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Abstract. Quantification of tropical forest above-ground
biomass (AGB) over large areas as input for Reduced Emis-
sions from Deforestation and forest Degradation (REDD+)

projects and climate change models is challenging. This
is the first study which attempts to estimate AGB and its
variability across large areas of tropical lowland forests in
Central Kalimantan (Indonesia) through correlating airborne
light detection and ranging (LiDAR) to forest inventory data.
Two LiDAR height metrics were analysed, and regression
models could be improved through the use of LiDAR point
densities as input (R2

= 0.88; n = 52). Surveying with a Li-
DAR point density per square metre of about 4 resulted in
the best cost / benefit ratio. We estimated AGB for 600 km
of LiDAR tracks and showed that there exists a consider-
able variability of up to 140 % within the same forest type
due to varying environmental conditions. Impact from log-
ging operations and the associated AGB losses dating back
more than 10 yr could be assessed by LiDAR but not by
multispectral satellite imagery. Comparison with a Landsat
classification for a 1 million ha study area where AGB values
were based on site-specific field inventory data, regional liter-
ature estimates, and default values by the Intergovernmental
Panel on Climate Change (IPCC) showed an overestimation
of 43 %, 102 %, and 137 %, respectively. The results show
that AGB overestimation may lead to wrong greenhouse gas
(GHG) emission estimates due to deforestation in climate
models. For REDD+ projects this leads to inaccurate car-
bon stock estimates and consequently to significantly wrong
REDD+ based compensation payments.

1 Introduction

In 2008 worldwide deforestation and forest degradation
emissions are estimated as having accounting for about 6–
17 % of the total anthropogenic carbon dioxide (CO2) emis-
sions (Van der Werf et al., 2009). In the period of 1990 to
2005 about 13 million ha of tropical forest were deforested
annually, and with 0.98 % South and Southeast Asia had one
of the highest annual deforestation rates between 2000 and
2005 (FAO, 2006). Human economic activities such as the
establishment of industrial timber estates and large-scale oil
palm plantations, legal and illegal logging, and shifting culti-
vation are the main drivers of deforestation and forest degra-
dation in this region (Hansen et al., 2009; Langner et al.,
2007; Langner and Siegert, 2009; Rieley and Page, 2005;
Siegert et al., 2001). One important measure of the United
Nations Framework Convention on Climate Change (UN-
FCCC) to curb greenhouse gas (GHG) emissions from this
sector is the Reduced Emissions from Deforestation and for-
est Degradation (REDD+) programme. Inaccurate estimates
of GHG emission reductions can lead to misleading carbon
credits that are not covered by the specific REDD+. Typi-
cally in tropical forests the main carbon pool is the above-
ground biomass (AGB) (Chave et al., 2005; FAO, 1997;
Gibbs et al., 2007). CO2 emissions from deforestation and
forest degradation are estimated through the change in AGB,
generally assessed as area of forest lost or degraded annu-
ally. AGB loss and associated CO2 emissions resulting from
forest degradation by logging and fire are difficult to assess
and monitor because their impacts may vary significantly.
Detection of degradation is also important as degraded and
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3918 J. Jubanski et al.: Detection of large above-ground biomass variability

regrowing will constitute the majority of remnant tropical
forests (Putz, 2012). The most accurate method of AGB esti-
mation is based on forest inventories where field measure-
ments are extrapolated to AGB values through allometric
equations (Chave et al., 2005; FAO, 1997). Although this
approach provides precise AGB estimations, the biotic and
structural complexity of tropical ecosystems make forest in-
ventories difficult, time consuming, and expensive: generic
relationships may not fit to specific areas, growth condi-
tions may vary greatly within a specific forest ecosystem,
and producing regionally and globally consistent results is
challenging (Chave et al., 2005; Gibbs et al., 2007). Further,
there is considerable uncertainty about the spatial variabil-
ity of AGB in different tropical forest types and the impact
of logging and fire on AGB stock. AGB can also be esti-
mated by remote sensing technologies, but no such instru-
ment can measure AGB directly; therefore in situ data col-
lection is always necessary (Drake et al., 2003; Rosenqvist et
al., 2003). The size of the area and the quality of the remote
sensing data have major influence on the accuracy of the out-
put. For global AGB and carbon stock estimation, moderate-
to coarse-resolution remote sensing data (e.g. MODIS) is
typically used, and at a national or regional scale medium-
resolution multispectral imagery or SAR data (Baccini et al.,
2012; Englhart et al., 2011; Ryan et al., 2012; Saatchi et al.,
2011).

Tropical peat forest ecosystems are one of the largest
sinks of carbon. With 88.6 Gt tropical peatlands are one
of the largest near-surface pools of terrestrial organic car-
bon (IPCC, 2007; Page and Rieley, 1998; Page et al., 2010;
Sorensen, 1993). In Indonesia peat accumulates over thou-
sands of years and typically develops convex-form peat
domes up to 20 m thick covered by peat swamp forest (An-
derson, 1983; Page et al., 2004; Rieley et al., 1996; Rieley
and Page, 2005). Due to high deforestation rates and emis-
sions from peat by recurrent fires and drainage, which is es-
pecially observed in the coastal lowland areas of Sumatra
and Kalimantan, Indonesia is among the largest CO2 emit-
ters worldwide (Ballhorn et al., 2009; Hooijer at al., 2010;
Page et al., 2002).

The main goal of this study was to estimate AGB and to
investigate its spatial variability due to tree growth conditions
and human impacts along several hundred kilometres of tran-
sects in lowland forest ecosystems in the Indonesian province
of Central Kalimantan using small-footprint light detection
and ranging (LiDAR). Central Kalimantan comprises a land-
scape of extensive lowlands with waterlogged peat swamp
and lowland dipterocarp forests growing on dry mineral soils.
Large-scale logging and peatland drainage have resulted in
recurrent severe wildfire episodes that have destroyed large
tracts of these ecosystems and led to huge CO2 emissions in
the past (Ballhorn et al., 2009; Rieley and Page, 2005). Air-
borne LiDAR is a powerful technique for biomass quantifi-
cation and monitoring because it provides information on the
forest structure and has been successfully used to derive for-

est AGB at different scales from single trees (Popescu, 2007;
Zhao et al., 2009) to large contiguous forest stands (Asner
et al., 2009a; Asner et al., 2010; Lefsky et al., 2002; Lef-
sky et al., 2005; Means et al., 1999). Asner et al. (2010)
were successful in correlating small-footprint airborne Li-
DAR to AGB in a tropical lowland forest in Peru. The ap-
proach presented in our study on deriving AGB values from
airborne LiDAR data follows guidelines proposed by As-
ner et al. (2010). However, no studies have yet investigated
the AGB and its variability across large transects in tropical
dipterocarp forests.

Especially for the tropical peat swamp forests of Indone-
sia, there is an urgent need to fill knowledge gaps regarding
AGB values due to different reasons: (i) it is necessary to ver-
ify whether the approach on deriving AGB estimates from
airborne LiDAR data is applicable to specific forest ecosys-
tems in Indonesia; (ii) as Indonesia is one of the world’s
biggest emitters of carbon (Ballhorn et al., 2009; Hooijer et
al., 2010; Page et al., 2002), it has high potential to nega-
tively influence the global climate if its peatlands are further
drained and burned at current rates; (iii) few field measure-
ments considering AGB are available to date as most peat-
lands in Indonesia are highly inaccessible; (iv) the growing
demand for palm oil, due to the biofuel boom, is a serious
threat to these ecosystems, since peatlands are one of the only
undeveloped and uninhabited near-coastal areas in Indone-
sia; (v) the number of REDD initiatives on peat forests in In-
donesia is high (more than 40), and the only certified REDD
project under the Voluntary Carbon Standard (VCS) to date
in Indonesia is located on a peat swamp forest; (vi) REDD
projects require a basic methodology on how to most accu-
rately estimate AGB; and (vii) global climate models will
need more reliable data on AGB.

2 Materials and methods

2.1 Acquisition and processing of airborne LiDAR data

From 5 to 10 August 2007 airborne LiDAR data were ac-
quired in a flight campaign by Kalteng Consultants and
Milan Geoservice GmbH (Fig. 1). Small-footprint full-
waveform LiDAR data covering an area of 33 178 ha along
a series of transects (length of approximately 600 km) were
recorded with a Riegl LMS-Q560 Airborne Laser Scanner
from a flight altitude of approximately 500 m above ground
and a scan angle of ± 30◦ (swath width approx. 500 m). The
instrument had a pulse rate of up to 100 000 pulses per sec-
ond, a footprint diameter of 0.25 m, and a wavelength of
1.5 µm (near infrared). This survey configuration resulted in
a nominal point density of 1.4 pt m−2 (average from the fi-
nal point cloud per square metre). Under laboratory con-
ditions this system allows height measurements of up to
± 0.02 m. The acquired data set has an absolute vertical ac-
curacy of ± 0.15 m and horizontal accuracy of ± 0.50 m root
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Fig. 1. Location of the LiDAR tracks and above-ground biomass (AGB) clusters (see Methods) (0.13 ha, indicated by black+) in Central
Kalimantan, Indonesia, superimposed on a Landsat image (ETM+ 118-61, 2009-05-22 and ETM+ 118-62, 2007-08-05; bands 5-4-3; and
both scenes were gap filled). The red rectangles show the location of(A), (B), and(C). In (B) and(C) also the LiDAR-derived digital surface
models (DSM) are shown.

mean square error (RMSE). The survey was conducted in the
middle of the dry season (5 to 10 August) to avoid problems
related to standing water. Field observations and data from
an extensive network of water table measurement locations
in the area, installed for several years, showed that the peat
surface is dry during this period and no standing water occurs
in the surveyed area (Jaenicke et al., 2011).

The point clouds formed by the waveform decompositions
were further filtered to generate the DTMs. In this study, the
filtering was the separation between ground and off-ground
LiDAR points. The filtering approach applied was the hier-
archic robust filtering (Pfeifer et al., 2001), and the method
used to interpolate the DTMs (1 m resolution) the linear
adaptable prediction interpolation. Both solutions are imple-
mented within the Inpho software package. Hierarchic robust
filtering is comparable to a hierarchical setup using image
pyramids. The algorithm is based on linear prediction with
individual accuracies for each LiDAR point and works iter-
atively. In the first step, all points are used to estimate the

covariance function of the terrain. The first surface is com-
puted with equal weights for all points and runs in an aver-
aging way between ground and vegetation points. After the
first model deviation, the filter values are computed and the
weight of the points is altered according to the weight func-
tion. If a point is given a low weight, it will have lower in-
fluence on the run of the surface in the next iteration. The
method runs iteratively a trend surface, followed by predic-
tion, so that initially gross errors are eliminated, and then a
refined filter is run. The results of the filtering were visu-
ally inspected and remaining outliers were removed interac-
tively. The theoretical basis of the linear adaptable predic-
tion, to describe the terrain surface, is presented in detail in
various scientific publications (Kraus, 1998; Assmus, 1975;
Wild, 1983). This method corresponds to the statistical esti-
mation method Kriging, often applied in geosciences (Kraus,
1998).

www.biogeosciences.net/10/3917/2013/ Biogeosciences, 10, 3917–3930, 2013
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Fig. 2. (A) Typical across-track point density profile (blue). The red bars show the 25 m swath eliminated from the analysis.(B) DTM
accuracy assessment. Points within areas with a point density lower than 0.5 pt m−2 (in red) show worse accuracies than points within higher
point densities (blue).

In order to minimize problems in the strip borders (caused
by LiDAR penetration and interception by vegetation) due to
the large scan angle used (± 30◦) we excluded 10 % of the
swath width (25 m of each side of the strip, see red bars in
Fig. 2a) from the analysis. Figure 2a also shows the point
density distribution of a typical across-track transect in our
study area. We observed a reduction in point density of 25 %
to 40 % from nadir to the edge of the swath caused by loss
of signal strength in wider scan angles. Therefore, weight-
ing the plots according to their point densities will indirectly
take into account the scan geometry. A total of 80 % of the
field plots were collected within a swath of ± 15◦. In addition
we found that point density on the ground for scan angles
greater than 15◦ is high enough to separate ground points
from vegetation. Additionally 88 differential GPS measure-
ments in various locations along and across track were col-
lected. DTM accuracy was 0.43 m RMSE (Fig. 2b).

2.2 Forest inventory

Forest inventory data were collected at three sites representa-
tive of lowland forest ecosystems from May to August 2008
where no changes were known to have occurred since the
LiDAR survey (Fig. 1). The first site was located in the Se-
bangau peat swamp forest catchment, with 16 field inventory
plots covering tall and low pole peat swamp forests. The sec-
ond site was situated within Block C of the former Mega
Rice Project (MRP), with 20 field inventory plots covering
diverse degradation stages of peat swamp forest. The third
study site was located in Tumbang Danau and Tewaibaru,
with 16 field plots covering logged and unlogged lowland
dipterocarp forests. Figure 4 shows 4 representative plots
where canopy cover, tree height and canopy structure can
be observed. The location of the plots were chosen on the
basis of an extensive database of aerial photos, multispec-
tral and SAR satellite imagery (such as RapidEye, Landsat,
ALOS, ENVISAT, and TerraSAR-X), land cover maps de-

rived from this imagery, accessibility and representativeness
of the different environmental and ecological conditions, and
that they lie within the LiDAR point clouds. In the field
the plots were located with a GPS device (GPSmap60CSx,
Garmin) which had an average horizontal accuracy of 5–
10 m if measurements were averaged over 10 min. This un-
certainty can affect the final AGB modelling, but precise
geodetic measurements within peat swamp forest are almost
impracticable. Four nested plots of one cluster build the cor-
ners of a 50 m× 50 m square. For convenience and due to
limited resources, the minimum DBH threshold was set up
at 7 cm. The nested plot method is based on three circular
plots with different sizes (Pearson et al., 2005). In each of
the three circular plots, trees with a certain DBH range were
recorded: 7 to 20 cm (4 m radius), 20 to 50 cm (14 m radius),
and greater than 50 cm (20 m radius). The sum of the mea-
sured parameters of the two smaller nests was multiplied by
an expansion factor in order to get the values for the 20 m ra-
dius inventory plot (0.13 ha). Local species name, tree height
and DBH were recorded. Local tree names were translated
to the corresponding Latin names through using local ex-
pert knowledge, tropical tree database provided by the World
Agroforestry Centre (http://www.worldagroforestrycentre.
org/Sea/Products/AFDbases/WD/Index.htm) and Chudnoff
(1984), and data from a local herbarium at the Centre
for International Co-operation in Management of Trop-
ical Peatland (CIMTROP) in Palangka Raya. Also the
species-specific wood densities were derived from the above-
described databases and from the Intergovernmental Panel
on Climate Change (IPCC, 2006). Some local names, no-
tably among dipterocarps, could not be related to a partic-
ular species. For these trees, an average wood density of
0.57 t m−3 was applied (FAO, 1997). Finally, the AGB values
were calculated using an allometric equation for moist trop-
ical forests from Chave et al. (2005). Two models are pro-
posed by them for moist tropical forests, one which includes
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Fig. 3. Sample data set for each of the four investigated forest types.(A1) to (A3) show tall peat swamp forest (AGB= 57.61 t 0.13 ha−1;
LiDAR point density= 1.5 pt m−2; centroid height (CH)= 18.7 m; quadratic mean canopy profile height (QMCH)= 24.0 m). Note that CH
and QMCH are in the upper canopy of the forest.(B1) to (B2) show low pole peat swamp forest (AGB= 19.12 t 0.13 ha−1; LiDAR point
density= 1.1 pt m−2; CH = 13.7 m; QMCH= 18.9 m).(B3) shows the forest structure (a small peak at about 24 m representing emergent
trees and a large peak at about 14m representing the main canopy layer).(C1) to (C3) show logged tall peat swamp forest (AGB= 5.05 t
0.13 ha−1; point density= 2.9 pt m−2; CH = 5.8 m; QMCH= 6.2 m). The small peak in(C2) at about 26 m height indicates remaining
tall trees.(C3) clearly shows the predominant ground return. CH and QMCH are located at similar heights.(D1) to (D3) show lowland
dipterocarp forest (AGB= 108.20 t 0.13 ha−1; LiDAR point density= 2.3 pt m−2; CH = 25.3 m; QMCH= 35.3 m). The two peaks in(D3)
(at about 14 m and 34 m) indicate a complex multilayered forest structure.

www.biogeosciences.net/10/3917/2013/ Biogeosciences, 10, 3917–3930, 2013
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tree height, DBH, and wood density, while the other includes
DBH and wood density, but not tree height. It was decided
to use the second model excluding tree height as tree height
measurements in the field were highly inaccurate and often
impossible to measure due to the dense and tall forest canopy.
The AGB value within the plots was calculated for each tree
individually, summed up and divided by the surface sample
to be expressed in Mg ha−1.

2.3 Generation of the regression models

The first step for the generation of the regression models was
the creation of a height histogram for every field plot using
the LiDAR data. In order to achieve this, all points within
each plot area were normalized to the ground using the DTM
as reference. After that, given a pre-defined height interval
of 1m (or bin size), the number of points within the given
intervals were stored in the form of a histogram. In order
to correlate the AGB field observations with the LiDAR met-
rics, two parameters derived from the height histograms were
used. The first, developed for this work, is based on centroid
height (CH) of the histogram. The second one correlates the
AGB with the quadratic mean canopy profile height (QMCH)
(Asner et al., 2010; Lefsky, 1999). The first bin of each plot
was considered ground return and therefore eliminated from
further processing.

One important parameter in LiDAR surveys is the point
density. The acquisition of high point densities is expensive,
because it requires the most recent equipment and a slow and
low-flying aircraft. The real point density can strongly vary
across the surveyed area mainly due to stripe overlapping,
flight velocity, height variation, target reflectance, and return
quality degradation caused by smoke or water vapour in the
atmosphere. In order to account for these factors within the
regression models, the point density was used for each plot
as a weighting factor. Since the point density directly affects
the quality of the height histogram, this also directly affects
the derived metrics (i.e. the CH and QMCH). Usually, the re-
gression models applied for AGB estimations assume AGB
as a dependent variable and the LiDAR metrics as indepen-
dent. In this study, this order was changed because the least-
squares solution chosen permitted only weighting the depen-
dent variables, which are treated as observations with known
weights – the point densities. For both studied metrics (CH
and QMCH) the regression models were derived with and
without point density weighted adjustment. After the regres-
sion processing, the obtained parameters were transformed in
order to obtain an equation that directly determines the AGB
based on the LiDAR metrics. In order to verify the influence
of point density on the AGB estimation accuracy, an error
propagation analysis was performed (see Sect. 2.4).

In order to evaluate the AGB variability, we estimated
AGB in a grid with 5 m resolution to 600 km (33 178 ha) of
LiDAR tracks covering pristine and degraded forest in Cen-
tral Kalimantan. For each cell, we computed the height his-

tograms within a radius of 20 m (the same radius as the field
plots). The chosen regression model was the CH due to its
higher correlation coefficient and lower RMSE.

2.4 Error propagation analysis

The regression model used in this work correlates the AGB
with the LiDAR metrics (LM) through a power function:

AGB = a · LMb (1)

We applied covariance propagation (Breipohl, 1970) to the
mathematical model shown in Eq. 1, considering LM as a
variable and ignoring the variances and covariances of a and
b. The AGB variance (σ 2

AGB) assumes the following form:

σ 2
AGB =

(
a · b · LMb−1

)2
· σ 2

LM . (2)

As we assume that the quality of a plot (weight) grows with
its point density (ρ), we determine the AGB standard devia-
tion (σAGB):

σAGB = (a · b · LMb−1) · 0ρ−0.5. (3)

Equation (2) was applied to the CH and QMCH models de-
rived in this work in order to evaluate the influence of the pa-
rameters LM andρ in the accuracy of the AGB estimation.
Results are shown in Fig. 4 and Sect. 3.

2.5 Comparison between optical remote sensing and
LiDAR for AGB estimation

Prior to the image classification, the Landsat imagery
(ETM+ 118-62, 2007-08-05) was atmospherically corrected
using ATCOR (Richter, 1997). The land cover classifica-
tion for the 1 million ha study area was implemented using
an object-based image analysis approach (software eCogni-
tion, Trimble GeoSpatial, Munich, Germany). In a first step,
this approach generates image objects from spatially adjacent
pixels with similar spectral values, which are then classified
by a user-defined rule set. In order to differentiate primary
and secondary forests, a pixel-based spectral mixture analy-
sis (SMA) was applied to the data. SMA have a high potential
to derive forest degradation from remote sensing data (As-
ner et al., 2009b; Matricardi et al., 2010; Souza at al., 2005).
A linear SMA assumes that each pixel spectrum is a linear
combination of a finite number of endmembers (Adams et
al., 1986). The results of a SMA – i.e. scaled sub-pixel frac-
tions representing photosynthetically active vegetation, non-
photosynthetic vegetation (NPV), soil and shade – were used
to derive disturbed forest areas. The final land cover classifi-
cation had an overall accuracy of 89 % with a Kappa coeffi-
cient of 0.88.

Next the LiDAR AGB estimates for 28 284 ha of the Li-
DAR tracks, covering pristine and degraded peat swamp
forests, were quantitatively compared to AGB estimates
based on a Landsat classification. The AGB values of the

Biogeosciences, 10, 3917–3930, 2013 www.biogeosciences.net/10/3917/2013/
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Fig. 4. Biomass regression and error propagation analysis results.(A) In red the centroid height (CH)-based regression model with LiDAR
point density weighting (AGB= 0.0865× CH2.1564; R2

= 0.88; root mean square error (RMSE) = ± 13.79 t 0.13 ha−1; predictive power
of the regression (PPR) = ± 14.98 t 0.13 ha−1) and in blue without weighting (AGB = 0.0484× CH2.3494; R2

= 0.79; RMSE = ± 16.06 t
0.13 ha−1; PPR = ± 17.43 t 0.13 ha−1). (B) In red the quadratic mean canopy profile height (QMCH)-based regression model with LiDAR
point density weighting (AGB = 0.1150× QMCH2.0277; R2

= 0.84) and in blue without weighting (AGB = 0.0660× QMCH1.8656; R2
=

0.76). The circle size in(A) and (B) represents the point densities (the smallest about 0.2 pt m−2 and the biggest about 3.5 pt m−2). (C)
and (D) show standard deviation estimation curves for CH and QMCH due to variation of the point density for diverse values (1 m, 5 m,
10 m, 15 m, 20 m and 30 m).(E) and(F) show the standard deviation estimation curves for CH- and QMCH-based regression models due to
variation of CH and QMCH for 6 different point densities (0.2, 0.5, 1, 2, 4 and 8 pt m−2).

www.biogeosciences.net/10/3917/2013/ Biogeosciences, 10, 3917–3930, 2013



3924 J. Jubanski et al.: Detection of large above-ground biomass variability

Fig. 5.AGB results shown for a LiDAR track covering 10km in the Sebangau peat swamp forest catchment. Location of this LiDAR track is
shown in Fig. 6 (AGB profile 1).(A) Extent of the LiDAR track and the location of the AGB profile of(D) superimposed on a Landsat scene
from the year 2000 (ETM+ 118-62, 2000-07-16; bands 5-4-3). Green represents forest cover, and logging activities are visible as pink dots
near straight line features (logging railways).(B) Extent of the LiDAR track and the location of the AGB profile of(D) superimposed on a
Landsat scene from the year 2007 (ETM+ 118-62, 2007-08-05; bands 5-4-3; gap filled). The logging activities are not visible anymore.(C)
LiDAR AGB regression results superimposed on the Landsat classification (green= peat swamp forest pristine; brown= peat swamp forest
logged).(D) AGB variability measured by LiDAR (black) and the corresponding AGB estimates attributed to the land cover types of the
Landsat classification. Site-specific inventory data (field plots)= orange; regional literature estimates (regional database)= red; and IPCC
default values (IPCC)= yellow. Black arrows indicate the extent of the logging activities seen in(A).

land cover types were derived from site-specific field in-
ventory data (n = 53), regional literature estimates (litera-
ture values for the Indo-Malayan archipelago), and IPCC
default values (IPCC, 2006) and assigned to the land cover
types classified in the satellite imagery, which is a method
often used (Gibbs et al., 2007). Site-specific field inven-
tory data represent Tier 2/3, regional literature estimates
Tier 2, and IPCC default values Tier 1 of the IPCC Guide-
lines for National Greenhouse Gas Inventories (IPCC, 2006).
Higher tiers represent higher levels of precision and accu-
racy in AGB estimation (IPCC, 2006). Finally the average
LiDAR AGB estimates within the LiDAR tracks for the land

cover classes on peatlands were extrapolated to the 1 mil-
lion ha study area and compared to the AGB results based on
the site-specific field inventory data, regional literature esti-
mates, and IPCC default values.

For the burned class it has to be noted that the Landsat
classification also includes burned areas where regrowth al-
ready took place for more than 3 years. On the other hand, the
field plots (but also the regional literature estimates and the
IPCC default values) were collected in fire scars not older
than 3 years. This explains the difference in AGB between
the LiDAR estimates and the estimates based on the site-
specific field inventory data, regional literature estimates, and
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Fig. 6.Examples of different AGB profiles where LiDAR-based AGB estimates are compared to the AGB values attributed to the land cover
classes from the Landsat classification on peatlands within the LiDAR stripes. Three different sources for AGB values were attributed to
the land cover classes: site-specific field inventory data (field plots, orange), regional literature estimates (regional database, yellow), and
IPCC default values (IPCC, red). AGB profile 1 is described in more detail in Fig. 3.(A) Location of the AGB profiles within the study
area superimposed on Landsat imagery from the year 2007.(B) AGB profile 2 (9.5 km long) covers two areas of former logging activities
(0.0–2.2 km and 5.9–9.0 km) within a peat swamp forest. Here the AGB variability within the forest and the lower AGB values in the logging
areas is visible in the LiDAR estimates but not in the Landsat-based estimates.(C) AGB profile 3 (15.2 km long) within a peat swamp forest
covering a fire scar from the year 1997 (1.8–10.4 km). The Landsat-based AGB estimates are much higher than the LiDAR estimates. Also
the LiDAR AGB estimates give an idea on the AGB variability which the Landsat-based estimates are not able to give.(D) AGB profile 4
(10 km long) within a peat swamp forest covering one fire scar from the year 2002 (2.9–4.1 km) and another fire scar from the year 2006
(7.5–10.0 km). Here also the Landsat-based AGB estimates for peat swamp forest are much higher than the LiDAR estimates.
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IPCC default values (Tables 1 and 2). As both area and AGB
of this class are small, this does not have a big impact on the
overall results (Tables 1 and 2).

3 Results

The LiDAR point clouds were analysed using both tech-
niques presented in section 2.3 (CH and QMCH). These
parameters were correlated to field-estimated AGB values
(0.13 ha) in order to establish robust biomass estimation
models. The biomass estimation model using CH as input
was applied to 600 km (33 178 ha) of LiDAR tracks covering
pristine and degraded forest types in Central Kalimantan.

Four main forest types – tall peat swamp forest, low pole
peat swamp forest, degraded forest (logged or burned) and
lowland dipterocarp forest – were investigated. Fig. 3 shows
four typical field plots, their LiDAR height profiles with veg-
etation heights, and the derived LiDAR height histograms,
which illustrate the structural differences between the differ-
ent forest types and the impact of degradation.

Figure 4a shows the results for the regression using the CH
as input. It is possible to observe the AGB variation among
the different forest types (grey represents degraded forests,
orange peat swamp forest and green dipterocarp forest). A
high correlation coefficient (R2

= 0.88; RMSE = ±13.79 t
0.13 ha−1; PPR= ±14.98 t 0.13 ha−1) was obtained when
the LiDAR point densities per square metre (pt m−2) were
treated as weight during the regression. The derived coeffi-
cient of determination is comparable with those reported in
other studies of tropical forests (Asner et al., 2009a; Asner
et al., 2010; Drake et al., 2002). Also for the QMCH a high
correlation was obtained (R2

= 0.84) when applying the Li-
DAR point density as weight (Fig. 4b). In both cases, the use
of the LiDAR point densities as weight improved the regres-
sion models. This also shows that, in this case, the CH is a
better parameter for AGB estimations.

The costs of LiDAR surveying depend on the point den-
sity. To assess the influence of the LiDAR point density on
the quality of the AGB estimation, a rigorous error propa-
gation analysis was performed (see Sect. 2.4). The results
(Fig. 4c and d) suggest that LiDAR surveying with more than
4 pt m−2 does not significantly improve the AGB regression
models. On the other hand, surveying with less than 1 pt m−2

may lead to significant inaccuracies. Figure 4e and f show
that the standard deviations grow with the LiDAR metric (CH
or QMCH). Higher AGB values have higher standard devia-
tions (uncertainties). For higher point densities, the standard
deviation grows slower. For a typical tall peat swamp for-
est plot (Fig. 1a, with a CH of 18.7 m), the standard devia-
tion for a point density of 2 pt m−2 is 29 Mg ha−1, while with
4 pt m−2 this value is 21 Mg ha−1, a difference of about 30 %.
This suggests that surveying with a point density of about
4 pt m−2 is a good trade-off between cost and accuracy.

To validate the proposed AGB estimation, we determined
the predictive power of the regression (PPR) as proposed
by Asner et al. (2010). A total of 5000 iterations were per-
formed randomly leaving 10 % of the plots out of the regres-
sion as control. The RMSE after this iterative process was
about 8 t ha−1 higher than the RMSE determined using all
plots in the regression. These results are similar to the ones
presented by Asner et al. (2010).

Next the spatial variability of AGB along the 600 km Li-
DAR tracks was analysed. Through applying the CH-based
regression model, it was possible to illustrate AGB variabil-
ity linked to local soil properties and water-logged condi-
tions and the impact of previous logging operation and fire
with high spatial resolution. Figure 5 shows a 10 km long
(408 ha) LiDAR transect covering pristine and logged peat
swamp forest (location of this transect is shown in Fig. 1).
Figure 5a shows a Landsat scene acquired in the year 2000
where forests appear in green and logging impact in pink
colours. Historical Landsat imagery suggests that logging oc-
curred here in the year 1997. After 1998 all logging operation
ceased. In the 2007 Landsat image past logging activity was
no longer visible (Fig. 5b), but it is still detectable in the Li-
DAR AGB profile shown in Fig. 5d (black, black arrows).
There is an AGB variation of up to 150 % in logged and pris-
tine peat swamp forest (150–380 t ha−1) (Fig. 5d). The AGB
is approximately 35 % lower than in adjacent areas with lit-
tle or no logging impact although there has been 10 years
of forest regrowth. LiDAR AGB spatial profiles clearly show
the ability of airborne LiDAR to assess AGB variability with
high spatial resolution and also detect former logging activ-
ity which is no longer visible in recent multispectral satellite
imagery (Fig. 5a, b, and d).

A standard method to estimate AGB is to assign AGB
values to a land cover classification based on multispectral
satellite imagery (indirect method) (Gibbs et al., 2007). In
the case of the LiDAR track shown in Fig. 5, the Landsat-
based classification only allows for the discrimination be-
tween two land cover classes, i.e. peat swamp forest pris-
tine and logged. In Fig. 5c the LiDAR AGB estimates are
superimposed on the Landsat-based land cover classifica-
tion. Fig. 5d shows a comparison between AGB estimates
from LiDAR (black), site-specific field inventory data (or-
ange), regional literature estimates (yellow), and IPCC de-
fault values (red). From Fig. 5c and d it is clear that the
spectral reflectance in Landsat imagery does not represent
the spatial AGB heterogeneity. Thus, AGB losses by log-
ging will be undetected or underestimated. In this study it
leads to a serious overestimation of the AGB by the indirect
method. Fig. 6 shows more examples of the observed AGB
variability. In Fig. 6a the location of these profiles within the
study area is shown and superimposed on Landsat imagery
acquired in the year 2007. Green colours indicate lowland
dipterocarp forest, while pink and red colours indicate sparse
vegetation. Fire scars from fires several years back in time
appear in light green; recent fire scars from the year 2006
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Table 1. Above-ground biomass (AGB) comparison between the LiDAR-based estimations and AGB estimations where AGB values were
based on site-specific field inventory data (field plots), regional literature estimates (literature), and IPCC default values (IPCC), according to
land cover classes, derived from a Landsat (multispectral satellite) classification, for the peatlands within the LiDAR stripes of the 1 million ha
study area (Mt= Megaton).

Class Averaged AGB (t/0.13 ha) Total AGB (Mt) Difference (%)
Name Area (ha) % LiDAR Field plots Literature IPCC LiDAR % Field plots % Literature % IPCC % LiDAR – LiDAR – LiDAR –

field plots literature IPCC

Peat swamp 9724.53 36 20.67 28.62 40.56 45.50 1.546 65 2.141 62 3.034 63 3.404 61 38 96 120
forest pristine (± 14.68) (± 9.48) (± 24.57) (± 0.709) (± 1.838)

Peat swamp 7094.17 27 13.78 23.20 30.42 36.40 0.752 32 1.266 37 1.660 34 1.986 35 68 121 164
forest logged (± 12.12) (± 9.53) (± 24.57) (± 0.520) (± 1.341)

Bushland/ 2828.97 11 1.86 1.64 3.90 9.10 0.040 2 0.036 1 0.085 2 0.198 4−12 110 390

regrowth (± 5.16) (± 1.08) (± 7.02) (± 0.023) (± 0.153)

Grassland/ 5543.88 21 0.33 0.43 1.56 0.81 0.014 1 0.019 1 0.067 1 0.034 1 31 370 143

fern (± 2.09) (± 1.35) (± 1.75) (± 0.058) (± 0.074)

Burned 1509.79 6 1.36 0.09 0.00 0.00 0.016 1 0.001 0 0.00 0 0.00 0 −93 −100 −100

(± 3.50) (± 1.09) (± 0.013)

Total 26 701.34 100 2.369 100 3.462 100 4.845 100 5.622 100 46 105 137
(± 2.596) (± 6.736)

appear in red. AGB profile 2 in Fig. 6b transects two areas
of previous logging activity. The LiDAR data set indicates
lower AGB values in logged areas which are not detectable in
the Landsat-image- and the land-cover-based estimate. AGB
profile 3 (Fig. 6c) transects a fire scar which was created dur-
ing the severe fire disaster in 1997. Here the Landsat-based
estimate is higher than the LiDAR estimate. Forest regrowth
was much slower than expected and thus the AGB is over-
estimated. AGB profile 4 (Fig. 6d) covers peat swamp forest
and two fire scars from different years (2002 in the west and
2006 in the east) located on a higher section of the elevated
peat dome. The LiDAR AGB indicates significantly lower
AGB values for the peat swamp forest than in other areas in
the study site or than indicated by standard AGB values, most
likely caused by unfavourable growth conditions. In all 4 pro-
files, the AGB values obtained by the indirect method (local
forest inventory, regional database and IPCC) show signifi-
cant over- and/or underestimations in comparison to the di-
rect method obtained from LiDAR .

Table 1 presents the results of the comparison between
the LiDAR AGB estimates for the LiDAR tracks; Table 2
presents the up-scaling of these estimates to the whole study
area compared to other methods and standard AGB values.
The variation of the LIDAR AGB estimates for different land
cover classes (based on the Landsat classification) is notice-
able here as well (Tables 1 and 2). For areas classified as
peat swamp pristine forest, representing 36 % of all LiDAR
track area and constituting approximately 65 % of the total
estimated AGB, this variation can be up to 140 % (Table 1).
Furthermore, the LiDAR AGB estimates for this class are
38 %, 96 %, and 120 % lower than using values assigned to
this class based on the site-specific field inventory data, re-
gional literature estimates, and IPCC default values, respec-
tively (Table 1). Similar relationships were found in other
land cover classes, and therefore the direct LiDAR-based
AGB estimate is in total 43 % (site-specific field inventory

data), 102 % (regional literature estimates), 137 % (IPCC de-
fault values) lower than the indirect method considering the 1
million ha study area (Table 2). This overestimation by other
methods is higher than that shown by Asner et al. (2010),
who observed a 33 % lower regional LiDAR-based carbon
estimate than by a default approach based on average IPCC
(IPCC, 2006) carbon values assigned to biomes in the Peru-
vian Amazon.

4 Discussion

Our results confirm that the use of airborne LiDAR data is a
very reliable solution for large-scale AGB and carbon stock
estimation (Asner et al., 2009a; Asner et al., 2010; Lefsky et
al., 2002; Lefsky et al., 2005; Means et al., 1999; Popescu,
2007; Zhao et al., 2009;). Despite its relatively high oper-
ation costs for large-scale mapping, this approach produces
the most accurate estimates of forest carbon stocks in that it
captures the natural spatial variability and previous impacts
like logging. Global estimates based on low- and medium-
resolution satellite data (Baccini et al., 2012; Saatchi et al.,
2011) do not capture the local variability in forest AGB
(natural and human caused) which is required for REDD+

project measuring, reporting, and verification (MRV) sys-
tems. A “benchmark” map of biomass carbon stock for the
tropics, based on a combination of in situ inventory plots,
satellite LiDAR data, and optical and microwave imagery
(1km resolution), showed that especially for the peat forest
areas of Central Kalimantan the uncertainty in biomass car-
bon stock estimates was very high (>45%) (Saatchi et al.,
2011). This high uncertainty, the limited amount of in situ
field measurements in Southeast Asian tropical forests (es-
pecially in tropical peat swamp forests), and the inability
of high and medium multispectral resolution satellite instru-
ments such as Landsat to quantify historic forest disturbance
show the importance to derive more accurate AGB estimates
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Table 2. Above-ground biomass (AGB) comparison between the LiDAR-based estimations and AGB estimations where AGB values were
based on site-specific field inventory data (field plots), regional literature estimates (literature), and IPCC default values (IPCC), according
to land cover classes, derived from a Landsat (multispectral satellite) classification, for the peatlands for the whole 1 million ha study area
(Mt = Megaton).

Class Total AGB (Mt) Difference (%)
Name Area (ha) % LiDAR % Field plots % Literature % IPCC % LiDAR – LiDAR – LiDAR –

field plots literature IPCC

Peat swamp 351 588.32 39 55.912 71 77.408 68 109.696 69 123.056 66 38 96 120
forest pristine (± 39.702) (± 25.639) (± 66.450)

Peat swamp 186 130.60 20 19.725 25 33.201 29 43.555 27 52.117 28 68 121 164
forest logged (± 17.353) (± 13.645) (± 35.179)

Bushland/ 154 197.54 17 2.205 3 1.943 2 4.626 3 10.794 6 −12 110 390
regrowth (± 6.120) (± 1.281) (± 8.327)

Grassland/ 154 108.55 17 0.394 0 0.515 0 1.849 1 0.955 1 31 370 143
fern (± 2.478) (± 1.600) (± 2.075)

Burned 65 425.08 7 0.682 1 0.047 0 0.00 0 0.00 0 −93 −100 −100
(± 1.761) (± 0.549) (± 0.00)

Total 911 450.10 100 78.918 100 113.115 100 159.725 100 186.922 100 43 102 137
(± 127.752) (± 83.841) (± 220.134)

in these inaccessible ecosystems. In combination with high-
resolution satellite imagery, airborne LiDAR could be a cost-
effective approach to derive more accurate regional maps on
forest carbon densities (Asner et al., 2010). Furthermore the
new approach presented here through using the CH and in-
corporating LiDAR point densities as weight has the capa-
bility to improve current estimates on AGB spatial variabil-
ity across different forest types and degradation levels also in
other tropical biomes and to assist the efforts in up-scaling
LiDAR-derived AGB estimates to large-scale geographic ar-
eas.

There exists a considerable natural variability of AGB up
to 140 % within the same forest type due to varying environ-
mental conditions. We conclude that AGB is lower in forests
which grow in areas where the water table is permanently
high (low pole peat swamp forest) (Page et al., 1999). For
example, we found that in water-logged conditions the AGB
is significantly lower than in drier locations. AGB reduction
by logging dating back more than 10 years can still be as-
sessed by LiDAR but not by multispectral satellite imagery
available for that period in time.

The up-scaling of LiDAR AGB to a large area of 1 million
ha (59 % peat swamp forest) was compared to the indirect
methods based on the Landsat land cover map (see Sect. 2.5)
and site-specific field inventory data, regional literature val-
ues, and IPCC default values (Table 2). We observed that
these indirect methods overestimated AGB vy 46 %, 102 %,
and 137 %, respectively. If the whole area were completely
deforested – a likely scenario for the near future – this would
lead to an overestimation 63, 148 and 198 megatons of CO2,
respectively (34, 81 and 108 megatons of AGB; conversion
factor from AGB to carbon 0.5; IPCC, 2006).

Especially for the carbon-rich tropical peat swamp forests,
this finding is of high importance because this ecosystem is

disappearing at an alarming rate due to the conversion to oil
palm plantations established to meet the demands for bio-
fuels. By converting peat swamp forests into biofuel planta-
tions, more carbon will be released than it is saved by using
biofuels (Dewi et al., 2009).

For REDD+ activities, default values or indirect ap-
proaches to determine AGB are not sufficiently reliable and
lead to inaccurate carbon stock estimates and consequently
to excessive carbon credits and compensation payments.
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