerobic methanotrophic bacteria was further supported  
27 by  $^{13}\text{C}$ -depleted PLFAs, specifically 16:1 $\omega$ 8c and 16:1 $\omega$ 5c ( $\delta^{13}\text{C}$  as low as -  
28 41.2‰). However, the relative amount of methanotroph-specific compounds  
29 was low (aminopentol, < 0.2% of total BHPs; 16:1 $\omega$ 8c, ca. 2% of total PLFAs),  
30 suggesting a minor contribution of aerobic methanotrophic bacteria to the particulate  
31 organic matter. The distinctive BHP pattern in the suboxic zone, including  
32 aerobic methanotroph biomarkers and a tentative marker for a pelagic  
33 redoxcline [putative 22S isomer of the ubiquitous 22*R*-bacteriohopanetetrol  
34 (BHT)], was mirrored in the sediment samples. Our data indicate that a  
35 major portion of the sedimentary hopanoids of the Gotland Deep is sourced  
36 from the suboxic part of the water column via an effective, as yet unknown  
37 transport mechanism.

38

39

## 40 **1. Introduction**

41 Microbial methane consumption (methanotrophy) is crucial for the reduction  
42 of methane from marine sediments before it reaches the atmosphere  
43 (Reeburgh, 1976; Wakeham et al., 2004; Reeburgh, 2007). Methane can be  
44 effectively oxidized by microorganisms in the sediment and water column,  
45 using a number of different electron acceptors such as  $\text{O}_2$ ,  $\text{SO}_4^{2-}$ ,  $\text{Mn}$ ,  $\text{Fe}$  and

46  $\text{NO}_3^-$  (Reeburgh, 2007; Beal et al., 2009; Ettwig et al., 2010). As a  
47 consequence, only a low amount of methane is released into the atmosphere,  
48 where it is a highly effective greenhouse gas (IPCC, 2007). Of special  
49 importance for methane production and methanotrophy in the ocean are  
50 stagnant anoxic basins, such as the Cariaco Basin and the Black Sea  
51 (Reeburgh, 1976; Scranton et al., 1993; Wakeham et al., 2004; Reeburgh,  
52 2007). Little is known about methane consumption in oceanic water  
53 columns, but studies have indicated that microbial oxidation of methane  
54 occurs particularly in the suboxic zone, a part of the redoxcline, as has been  
55 shown for the Black Sea (Durisch-Kaiser et al., 2005; Schubert et al., 2006;  
56 Blumberg et al., 2007; Wakeham et al., 2007). The redoxcline, the  
57 transition zone between the oxic and anoxic layer of the water column, is an  
58 important element, as it acts as a relatively stable region for several  
59 biogeochemical transformations (Schubert et al., 2006). Like the Black Sea  
60 and the Cariaco Basin, the central Baltic Sea is characterized by a stratified  
61 water column as a result of freshwater supply from rivers, and salt water  
62 from the North Sea. The Baltic Sea is a semi-enclosed marginal sea  
63 composed of a succession of basins divided by sills (Matthäus and Schinke,  
64 1999; Lass and Matthäus, 2008). A connection to the North Sea exists via  
65 the Skagerrak/Kattegat strait (Fig. 1). According to its density, the  
66 inflowing saline North Sea water spreads in intermediate to deep Baltic Sea  
67 water layers and along the bottom, where the sills hamper its progress into  
68 the more distant basins (Reissmann et al., 2009). The frequent but small

69 horizontal inflows from the North Sea have only little impact on the deep  
70 waters of the more distant basins like the East-Gotland Basin and the  
71 Gotland Deep (249 m; Fig. 1) of the central Baltic Sea. Only the rare, so-  
72 called Major Baltic Inflows are able to carry larger amounts of oxygenated  
73 saline waters dense enough to renew the deep water of these basins  
74 (Matthäus and Schinke, 1999; Meier et al., 2006). The abundance of these  
75 inflows has, however, significantly decreased since the 1970s (Meier et al.,  
76 2006) and the last major inflows occurred in 1993 and 2003. Hence, the  
77 deeper central Baltic basins are characterized by longer stagnation phases  
78 of the deep water, leading to high concentrations of methane and S<sup>2-</sup> (Meier  
79 et al., 2006; Schmale et al., 2010). The physically different upper and lower  
80 water masses inhibit vertical mixing and lead to the stratified water  
81 column, where relatively stable physico- and biogeochemical zones become  
82 established, namely the upper oxic zone, the lower anoxic zone, and the  
83 suboxic zone in between. The latter in particular is a highly productive layer  
84 with a rapid turnover of organic material and a high abundance of  
85 microorganisms (Detmer et al., 1993). Anoxic bottom water conditions are  
86 also reflected in the upper laminated sediments of the Gotland Deep and  
87 their increasing organic carbon content, which is related to increasing  
88 primary production because of eutrophication and prolonged phases of  
89 oxygen deficiency (Andrén et al., 2000; Harff et al., 2001). A recent  
90 multidisciplinary study by our group reported initial biomarker, gas  
91 geochemical and microbiological indications for an occurrence of type I

92 methanotrophic bacteria in a water sample from 100 m, i.e. within the  
93 suboxic zone (Schmale et al., 2012). For a detailed view of the aerobic  
94 methanotrophic processes we have now quantitatively studied biomarkers,  
95 including phospholipid fatty acids (PLFAs) and bacteriohopanepolyols  
96 (BHPs, for structures, see Fig. 2) along a profile of several sampling depths  
97 within the oxic and suboxic zones. PLFAs occur in the membranes of all  
98 living cells, but not in storage lipids, and are rapidly turned over in dead  
99 cells (Fang et al., 2000). Some of them can be highly specific for certain  
100 source organisms, such as sulfate reducing bacteria (e.g. Taylor and Parkes,  
101 1983) or aerobic methanotrophic bacteria (e.g. Bowman et al., 1991). Like  
102 the PLFAs, some BHPs are rather widespread among bacteria, such as 22*R*-  
103 17( $\beta$ ),21( $\beta$ )-bacteriohopane-32,33,34,35-tetrol (BHT). Others are highly  
104 specific, such as 35-aminobacteriohopane-31,32,33,34-tetrol (aminotetrol)  
105 and 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), with and  
106 without C-3 methylation are for aerobic methanotrophic bacteria (Talbot et  
107 al., 2008). Here, we have used PLFAs and BHPs to identify the key methane  
108 oxidizing microorganisms and arrive at an estimate of their contribution to  
109 particulate organic matter. At the same time, we aimed at recognizing  
110 individual BHPs that may specify the particular oceanographic situation of  
111 Gotland Deep as a stratified basin. Last, but not least, we studied the  
112 underlying surface deposits to test the potential of BHPs to become  
113 incorporated into the sedimentary record and thus, the utility of BHPs for

114 reconstructing water column stratification and methanotrophy during the  
115 variable Holocene history of the Baltic Sea.

116

117 **2. Material and methods**

118 *2.1. Samples*

119 Filter samples were taken during cruise MSM08-3 (station 271) of the RV  
120 Maria S. Merian in summer 2008. The sampling site is east of Gotland  
121 (57°18.34'N, 20°04.69'E; max. water depth 249 m; Fig. 1). For continuous  
122 CTD (conductivity, temperature, density) profiling, a Seabird sbe911+  
123 instrument was used. O<sub>2</sub> was measured using Winkler's method and S<sup>2-</sup>  
124 colometrically with the methylene blue method, both as described by  
125 Grasshoff et al. (1983). Filter samples of ca. 200 to 250 l were taken from 10,  
126 48, 80, 100, 108, 124 and 135 m water depth using a CTD-pump on  
127 precombusted glass microfiber filters (ø 30 cm; 0.7 µm pore size). The filters  
128 were kept frozen until analysis.

129 Surface sediments were sampled at the same station using a Frahm corer  
130 during research cruise MSM16-1 in 2010. For sediment analysis ca. 2 to 3 g  
131 freeze dried sample was taken.

132

133 *2.2. Bulk CNS analysis*

134 Three pieces (1.2 cm diam.) from different zones of each filter were  
135 combusted with Vn<sub>2</sub>O<sub>5</sub> in a EuroVector EuroEA Elemental Analyzer.  
136 Sediment samples were also analysed for bulk C/N/S. No acidification of the

137 samples was performed, because suspended particulate material in the  
138 Gotland Sea was reported to be free of carbonate (Schneider et al., 2002).  
139 The C, N and S contents were calculated from comparisons with peak areas  
140 from a standard.

141

142 *2.3. Extraction*

143 The sediment samples and half of each filter was extracted (3 x, 20 min.)  
144 with dichloromethane (DCM)/ MeOH (40 ml; 3:1, v:v) in a CEM Mars 5  
145 microwave (Matthews, NC, USA) at 80 °C and 800 W. All extracts were  
146 combined.

147

148 *2.4. BHP acetylation and liquid chromatography-mass spectrometry (LC-  
149 MS)*

150 An aliquot of the extract (25%) was acetylated using Ac<sub>2</sub>O and pyridine (1:1,  
151 v:v; 1 h 50°C; then overnight at room temperature). The mixture was then  
152 dried under vacuum and analyzed for BHPs using LC-MS. LC-MS was  
153 performed using a Prostar Dynamax HPLC system coupled to a 1200L triple  
154 quadrupole mass spectrometer (both Varian), equipped with a Merck  
155 Lichrocarts (Lichrosphere 100; RP C<sub>18e</sub> column (250 x 4 mm)) and a Merck  
156 Lichrosphere pre-column of the same material. The solvent gradient profile  
157 was 100% A (0-1 min) to 100% B at 35 min, then isocratic to 60 min [solvent  
158 A, MeOH/water (9:1; v:v); solvent B, MeOH/propan-2-ol (1:1; v:v); all Fisher  
159 Scientific HPLC grade]. The flow rate was 0.5 ml min<sup>-1</sup>. The MS instrument

160 was equipped with an atmospheric pressure chemical ionization (APCI)  
161 source operated in positive ion mode (capillary temperature 150 °C,  
162 vaporizer temperature 400 °C, corona discharge current 8 µA, nebulizing  
163 gas flow 70 psi and auxiliary gas 17 psi). Peaks from authentic BHP  
164 standards with known concentration (acetylated BHT and 35-aminotriol)  
165 were compared with selected ions (SIM mode) from acetylated BHP peaks in  
166 the samples to determine BHP concentration (external calibration).  
167 Assignment of BHPs via MS characteristics and comparison with elution  
168 times of previously identified compounds. Response of BHPs was corrected  
169 for individual responses of amino- and non-amino-BHPs. The quantification  
170 error was estimated to be  $\pm$  20%.

171

172 *2.5. PLFA fractionation, derivatization, gas chromatography-mass  
173 spectrometry (GC-MS) and GC-combustion isotope ratio mass spectrometry  
174 (GC-C-IRMS)*

175 An aliquot (25%) of the extract was separated via column chromatography  
176 into a hydrocarbon (F1), an alcohol and ketone (F2) and a polar fraction (F3)  
177 using a column ( $\phi$  ca. 1 cm) filled with 7.5 g silica gel 60. The sample was  
178 dried on ca. 500 mg silica gel and placed on the column. After elution of F1  
179 with 30 ml *n*-hexane/DCM 8:2 (v:v) and F2 with 30 ml DCM/EtOAc 9:1 (v:v;  
180 data not shown), F3 was obtained with 100 ml DCM/MeOH 1:1 (v:v) plus  
181 100 ml MeOH. To obtain the PLFAs the polar fraction was separated using  
182 column chromatography of an aliquot (50%) of F3, according to Sturt et al.

183 (2004). Briefly, the column was filled with 2 g silica gel 60 and stored at  
184 120 °C until usage. The sample was dried on ca. 500 mg silica gel and added  
185 to the column. F3.1 (non-polar FAs) was eluted with 15 ml DCM, F3.2  
186 (glycolipid FAs) with 15 ml acetone and F3.3 (PLFA) with 15 ml MeOH.  
187 Both F3 and F3.3 were methylated using trimethylchlorosilane in MeOH  
188 (1:8; v:v; 1.5 h, 80 °C). Double bond positions in unsaturated Me esters were  
189 determined by derivatisation with dimethyldisulfide (DMDS) (Carlson et al.,  
190 1989; Gatellier et al., 1993). The sample was dissolved in 100 µl *n*-hexane  
191 and 30 µl I<sub>2</sub> solution (60 mg I<sub>2</sub> in 1 ml Et<sub>2</sub>O) added. The sample was  
192 derivatised at 50 °C for 48 h. Subsequently, 1 ml of *n*-hexane and 200 µl of  
193 NaHSO<sub>4</sub> (5% in water) were added and the hexane layer was pipetted off.  
194 The procedure was repeated 3 x. The hexane phase was dried on ca. 500 mg  
195 silica gel and added to a small column filled with ca. 1 g silica gel 60. It was  
196 eluted with 10 dead volumes of DCM. The Me esters prepared from the  
197 polar fraction (F3) and the PLFAs (F3.3), and the DMDS derivatized  
198 samples were analyzed with GC-MS using a Varian CP-3800 chromatograph  
199 equipped with a fused silica column (Phenomenex Zebron ZB-5MS, 30 m x  
200 0.32 mm) coupled to a 1200L mass spectrometer using He as carrier gas.  
201 The temperature program was 80 °C (3 min) to 310 °C (held 25 min) at  
202 4 °C min<sup>-1</sup>. Compounds were assigned by comparing mass spectra and  
203 retention times with published data.  
204 δ<sup>13</sup>C of FAMEs from the polar fraction (F3) and the phospholipids (F3.3)  
205 were measured (2 x) using a Trace GC gas chromatograph under the same

206 conditions and equipped with the same column as for GC-MS, coupled to a  
207 Delta Plus isotope ratio mass spectrometer (both Thermo Scientific). The  
208 combustion reactor contained CuO, Ni and Pt and was at 940 °C. Isotopic  
209 composition values are reported vs. Vienna PeeDee Belemnite (V-PDB).

210

### 211 **3. Results**

#### 212 *3.1. Bulk parameters*

213 The highest concentration of particulate organic carbon (POC) of 327 µg l<sup>-1</sup>  
214 was in the surface water sample from 10 m (Table 1). The value was ca. 10 x  
215 those of the deeper water samples. The lowest concentration (27 µg l<sup>-1</sup>) was  
216 at 100 m in the suboxic zone. The samples below showed a steady increase  
217 in POC concentration to 64 µg l<sup>-1</sup> at 135 m. Concentration of total organic  
218 carbon (TOC) in the surface sediment was 109 mg g<sup>-1</sup> d.w. (dry wt.) at 0-2  
219 cm and 105 mg g<sup>-1</sup> d.w. at 6-8 cm.

220

#### 221 *3.2. Physicochemical parameters of the water column*

222 The physicochemical parameters of the water column are given in Fig. 3  
223 (Schmale et al., 2012). The pycnocline was at ca. 75 m. Below the pycnocline,  
224 O<sub>2</sub> decreases to < 0.2 ml l<sup>-1</sup> at ca. 90 m, defining the onset of the redoxcline  
225 and thus the upper boundary of the suboxic zone. H<sub>2</sub>S was first detected at  
226 138 m water depth, marking the upper boundary of the anoxic zone. Methane  
227 of biogenic origin ( $\delta^{13}\text{C}$  CH<sub>4</sub> between -82.4 ‰ and -75.2‰) diffuses upwards  
228 from the underlying sediment into the water column (Schmale et al., 2012).

229 Thus, highest methane concentration was close to the sediment (504 nM at  
230 230 m). Between ca. 135 and ca. 115 m, methane shows a strong decrease in  
231 concentration to near-zero values (Fig. 3), along with a strong enrichment in  
232  $\delta^{13}\text{C}$ . The highest  $\delta^{13}\text{C}$   $\text{CH}_4$  value of -38.7‰ was at ca. 80 m water depth  
233 (Schmale et al., 2012). The relative turbidity showed a maximum at ca. 122  
234 m, possibly caused by the precipitation of Fe and Mn oxides (Dellwig et al.,  
235 2010).

236

### 237 3.3. BHPs

238 Total concentration of BHPs in the water column and sediment are given in  
239 Table 1 and Fig. 3B. Generally, the concentration in the water column was  
240 lower in the oxic than in the suboxic zone (Fig. 3B). The lowest  
241 concentration in  $\mu\text{g g}^{-1}$  POC was in the 10 m sample (37.1  $\mu\text{g g}^{-1}$  POC). With  
242 the exception of the sample from the turbidity maximum (124 m, 765.1  $\mu\text{g g}^{-1}$   
243 POC), concentration are steadily increased with depth and showed a  
244 maximum at the lower boundary of the suboxic zone (135 m, 3640.1  $\mu\text{g g}^{-1}$   
245 POC). Total BHP concentration in the surface sediment samples was 596.6  
246 (0-2 cm) and 373.3  $\mu\text{g g}^{-1}$  TOC (6-8 cm), respectively (Fig. 3B).

247 The BHP distributions are given in Fig. 3C. In general, greater diversity  
248 was found in the samples from the suboxic zone and the sediment. The main  
249 hopanoid at all water depths was BHT (ca. 71% at 10 m and up to ca. 96% at  
250 100 m; Fig. 3C). In the suboxic zone (at 108, 124 and 135 m water depth)  
251 and in the two sediment samples, a second BHT isomer eluting directly behind

252 BHT, was observed, with highest contribution (ca. 4%) in the central suboxic  
253 zone (108 m). Two isomers of BHT cyclitol ether were present at every water  
254 depth and in the sediment. The nature of the isomerism for BHT and BHT  
255 cyclitol ether was not determined. BHT cyclitol ethers were most abundant  
256 in the oxic water samples. Another tetrafunctionalized BHP was 35-  
257 aminobacteriohopane-32,33,34-triol (aminotriol). It occurred in all samples  
258 with the exception of the surface water sample. However, relative  
259 abundance was low - only ca. 2-8% of total BHPs. The only  
260 pentafunctionalized BHP was 35-aminobacteriohopane-31,32,33,34-tetrol  
261 (aminotetrol), which was present in the suboxic zone and the sediment  
262 samples, but not in the shallow water samples. A similar depth distribution  
263 was found for 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol),  
264 which had highest abundance at 108 m water depth, but was not present in  
265 the turbidity maximum (124 m). Abundances of aminotetrol and  
266 aminopentol were low, with a maximum of ca. 4% for the first (124 m) and  
267 ca. 0.2% for the latter (108 m).

268

#### 269 *3.4. FAs*

270 Concentrations of total FAs and PLFAs are given in Table 1. FA  
271 concentration varied between a maximum of 15.8 mg g<sup>-1</sup> POC at 10 m water  
272 depth and a minimum of 5.5 mg g<sup>-1</sup> POC at 100 m water depth.  
273 Concentration in the suboxic zone was generally lower than at the surface,  
274 with highest values at the lower boundary of the suboxic zone (135 m; 11.8

275 mg g<sup>-1</sup> POC). PLFAs showed a similar trend of decreasing concentration in  
276 suboxic waters, though less pronounced than for FAs. Except for the 48 m  
277 sample, where C<sub>18:0</sub> was the most abundant PLFA, the oxic water samples  
278 were dominated by C<sub>16:0</sub>, while the suboxic water samples were dominated  
279 by C<sub>18:0</sub>.

280 Double bond positions in C<sub>16:1</sub> and C<sub>18:1</sub> FAs were determined. The  
281 concentrations of individual fatty acids are presented in Table 2. Among the  
282 various fatty acid homologues/isomers observed, 16:1ω8c, 16:1ω5c and  
283 16:1ω5t as markers for methanotrophic bacteria were confined to 48 and  
284 135 m water depth, with 16:1ω8c only occurring at 100 m and 108 m (Fig. 4).  
285 The δ<sup>13</sup>C values of PLFAs were also obtained (Table 3, Fig. 4). Minor  
286 depletion was present in 16:1ω8c (-41.0‰; 100 m) and 16:1ω5c (-41.2‰; 108  
287 m).

288

#### 289 **4. Discussion**

##### 290 *4.1. Redox regime in water column of Gotland Deep*

291 Suboxic zones are important sites for microbial processes. The rapid changes  
292 in the water column chemistry occurring over a narrow depth interval  
293 support a number of different microbial metabolisms, ranging from oxic  
294 respiration to sulfate reduction, methanotrophy and methanogenesis, (Teske  
295 et al., 1996; Labrenz et al., 2007). The redox regime in the water column of  
296 the Gotland Deep during the time of sampling has been recently described  
297 in detail (Schmale et al., 2012). Briefly, O<sub>2</sub> concentration below the

298 thermocline rapidly decreases with depth, with  $0.2 \text{ ml l}^{-1}$  reached at ca. 90  
299 m, marking the upper boundary of the suboxic zone. The lower boundary is  
300 defined by the onset of  $\text{H}_2\text{S}$ , first detected at ca. 138 m. Thus, the suboxic  
301 zone at the time of sampling was ca. 48 m thick. Methane concentration  
302 showed a strong decrease from the anoxic zone towards the center of the  
303 suboxic zone, along with enrichment in  $^{13}\text{C}$   $\text{CH}_4$ . Both features indicate  
304 methane consumption (Schmale et al., 2012). The POC concentrations was  
305 in good agreement with summer values from Brettar and Rheinheimer  
306 (1992). Maximum values in both cases occurred above the thermocline,  
307 corresponding to the zone of phytoplanktonic primary production in the  
308 euphotic zone. A second maximum at 135 m was consistent with a high  
309 abundance of microorganisms at that depth and/or organic particles  
310 accumulated at the suboxic/anoxic boundary.

311

#### 312 *4.2. General biogeochemical aspects from BHP distributions*

313 In total, eight BHPs were found, but most of the compounds were rather  
314 non-specific with respect to bacterial groups. BHT, BHT cyclitol ether and  
315 aminotriol are produced by various bacteria such as acetic acid bacteria,  
316 cyanobacteria, purple non-sulfur bacteria, methanotrophs, methylotrophs,  
317 and others (Rohmer et al., 1984; Neunlist and Rohmer, 1985a, b; Talbot et  
318 al., 2003a,b, 2008; Talbot and Farrimond, 2007). These non-specific  
319 hopanoids constituted  $> 90\%$  of all BHPs. Surprisingly, the lowest  
320 concentrations occurred in the samples from the euphotic zone (Tab. 1),

321 where POC concentration and abundance of eukaryotic primary producers  
322 and cyanobacteria were highest (Detmer et al., 1993; Labrenz et al., 2007,  
323 Tab. 1). Cyanobacteria are commonly regarded as important producers of  
324 BHPs in aquatic environments (Summons et al., 1999, 2006). Likewise, the  
325 euphotic zone bacterioplankton was reported to be the main source of BHPs  
326 in sediments of the Black Sea (Blumberg et al., 2009b). The low  
327 abundance of BHPs in the euphotic zone of the Gotland Deep may be  
328 explained by either the time of sampling, when cyanobacterial blooms hadt  
329 yet occurred, or by a generally low abundance of BHP producing  
330 phototrophic bacteria in the central Baltic. The latter idea is supported by  
331 the fact that the key-cyanobacteria in the central Baltic Sea (Labrenz et al.,  
332 2007) are relatives of the *Synechococcus* group, which contains only a few  
333 BHP producing strains (Talbot et al., 2008; Saenz et al., 2012). Future  
334 studies should test whether or not cyanobacteria are significant source for  
335 BHPs in the central Baltic Sea.

336 The total concentration of BHPs strongly increased in the suboxic zone and  
337 showed a maximum at its lower boundary. This pattern has been described  
338 for the Black Sea (Blumberg et al., 2007; Wakeham et al., 2007), as well  
339 as for the Arabian Sea, the Cariaco Basin, and the Peru Margin (Sáenz et  
340 al., 2011). Although the synthesis of BHPs does not require the presence of  
341 O<sub>2</sub> (Ourisson and Rohmer, 1982), BHPs were long thought to be produced  
342 only by aerobic bacteria (Ourisson et al., 1987; Innes et al., 1997). However,  
343 more recent studies have shown that BHPs also occur in an anaerobically

344 grown Fe(III)-reducing *Geobacter* sp. (Fischer et al., 2005; Härtner et al.,  
345 2005), in bacteria capable of anaerobic NH<sub>4</sub><sup>+</sup> oxidation (Sinninghe Damsté et  
346 al., 2004) and sulfate reducing bacteria (SRB; Blumenberg et al., 2006).  
347 Despite the source for most BHPs not being clear, our data support the idea  
348 that pelagic suboxic zones are an important habitat for BHP producing  
349 bacteria and/or zones where BHPs are physically enriched.  
350 The diversity of BHP structures strongly increased in the suboxic zone. A  
351 methylated BHT occurred at 124 m. The position of the methylation was not  
352 exactly identified, but elution characteristics suggest methylation at C-2. A  
353 2-methyl BHT has been described by Wakeham et al. (2007) at the  
354 suboxic/anoxic boundary and in deeper anoxic water depths of the Black  
355 Sea. A second BHT isomer, eluting shortly after the common 22R-  
356 17 $\beta$ (H),21 $\beta$ (H)-BHT, occurred at 108 and 135 m water depth. Most likely, the  
357 same isomer (BHT II) has also been reported for sediments underlying the  
358 Benguela upwelling system (Watson, 2002; Blumenberg et al., 2010), the  
359 Peru margin (Watson, 2002; Sáenz et al., 2011), the Arabian Sea and the  
360 Cariaco Basin (Sáenz et al., 2011). The nature of the isomerisation has not  
361 been elucidated, but for the Benguela upwelling system a 22S-configuration  
362 was suggested. As in our study, BHT II has been observed only in suboxic to  
363 anoxic environments (Sáenz et al., 2011). Thus, its occurrence in the suboxic  
364 zone of the Gotland Deep supports its utility as a biomarker for marine  
365 settings with an oxic-anoxic interface (Sáenz et al., 2011). Its biological  
366 source(s) of BHT II remain(s) to be identified, but it may be produced by

367 bacteria growing in the suboxic zone. Alternatively, its presence may be due  
368 to yet unclear isomerisation reactions of the common (22R-) BHT, or to  
369 physicochemical accumulation reactions. With the exception of the missing  
370 2-methyl BHT, the diversity and the relative abundances of the compounds  
371 in the lower suboxic zone were reflected in the two sediment samples. This  
372 is contradictory to findings for the Black Sea (Blumberg et al., 2009b),  
373 where BHPs in the sediment were related mainly to a bacterioplankton  
374 source from the euphotic zone. Although BHPs in the sediment reflect  
375 mainly BHPs from the suboxic zone, a partial contribution from other  
376 bacteria living in the sediment cannot be completely excluded. A strong  
377 increase in bacterial numbers of SRB, including *Desulfovibrio*, and  
378 heterotrophic bacteria, was observed in the bottom water and the sediments  
379 of the Gotland Deep (Gast and Gocke, 1988; Bruns et al., 2002), and at least  
380 *Desulfovibrio* spp. are known BHP producers (e.g. Blumberg et al.,  
381 2009a). Nonetheless, the similarity in BHPs in the suboxic zone and the  
382 underlying sediments strongly suggest that microbial processes in the  
383 suboxic water column are an important control on the composition and  
384 sedimentation of organic matter in the Gotland Deep.

385

386 *4.3. Biosignatures of methanotrophic bacteria in the suboxic zone of the*  
387 *Gotland Deep*

388 *4.3.1. BHP and PLFA abundances*

389 Bacteriohopanepolyols specific for methanotrophic bacteria were identified  
390 in the whole suboxic zone and the sediment samples. Aminotetrol is  
391 produced by methanotrophic bacteria (Neunlist and Rohmer, 1985a, b;  
392 Talbot et al., 2001; Talbot and Farrimond, 2007) and - in minor amount - by  
393 SRB of the genus *Desulfovibrio* (Blumenberg et al., 2006, 2009a, 2012).  
394 Aminopentol, although also found in trace amounts in *Desulfovibrio*  
395 (Blumenberg et al., 2012), appears to remain an excellent biomarker for  
396 type I methanotrophic bacteria (Neunlist and Rohmer, 1985b; Cvejic et al.,  
397 2000; Talbot et al., 2001). C-3 methylated BHPs, also common in a number  
398 of methanotrophic bacteria (Rohmer et al., 1984), were not present in the  
399 Gotland Deep suboxic zone. They were also absent from the Black Sea  
400 samples described by Wakeham et al. (2007), but were observed in samples  
401 from the Black Sea suboxic zone (Blumenberg et al. (2007)).  
402 The presence of pelagic methanotrophic bacteria is further supported by FA  
403 biomarkers. To better distinguish between dead cell material and cells  
404 living at the water sampling depth, PLFAs were analysed separately from  
405 the total FAs, as PLFAs reflect signals from living cells (Fang et al., 2000).  
406 PLFA abundance showed a clear maximum in the central suboxic zone,  
407 pointing out the importance of this environment for active microbial  
408 processes. The PLFA fraction strongly decreases at the anoxic boundary,  
409 where dead cell material seems to accumulate. This is in good agreement  
410 with the increase in POC values at this water depth (Table 1).

411 Particularly 16:1 $\omega$ 8c is regarded as a marker for type I methanotrophic bacteria of the  
412 genus *Methylomonas* (type I methanotroph), although it may occur in minor  
413 amount in some species of *Methylococcus*, a type X methanotroph (Makula,  
414 1978; Nichols et al., 1985; Bowman et al., 1991, 1993). As indicated by the  
415 presence of aminotetrol and aminopentol (Fig. 3), type I methanotrophic  
416 bacteria occur in the whole suboxic zone and are not restricted to the 100 m  
417 depth from which they were recently reported (Schmale et al., 2012). The  
418 distribution of 16:1 $\omega$ 8c in our samples supports this finding, although it was  
419 only detected in the central suboxic zone (100 and 108 m) but not at the  
420 lower boundary (Fig. 4). Another FA that is related to type I methanotrophic  
421 bacteria of the genus *Methylomonas* and *Methylococcus* is 16:1 $\omega$ 5t (Makula,  
422 1978; Nichols et al., 1985; Bowman et al., 1993). It was detected at 48 m  
423 water depth and below, with highest concentration at 135 and 80 m, its  
424 concentration, interestingly, decreased at 100 and 108 m, where evidence for  
425 type I methanotrophic bacteria from other biomarkers is strongest. The  
426 16:1/16:0 ratio (Fig. 4) shows, however, the strongest increase in relative abundance  
427 of 16:1 $\omega$ 5t - and all other relevant compounds - at 108 m.  
428 The  $\delta^{13}\text{C}$   $\text{CH}_4$  values in the redoxcline during the time of sampling were -60  
429 to -38‰ between 120 and 80 m water depth (Schmale et al., 2012). The  
430 values for FA from methanotrophic bacteria should therefore also reflect  
431 depletion in  $^{13}\text{C}$ , particularly if type I methanotrophs are key-players  
432 (Jahnke et al., 1999; Schmale et al., 2012). Although PLFAs were considered  
433 as best reflecting in situ microbiological processes, trends in  $\delta^{13}\text{C}$  for FAs and

434 PLFAs were largely identical (Table 2). Fig. 4b shows the  $\delta^{13}\text{C}$  values of  
435 selected PLFAs. 16:1 $\omega$ 7c is a common compound produced by a number of  
436 organisms. Thus, it does not show any peculiarity in its isotopic composition  
437 throughout the water column. In contrast, 16:1 $\omega$ 8c shows a minor, but  
438 significant isotopic depletion ( $\delta^{13}\text{C}$  as low as -41‰). Its values of continuously  
439 decreased with depth into the suboxic zone, although being generally higher than those  
440 of 16:1 $\omega$ 8c and 16:1 $\omega$ 5c. The latter shows considerable  $^{13}\text{C}$  depletions (up to  
441 19‰) only in the central suboxic zone, vs. the sample depths above and below.  
442 This suggests the existence of both, methanotrophic and methane-independent  
443 source organisms for this particular compound. It therefore seems that alternative  
444 PLFA sources obscure the  $\delta^{13}\text{C}$  signals from methanotrophic bacteria. This is  
445 feasible for 16:1 $\omega$ 5c, as a strong increase in the PLFA 16:1/16:0 ratio (Fig. 4) at  
446 the suboxic boundary argues for the increasing importance of SRB (Dowling et  
447 al., 1986; Oude Elferink et al., 1998) According to these observations, in  
448 conjunction with the low concentrations of specific BHPs and PLFAs, the  
449 contribution of type I methanotrophic bacteria to the total bacterial biomass  
450 appears to be low. According to culture data, methanotrophic bacteria  
451 contained 33% of the 16:1 $\omega$ 8c PLFA (Sundh et al., 1995). Consequently, the  
452 abundance of 16:1 $\omega$ 8 has to be multiplied by three to get an estimate of  
453 methanotrophic biomass, and result in ca. 2% of the total PLFA lipid  
454 biomass at 100 and 108 m. The methanotroph-derived PLFA abundance in  
455 the Gotland Deep is similar to that in the Black Sea, where a type I  
456 methanotrophic bacteria maximum of 4% occurred at the suboxic/anoxic boundary

457 (Schubert et al., 2006). Typical biomarkers for type II methanotrophs, such as  
458 18:1ω8c, were absent from the Gotland Deep samples, in good agreement with  
459 molecular microbiological analysis (Schmale et al., 2012). The virtual  
460 absence of type II methanotrophs is a notable difference from the Black Sea,  
461 where these organisms have been observed (Gal'chenko et al., 1988;  
462 Durisch-Kaiser et al., 2005). As for other important biogeochemical  
463 processes (Glaubitz et al., 2009; Labrenz et al., 2010), methanotrophic  
464 turnover at the redoxcline of the Gotland Deep appears to be restricted to a  
465 single group of organisms. Other organisms like the observed type I bacteria  
466 are most likely less adapted to the temporarily changing biogeochemical  
467 situation in the central Baltic Sea.

468

## 469 **5. Conclusions and outlook**

470 Aerobic methanotrophic bacteria thrive in the suboxic zone of the Gotland  
471 Deep water column (Baltic Sea). The methanotrophic community largely, if  
472 not exclusively, consists of type I methanotrophs, whereas there was no evidence  
473 for the presence of type II methanotrophs. Compound concentrations and  $\delta^{13}\text{C}$   
474 profiles of specific marker compounds suggest additional sources and a  
475 generally low abundance of aerobic methanotrophs among the bacterial  
476 community. Our study nevertheless demonstrated an excellent utility of  
477 specific BHPs and FAs, along with compound specific isotopes, to reflect  
478 these aerobic methane-consuming processes in the water column. Moreover,  
479 BHPs in surface sediments perfectly mirror the distinctive distributions in

480 the suboxic zone, demonstrating a strong capability of BHPs to enter the  
481 geological record as markers for stratified settings.

482 Considering the results obtained, a number of interesting questions remain.  
483 It is not known, for instance, how methanotrophic bacteria are affected by  
484 seasonal alteration of the suboxic zone by cyanobacterial blooms, or episodic  
485 salt water inflow. Moreover, the impact of other pathways of  
486 methanotrophy, viz. the anaerobic oxidation of methane, will require further  
487 investigations. Using the potential of BHPs to reflect redoxcline processes in  
488 the sedimentary record, it will be interesting to test the extent to which  
489 microbial methanotrophy played a role in the Holocene history of the central  
490 Baltic Sea.

491

## 492 **References**

493 Andrén, E., Andrén, T., Kunzendorf, H., 2000. Holocene history of the  
494 Baltic Sea as a background for assessing records of human impact in  
495 the sediments of the Gotland Basin. *The Holocene* 10: 687-702.

496 Beal, E.J., House, C.H., Orphan, V.J., 2009. Manganese- and iron-  
497 dependent marine methane oxidation. *Science* 325: 184-187.

498 Blumenberg, M., Hoppert, M., Krüger, M., Dreier, A., Thiel, V., 2012. Novel  
499 findings on hopanoid occurrences among sulfate reducing bacteria:  
500 Is there a direct link to nitrogen fixation? *Organic Geochemistry* 49:  
501 1-5.

502 Blumenberg, M., Krüger, M., Nauhaus, K., Talbot, H.M., Oppermann, B.I.,  
503 Seifert, R., Pape, T., Michaelis, W., 2006. Biosynthesis of hopanoids  
504 by sulfate-reducing bacteria (genus *Desulfovibrio*). *Environmental*  
505 *Microbiology* 8: 1220-1227.

506 Blumberg, M., Mollenhauer, G., Zabel, M., Reimer, A., Thiel, V., 2010.  
507 Decoupling of bio- and geohopanoids in sediments of the Benguela  
508 Upwelling System (BUS). *Organic Geochemistry* 41: 1119-1129.

509 Blumberg, M., Oppermann, B.I., Guyoneaud, R., Michaelis, W., 2009a.  
510 Hopanoid production by *Desulfovibrio bastinii* isolated from oilfield  
511 formation water. *FEMS Microbiology Letters* 293: 73-78.

512 Blumberg, M., Seifert, R., Kasten, S., Bahlmann, E., Michaelis, W.,  
513 2009b. Euphotic zone bacterioplankton sources major sedimentary  
514 bacteriohopanepolyols in the Holocene Black Sea. *Geochimica et*  
515 *Cosmochimica Acta* 73: 750-766.

516 Blumberg, M., Seifert, R., Michaelis, W., 2007. Aerobic methanotrophy in  
517 the oxic-anoxic transition zone of the Black Sea water column.  
518 *Organic Geochemistry* 38: 84-91.

519 Bowman, J.P., Skeratt, J.H., Nichols, P.D., Sly, L.I., 1991. Phospholipid  
520 fatty acid and lipopolysaccharide fatty acid signature lipids in  
521 methane-utilizing bacteria. *FEMS Microbiology Ecology* 85: 15-22.

522 Bowman, J.P., Sly, L.I., Nichols, P.D., Hayward, A.C., 1993. Revised  
523 taxonomy of the methanotrophs: Description of *Methylobacter* gen.  
524 nov., emendation of *Methylococcus*, validation of *Methylosinus* and  
525 *Methylocystis* species, and a proposal that the family  
526 *Methylococcaceae* includes only the group I methanotrophs.  
527 *International Journal of Systematic Bacteriology* 43: 735-753.

528 Brettar, I., Rheinheimer, G., 1992. Influence of carbon availability on  
529 denitrification in the central Baltic Sea. *Limnology and*  
530 *Oceanography* 37: 1146-1163.

531 Bruns, A., Cypionka, H., Overmann, J., 2002. Cyclic AMP and acyl  
532 homoserine lactones increase the cultivation efficiency of  
533 heterotrophic bacteria from the Central Baltic Sea. *Applied and*  
534 *Environmental Microbiology* 68: 3978-3987.

535 Carlson, D.R., Roan, C.-S., Yost, R.A., Hector, J., 1989. Dimethyl disulfide  
536 derivatives of long chain alkenes, alkadiens, and alkatrienes for gas

537 chromatography / mass spectrometry. *Analytical Chemistry* 61:  
538 1564-1571.

539 Cvejic, J.H., Bodrossy, L., Kovács, K.L., Rohmer, M., 2000. Bacterial  
540 triterpenoids of the hopane series from the methanotrophic bacteria  
541 *Methylocaldum* spp.: phylogenetic implications and first evidence for  
542 an unsaturated aminobacteriohopanepolyol. *FEMS Microbiology*  
543 *Letters* 182: 361-365.

544 Dellwig, O., Leipe, T., März, C., Glockzin, M., Pollehn, F., Schnetger, B.,  
545 Yakushev, E.V., Böttcher, M.E., Brumsack, H.-J., 2010. A new  
546 particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins.  
547 *Geochimica et Cosmochimica Acta* 74: 7100-7115.

548 Detmer, A.E., Giesenagen, H.C., Trenkel, V.M., Auf dem Venne, H.,  
549 Jochem, F., 1993. Phototrophic and hetrotrophic pico- and  
550 nanoplankton in anoxic depths of the central Baltic Sea. *Marine*  
551 *Ecology Progress Series* 99: 197-203.

552 Dowling, N.J.E., Widdel, F., White, D.C., 1986. Phospholipid ester-linked  
553 fatty acid biomarkers of acetate-oxidizing sulphate-reducers and  
554 other sulphide-forming bacteria. *Journal of General Microbiology*  
555 132: 1815-1825.

556 Durisch-Kaiser, E., Klauser, L., Wehrli, B., Schubert, C., 2005. Evidence of  
557 intense archaeal and bacterial methanotrophic activity in the Black  
558 Sea water column. *Applied and Environmental Microbiology* 71:  
559 8099-8106.

560 Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S.,  
561 Kuypers, M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D.,  
562 Gloerich, J., Wessels, H.J., van Alen, T., Luesken, F., Wu, M.L., van  
563 de Pas-Schoonen, K.T., Op den Camp, H.J., Janssen-Megens, E.M.,  
564 Francoijis, K.J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.,  
565 Strous, M., 2010. Nitrite-driven anaerobic methane oxidation by  
566 oxygenic bacteria. *Nature* 464: 543-548.

567 Fang, J., Barcelona, M.J., Semrau, J.D., 2000. Characterization of  
568 metahnotrophic bacteria on the basis of intact phospholipid profiles.  
569 FEMS Microbiology Letters 189: 67-72.

570 Fischer, W.W., Summons, R.E., Pearson, A., 2005. Targeted genomic  
571 detection of biosynthetic pathways: anaerobic production of hopanoid  
572 biomarkers by a common sedimentary microbe. Geobiology 3: 33-40.

573 Gal'chenko, V.F., Abranochkina, F.N., Bezrukova, L.V., Sokolova, E.N.,  
574 Ivanov, M.V., 1988. Species composition of aerobic methanotrophic  
575 microflora in the Black Sea. Microbiology 57: 305-311.

576 Gast, V., Gocke, K., 1988. Vertical distribution of number, biomass and  
577 size-class spectrum of bacteria in relation to oxic/anoxic conditions in  
578 the Central Baltic Sea. Marine Ecology Progress Series 45: 179-186.

579 Gatellier, J.-P.L.A., de Leeuw, J.W., Sinninghe Damsté, J.S., Derenne, S.,  
580 Largeau, C., Metzger, P., 1993. A comparative study of  
581 macromolecular substances of a Coorongite and cell walls of the  
582 extant alga *Botryococcus braunii*. Geochimica et Cosmochimica Acta  
583 57: 2053-2068.

584 Glaubitz, S., Lueders, T., Abraham, W.R., Jost, G., Jurgens, K., Labrenz,  
585 M., 2009. <sup>13</sup>C-isotope analyses reveal that chemolithoautotrophic  
586 Gamma- and Epsilonproteobacteria feed a microbial food web in a  
587 pelagic redoxcline of the central Baltic Sea. Environmental  
588 microbiology 11: 326-337.

589 Grasshoff, K., Kremling, K., Ehrhardt, M., Eds. 1983. Methods of seawater  
590 analysis. Weinheim, Germany, Verlag Chemie.

591 Harff, J., Bohling, G., Davis, J.C., Endler, R., Kunzendorf, H., Olea, R.A.,  
592 Schwarzacher, W., Voss, M., 2001. Physico-chemical stratigraphy of  
593 Gotland Basin Holocene sediments, the Baltic Sea. Baltica 14: 58-66.

594 Härtner, T., Straub, K.L., Kannenberg, E., 2005. Occurrence of hopanoid  
595 lipids in anaerobic Geobacter species. FEMS Microbiology Letters  
596 243: 59-64.

597 Innes, H.E., Bishop, A.N., Head, I.M., Farrimond, P., 1997. Preservation  
598 and diagenesis of hopanoids in Recent lacustrine sediments of Priest  
599 Pot, England. *Organic Geochemistry* 26: 565-576.

600 IPCC, 2007. Changes in atmospheric constituents and in radiative forcing.  
601 In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M.,  
602 Averyt, K.B., Tignor, M., Miller, H.L., *Climate change 2007: The*  
603 *physical science basis. Contribution of Working Group I to the*  
604 *Fourth Assessment Report of the Intergovernmental Panel on*  
605 *Climate Change*. Cambridge University Press, Cambridge, United  
606 Kingdom and New York, NY, USA, pp. 41-68.

607 Jahnke, L.L., Summons, R.E., Hope, J.M., Des Marais, D.J., 1999. Carbon  
608 isotopic fractionation in lipids from methanotrophic bacteria II: The  
609 effects of physiology and environmental parameters on the  
610 biosynthesis and isotopic signatures of biomarkers. *Geochimica et*  
611 *Cosmochimica Acta* 63: 79-93.

612 Labrenz, M., Jost, G., Jürgens, K., 2007. Distribution of abundant  
613 prokaryotic organisms in the water column of the central Baltic Sea  
614 with an oxic-anoxic interface. *Aquatic Microbial Ecology* 46: 177-190.

615 Labrenz, M., Sintes, E., Toetzke, F., Zumsteg, A., Herndl, G.J., Seidler, M.,  
616 Jürgens, K., 2010. Relevance of a crenarchaeotal subcluster related  
617 to *Candidatus Nitrosopumilus maritimus* to ammonia oxidation in  
618 the suboxic zone of the central Baltic Sea. *The ISME journal* 4: 1496-  
619 1508.

620 Lass, H.U., Matthäus, W., 2008. General Oceanography of the Baltic Sea.  
621 In: Feistel, R., Nausch, G., Wasmund, N., *State and Evolution of the*  
622 *Baltic Sea, 1952-2005*. John Wiley & Sons, Inc., New Jersey, pp. 5-  
623 44.

624 Makula, R.A., 1978. Phospholipid composition of methane-utilizing bacteria.  
625 *Journal of Bacteriology* 134: 771-777.

626 Matthäus, W., Schinke, H., 1999. The influence of river runoff on deep  
627 water conditions of the Baltic Sea *Hydrobiologia* 393: 1-10.

628 Meier, H.E.M., Feistel, R., Piechura, J., Arneborg, L., Burchard, H., Fiekas,  
629 V., Golenko, N., Kuzmina, N., Mohrholz, V., Nohr, C., Paka, V.T.,  
630 Sellschopp, J., Stips, A., Zhurbas, V., 2006. Ventilation of the Baltic  
631 Sea deep water: A brief review of present knowledge from  
632 observations and models. *Oceanologia* 48: 133-164.

633 Neunlist, S., Rohmer, M., 1985a. The hopanoids of '*Methylosinus*  
634 *trichosporium*': Aminobacteriohopanetriol and  
635 Aminobacteriohopanetetrol. *Journal of General Microbiology* 131:  
636 1363-1367.

637 Neunlist, S., Rohmer, M., 1985b. Novel hopanoids from the methylotrophic  
638 bacteria *Methylococcus capsulatus* and *Methylomonas methanica*.  
639 (22S)-35-aminobacteriohopane-30,31,31,33,34-pentol and (22S)-35-  
640 amino-3 $\beta$ -methylbacteriohopane-30,31,32,33,34-pentol. *Biochemical  
641 Journal* 231: 635-639.

642 Nichols, P.D., Smith, G.A., Antworth, C.P., Hanson, R.S., White, D.C., 1985.  
643 Phospholipid and lipopolysaccharide normal and hydroxy fatty acids  
644 as potential signatures for methane-oxidizing bacteria. *FEMS  
645 Microbiology Ecology* 0: 327-335.

646 Oude Elferink, S.J.W.H., Boschker, H.T.S., Stams, A.J.M., 1998.  
647 Identification of sulfate reducers and syntrophobactersp. in anaerobic  
648 granular sludge by fatty-acid biomarkers and 16S rRNA probing.  
649 *Geomicrobiology Journal* 15: 3-17.

650 Ourisson, G., Rohmer, M., 1982. Prokaryotic polyterpenes: phylogenetic  
651 precursors of sterols. In: Bronner, F., Kleinzeller, A., *Current topics  
652 in membranes and transport*. Academic Press, Inc., New York, pp.  
653 153-182.

654 Ourisson, G., Rohmer, M., Poralla, K., 1987. Prokaryotic hopanoids and  
655 other polyterpenoid sterol surrogates. *Annual Review of  
656 Microbiology* 41: 301-333.

657 Reeburgh, W.S., 1976. Methane consumption in Cariaco Trench waters and  
658 sediments. *Earth and Planetary Science Letters* 28: 337-344.

659 Reeburgh, W.S., 2007. Oceanic methane biogeochemistry. *Chemical Reviews*  
660 107: 486-513.

661 Reissmann, J.H., Burchard, H., Feistel, R., Hagen, E., Lass, H.U., Mohrholz,  
662 V., Nausch, G., Umlauf, L., Wieczorek, G., 2009. State-of-the-art  
663 review on vertical mixing in the Baltic Sea and consequences for  
664 eutrophication. *Progress in Oceanography* 82: 47-80.

665 Rohmer, M., Bouvier-Nave, P., Ourisson, G., 1984. Distribution of hopanoid  
666 triterpenes in prokaryotes. *Journal of General Microbiology* 130:  
667 1137-1150.

668 Sáenz, J.P., Wakeham, S.G., Eglinton, T.I., Summons, R.E., 2011. New  
669 constraints on the provenance of hopanoids in the marine geologic  
670 record: Bacteriohopanepolyols in marine suboxic and anoxic  
671 environments. *Organic Geochemistry* 42: 1351-1362.

672 Saenz, J.P., Waterbury, J.B., Eglinton, T.I., Summons, R.E., 2012.  
673 Hopanoids in marine cyanobacteria: probing their phylogenetic  
674 distribution and biological role. *Geobiology* 10: 311-319.

675 Schmale, O., Blumberg, M., Kießlich, K., Jakobs, G., Berndmeyer, C.,  
676 Labrenz, M., Thiel, V., Rehder, G., 2012. Microbial methane  
677 oxidation at the redoxcline of the Gotland Deep (Baltic Sea).  
678 *Biogeosciences Discussions* 9: 8783-8805.

679 Schmale, O., Schneider von Deimling, J., GÜLZOW, W., Nausch, G., Waniek,  
680 J.J., Rehder, G., 2010. Distribution of methane in the water column  
681 of the Baltic Sea. *Geophysical Research Letters* 37: L12604.

682 Schneider, B., Nausch, G., Kubsch, H., Petersohn, I., 2002. Accumulation of  
683 total CO<sub>2</sub> during stagnation in the Baltic Sea deep water and its  
684 relationship to nutrient and oxygen concentrations. *Marine  
685 Chemistry* 77: 277-291.

686 Schubert, C.J., Coolen, M.J., Neretin, L.N., Schippers, A., Abbas, B.,  
687 Durisch-Kaiser, E., Wehrli, B., Hopmans, E.C., Damste, J.S.,  
688 Wakeham, S., Kuypers, M.M., 2006. Aerobic and anaerobic

689 methanotrophs in the Black Sea water column. *Environmental*  
690 *microbiology* 8: 1844-1856.

691 Scranton, M.I., Crill, P., Angelis, M., Donaghay, P., Sieburth, J., 1993. The  
692 importance of episodic events in controlling the flux of methane from  
693 an anoxic basin. *Biogeochemical Cycles* 7: 491-507.

694 Sinninghe Damsté, J.S., Rijpstra, W.I.C., Schouten, S., Fuerst, J.A., Jetten,  
695 M.S.M., Strous, M., 2004. The occurrence of hopanoids in  
696 planctomycetes: implications for the sedimentary biomarker record.  
697 *Organic Geochemistry* 35: 561-566.

698 Sturt, H.F., Summons, R.E., Smith, K., Elvert, M., Hinrichs, K.U., 2004.  
699 Intact polar membrane lipids in prokaryotes and sediments  
700 deciphered by high-performance liquid chromatography/electrospray  
701 ionization multistage mass spectrometry--new biomarkers for  
702 biogeochemistry and microbial ecology. *Rapid Communications in*  
703 *Mass Spectrometry* : RCM 18: 617-628.

704 Summons, R.E., Bradley, A.S., Jahnke, L.L., Waldbauer, J.R., 2006.  
705 Steroids, triterpenoids and molecular oxygen. *Philosophical*  
706 *transactions of the Royal Society of London. Series B, Biological*  
707 *sciences* 361: 951-968.

708 Summons, R.E., Jahnke, L.L., Hope, J.M., Logan, G.A., 1999. 2-  
709 Methylhopanoids as biomarkers for cyanobacterial oxygenic  
710 biosynthesis. *Nature* 400: 554-557.

711 Sundh, I., Borgå, P., Nilsson, M., Svensson, B.H., 1995. Estimation of cell  
712 numbers of methanotrophic bacteria in boreal peatlands based on  
713 analysis of specific phospholipid fatty acids. *FEMS Microbiology*  
714 *Ecology* 18: 103-112.

715 Talbot, H.M., Farrimond, P., 2007. Bacterial populations recorded in  
716 diverse sedimentary biohopanoid distributions. *Organic*  
717 *Geochemistry* 38: 1212-1225.

718 Talbot, H.M., Squier, A.H., Keely, B.J., Farrimond, P., 2003a. Atmospheric  
719 pressure chemical ionisation reversed-phase liquid

720 chromatography/ion trap mass spectrometry of intact  
721 bacteriohopanepolyols. *Rapid communications in mass spectrometry*  
722 : RCM 17: 728-737.

723 Talbot, H.M., Summons, R.E., Jahnke, L.L., Cockell, C.S., Rohmer, M.,  
724 Farrimond, P., 2008. Cyanobacterial bacteriohopanepolyol  
725 signatures from cultures and natural environmental settings.  
726 *Organic Geochemistry* 39: 232-263.

727 Talbot, H.M., Summons, R.E., Jahnke, L.L., Farrimond, P., 2003b.  
728 Characteristic fragmentation of bacteriohopanepolyols during  
729 atmospheric pressure chemical ionisation liquid chromatography/ion  
730 trap mass spectrometry. *Rapid communications in mass*  
731 *spectrometry* : RCM 17: 2788-2796.

732 Talbot, H.M., Watson, D.F., Murrel, J.C., Carter, J.F., Farrimond, P., 2001.  
733 Analysis of intact bacteriohopanepolyols from methanotrophic  
734 bacteria by reversed-phase high-performance liquid  
735 chromatography-atmospheric pressure chemical ionisation mass  
736 spectrometry. *Journal of chromatography A* 921: 175-185.

737 Taylor, J., Parkes, J., 1983. The cellular fatty acids of the sulphate-reducing  
738 bacteria, *Desulfobacter* sp., *Desulfobulbus* sp. and *Desulfovibrio*  
739 *desulfuricans*. *Journal of General Microbiology* 129: 3303-3309.

740 Teske, A., Wawer, C., Muyzer, G., Ramsing, N.B., 1996. Distribution of  
741 sulfate-reducing bacteria in a stratified fjord (Mariager Fjord,  
742 Denmark) as evaluated by most-probable-number counts and  
743 denaturing gradient gel electrophoresis of PCR-amplified ribosomal  
744 DNA fragments. *Applied and Environmental Microbiology* 62: 1405-  
745 1415.

746 Wakeham, S.G., Amann, R., Freeman, K.H., Hopmans, E.C., Jørgensen,  
747 B.B., Putnam, I.F., Schouten, S., Sinninghe Damsté, J.S., Talbot,  
748 H.M., Woebken, D., 2007. Microbial ecology of the stratified water  
749 column of the Black Sea as revealed by a comprehensive biomarker  
750 study. *Organic Geochemistry* 38: 2070-2097.

751 Wakeham, S.G., Hopmans, E.C., Schouten, S., Sinninghe Damst  , J.S.,  
752 2004. Archaeal lipids and anaerobic oxidation of methane in euxinic  
753 water columns: a comparative study of the Black Sea and Cariaco  
754 Basin. *Chemical Geology* 205: 427-442.  
755 Watson, D.F., 2002. Environmental distribution and sedimentary fate of of  
756 hopanoid biological marker compounds. Newcastle upon Tyne, UK,  
757 University of Newcastle. Ph.D. thesis.  
758

759 **Figure captions**

760

761 **Fig. 1.** Sample location in the Gotland Deep, East Gotland Basin.

762

763 **Fig. 2.** BHP structures (the isomerization of BHT II and BHT cyclitol ether  
764 II was not characterized).

765

766 **Fig. 3.** Selected physicochemical parameters (Schmale et al., 2012) for the  
767 water column (a), concentrations of total BHPs in  $\mu\text{g g}^{-1}$  TOC (b) and  
768 distributions of BHPs in water column and sediment (c; distributions of 100  
769 m were from Schmale et al., 2012); due to sample loss, no data are available  
770 for 80 m). Grey shaded area is the suboxic zone. The relative amount of  
771 aminopentol in the water column is ca. 0.2% at 100 m, ca. 0.2% at 108 m, 0%  
772 at 124 m, and ca. 0.1% at 135 m, and ca. 0.1% in both sediment samples.

773

774 **Fig. 4.** C16:1/C16:0 ratio and  $\delta^{13}\text{C}$  values for a non-specific (16:1 $\omega$ 7c) PLFA and  
775 for type I aerobic methanotroph-specific FAs. Grey shaded area is the  
776 suboxic zone.

Figure 1

[Click here to download high resolution image](#)



Figure 2

[Click here to download high resolution image](#)

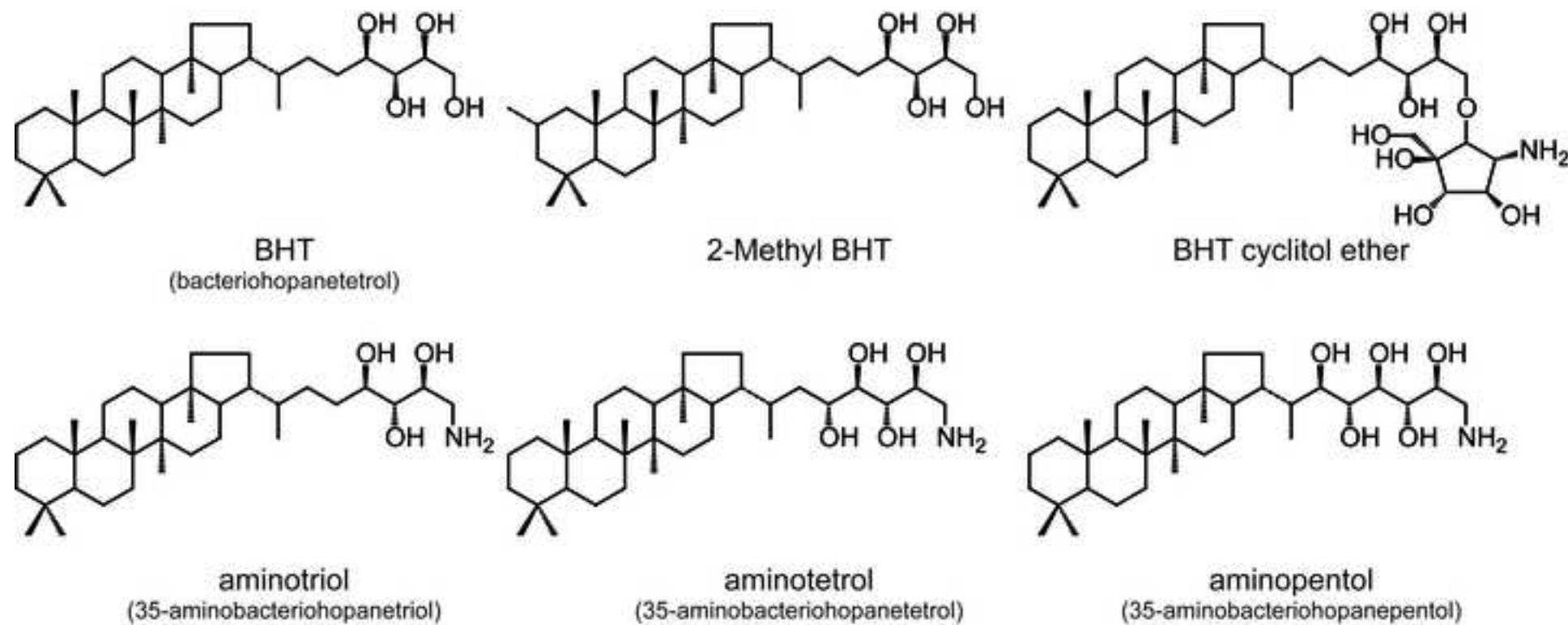



Figure 3

[Click here to download high resolution image](#)

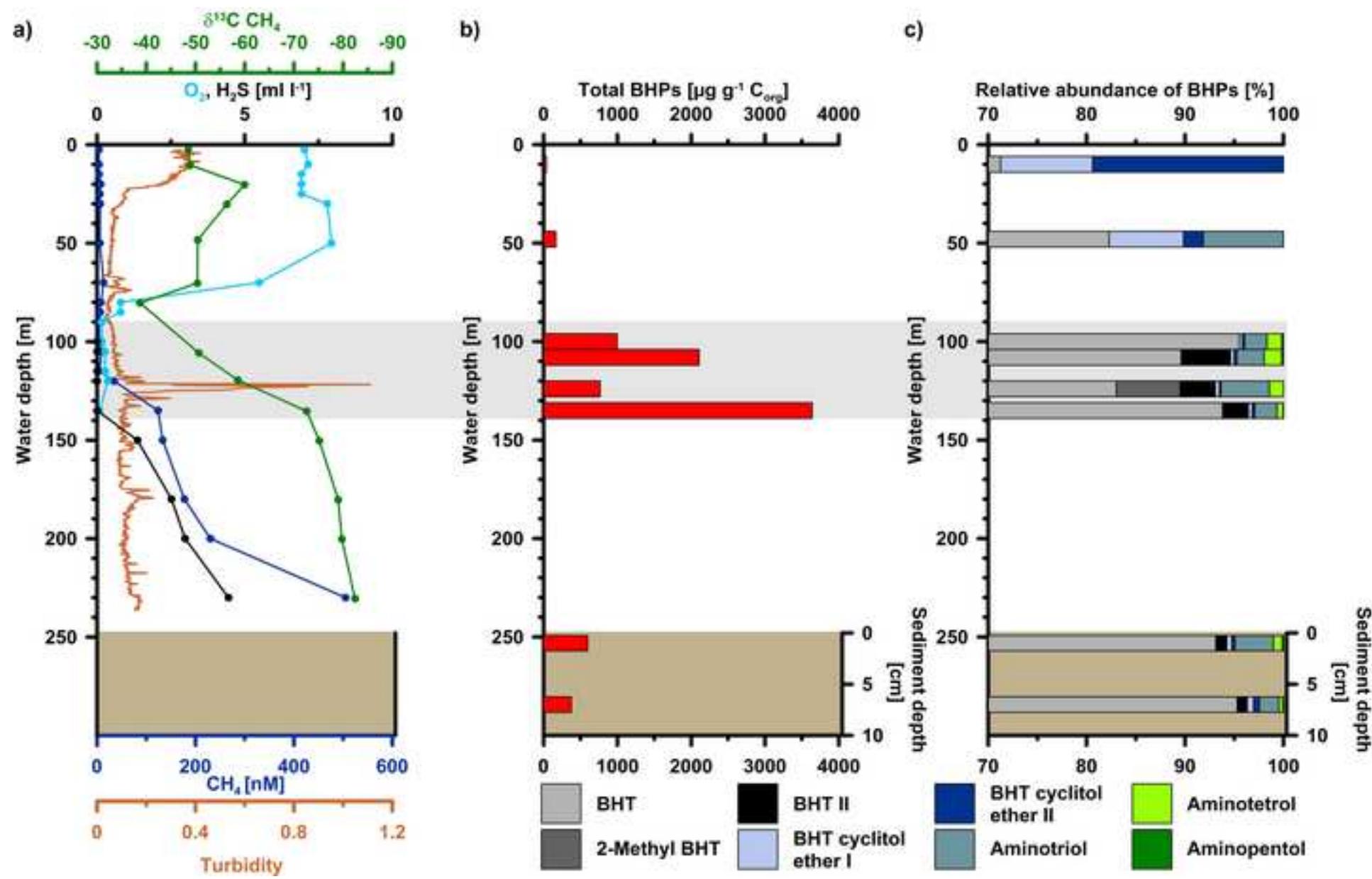
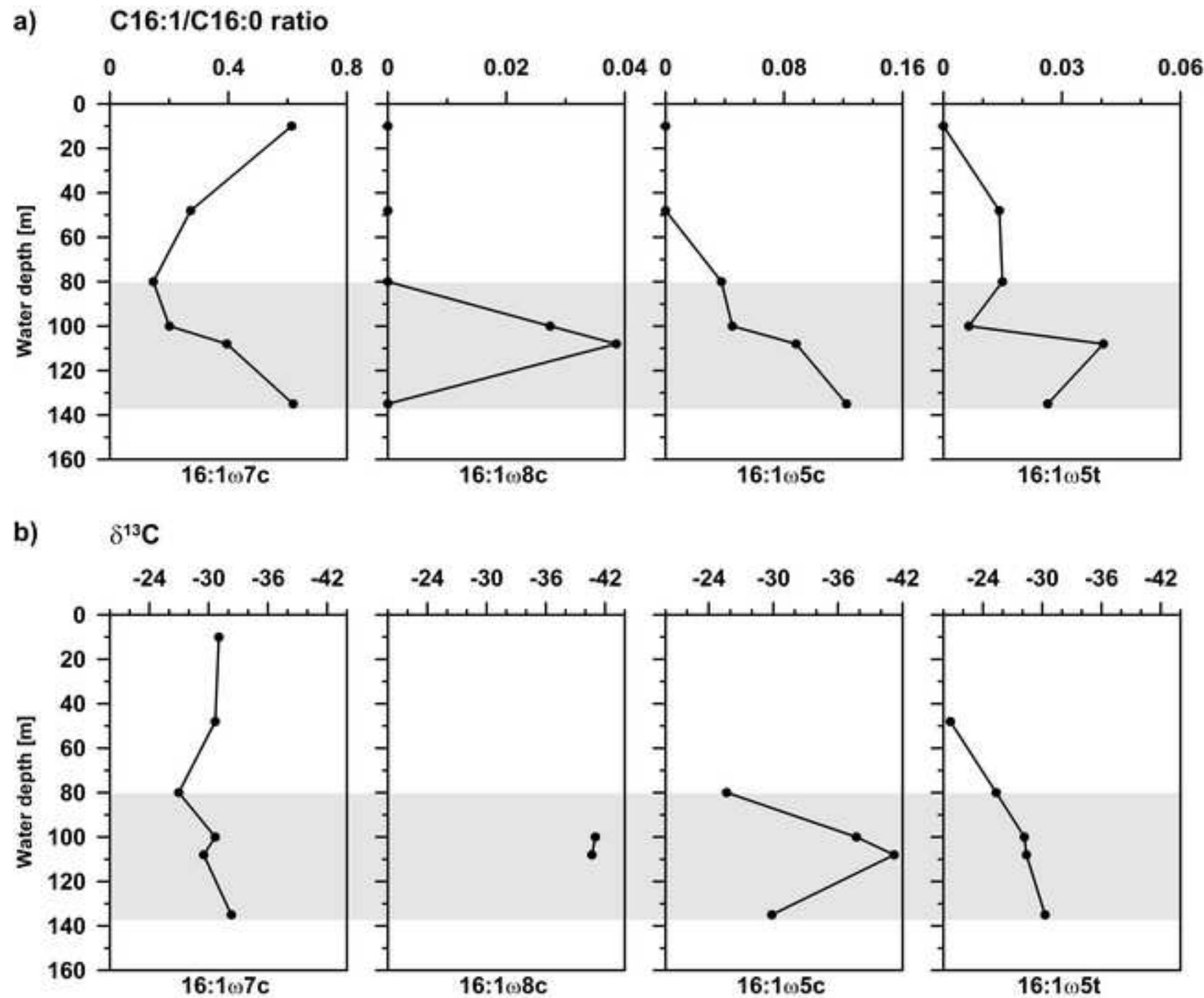




Figure 4

[Click here to download high resolution image](#)

**Table 1**

General information on samples and concentrations of total BHPs, FAs and PLFAs.

| Water depth<br>(m) | C <sub>org</sub><br>(POC) | Total BHPs                 |        |                             | Fatty acids                     |                                   |             |
|--------------------|---------------------------|----------------------------|--------|-----------------------------|---------------------------------|-----------------------------------|-------------|
|                    |                           | ( $\mu\text{g C l}^{-1}$ ) | (ng/l) | ( $\mu\text{g g}^{-1}$ POC) | FAs<br>(mg g <sup>-1</sup> POC) | PLFAs<br>(mg g <sup>-1</sup> POC) | PLFA<br>[%] |
| 10                 | 327                       |                            | 12.1   | 37.1                        | 15.8                            | 5.6                               | 36          |
| 48                 | 39                        |                            | 6.6    | 166.4                       | 9.3                             | 3.3                               | 36          |
| 80                 | 43                        |                            |        |                             | 14.8                            | 5.7                               | 39          |
| 100                | 28                        |                            | 27.8   | 996.5                       | 5.5                             | 3.8                               | 70          |
| 108                | 40                        |                            | 84.4   | 2108.4                      | 6.1                             | 3.0                               | 50          |
| 124                | 50 <sup>a</sup>           |                            | 38.3   | 765.1                       |                                 |                                   |             |
| 135                | 64                        |                            | 189.0  | 3640.1                      | 11.8                            | 3.1                               | 27          |

| Sediment depth<br>(cm) | C <sub>org</sub><br>(TOC) | Total BHPs                   |                             |
|------------------------|---------------------------|------------------------------|-----------------------------|
|                        |                           | ( $\mu\text{g g}^{-1}$ sed.) | ( $\mu\text{g g}^{-1}$ TOC) |
| 0-2                    | 109                       |                              | 596.6                       |
| 6-8                    | 105                       |                              | 373.3                       |

<sup>a</sup> no POC value available, so value estimated to be between those for 108 and 135 m.

**Table 2**

Concentration of individual FAs and PLFAs (mg g<sup>-1</sup> POC). Biomarkers specific for methanotrophic bacteria are in bold (no data available for 124 m).

| Component | 10 m |      | 48 m        |             | 80 m            |             | 100 m       |             | 108 m       |             | 135 m       |             |
|-----------|------|------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|           | FA   | PLFA | FA          | PLFA        | FA <sup>a</sup> | PLFA        | FA          | PLFA        | FA          | PLFA        | FA          | PLFA        |
| C16:1ω9t  | 0.09 | 0.02 | 0.04        | 0.01        | 0.23            | 0.07        | 0.01        | 0.01        | 0.01        | 0.01        | 0.10        | 0.03        |
| C16:1ω8c  |      |      |             |             |                 |             | <b>0.03</b> | <b>0.03</b> | <b>0.04</b> | <b>0.02</b> |             |             |
| C16:1ω8t  |      |      |             |             |                 |             | 0.03        | 0.03        | 0.01        | 0.01        |             |             |
| C16:1ω7c  | 2.24 | 0.79 | 0.25        | 0.19        | 0.55            | 0.28        | 0.23        | 0.21        | 0.23        | 0.18        | 1.38        | 0.44        |
| C16:1ω7t  | 0.11 | 0.04 | 0.01        |             | 0.12            | 0.04        | 0.06        | 0.03        | 0.05        | 0.04        | 0.13        | 0.03        |
| C16:1ω5c  |      |      | <b>0.02</b> | <b>0.01</b> | <b>0.14</b>     | <b>0.07</b> | <b>0.07</b> | <b>0.05</b> | <b>0.05</b> | <b>0.04</b> | <b>0.26</b> | <b>0.09</b> |
| C16:1ω5t  |      |      | <b>0.01</b> | <b>0.01</b> | <b>0.11</b>     | <b>0.03</b> | <b>0.02</b> | <b>0.01</b> | <b>0.03</b> | <b>0.02</b> | <b>0.12</b> | <b>0.02</b> |
| C16:0     | 2.99 | 1.29 | 1.72        | 0.71        | 4.21            | 1.93        | 1.30        | 1.05        | 0.77        | 0.46        | 2.14        | 0.72        |
| C18:1ω9c  | 0.76 | 0.34 | 0.93        | 0.20        | 2.14            | 0.45        | 0.25        | 0.12        | 0.38        | 0.09        | 0.84        | 0.21        |
| C18:1ω7c  | 0.73 | 0.23 | 0.86        | 0.36        | 0.84            | 0.27        | 0.23        | 0.20        | 0.61        | 0.23        | 0.84        | 0.23        |
| C18:1ω6c  |      |      |             |             | 0.10            | 0.05        | 0.02        | 0.01        | 0.03        | 0.01        | 0.05        | 0.01        |
| C18:1ω5c  | 0.09 | 0.03 | 0.16        | 0.04        | 0.68            | 0.27        | 0.01        | 0.01        | 0.06        | 0.02        | 0.15        | 0.01        |
| C18:0     | 0.59 | 0.18 | 2.99        | 1.12        | 2.57            | 1.01        | 2.28        | 1.45        | 2.37        | 1.28        | 2.58        | 0.79        |

<sup>a</sup> from Schmale et al. (2012)

Table 3

FA and PLFA  $\delta^{13}\text{C}$  values (‰) for C<sub>16</sub> and C<sub>18</sub> monounsaturated FAs. FA  $\delta^{13}\text{C}$  values of biomarkers specific for methanotrophic bacteria are in bold (no data was available for 124 m).

| Fatty acid       | 10 m FA | 10 m PLFA | 48 m FA | 48 m PLFA | 80 m FA      | 80 m PLFA    | 100 m FA <sup>a</sup> | 100 m PLFA   | 108 m FA     | 108 m PLFA   | 135 m FA     | 135 m PLFA   |
|------------------|---------|-----------|---------|-----------|--------------|--------------|-----------------------|--------------|--------------|--------------|--------------|--------------|
| 16:1 $\omega$ 9t | -32.7   | -31.1     | -       | -         | -15.5        | -27.5        | -22.2                 | -            | -27.1        | -            | -            | -            |
| 16:1 $\omega$ 8c |         |           |         |           |              |              | <b>-38.8</b>          | <b>-41.0</b> | <b>-38.4</b> | <b>-40.7</b> |              |              |
| 16:1 $\omega$ 8t |         |           |         |           |              |              | -30.4                 | -33.5        | -27.4        | -26.1        |              |              |
| 16:1 $\omega$ 7c | -31.8   | -31.0     | -27.1   | -30.7     | -27.5        | -27.0        | -27.6                 | -30.7        | -30.6        | -29.5        | -23.0        | -32.3        |
| 16:1 $\omega$ 7t | -32.2   | -32.7     | -       | -         | -            | -            | -                     | -38.6        | -27.7        | -31.4        | -23.0        | -32.8        |
| 16:1 $\omega$ 5c |         |           |         |           | <b>-22.2</b> | <b>-25.7</b> | <b>-35.7</b>          | <b>-37.7</b> | <b>-41.4</b> | <b>-41.2</b> | <b>-29.5</b> | <b>-29.9</b> |
| 16:1 $\omega$ 5t |         |           |         |           | <b>-23.0</b> | <b>-25.3</b> | <b>-33.8</b>          | <b>-28.2</b> | <b>-30.6</b> | <b>-28.4</b> | <b>-22.2</b> | <b>-30.3</b> |
| 16:0             | -31.2   | -31.7     | -29.1   | -28.8     | -25.6        | -25.6        | -26.9                 | -28.4        | -26.9        | -26.9        | -27.5        | -26.6        |
| 18:1 $\omega$ 9c | -32.5   | -33.8     | -29.6   | -30.5     | -24.5        | -24.7        | -26.5                 | -28.4        | -27.8        | -26.8        | -27.7        | -34.9        |
| 18:1 $\omega$ 7c | -27.4   | -24.9     | -24.0   | -24.7     | -24.2        | -25.0        | -24.9                 | -24.5        | -24.1        | -23.7        | -19.2        | -22.2        |
| 18:1 $\omega$ 6c |         |           |         |           | <b>-25.7</b> | <b>-25.4</b> | <b>-30.9</b>          | <b>-33.7</b> | <b>-27.6</b> | <b>-25.2</b> | <b>-33.9</b> | <b>-35.7</b> |
| 18:1 $\omega$ 5c | -27.7   | -27.6     | -20.2   | -21.4     | -23.1        | -23.3        | -20.2                 | -23.8        | -21.0        | -18.2        | -19.1        | -24.1        |
| 18:0             | -29.6   | -28.4     | -26.8   | -26.6     | -25.9        | -25.6        | -27.1                 | -27.1        | -28.6        | -26.5        | -27.6        | -27.9        |

<sup>a</sup> values for 100 m were from Schmale et al. (2012).