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Abstract. The vertical distribution of soil organic matter
(SOM) in the profile may constitute an important factor for
soil carbon cycling. However, the formation of the SOM pro-
file is currently poorly understood due to equifinality, caused
by the entanglement of several processes: input from roots,
mixing due to bioturbation, and organic matter leaching. In
this study we quantified the contribution of these three pro-
cesses using Bayesian parameter estimation for the mecha-
nistic SOM profile model SOMPROF. Based on organic car-
bon measurements, 13 parameters related to decomposition
and transport of organic matter were estimated for two tem-
perate forest soils: an Arenosol with a mor humus form (Loo-
bos, the Netherlands), and a Cambisol with mull-type humus
(Hainich, Germany). Furthermore, the use of the radioisotope
210Pbex as tracer for vertical SOM transport was studied. For
Loobos, the calibration results demonstrate the importance
of organic matter transport with the liquid phase for shaping
the vertical SOM profile, while the effects of bioturbation
are generally negligible. These results are in good agreement
with expectations given in situ conditions. For Hainich, the
calibration offered three distinct explanations for the obser-
vations (three modes in the posterior distribution). With the
addition of210Pbex data and prior knowledge, as well as ad-
ditional information about in situ conditions, we were able
to identify the most likely explanation, which indicated that
root litter input is a dominant process for the SOM profile.
For both sites the organic matter appears to comprise mainly
adsorbed but potentially leachable material, pointing to the
importance of organo-mineral interactions. Furthermore, or-

ganic matter in the mineral soil appears to be mainly derived
from root litter, supporting previous studies that highlighted
the importance of root input for soil carbon sequestration.
The210Pbex measurements added only slight additional con-
straint on the estimated parameters. However, with sufficient
replicate measurements and possibly in combination with
other tracers, this isotope may still hold value as tracer for
SOM transport.

1 Introduction

The current lack of understanding of the soil system forms an
important contribution to the uncertainty of terrestrial carbon
cycle predictions (Heimann and Reichstein, 2008; Trumbore,
2009). To improve simulation of soil carbon cycling, it is
necessary to move beyond the simple description of organic
matter decomposition that is currently being applied in most
large-scale models (Reichstein and Beer, 2008). Increasing
evidence indicates that decomposition and stabilization are
controlled by a range of mechanisms that depend on physical,
chemical, and biological factors (von Lützow et al., 2006).
These factors vary laterally at landscape scale in relation to
climate, vegetation and soil type. In the vertical dimension,
however, they change on a scale of centimeters to meters,
since most drivers (e.g., wetting, heating, organic matter in-
put) are exerted on the soil at or near the surface, propagat-
ing downwards. Consequently, the conditions that determine
soil carbon cycling are highly depth-dependent and different
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mechanisms may be operating in different layers within one
profile (Rumpel et al., 2002; Saloḿe et al., 2010; Rumpel and
Kögel-Knabner, 2011). Therefore, aggregation of processes
and soil properties over the profile, or downward extrapola-
tion of topsoil organic carbon, as used in many soil organic
matter (SOM) models (e.g.,Parton et al., 1987; Tuomi et al.,
2009), is likely an oversimplification, inadequate to support
new parameterizations of relevant processes.

Awareness of this problem has spurred recent efforts to
develop models that predict the vertical distribution of SOM,
based on explicit descriptions of carbon deposition processes
in the profile (Jenkinson and Coleman, 2008; Koven et al.,
2009; Braakhekke et al., 2011). In most soils there are three
mechanisms by which organic carbon can be input at any
given depth: (i) organic matter may be deposited in situ by
root exudation, sloughing off of root tissue and root turnover.
(ii) Organic matter is transferred within the profile due to
movement with the liquid phase. This type of transport is
of an advective nature, and affects only fractions that are
potentially mobile: mainly dissolved, and to a lesser degree
colloidal organic matter. (iii) Downward dispersal of organic
matter occurs due to mixing of the soil matrix. Soil mixing
is mostly caused by bioturbation – the reworking activity of
soil animals and plant roots – and its effects on organic mat-
ter may be simulated mathematically as diffusion, provided
the time and space scale of the model are sufficiently large
(Boudreau, 1986; Braakhekke et al., 2011).

The processes involved in SOM deposition in the profile
– root input, liquid phase transport, and bioturbation – are
fundamentally different, not only in a physical and math-
ematical sense, but also in terms of their relationship with
environmental factors. Therefore, in order for a SOM pro-
file model to be robust over different ecosystems and soil
types, and over changing environmental conditions, the rele-
vant processes should be explicitly represented. Furthermore,
the distribution of organic matter over particulate and poten-
tially mobile fractions needs to be accounted for.

Unfortunately, the different processes have been poorly
quantified to this date. Published results are inconsistent, and
past studies have generally focused on a single mechanism,
rather than comparing all three (Rasse et al., 2005; Kaiser and
Guggenberger, 2000; Tonneijck and Jongmans, 2008). Their
extremely low rates, as well as practical problems, impede
direct measurements of these processes in the field. Further-
more, the fact that the mechanisms are acting simultaneously
complicates inference from SOM profile measurements. Dif-
fusion and advection of decaying compounds, such as or-
ganic matter, can produce very similar concentration pro-
files, despite the different natures of these processes. More-
over, root input closely follows the root biomass distribution,
which often strongly resembles the SOM profile. Hence, it is
generally not possible to derive the rate of each process from
the organic carbon profile alone, unless strong assumptions
are made. A model that includes all relevant processes may
be able to explain an observed soil carbon profile by several

different mechanisms – a problem referred to as equifinality
(Beven and Freer, 2001).

Thus, additional information is required in order to param-
eterize dynamic SOM profile models. In past studies,13C and
14C have been used as tracers for this purpose (Elzein and
Balesdent, 1995; Freier et al., 2010; Baisden et al., 2002).
Although these isotopes are particularly useful for constrain-
ing organic matter turnover times and carbon pathways, their
precise information content with respect to the processes in-
volved in SOM profile formation is less clear, since root input
leads to direct input of13C and14C at depth. In this context,
fallout radio-isotopes (e.g.,137Cs,134Cs,210Pbex, 7Be) may
be more effective. Such tracers have two major advantages
over carbon isotopes: (i) loss occurs only due to radioac-
tive decay, which is constant and exactly known; and (ii) in-
put occurs only at the soil surface – direct input at depth is
negligible. These points imply that the vertical transport rate
of such isotopes can be directly inferred from their concen-
tration profiles (Kaste et al., 2007; He and Walling, 1997).
Since many radio-isotopes sorb strongly to organic matter
molecules, they offer an effective alternative or complement
to carbon isotopes for inferring organic matter transport rates
in soils (Dörr and M̈unnich, 1989, 1991). Particularly210Pbex
(210Pb in excess of the in situ produced fraction) is a valuable
tracer due to its strong adsorption to soil particles, and rela-
tively constant fallout rate (Walling and He, 1999). Past stud-
ies have mostly used radio-isotopes for determining erosion
and deposition rates (Mabit et al., 2009; Wakiyama et al.,
2010), while their use for inferring vertical transport at stable
sites has received little attention (Dörr and M̈unnich, 1989;
Kaste et al., 2007; Arai and Tokuchi, 2010; Yoo et al., 2011).

The aim of this study is to examine SOM profile formation
with model inversion. We used210Pbex concentration pro-
files, in addition to soil carbon measurements, to calibrate
the model SOMPROF (Braakhekke et al., 2011) for two for-
est sites with contrasting SOM profiles. SOMPROF is a ver-
tically explicit SOM model that simulates the distribution of
organic matter over the mineral soil profile and surface or-
ganic layers. The aim of the model is to represent SOM pro-
file formation over time scales of years to centuries. It in-
cludes simple but explicit representations of the relevant pro-
cesses: bioturbation, liquid phase transport, root litter input,
and decomposition. SOMPROF was developed with large-
scale application in an earth system model in mind. It was
shown to be able to produce SOM profiles that compare well
to observations (Braakhekke et al., 2011), but parameter sets
for different soils and ecosystems have hitherto not been de-
rived.

For both sites, 13 SOMPROF parameters were estimated.
We focused on unmeasurable parameters such as decomposi-
tion rate coefficients and organic matter transport rates. The
model inversion was performed in a Bayesian framework, al-
lowing prior knowledge of the model parameters to be in-
cluded and to estimate their posterior uncertainty. In view of
the limited understanding of the SOM profile, the aim of this
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Fig. 1. Overview of the SOMPROF model and the210Pbex module. The dark gray rectangles indicate210Pbex associated with the organic
matter pools.

study went beyond simply reducing the uncertainty ranges
of the parameters. We also sought to gain qualitative under-
standing of the model’s behavior, specifically its potential
ability to explain observations by different mechanisms, and
the value of210Pbex data and prior knowledge to improve pa-
rameter identification. This work also represents a first step
towards testing the validity of SOMPROF for different soils
and ecosystems.

We aim to answer the following questions: (i) what is
the relative importance of the different processes involved
in SOM profile formation? (ii) How much organic matter is
present as material potentially transportable with the liquid
phase, as compared to immobile particulate material? And,
(iii) are 210Pbex profile measurements useful for constraining
the model parameters?

2 Methods

2.1 The SOMPROF model

Here a brief overview of the SOMPROF model is presented.
We focus specifically on the model equations in which the
estimated parameters are applied, and the210Pbex module.
A more exhaustive description and the rationale behind the
model structure is presented inBraakhekke et al.(2011).

In SOMPROF the soil profile is divided into the mineral
soil and the surface organic layer, which is assumed to con-
tain no mineral material and is further subdivided into three
horizons: L, F and H (Fig.1). These organic horizons are
simulated as homogeneous connected reservoirs of organic
matter (OM). Decomposition products of litter generally flow
from the L to the F horizon and from the F to the H hori-

zon. Additionally, material may be transported downward be-
tween the organic horizons and into the mineral soil by bio-
turbation. For the mineral soil, which comprises both organic
matter and mineral material, the model simulates the verti-
cal distribution of the organic matter pools, with a diffusion-
advection model.

In view of the low rates of the relevant processes, and
lack of knowledge of initial conditions at the sites, the SOM-
PROF simulations in this study covered the complete period
of SOM profile formation, starting without any organic car-
bon in the profile. The model was run with a time step length
of one month (1/12 yr), for a specified maximum number
of years, depending on the age and history of the site, and
was driven by repeated annual cycles of measured or esti-
mated soil temperature, moisture and (root) litter production.
The main reason for considering temperature and moisture
was to remove effects of local climate from the estimated
decomposition rate coefficients, which thus are more intrin-
sic quantities, influenced mostly by local soil and vegetation
properties. Furthermore, seasonal fluctuations of the forcing
variables were accounted for since the timing of oscillations
may have effects on long time scales due to non-linear in-
teractions in the model. We limited the forcing cycle to one
year, because inter-annual variability is expected to be small
compared to seasonal fluctuations and the available measure-
ments were not sufficient to derive longer cycles.

2.1.1 Organic matter pools and decomposition

Organic matter simulated in SOMPROF comprises five pools
(Fig. 1), representing fractions that differ with respect to de-
composability, transport behavior and mechanism of input:
aboveground litter (AGL), fragmented litter (FL), root litter
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(RL), non-leachable slow organic matter (NLS), and leach-
able slow organic matter (LS). Aboveground and root litter
receive external input; fragmented litter and leachable and
non-leachable slow OM are formed by decomposition. LS
is absent in the organic horizons since the adsorptive capac-
ity there is assumed to be negligible compared to that of the
mineral soil.

Organic matter decomposition is simulated as a first-order
decay flux, corrected for soil temperature and moisture. For
any organic matter pooli, the decomposition fluxLi is de-
fined as:

Li = f (T ) g (W) ki Ci , (1)

whereCi is the concentration (kg m−3, for the mineral soil)
or the stock (kg m−2, for the organic horizons),ki the de-
composition rate coefficient (yr−1) at 10◦C and optimal soil
moisture, andf (T ) andg(W) the response functions for soil
temperature and moisture (seeBraakhekke et al., 2011). To
avoid errors due to smoothing of the temperature and mois-
ture data to monthly values, the response factors were cal-
culated for the unsmoothed, daily measurements. These re-
sponse factors were subsequently averaged to monthly val-
ues, and several years of data were averaged to an average
annual cycle, which was used to calculate the decomposition
fluxes.

The formation of fragmented litter, non-leachable, and
leachable slow OM is defined according to a transformation
fraction (αi→j ) that determines the decomposition fluxFi→j

from donor pooli to the receiving poolj :

Fi→j = αi→jLi . (2)

The organic matter that does not flow to other pools is as-
sumed to be lost as CO2.

For the calibration measured organic carbon amounts were
always compared to total simulated organic carbon, summed
over all pools. Mass fraction in the mineral soil layers was
calculated as the organic carbon mass divided by the total
mass (mineral plus organic) in each layer. Effective decom-
position rate coefficients were determined by dividing the to-
tal simulated heterotrophic respiration by the total organic
matter stock of the respective layers.

2.1.2 Organic matter transport

All organic matter pools except aboveground litter are trans-
ported by bioturbation at equal rate. Conversely, only the
leachable slow organic matter pool is transported by liquid
phase transport. All transport parameters are assumed con-
stant and independent of depth, although the diffusivity of
organic matter may vary with depth due to bulk density vari-
ations (see Eq.4).

For the organic layer, organic matter transport due to
bioturbation is determined by the bioturbation rateB
(kg m−2 yr−1), which represents the mixing activity of the

soil fauna, i.e., the amount of material being displaced per
unit area and unit time.B is the maximum flux of organic
matter that can be moved to the next horizon. In case the po-
tential bioturbation flux for one time step exceeds the amount
of organic matter in a horizon, it is adjusted downward. For
the mineral soil, a diffusion model is applied to simulate
transport due to bioturbation:

∂Ci

∂t

∣∣∣∣
BT

= DBT
∂2Ci

∂z2
, (3)

whereCi is the local concentration of organic matter pooli

(kg m−3), z depth in the mineral soil (m, positive downward;
z = 0 at the top of the mineral soil), andt time (yr). DBT
is the diffusivity (m2 yr−1), which is derived from the bio-
turbation rate according to mixing length theory, as follows
(Braakhekke et al., 2011):

DBT =
1

2

B

ρMS
lm, (4)

where isρMS is the local bulk density (kg m−3), which is
depth dependent and can either be set to measured values
or calculated by the model.lm is the mixing length (m),
which links the bioturbation rate to the diffusivity. The upper
boundary condition, at the top of the mineral soil, is deter-
mined by the flux of material coming from theH horizon.

Dissolved organic matter (DOM) is not explicitly repre-
sented in SOMPROF. Instead, the combined effects of ad-
and desorption and water flow on the concentration profile of
the leachable slow organic matter pool are simulated as an
effective advection process:

∂CLS

∂t

∣∣∣∣
LPT

= −v
∂CLS

∂z
, (5)

where v is the effective organic matter advection rate
(m yr−1). Note that the LS pool represents potentially leach-
able material; the bulk of this organic matter is in fact immo-
bile due to adsorption to the mineral phase. Hence, the LS
pool is also transportable by bioturbation.

The upper boundary condition for LS is determined by the
total production in the organic layer. For all pools a zero-
gradient condition is used for the lower boundary. Hence,
only advection of LS can lead to a loss of organic matter
by transport.

2.1.3 210Pbex simulation

210Pb is a radiogenic isotope that is input into the soil due to
both atmospheric deposition and in situ formation within the
profile. The fallout fraction (210Pbex) is typically estimated as
the difference between the total210Pb activity and the activity
of 226Ra, one of its precursors (Appleby and Oldfield, 1978).

A module has been added to SOMPROF in order to use
measurements of210Pbex as a tracer for SOM transport
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(Fig. 1). The modeled210Pbex concentration profile is con-
trolled by atmospheric input, radioactive decay, and organic
matter input, decomposition and transport. The210Pbex mod-
ule is based on the following assumptions: (i) variations in
time of the atmospheric210Pbex input are negligible; (ii)
210Pbex is input only into the L horizon; (iii) once in the
soil, 210Pbex binds immediately and irreversibly to any or-
ganic matter pool; (iv)210Pbex “follows” the organic matter
to which it is bound through the decomposition and transport
processes; and (v) aside from transport,210Pbex is lost only
due to radioactive decay, at a fixed rate of 0.0311 yr−1.

Since210Pbex is only input into the L horizon, which con-
tains no root litter, no210Pbex is associated with this pool.
Furthermore, external input of organic matter as litter has
a diluting effect on210Pbex, while loss of organic matter as
CO2 leads to an increase of mass fraction. For the organic
horizons, the210Pbex fluxes due to organic matter flow (either
by transport or transformation to another pool) are calculated
by multiplying the flux from a pool by its210Pbex mass frac-
tion. For the mineral soil the transport equations are solved
separately for210Pbex associated with the FL, NLS and LS
pools.

Since the atmospheric deposition rate of210Pbex is not
generally known, the210Pbex fractions were normalized rela-
tive to the fractions at the mineral soil surface for comparison
with observations (see Sect.2.3.2). Thus, the exact input rate
is trivial, and was set to 1. Mineral soil210Pbex mass frac-
tions, used for comparing with measurements, were calcu-
lated as the total210Pbex amount, summed over all organic
matter pools, divided by the total mass (mineral plus or-
ganic).

2.2 Site descriptions

2.2.1 Loobos

Loobos is a Scots pine (Pinus sylvestris) forest on
a well-drained, sandy soil in the Netherlands (52◦10′0′′ N,
5◦44′38′′ E). The climate is temperate/oceanic with an aver-
age annual precipitation of 966 mm and an average temper-
ature of 10◦C (WUR, Alterra, 2011). The area, which was
originally covered by shifting sands, was planted with pine
trees in the early 20th century. Currently, the forest floor is
covered with a dense understorey of wavy hair grass (De-
schampsia flexuosa) that roots primarily in the organic layer.
Due to its young age, the soil is classified as Cambic or Hap-
lic Arenosol (IUSS Working Group WRB, 2007; Smit, 1999)
but shows clear signs of the onset of podzolization. Because
of the high content of quartzitic sand (> 94 %), the soil is
very poor, which is reflected by a low pH (3–4) and nutrient
concentrations, and a virtual absence of soil fauna (Emmer,
1995; Smit, 1999). Organic matter is comprised mostly of
mor humus in a thick organic layer of circa 11 cm, and or-
ganic carbon fractions in the mineral soil are very low.

Table 1.Model driving data and not-estimated parameters.

Variable/Parameter Loobos Hainich Units

Annual aboveground litter input 0.310 0.314b kg C m−2 yr−1

Canopy 0.255 0.277b

Understory 0.055c 0.037b

Total annual root litter input 0.543 0.178b kg C m−2 yr−1

Canopy 0.118 0.148b

Understory 0.425c 0.03
Root litter distribution param. see text 7 m−1

Soil temperature resp. param. 308.56d 308.56d K
Soil moisture resp. param.ae 1 1 –
Soil moisture resp. param.be 20 20 –
Soil temperature a a K
Relative soil moisture content a a –
Bulk density L layer 50 50 kg m−3

Bulk density F layer 100 100 kg m−3

Bulk density H layer 150 150 kg m−3

Bulk density mineral soil 1400 a kg m−3

Simulation period 95 1000 yr
Depth of bottom boundary 2 0.7 m

a Variable in depth and/or time;b Kutsch et al.(2010); W. Kutsch (personal
communication, 2009);c Smit and Kooijman(2001); d Lloyd and Taylor(1994); e Soil
moisture response function:g (W) = exp(−exp(a − bW)).

Half-hourly measurements of soil moisture and tempera-
ture were performed continuously at five depths (5, 13, 30,
60, 110 cm). Data for the period 1 May 2005 to 31 Decem-
ber 2008 were used to derive an average annual cycle of soil
temperature and moisture, which was used for the simula-
tions. Additionally, aboveground litter fall measurements on
a two to four weeks basis for the period 2000 to 2008 were
used to derive an average annual cycle for aboveground litter
input. Since the carbon content of the litter was not deter-
mined, we used a fixed C fraction of 50 %. Bulk density was
calculated by the model according to a function from Federer
et al. (1993), based on hypothetical bulk densities of pure
mineral and pure organic soil (set to 1400 and 150 kg m−3,
respectively).

Annual root litter input for the understorey was taken from
Smit and Kooijman(2001) (Table 1), who estimated root
turnover in the same forest using root ingrowth cores. To
account for seasonal fluctuations of the grass layer, the an-
nual input of both above- and belowground grass litter was
distributed over the year using a function based on data taken
from Veresoglou and Fitter(1984), which peaks around early
June. The vertical distribution of understorey root litter in-
put was set such that approximately 95 % occurs in the or-
ganic layer (Supplement Fig. 1), which corresponds to in situ
observations of root biomass (A. Smit, personal communi-
cation, 2009). For the root litter input from the pine trees
(Table 1), we used data from a forest in Belgium (Brass-
chaat) with a similar vegetation composition, soil type, and
age (Janssens et al., 2002). The root litter input for Loo-
bos was derived by scaling the estimate from theJanssens
et al. (2002) study according to net primary productivity
estimates of both sites, which were taken fromLuyssaert

www.biogeosciences.net/10/399/2013/ Biogeosciences, 10, 399–420, 2013



404 M. C. Braakhekke et al.: Modeling the SOM profile using Bayesian inversion

et al. (2007). The root litter input from the canopy vegeta-
tion was held constant throughout the simulation. Its ver-
tical distribution was also derived from information from
Janssens et al.(2002), as well as personal communication
from J. Elbers and I. Janssens (2009). At both the Brass-
chaat and Loobos sites, it is observed that the root biomass
starts at the top of the H horizon and peaks at the mineral
soil surface. Therefore, we chose a distribution function that
increases linearly with depth from the top to the bottom of
the H horizon. From there it decreases with depth according
to a two-term exponential function:f (z) = exp(−20.00z)+

0.0384exp(−0.886z) (see Supplement Fig. 1). By this func-
tion we accounted for deep soil input from pine roots, which
may be important for the vertical SOM profile. Since the
thickness of theH horizon is variable, the total distribution
function was normalized at every time step.

The simulation length was set to 95 yr, which is the ap-
proximate time between the forest plantation and the sam-
pling date. To account for the time needed for vegetation to
develop, litter input was reduced in the initial stage, by multi-
plying with a function linearly increasing from 0, at the start
of the simulation, to 1, after 60 yr (Emmer, 1995).

2.2.2 Hainich

This site is located in the Hainich national park in Central
Germany, (51◦4′45.36′′ N, 10◦27′7.20′′ E). The forest, which
has been unmanaged for the last 60–70 yr, is dominated by
beech (Fagus Sylvatica, 65 %) and ash (Fraxinus excelsior,
25 %) (Kutsch et al., 2010). The forest floor is covered by
herbaceous vegetation (Allium ursinum, Mercurialis peren-
nis, Anemone nemorosa), which peaks before canopy bud
break. The climate is temperate suboceanic/subcontinental
with an average annual precipitation of 800 mm and an av-
erage temperature of 7–8◦C.

The soil is classified as Luvisol or Cambisol (IUSS Work-
ing Group WRB, 2007; Kutsch et al., 2010). It has formed
in limestone overlain by a layer of loess, and is character-
ized by a high clay content (60 %) and a pH of H2O of 5.9 to
7.8 (T. Persson, personal communication, 2011). The favor-
able soil properties support a high biological activity (Cesarz
et al., 2007), corroborated by a thin organic layer and a well-
developed A horizon. About 90 % of the root biomass occurs
above 40 cm depth. A similar distribution was used for the
root litter input (Supplement Fig. 1).

The oldest trees at Hainich are approximately 250 yr old,
but presumably the site has been covered by similar vegeta-
tion for much longer. Thus, we assumed that the soil is close
to steady state. Hence, a 1000yr simulation was used. For fur-
ther information on the setup of the Hainich simulation, refer
to the description of the reference simulation inBraakhekke
et al.(2011). The model inputs that were not included in the
calibration are listed in Table1.

2.3 Observations used for the calibration

2.3.1 Organic carbon measurements

For Loobos, measured carbon stocks in the L, F and H hori-
zons and the mineral soil, and carbon mass fractions at 3
depths in the mineral profile were used in the calibration.
Several profiles were affected by wind erosion; when this
was the case, the affected measurements were omitted. In
2005 the soil was sampled in a regular quadratic grid at 25
points spaced 40 m apart. Organic layers were removed with
a square metal frame with a side length of 25 cm. The mineral
soil was sampled horizon-wise with a Pürckhauer auger, 2–
3 cm wide and 1 m long. Soil samples were sieved to< 2 mm
and ground. Carbon stocks in the organic layers were ana-
lyzed with a CN analyser Vario EL (Elementar Analysen-
systeme GmbH, Hanau, Germany); carbon fractions in the
mineral soil were measured with a CN Analyser VarioMax
(Elementar Analysensysteme GmbH, Hanau, Germany). For
the calibration the mineral soil carbon fractions from differ-
ent samplings were interpolated to three fixed depth levels.

For Hainich, measured stocks in the L and F/H horizon
(the individualF andH horizons could not be identified) and
in the mineral soil were used, as well as mass fraction mea-
surements at 8 depths in the mineral profile. In addition, we
used measured effective decomposition rate coefficients at
15◦C and soil moisture at 60 % of water holding capacity in
the L and F/H horizon, and at 7 depths in the mineral profile.
The sampling procedure and organic carbon measurements
are described inSchrumpf et al.(2011). The decomposition
rate coefficients were calculated from measurements of res-
piration rates measured during lab incubation of soil sam-
ples, which is described inKutsch et al.(2010). By dividing
the average respiration rate of each sample by its organic car-
bon content, we obtained effective decomposition rate coef-
ficients. All measurements are listed in Supplement Table 1.

Simulated organic carbon fractions and effective decom-
position rate coefficients were interpolated to the measure-
ment depths for comparing with measurements using piece-
wise Hermitian interpolation (Burden, 2004). Because or-
ganic carbon stocks and mass fractions cannot be less than
zero and typically have large spatial variance, the measure-
ments from replicate samplings can be assumed to have right-
skewed distributions. We assumed that this is also the case for
the effective decomposition rate measurements. Therefore,
all measurements (and their corresponding model results)
were log transformed for the calibration to bring the distribu-
tions closer to normal. This also reduced heteroscedasticity
for the mineral soil organic carbon fractions.

2.3.2 210Pbex measurements

Since local210Pbex measurements were not available for
Loobos, we used two activity profiles fromKaste et al.
(2007), for a site in the Hubbard Brook Experimental Forest,
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Fig. 2. Measured210Pbex concentrations used for the calibration.
Concentrations are relative to the values at the surface. Note that
the210Pbex measurements for Loobos are taken from an equivalent
site (Kaste et al., 2007).

New Hampshire, USA. This site has conditions similar to
those at Loobos in terms of vegetation, soil texture, soil pH,
and soil biological activity (Bormann and Likens, 1994). Fur-
thermore, pedological processes related to podzol formation
are occurring at both sites. The two sites differ with respect
to age, since the Loobos soil is very young. However, in view
of the relatively fast decay rate of210Pb, and the shallow dis-
tribution of the210Pbex profile (Fig.2), we assume that it is
close to steady state at both sites.

Local 210Pbex measurements at Hainich were performed
for a study byFujiyoshi and Sawamura(2004) (R. Fujiyoshi,
personal communication, 2008). Although these measure-
ments were corrected for in situ formed210Pb by subtracting
the 226Ra activity (R. Fujiyoshi, personal communication,
2008), the activity profile did not approach zero with depth.
Hence, this method did presumably not account for all sup-
ported210Pb. Therefore, we assumed that the210Pbex con-
centration is zero from approximately 12.5 cm downwards.
The supported210Pb activity was estimated as the average
below this depth, and all data were corrected by subtracting
this average. (Note that in several cases this produced nega-
tive concentrations.)

Only mineral soil210Pbex measurements were used in the
calibration (Fig.2 and Supplement Table 1). The profiles of
both sites, as well as those predicted by the model, were nor-
malized by dividing them by the210Pbex activity at the sur-

face of the mineral soil, which was estimated using piecewise
Hermitian extrapolation. Simulated210Pbex fractions and ef-
fective decomposition rate coefficients were interpolated to
the measurement depths also using Hermitian interpolation,
for comparing with measurements. Because of the negative
observed values for Hainich, no log-transformations were
used for the210Pbex data.

2.4 Bayesian calibration

We performed Bayesian estimation of 13 model parameters:
five decomposition rate coefficients, five transformation frac-
tions, and three transport parameters (Table2). Bayesian cal-
ibration is aimed at deriving the posterior probability distri-
butionp(θ |O) of the model parametersθ based on the misfit
between the model results and the observationsO, and the
a priori probability distribution of the parameters (Mosegaard
and Sambridge, 2002). According to Bayes’ theorem, the
posterior distribution is defined as:

p(θ |O) = c p(θ) p(O|θ), (6)

wherep(θ) is the prior probability distribution, expressing
our knowledge of the parameters prior to the calibration, and
c is a normalization constant, ensuring that the integral over
the distribution equals 1.p(O|θ) is a likelihood function that
expresses the probability of the observationsO, given the
parametersθ (Gelman et al., 2004, Chap. 1).

The calibrations were performed in three setups, in which
210Pbex data and prior knowledge were stepwise added, in
order to investigate the information content of each source of
information. For both sites, we ran calibrations in the follow-
ing setups:

1. excluding210Pbex data and with weak priors;

2. including210Pbex data and with weak priors;

3. including210Pbex data and with strong priors.

Calibration setup 3 represents our best estimate of the model
parameters.

2.4.1 Likelihood function

As discussed in Sect.2.3, different types of observed vari-
ables were used in the calibration, referred to as “data
streams”. For any data stream (i), the observations (Oi) may
be seen as the sum of the model prediction (Mi(θ)) plus a
stochastic residual term (εi):

Oi = Mi(θ) + εi, i = 1, 2. . . I. (7)

Note that for all data streams except210Pbex the model
prediction and measurements were log-transformed. We as-
sumed that the residuals are normally distributed with vari-
ance (σi), which may be different for each data stream. The
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Table 2.The model parameters estimated in the calibration. Note that the prior distributions were only used for calibration setup 3. The lower
bound for all parameters is zero; the upper bound is given in the table.

Parameter Symbol Units Prior distribution in Upper bound
calibr. setup 3

Decomposition rate coefficients at 10◦C and optimal soil moisture

Aboveground litter kAGL yr−1 Log−N (−0.23,0.74) 3
Root litter kRL yr−1 Log−N (−0.23,0.74) 3
Fragmented litter kFL yr−1 Log−N (−0.23,0.74) 3
Non-leachable slow kNLS yr−1 Log−N (−2.23,1.00) 3
organic matter
Leachable slow kLS yr−1 Log−N (−2.23,1.00) 3
organic matter

Transformation fractions

Aboveground litter – αAGL→FL – Logit−N (0.43,0.95) 1
fragmented litter
Fragmented litter – αFL→NLS – Logit−N (−0.93,0.98) 1, (1− αFL→LS)

non-leachable slow
Fragmented litter – αFL→LS – Logit−N (−0.93,0.98) 1, (1− αFL→NLS)

leachable slow
Root litter – non- αRL→NLS – Logit−N (−0.93,0.98) 1, (1− αRL→LS)

leachable slow
Root litter – αRL→LS – Logit−N (−0.93,0.98) 1, (1− αRL→NLS)

leachable slow

Transport parameters

Bioturbation rate B kg m−2 uniform 3
yr−1

Mixing length lm m uniform 3
Liquid phase transport v m yr−1 uniform 0.1
(advection) rate

conditional likelihood function for a givenσi is defined by
the joint distribution of the residuals of all data streams:

p(O|θ ,σ 2) ∝

I∏
i=1

σ
−Ni

i exp

(
−

1

2σ 2
i

SSi(θ)

)
. (8)

Note that we did not consider correlations between the dif-
ferent variables. SSi(θ) is the sum of squared residuals for
data stream (i) over all (Ni) data points:

SSi(θ) =

Ni∑
n=1

(Oi,n − Mi,n(θ))2. (9)

Multiple replicate measurements, if available, were all indi-
vidually included in Si(θ), meaning a single model predic-
tion was compared to multiple observations. For the mineral
soil profile, measurements from all depth levels were con-
sidered to be part of the same data stream; i.e., the residuals
were assumed to have the same distribution.

The variance of the residuals(σ 2
i ) is usually determined

by both model-related errors (deficiencies in the model struc-

ture, errors in forcing data) as well as observational uncer-
tainty (spatial heterogeneity, measurement errors). In some
cases it may be estimated a priori based on knowledge of the
model and the measurement uncertainty (Knorr and Kattge,
2005), but in general it must be considered unknown. For
certain prior distributionsσi can be analytically integrated
out of the joint likelihood functionp(O,σ 2

|θ), yielding the
marginal distribution(p(O|θ); Gelman et al., 2004, Chap.
3). We use the uninformative priorp(σi) ∝ 1/σi , which
yields the following formulation of the likelihood function:

p(O|θ) ∝
I∏

i=1

SSi(θ)−Ni/2. (10)

2.4.2 Prior parameter distributions

We performed calibration with both strong and with weak
prior distributions. For the runs with weak priors, the prior
probability P(θ) was simply omitted from the posterior
probability definition (Eq.6), which resulted in a multivariate
uniform distribution, within the sampling region.
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For the runs with strong priors, the distributions were
based on knowledge from previously published studies
(Braakhekke et al., 2011). The same distributions were used
for both sites. Since decomposition rate coefficients cannot
be negative or zero, we chose a log-normal distribution. For
the litter pools (kAGL , kRL andkFL), we used the same distri-
butions (mode at 0.46 yr−1; Fig. 3a). It is likely that the de-
composition rate coefficient of leachable slow organic matter
(kLS) is lower than that of non-leachable slow organic matter
(kNLS), since the former is comprised mostly of material ad-
sorbed to the mineral phase. Nevertheless, since we aimed to
test this hypothesis with the measurements, we used the same
prior distributions for the decomposition rate coefficient of
both pools (mode at 0.04 yr−1; Fig. 3b).

We used logit-normal prior distributions for the transfor-
mation fractions. This distribution is similar to the beta dis-
tribution and is bounded between 0 and 1 (Mead, 1965).
For αAGL→FL a distribution with the mode at 0.68 was used
(Fig. 3c), while for the other conversion fractions (αRL→NLS,
αRL→LS, αFL→NLS, andαFL→LS) the same prior was used
with the mode at 0.18 (Fig.3d). Since relatively little a pri-
ori information about the SOM transport parameters (B, lm,
andv) is available, we used uniform priors for all calibrations
(Fig. 3e).

For all calibration setups, the sampling was constrained
to a bounded region in parameter space. This constraint was
included since preliminary runs showed that some parame-
ters may be unconstrained at the upper bound by the data,
due to over-parameterization. The lower bounds for all pa-
rameters were set to zero; the upper bounds are listed in
Table2. Additionally, since decomposition must not lead to
a net formation of material, the sum of transformation frac-
tion for root litter (αRL→NLS+αRL→LS) and fragmented litter
(αFL→NLS + αFL→LS) pools was bounded to 1.

2.4.3 Monte Carlo simulations

The complexity of SOMPROF precludes analytical model in-
version or expression of the normalizing constant in Eq. (6).
Therefore, we approximated the posterior distribution using

a Markov chain Monte Carlo algorithm. Such algorithms
obtain a sample of the posterior distribution by perform-
ing a random walk through parameter space. They are in-
creasingly used for calibrating ecosystem models against
eddy-covariance measurements and satellite data (Knorr and
Kattge, 2005; Fox et al., 2009) and have been applied to cal-
ibrate soil carbon models as well (Yeluripati et al., 2009;
Scharnagl et al., 2010; de Bruijn and Butterbach-Bahl, 2010).
We used the Metropolis algorithm DREAM(ZS) (Laloy and
Vrugt, 2012), a successor to DREAM (Vrugt et al., 2009),
which has been shown to perform well for complex, multi-
modal distributions . Further information concerning the cal-
ibration setup can be found in AppendixA1.

Additionally, we performed forward Monte Carlo simula-
tions based on the posterior distributions. Five thousand sim-
ulations were made with parameter sets selected at regular
intervals from the posterior sample. For these simulations,
the non-leachable slow (NLS) and leachable slow (LS) or-
ganic matter pools were split into fractions originating from
fragmented litter (FL) and root litter (RL), in order to trace
the source of organic matter. Otherwise, the setup of the sim-
ulations was the same as those made for the calibration runs.

To study the importance of root litter input, bioturbation,
and liquid phase transport for the formation of the SOM pro-
file, the contribution of these processes was quantified. We
estimated the amount of organic carbon that would be de-
rived from these three processes for the steady state, giv-
ing an indication of their importance for long time scales.
Note that the organic carbon derived from root litter input
also includes material that is transformed from root litter to
the slow pools, NLS and LS. Furthermore, bioturbation and
liquid phase transport can lead to a net loss of organic mat-
ter at a given depth, as opposed to root litter input, which
only leads to gain. Thus, the amount of organic carbon de-
rived from the transport processes may be negative for certain
depths. However, the sum of three organic carbon fractions
must be positive. Further description of these calculations is
given in AppendixB.
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3 Results

3.1 Loobos

Figure4 depicts the marginal posterior distributions for the
three calibrations for Loobos (see also Supplement Table 2).

For calibration setups 1 and 2, several parameters have
wide distributions compared to the sampling range, which
shows they are poorly constrained by the observations.
Furthermore, for some of the parameters (kRL, αFL→LS,
αRL→NLS, lm, and v) the highest density point appears to
lie at or near the upper or lower bound. Adding210Pbex im-
proved the constraint of the bioturbation-related parameters
(B andlm) but had otherwise no major effect on the marginal
distributions. Inclusion of prior knowledge reduced uncer-
tainty, particularly for the parameters that are poorly con-
strained by the data.

The results of the forward simulations (Fig.5a, additional
results shown in Supplement Fig. 4) indicate that leach-
able slow organic matter (LS) is the most abundant pool,
followed by non-leachable slow organic matter (NLS). LS
particularly dominates the mineral soil, being virtually the
only pool below 20 cm. Figure5b shows that most organic
matter in the mineral soil is derived from root litter, but
aboveground-derived SOM is present up to great depths, due
to fast downward migration by liquid phase transport. Fig-
ure6a shows the organic matter transport fluxes in the min-
eral soil. Clearly, transport due to bioturbation plays almost
no role; virtually all transport occurs by movement with the
liquid phase. Figure6b, which depicts the amount of organic
carbon in the steady state derived from the three processes,
corroborates the importance of liquid phase transport. The
negative concentrations for this process indicate it causes or-
ganic matter from near the surface – mainly root litter de-
rived – to be moved downward to greater depths, where it is
the dominant mechanism of input.

3.2 Hainich

For Hainich, the posterior distribution is multi-modal for
all calibration setups, comprising three distinct optima. For
analysis, the modes were sampled individually in separate
calibration runs. An additional calibration run was performed
in which all modes were sampled simultaneously to assure
that the multi-modality is not an artifact of the sampling (see
Supplement Fig. 3). The marginal distributions for all cali-
bration setups and all modes are depicted in Fig.7 (see also
Supplement Table 2). While the distributions of most param-
eters differ between the modes, the most prominent differ-
ences can be seen for the decomposition rate coefficients of
root litter (kRL), non-leachable slow (kNLS), and leachable
slow (kLS) organic matter. For each of the modes, one of
these three parameters is tightly constrained at the low end
of the range, while the other two have wide distributions at
higher values.

Addition of 210Pbex to the observations caused shifts and re-
duction of uncertainty for some parameters (e.g.,v for mode
A, lm for mode B), but had in general no major effects on
the posterior. Changing from weak to strong priors reduced
uncertainty for parameters that are poorly constrained by the
observations.

The comparative probability of the modes cannot be in-
ferred from Fig.7, since the distributions are scaled to the
same height. To compare the modes we introduce the “misfit”
S(θ) as the negative logarithm of the unnormalized posterior
density (Mosegaard and Sambridge, 2002):

S(θ) = − ln(p(θ) p(O|θ)) = − ln(p(θ)) −

I∑
i=1

ln(SSi(θ)) , (11)

where SSi(θ) is defined according to Eq. (9). A lower mis-
fit indicates a higher posterior density and a better fit to the
observations and priors. Note that the contribution of a sin-
gle data stream toS(θ) may be negative for a high fit and/or
small Ni . The modes are compared according to the low-
est misfit in the calibration samples (Table3). This shows
that the three calibrations setups differ notably in terms of
the comparative probability of the modes. In calibration 1
the three modes have similar misfit. Introduction of210Pbex
and prior information to the calibration caused the misfit of
mode C to increase markedly compared to A and B, which is
explained by a somewhat poorer fit to the210Pbex measure-
ments (results not shown), as well as the very low root lit-
ter decomposition rate coefficient, which conflicts with prior
knowledge.

Figure8a depicts the simulated organic matter stocks and
fractions of the three modes for calibration setup 3 (addi-
tional results are shown in Supplement Figs. 4 and 5). The
different parameter values for the three modes give rise to
quite different model results, despite the fact that the quan-
tities of total organic matter are very similar and match the
observations well. In each of the three modes, a different pool
dominates the total stocks: non-leachable slow OM for mode
A; leachable slow OM for mode B; and root litter for mode
C. These contrasts are mainly explained by the differing de-
composition rate coefficients of these three pools. Figure8b
shows that modes A and B have very similar contributions
of above- and belowground litter, whereas for mode C the
root litter derived organic carbon is considerably larger. The
differences between the modes are further demonstrated by
the different organic matter transport fluxes (Fig.9a). Inter-
estingly, modes A and C, which have the lowest amounts of
the leachable slow organic matter pool, show the highest liq-
uid phase transport fluxes, which is explained by the high
advection rates. Figure9b shows that for all modes root lit-
ter input is an important process for long-term organic matter
storage. For modes A and B most organic carbon is present
as the slow pools NLS and LS derived from root litter, while
for mode C RL itself is stable. The effects of the transport
processes are generally smaller than those of root litter input.
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However, they represent an important mechanism for mov-
ing organic matter from shallow levels to deeper layers, as
indicated by the negative values near the surface.

4 Discussion

4.1 Loobos

The calibration results for Loobos suggest that leachable
slow (LS) OM is the most abundant organic matter fraction.
Its transport with the liquid phase, representing dissolved or-

ganic matter leaching, is largely responsible for downward
SOM movement and formation of the vertical SOM profile
in general. Although the decomposition rate coefficient of
this pool (kLS) is the lowest, its distribution tends to quite
high values (optimum approximately 0.189 yr−1 in calibra-
tion setup 3; Fig.4c; Supplement Table 2). Particularly con-
sidering that LS is the only pool in the deep soil, where de-
composition is slow, we would expect a lower value forkLS.
The prior distribution of this parameter used in calibration
setup 3, which tends to lower values, caused only a slight
downward shift in the posterior. Due to its large variance, the
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Fig. 5. Organic carbon measurements and corresponding model re-
sults of forward Monte Carlo simulations for Loobos, based on pos-
terior distribution of calibration setup 3.(a) Stocks and fractions of
the model pools;(b) above- vs. belowground derived organic mat-
ter. L, F, and H refer to the organic horizons (see Sect.2.1); topsoil:
0–30 cm; subsoil:> 30 cm; OM: organic matter. All model results
are averages over the Monte Carlo ensemble; error bars denote one
standard error of the mean for the measurements and one standard
deviation (SD) for the model results.

Table 3.Minimum misfit value (see Eq.11) in the posterior sample
for each of the modes for Hainich for the three calibration setups.
Note that the misfit values of calibration setup 2 are lower than those
of calibration setup 1. This is caused by the fact that the misfit values
for the210Pbex are negative due to the small number of data points
(cf. Eq. 10).

Calibration setup Mode A Mode B Mode C

1: Excl.210Pbex; 140.14 140.31 141.87
weak priors
2: Incl. 210Pbex; 131.27 129.43 135.04
weak priors
3: Incl. 210Pbex; 146.56 142.9 157.57
strong priors

posterior distribution ofkLS does allow for somewhat lower,
more realistic values. Furthermore, there are quite strong cor-
relations between parameters related to the LS pool (Supple-
ment Fig. 6), which indicate that a decrease of the formation
of LS (determined byαFL→LS andαRL→LS) can be compen-
sated by a decrease of the liquid phase transport ratev or the
decomposition rate coefficientkLS, both controlling the loss
of this pool.

Although SOMPROF was not developed to simulate dis-
solved organic matter transport, the modeled liquid phase
transport fluxes should represent the average movement of
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Fig. 6. Simulated organic carbon fluxes from forward Monte Carlo
simulations for Loobos, based on posterior distribution of calibra-
tion setup 3 (note the different scales on the y-axes). All quantities
are averages over the last simulation year and the Monte Carlo en-
semble.(a) Organic carbon transport fluxes and measured dissolved
organic carbon (DOC) fluxes (Kindler et al., 2011; not used in the
calibration). Note the indistinct bioturbation flux in the upper left
corner.(b) Contributions of the different processes to soil organic
matter profile in mineral soil (see Sect.2.4.3).

dissolved organic carbon (DOC) over long timescales1. Fig-
ure6a shows that simulated liquid phase transport fluxes are
an order of magnitude higher than DOC fluxes measured by
Kindler et al.(2011), which points to a too high value of the
advection ratev. However, the high uncertainty of both the
rate and fluxes of liquid phase transport shows that the ob-
servations used in the calibration can also be explained with
somewhat lower values. A lower value forv would be ac-
companied by a lower decomposition rate coefficient of LS,
since the two parameters are strongly correlated (Supplement
Fig. 6). Thus, it is likely that additional observations con-
straining the deep soil decomposition rate coefficient, such
as radiocarbon measurements, would lead to a more realistic
estimate of liquid phase transport rate.
Notwithstanding the over-estimated liquid phase transport
fluxes, the relative importance of organic matter leaching
over bioturbation is in good agreement with the soil condi-
tions and humus form at Loobos. Soil fauna is virtually ab-
sent, and the high concentration of sand supports fast water
infiltration and has a low adsorptive capacity, thus allowing
high dissolved organic matter fluxes.

1While the LS pool represents mostly material adsorbed to the
mineral phase, the transport of this pool occurs only by the small
fraction that is mobile and thus corresponds to DOC fluxes.
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4.2 Hainich

The presence of multiple modes in the posterior distribu-
tions for Hainich is illustrative of the equifinality problem
discussed in the introduction. Since the modes represent sep-
arate isolated regions in parameter space, they may be seen
as distinct explanations for the observations, in terms of the
processes represented in the model. In calibration setup 1 the

three modes have similar misfits (Table3). The addition of
210Pbex to the calibration leads to a shift in the comparative
misfit, causing mode B to become dominant. Switching to
strong priors further increased these differences. Based on
these results we can discard mode C with some certainty.
The difference between modes A and B, however, is rela-
tively small. Hence, in view of unconsidered uncertainties
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Fig. 8. Organic carbon measurements and corresponding model results of forward Monte Carlo simulations for Hainich, based on the three
posterior modes of calibration setup 3.(a) Stocks and fractions of the model pools;(b) above- vs. belowground derived organic matter. L, F,
and H refer to the organic horizons (see Sect.2.1); topsoil: 0–30 cm; subsoil:> 30 cm; OM: organic matter. All model results are averages
over the Monte Carlo ensemble; error bars denote one standard error of the mean for the measurements and one standard deviation (SD) for
the model results.

(see Sect.4.6) we cannot fully ignore mode A as possible
explanation for the observations.

Figure9a shows that for all modes the modeled advective
flux is substantially larger than the DOC fluxes measured by
Kindler et al.(2011). However, for mode B the overestima-
tion is less pronounced, particularly in the subsoil. For modes
A and C, modeled advective flux and its uncertainty are very
high. Contrastingly, the contribution of advection to input in
the profile is very small and well constrained for both modes
(Fig. 9b). The reason is that the advective fluxes have rel-
atively small vertical gradients. This also explains the high
uncertainty of the advective flow (and the advection ratev)
for these modes: as long as its gradient does not change, the
actual flux can vary relatively freely.

The abundance of LS and the low rate of liquid phase
transport for mode B agrees well with expectations based
on the soil texture at Hainich. The high clay content im-

pedes water infiltration, while favoring adsorption of organic
matter, slowing down both dissolved organic matter leach-
ing and decomposition of organic matter. This is corrobo-
rated by organic matter density fractionation measurements
at the site (Schrumpf, 2011). These indicate that 81–93 % of
the organic matter is present in the heavy fraction, which is
known to comprise mostly material in organo-mineral com-
plexes (Golchin et al., 1994). Although the model pools can
presumably not be compared directly to the measured density
fractions, this is clearly in support of mode B, since leach-
able slow OM represents mostly material adsorbed to the
mineral phase (Sect.2.1.2; Braakhekke et al., 2011). Based
on these arguments, we conclude that mode B represents the
most likely explanation for the observations at Hainich.

The results of the forward simulations for mode B (Figs.8
and9) suggest that root input is the most important process
at Hainich. Although root litter itself represents only a small
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Fig. 9. Simulated organic carbon fluxes from forward Monte Carlo simulations for Hainich, based on the three modes of the posterior
distribution of calibration setup 3 (note the different scales on the y-axes). All quantities are averages over the last simulation year and the
Monte Carlo ensemble.(a) Organic carbon transport fluxes and measured dissolved organic carbon (DOC) fluxes (Kindler et al., 2011; not
used in the calibration);(b) contribution of the different processes to soil organic matter profile in mineral soil (see Sect.2.4.3).

fraction, its decomposition products (mainly LS) constitute
the bulk of the total SOM. The effects of the transport pro-
cesses are generally small compared to material derived from
root litter input. However, particularly advection causes loss
of material near the surface, and input into deeper layers. The
relative importance of root-derived SOM agrees well with re-
cent findings byTefs and Gleixner(2012), who found, based
on 14C profile measurements, that soil organic carbon dy-
namics at Hainich are mainly determined by root input.

4.3 Comparison between sites

It is difficult to explain why the posterior distributions for
Loobos do not display multi-modality, like the distributions
for Hainich. One possible explanation is the fact that the ob-
served mineral soil C profile for Loobos clearly consists of
two zones: one with a fast decrease with depth between 0 and
10 cm, and one below this, with a much slower decrease. It is

conceivable that such a profile can only be explained by a sit-
uation where diffusion (bioturbation) operates only near the
surface, while advection (liquid phase transport) acts in the
complete profile. For Hainich, on the other hand, the C pro-
file is smoother, thus allowing it to be explained by different
mechanisms.

In the following discussion we will only consider mode B
for Hainich. When comparing the marginal parameter distri-
butions for both sites (see Supplement Fig. 7), it is apparent
that the decomposition rates of the AGL and FL pools are
higher for Hainich than for Loobos, while the reverse is true
for RL, NLS, and LS. This agrees well with expectations: the
low pH of the coniferous litter at Loobos may slow decom-
position in the organic layer; hence we can expect the pools
that are important there to have low decomposition rates. On
the other hand, the high clay content at Hainich likely sta-
bilizes organic matter in the mineral soil, leading to lower
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decomposition rates of the pools that dominate there. Com-
parison further shows that the decomposition rate coefficient
of the main pool LS is markedly lower for Hainich, and much
less uncertain. This is presumably explained by the observa-
tions of the effective decomposition rate coefficients. For the
deep soil these data directly constrain the decomposition rate
coefficient of LS since this is virtually the only pool there
(see also Supplement Fig. 5). In view of the considerable ef-
fort involved with such measurements, a study into the value
of such data for inferring SOMPROF parameters would be
valuable. However, in general care must be taken when us-
ing lab measurements to infer parameters for field condi-
tions. Furthermore, for the decomposition rate coefficients of
the slow pools, very long incubation times may be required
(Scharnagl et al., 2010).

The two sites differ strongly with respect to the organic
matter transport parameters, with Hainich having a higher
bioturbation rate, and Loobos having a higher liquid phase
transport rate. This is in good agreement with the differences
between the two sites in terms of biological activity and soil
texture.

4.4 Implications for soil organic matter cycling

The fact that leachable slow organic matter pool constitutes
the bulk of SOM for both sites emphasizes the importance
of organo-mineral interactions for soil carbon cycling. How-
ever, this interpretation relies on the assumption that mineral-
associated organic matter is correctly represented by the LS
pool. Mathematically, the only difference between the NLS
and LS pools lies in the transport behavior: diffusion-only
versus diffusion and advection. The question is whether this
distinction correctly represents the differences between sta-
ble particulate and adsorbed organic matter in reality. The
good agreement of our results with density fractionation
measurements at Hainich, as well as the environmental con-
ditions at both sites, suggests that an explanation where LS
dominates might indeed be appropriate. Furthermore, many
studies have demonstrated the importance of mineral asso-
ciations for long-term carbon preservation (Eusterhues et al.,
2003; Mikutta et al., 2006; Kögel-Knabner et al., 2008; Kalb-
itz and Kaiser, 2008). In contrast, others have indicated the
presence of root-derived particulate material in podzol B
horizons, and questioned the relevance of mineral-associated
material for mineral soil organic matter fractions (Nierop,
1998; Nierop and Buurman, 1999; Buurman and Jongmans,
2005).

The predominance of root-derived material predicted for
both sites (Figs.5 and8, mode B) underlines the importance
of roots for organic matter input in the mineral soil, which
is in agreement with previous studies (Kong and Six, 2010;
Rasse et al., 2005). For Hainich, the root input also strongly
determines the vertical distribution of SOM (Fig.9), whereas
for Loobos also redistribution of organic material by liquid
phase transport is a major factor (Fig.6). Based on analy-

sis of a large database of SOM profiles,Jobbagy and Jack-
son(2000) found that root/shoot allocation, together with the
root biomass distribution, explains the vertical SOM profile
in the upper part of the soil while clay content was found to
be more important at greater depths. The effects of texture are
not considered in this study, but Figs.6b and9b show that the
relative importance of liquid phase transport becomes greater
with depth. This supports the findings ofJobbagy and Jack-
son(2000) since this mechanism is likely strongly controlled
by soil texture.

4.5 The use of210Pbex measurements

The addition of210Pbex to the calibration had no major ef-
fects on the posterior distributions. For Loobos, the210Pbex
measurements improved the constraint of the parameters re-
lated to bioturbation, while for Hainich they improved con-
straint of the mixing length for mode B, and caused an in-
crease of the misfit of mode B and C relative to mode A.
The fact that the210Pbex data influenced only parameters re-
lated to bioturbation may be explained by the fact that the
profiles used here are quite shallow, due to the relatively fast
decay rate of the isotope (cf. Fig.2). These measurements are
therefore presumably most informative for the topsoil, where
bioturbation is more important.

For both sites, the measured210Pbex profile was already
well matched by the model in calibration setup 1, in which
these measurements were not included. This indicates that
these observations can be explained well in conjunction with
the organic carbon measurements, which supports the model
structure. It also suggests that the210Pbex data fromKaste
et al.(2007) are consistent with the conditions at Loobos.

The use of210Pbex as a tracer for SOM transport relies
on the assumption that Pb adsorbs strongly to organic mat-
ter, both particulate and in solution. Based on210Pbex and
14C profiles,Dörr and M̈unnich(1989) found that transport
rates of210Pbex were very close to those of organic mat-
ter, suggesting that the two are indeed strongly linked. Al-
though Pb is known to occur also in association with the min-
eral phase and inorganic complexes (Schroth et al., 2008),
the affinity of Pb to particulate organic matter is well es-
tablished, in view of its strong retention in organic layers
and topsoils over short timescales (Kaste et al., 2003; Ky-
lander et al., 2008; Schroth et al., 2008), as well as by ad-
sorption studies (Logan et al., 1997; Sauve et al., 2000). The
effect of DOM movement on Pb migration is less clear, be-
cause it is difficult to predict the behavior of Pb adsorbed
to the organic matter that is transformed to the dissolved
fraction. Several researchers have indicated the importance
of DOM and colloidal organic matter for Pb movement in
soil (Miller and Friedland, 1994; Wang and Benoit, 1997;
Urban et al., 1990; Friedland et al., 1992). Furthermore, ad-
sorption studies have found that Pb adsorbs readily to hu-
mic and fulvic acids (Logan et al., 1997; Turner et al., 1986),
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while movement of dissolved Pb2+ was found to be unimpor-
tant (Wang and Benoit, 1997).

In summary, further study on this topic is needed, but we
believe that use of210Pbex as a tracer for SOM transport
is well defendable. Despite the limited constraint gained in
this study, this isotope can be useful as a tracer for SOM
transport, provided that more replicate measurements are
available to reduce uncertainty. Particularly in combination
with other tracers, such as14C or137Cs,210Pbex may be quite
informative.

4.6 Methodological constraints and model validity

For both sites, many strong correlations exist between differ-
ent combinations of model parameters (Supplement Fig. 6),
which indicates that the model is over-parameterized with re-
spect to the available data. Furthermore, for all calibration
setups there is at least one decomposition rate coefficient
for which high values are not constrained by the observa-
tions (Figs.4 and7). Since the predicted stock of a pool is
inversely proportional to its decomposition rate coefficient,
these pools are present in very small amounts, which shows
that SOMPROF has at least one redundant organic matter
pool, given the available data. This is further demonstrated
by a strong negative correlation between decomposition rate
coefficient of FL and RL for Loobos (Supplement Fig. 6),
indicating that these pools are essentially “competing” as ex-
planation for the observed carbon stocks and fractions. In
order to obtain better constraint, additional observations are
needed. Obvious candidates for such data are carbon isotopes
(13C or 14C) measurements, of both organic matter and het-
erotrophic respiration.

There are numerous uncertainties that were not consid-
ered in the calibration. In view of practical limitations on
the number of parameters that can be estimated simultane-
ously, we focused on the inherently unmeasurable parame-
ters, on which little prior information was available. Many
other model inputs, with varying degrees of uncertainty, were
held fixed, including the temperature and moisture data, the
litter input rates, and the temperature and moisture response
parameters. Another source of uncertainty is associated with
site history. The sites included in this study were selected for
having a relatively well-known and constant history, but par-
ticularly for Hainich there have undoubtedly been past fluc-
tuations in the forcing that were not considered. Finally, con-
siderable uncertainty is related to the model structure, specif-
ically to the simple representations of organic matter decom-
position and transport in SOMPROF as well as the behav-
ior of 210Pbex. These unconsidered variabilities call for care
when interpreting the results. Further, it may be advisable to
inflate the variance of the posterior distributions when using
them as priors for a follow-up study, or for predictive simula-
tions. Nevertheless, we believe that the parameters that were
estimated constitute the most important uncertainties.

The good fit to the observations indicates that SOMPROF is
able to reproduce widely different SOM profiles, based on
realistic parameter values. Furthermore, the consistency of
the results with site conditions and the good fit to the210Pbex
measurements (even when they are not included in the cal-
ibration) are encouraging and support the validity of SOM-
PROF for temperate forests. The validity for other ecosys-
tems such as grasslands and tropical and boreal forests is yet
to be established. Also, comparison to other types of mea-
surements is needed, both to improve constraint of the pro-
cesses, and to further evaluate the model. Examples of such
data include carbon isotopes, heterotrophic respiration rates,
and chronosequence measurements. The strong overestima-
tion of advective flux compared measured DOC flux rates
suggests the need for modifications to the transport scheme.
Addition of the DOC measurements to the calibration should
reveal if the model can reproduce these data with acceptable
loss of fit for the other observations. If not, it may be neces-
sary to introduce depth dependence of the advection rate, for
example by linking to average water fluxes and soil texture.
Finally, further study should explore whether simplification
of the model by removal of organic matter pools is warranted.
If so, a possible modification would involve merging the root
litter and fragmented litter pools, which are functionally very
similar.

5 Concluding remarks

In order to study the processes involved in SOM profile for-
mation, we performed Bayesian estimation of SOMPROF
model parameters for Loobos and Hainich, based on organic
carbon and210Pbex measurements as well as prior knowl-
edge. The final calibration yielded a multi-modal posterior
distribution for Hainich, with two dominant modes corre-
sponding to two distinct explanations for the observations.
One mode was found to be most realistic in light of ancillary
measurements, and in situ soil conditions. For Loobos, the
posterior distribution is unimodal.

For both Loobos and the most probable mode for Hainich,
most of the organic matter is comprised of the leachable slow
organic matter pool, which represents material that is mostly
adsorbed, but potentially leachable. The results further indi-
cate that for both sites most organic matter in the mineral soil
is derived from root inputs. For Hainich, root input also deter-
mines the vertical distribution of SOM, whereas for Loobos
downward advective movement of SOM, representing liq-
uid phase transport, represents a major control. These results
agree well with other measurements and in situ conditions.

The210Pbex measurements improved constraint of the pa-
rameters related to bioturbation and reduced the probability
of one of the modes for Hainich, but had otherwise no major
influence on the posterior distributions. Nevertheless, since
the 210Pbex observations could be reproduced well together
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with the organic carbon measurements, we believe this iso-
tope holds value as a SOM tracer.

Our study illustrates the difficulties with explaining the
vertical SOM profile caused by the convolution of several
mechanisms. Soil carbon profile measurements are neces-
sary but in general not sufficient for resolving the pro-
cesses. Ancillary measurements such as respiration rates
or tracers are needed, and even then the model may re-
main over-parameterized. Bayesian calibration using Markov
chain Monte Carlo is an invaluable tool for such problems
since it helps to identify (non-linear) parameter correlations
and the existence of multiple modes, which with traditional
calibration tools could easily have gone unnoticed. Further-
more, inclusion of prior knowledge mitigates the adverse ef-
fects of over-parameterization.

For future large-scale application of SOMPROF, sets of
characteristic parameter values for different soils and ecosys-
tems are required. With results of the current study and future
calibrations, progressively stronger prior distributions can be
derived, which can be used for sites where fewer observa-
tions are available.

Appendix A

Markov chain Monte Carlo scheme

A1 The Metropolis algorithm

The Metropolis algorithm (Metropolis et al., 1953) samples
the posterior distribution by means of a Markov chain, which
performs a random walk in parameter space. At each itera-
tion i proposals of the parametersθ∗ are generated by taking
a (semi-)random step from the current positionθ i . The model
is run with the proposed parameter set, and the unnormalized
posterior probability density (p(θ)p(O|θ)) of the proposal is
evaluated. The proposal is subsequently accepted or rejected
according to the Metropolis rule, which defines the chance
for acceptance as:

s = min

{
p(O|θ∗)p(θ∗)λ(θ∗)

p(O|θ i)p(θ i)λ(θ i)
, 1

}
, (A1)

where λ(θ) is a factor that may be included to remove
the effects of sampling in transformed parameter space (see
Sect.A2). The decision for acceptance or rejection is made
using a random number from a uniform distribution on the
unit interval. In case of acceptance, the chain moves to the
position of the proposal; in case of rejection the chain stays
at the current position, which is thus sampled again.

We used the DREAM(ZS) algorithm (Laloy and Vrugt,
2012), an adaptation of the DREAM (DiffeRential Evolution
Adaptive Metropolis) algorithm that uses multiple chains in
parallel and automatically adapts the scale and orientation of
the proposal distribution.

A2 Parameter transformations

Since calibration algorithms generally perform better for dis-
tributions that are close to Gaussian, the random walk per-
formed was in transformed parameter space for all calibra-
tion setups. For the decomposition rate coefficients (ki) and
transport rates (B, lm, v), a log transformation was applied:

θ ′
= ln(θ), (A2)

and for the transformation fractionsαi→j a logit transforma-
tion was used:

θ ′
= logit(θ) = ln

(
θ

1− θ

)
, (A3)

whereθ ′ is the transformed parameter value andθ is the un-
transformed parameter value, used as input for SOMPROF.

From the rules for change of variables for probability den-
sity functions, it follows that performing the random walk in
transformed space affects the sampled distribution. Suppose
we apply Monte Carlo sampling according to some density
function(f (θ)) and our samples(θ ′) are generated in trans-
formed space according toθ ′

= g(θ). Then our sampled tar-
get distribution will be:

τ(θ) ∝

∣∣∣∣ d

dθ
g(θ)

∣∣∣∣f (θ). (A4)

The factor in vertical bars is the Jacobian of the transforma-
tion or inverse transformation, depending on what is the scale
of interest. This effect was removed by multiplying the pos-
terior density by the reciprocal of the Jacobian, which is the
factor(λ(θ)) in Eq. (A1). For a log transformation:

λ(θ) = θ, (A5)

and for a logit transformation:

λ(θ) = θ − θ2. (A6)

A3 Calibration setup

For each calibration first an exploratory run was performed,
intended to search for different posterior modes. For this run,
at least 20 chains were run in parallel, with starting points
widely dispersed in the sampling region using Latin hyper-
cube sampling. Furthermore, the posterior cost was reduced
using a cost-reduction factor of 0.1, multiplied with the log
posterior density. This effectively “flattens” the posterior, al-
lowing the chains to escape from local modes and to take big-
ger steps, thus covering more area. After all modes of interest
were identified in the exploratory run, secondary runs with-
out cost reduction were performed with eight chains, started
near each mode.

The convergence of the chains was evaluated using the
Gelman–Rubin index (Gelman et al., 2004, Chap. 11), which
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is proportional to the ratio of the between-chain variance and
the within-chain variance, and declines to 1 when different
chains converge on the same distribution. All chains were
run until the convergence index was≤ 1.01 for all parame-
ters, with at least 100 000 iterations per chain.

After the secondary runs, a variable number of iterations
was removed from the start of each chain (the burn-in). Next,
the remaining chains for each mode were merged and thinned
to 10 000 iterations for analysis by selecting iterations in
regular intervals. The continuous posterior distributions de-
picted in the Figs.4 and7 were derived using kernel density
estimation.

Appendix B

Calculation of process contributions to the SOM profile

In SOMPROF there are five processes that cause input or re-
distribution of the organic matter pools in the mineral soil
(see Fig. 1): root litter input (RLI), formation due to frag-
mented litter decomposition (FLdec), formation due to root
litter decomposition (RLdec), bioturbation (BT), and liquid
phase transport (LPT). Obviously, not every organic matter
pool is influenced by each process. The average fluxes (in
kg C m−3 yr−1) over the last simulation year of these pro-
cesses are calculated by SOMPROF in the forward Monte
Carlo runs, yielding the following flux rates:F BT

FL , F RLI
RL ,

F BT
RL , F FLdec

NLS , F RLdec
NLS , F BT

NLS, F FLdec
LS , F RLdec

LS , F BT
LS , andF LPT

LS .
Note that the net input/output of organic matter due to bio-
turbation/diffusion and liquid phase transport/advection are
not equal to the flux rates of these processes (as depicted in
Figs.6a and9a), but are defined as the vertical derivative of
the transport fluxes. For a system with discrete layers, this
means the difference between the flux at the top and at the
bottom of a layer. The relative importance of each of these
fluxes for long-term SOM storage may be estimated by di-
viding them by the decomposition rate coefficient of the re-
spective pools, yielding an organic carbon concentration for
the steady state (kg C m−3):

C
j
i =

F
j
i

ki

, (B1)

for any pooli and processj . Since root litter at any depth
may come from either root litter input or bioturbation, also
the decomposition products of root litter (NLS and LS) may
be split into fractions that come from these two sources:

C
RLdec,RLI
NLS =

CRLI
RL

CRLI
RL + CBT

RL

CRLdec
NLS , (B2a)

C
RLdec,BT
NLS =

CBT
RL

CRLI
RL + CBT

RL

CRLdec
NLS , (B2b)

C
RLdec,RLI
LS =

CRLI
RL

CRLI
RL + CBT

RL

CRLdec
LS , (B2c)

C
RLdec,BT
LS =

CBT
RL

CRLI
RL + CBT

RL

CRLdec
LS . (B2d)

The calculations above yield 12 carbon concentrations:
CBT

FL , CRLI
RL , CBT

RL , CFLdec
NLS , C

RLdec,RLI
NLS , C

RLdec,BT
NLS , CBT

NLS,

CFLdec
LS , C

RLdec,RLI
LS , C

RLdec,BT
LS , CBT

LS , andCLPT
LS . Note that the

sum of these concentrations is not necessarily equal to the
simulated total concentration, because (i) the simulated SOM
profile may not be in steady state, and (ii) the effects of soil
temperature and moisture are not accounted for when esti-
mating the steady-state concentration. However, since all the
pools respond equally to soil temperature and moisture, the
relative distribution of the organic matter over the pools is
correct for the steady state.

To quantify the importance of the three processes root lit-
ter input, bioturbation and liquid phase transport, the organic
carbon concentrations are summed as follows:

CRLI
= CRLI

RL + C
RLdec,RLI
NLS + C

RLdec,RLI
LS , (B3a)

CBT
= CBT

FL + CBT
RL + CBT

NLS + CFLdec
NLS + C

RLdec,BT
NLS (B3b)

+C
RLdec,BT
LS + CFLdec

LS + CBT
LS ,

CLPT
= CLPT.

LS (B3c)

Since the transport processes may also cause loss of organic
matter at a given depth, their contributions to the total organic
carbon may also be negative. However, the sum over all con-
tributions must be positive and equal to the total steady-state
organic carbon concentration for a simulation with temper-
ature and moisture constant at 15◦C and optimal soil mois-
ture.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
399/2013/bg-10-399-2013-supplement.pdf.
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