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Abstract. Moderate resolution satellite sensors including
MODIS (Moderate Resolution Imaging Spectroradiometer)
already provide more than 10 yr of observations well suited
to describe and understand the dynamics of earth’s surface.
However, these time series are associated with significant un-
certainties and incomplete because of cloud cover. This study
compares eight methods designed to improve the continuity
by filling gaps and consistency by smoothing the time course.
It includes methods exploiting the time series as a whole (it-
erative caterpillar singular spectrum analysis (ICSSA), em-
pirical mode decomposition (EMD), low pass filtering (LPF)
and Whittaker smoother (Whit)) as well as methods working
on limited temporal windows of a few weeks to few months
(adaptive Savitzky–Golay filter (SGF), temporal smoothing
and gap filling (TSGF), and asymmetric Gaussian function
(AGF)), in addition to the simple climatological LAI yearly
profile (Clim). Methods were applied to the MODIS leaf
area index product for the period 2000–2008 and over 25
sites showed a large range of seasonal patterns. Performances
were discussed with emphasis on the balance achieved by
each method between accuracy and roughness depending
on the fraction of missing observations and the length of
the gaps. Results demonstrate that the EMD, LPF and AGF
methods were failing because of a significant fraction of gaps
(more than 20 %), while ICSSA, Whit and SGF were al-
ways providing estimates for dates with missing data. TSGF
(Clim) was able to fill more than 50 % of the gaps for sites
with more than 60 % (80 %) fraction of gaps. However, in-
vestigation of the accuracy of the reconstructed values shows
that it degrades rapidly for sites with more than 20 % missing
data, particularly for ICSSA, Whit and SGF. In these condi-
tions, TSGF provides the best performances that are signifi-

cantly better than the simple Clim for gaps shorter than about
100 days. The roughness of the reconstructed temporal pro-
files shows large differences between the various methods,
with a decrease of the roughness with the fraction of miss-
ing data, except for ICSSA. TSGF provides the smoothest
temporal profiles for sites with a % gap> 30 %. Conversely,
ICSSA, LPF, Whit, AGF and Clim provide smoother pro-
files than TSGF for sites with a % gap< 30 %. Impact of
the accuracy and smoothness of the reconstructed time se-
ries were evaluated on the timing of phenological stages.
The dates of start, maximum and end of the season are es-
timated with an accuracy of about 10 days for the sites with
a % gap< 10 % and increases rapidly with the % gap. TSGF
provides more accurate estimates of phenological timing up
to a % gap< 60 %.

1 Introduction

Leaf area index (LAI) is recognized as an essential climate
variable (GCOS, 2006) since it plays a key role in vegetation
functioning and exchanges of mass and energy between the
atmosphere, the plant and the soil. LAI is defined as half the
area of the green elements per unit horizontal surface (Chen
and Black, 1992). Satellite observations in the reflective solar
domain have been used intensively for more than a decade to
monitor LAI dynamics over the globe using medium resolu-
tion sensors such as MODIS (Moderate Resolution Imaging
Spectroradiometer) (Myneni et al., 2002), VEGETATION
(Deng et al., 2006; Baret et al., 2007), MERIS (MEdium
Resolution Imaging Spectrometer) (Bacour et al., 2006a)
or AVHRR (Advanced Very High Resolution Radiometer)
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(Ganguly et al., 2008). LAI was thus used in numerous in-
vestigations including climate change (Pettorelli et al., 2005;
Kobayashi et al., 2007), global carbon fluxes (Wylie et al.,
2007; Schubert et al., 2010) land cover (Jakubauskas et al.,
2002; Boles et al., 2004; Thenkabail et al., 2005; Heiska-
nen and Kivinen, 2008) and land-cover change (Hansen et
al., 2002, 2008; Coops et al., 2009; Pouliot et al., 2009) or
crop production forecasting (Kastens et al., 2005; Dente et
al., 2008; Becker-Reshef et al., 2010). For all these applica-
tions, the availability of long and continuous LAI time series
is essential as outlined in (GCOS, 2010).

The current products show significant discontinuities
mainly due to cloud or snow cover (Weiss et al., 2007) as
well as system failure. Further, because of residual cloud
contamination, imperfect atmospheric or directional correc-
tions as well as instability of the inversion process, products
may be characterized by significant temporal noise not ex-
pected with the actual LAI values. LAI is the result of incre-
mental processes in vegetation such as leaf development and
senescence. Therefore, LAI should be relatively smooth with
time. However, this temporal smoothness property is not al-
ways observed over current LAI products as demonstrated by
several authors (Weiss et al., 2007; Verger et al., 2008; Cama-
cho et al., 2013). The MODIS LAI product was recognized
as less smooth mainly because of a combination of factors
including a short (8 days) compositing window, the maxi-
mum value compositing algorithm used and instability in the
retrieval algorithm, though MODIS collection 5 products are
an improvement over the collection 4 products (De Kauwe et
al., 2011). Several investigations have been focusing on the
improvement of the MODIS products using specific mathe-
matical filters which use either temporal or spatial techniques
to get temporally smoothed and spatially continuous prod-
ucts (Gao et al., 2008; Borak and Jasinski, 2009; Jiang et
al., 2010; Verger et al., 2011; Yuan et al., 2011). Spatial fil-
ters using pixel-level or regional ecosystem statistical data
include geostatistical and regression methods (Goovaerts,
1997; Berterretche et al., 2005; Wang et al., 2012). Nev-
ertheless, spatial filters may fail for LAI products derived
from coarse resolution satellites to represent the complexity
of real landscapes mainly over mixed pixels where LAI could
vary widely within a short distance. To overcome this limita-
tion some studies tried to combine both temporal and spatial
methods by using historical high-quality data and temporal
curves from neighbor pixels (e.g. Moody et al., 2005; Fang
et al., 2008; Gao et al., 2008). Our study refers only to tem-
poral methods.

Time series processing is thus an important ingredient of
a biophysical algorithm in order to get the expected contin-
uous and smooth dynamics required by many applications.
The earliest methods used in remote sensing, often called
compositing, were reviewed by Qi and Kerr (1997) They
mostly operate over a local temporal window, focusing on
minimizing artifacts due to cloud or snow contamination, at-
mospheric or directional residual effects. They included the

well-known MVC (maximum value compositing) (Holben,
1986) and BISE (Best Index Slope Extraction from Viovy
et al., 1992). More recently, Hird and McDermid (2009a)
reviewed the abundant literature on time series processing
in remote sensing, mostly focusing on NDVI (normalized
difference vegetation index) (Rouse et al., 1974). They fur-
ther compared six methods operating over a restricted tem-
poral window and demonstrated that under their conditions,
logistic (J̈onsson and Eklundh, 2004) or asymmetric Gaus-
sian function (Beck et al., 2006) curve fitting methods were
outperforming more simple local filtering methods (Jiang et
al., 2010), compared three statistical methods both to smooth
the time series and to provide forecast over a season. These
methods are based on the decomposition of the time se-
ries into noise, seasonal variability and trend and require,
therefore, relatively long time series of observations. Fourier
transforms (Azzali and Menenti, 1999), or wavelet decompo-
sition (Martinez and Gilabert, 2009) have also been used to
characterize the phenology of vegetation from medium res-
olution observations. However, several studies have demon-
strated the superiority of local methods, i.e. based on a re-
stricted temporal window, as compared to the Fourier trans-
form methods applied to the whole time series (Jönsson
and Eklundh, 2002; Beck et al., 2006; Ma and Verous-
traete, 2006; Hird and McDermid, 2009a). Physically based
corrections were also proposed in order to correct for the
known factors of variability, resulting in the GIMMS data
set (Tucker et al., 2005). However orbital drift and direction-
ality were rather corrected using Empirical Mode Decom-
position techniques (Pinzon et al., 2005). More recently, the
long-term data record (LTDR) series derived from AVHRR
sensors (Vermote et al., 2009) and CYCLOPES (Baret et al.,
2007) and GEOV1 (Meroni et al., 2013) derived from VEG-
ETATION also proposed global time series based on phys-
ical principles. Alcaraz-Segura et al. (2010) and Meroni et
al. (2013) showed that significant differences were observed
between these several NDVI time series, making the identifi-
cation of anomalies and trends more complex. The choice of
the smoothing gap filling or compositing method may have a
large impact on the accuracy of the phenology extracted from
the reconstructed time series (Hird and McDermid, 2009b;
Atkinson et al., 2012).

This brief review of studies focusing on satellite time se-
ries from medium resolution sensors shows that a number of
methods are available. It is however still difficult to identify
the potentials and limitations associated since no comprehen-
sive evaluation is available. Comparison is often qualitative,
or when quantitative, it is mostly centered on a small sam-
ple of global conditions. Most of them have been applied to
NDVI rather than on true biophysical variable such as LAI.
Further, very little attention was paid to the missing data
structure: as a matter of fact satellite observations present
missing data mostly because of cloud masking which cre-
ates irregular time steps between actual observations of the
surface. Gap filling is therefore an important aspect of the
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process. Finally, only a small fraction of the studies were
employing methods capable of processing the time series as
a whole such as the decomposition methods.

The objective of this study is to evaluate the capacity of
several methods to provide faithful reconstruction of time se-
ries in the presence of significant amount of missing observa-
tions as well as observations contaminated by uncertainties.
The methods will therefore be compared using several crite-
rions including the ability to run over periods without obser-
vations of variable length, the fidelity of reconstructed values
with the actual ones and the smoothness of the reconstructed
temporal profiles. In addition, consequences on the ability to
capture phenological stages will be also quantified since this
is a usual application of the time series

Eight methods were selected because they were well ref-
erenced while being based either on local curve fitting tech-
niques, or decomposition techniques working on the time se-
ries as a whole. Except ICSSA and EMD, all other methods
are commonly used for processing biophysical time series
data. ICSSA and EMD, commonly used in other subject ar-
eas, were considered in this study due to their potential abil-
ity to recover seasonal trends and reduce noise. The study
is based on the MODIS LAI collection 5 product (Shabanov
et al., 2005) at 1 km spatial and 8 days temporal sampling
over a 9 yr period. The MODIS LAI products were demon-
strated to get relatively good accuracy (closeness to actual
ground observations) but were suffering from lack of preci-
sion (temporal or spatial consistency), resulting in shaky tem-
poral profiles as stated earlier. Processing of such time series
is therefore expected to result in a significant improvement
of its consistency. A sample of sites selected to represent the
range of variability expected over the globe was considered.

2 Approach, data and methods

The MODIS LAI products will first be described. Then the
8 methods selected will be briefly presented. Finally, the ap-
proach for evaluating the methods and the associated metrics
used will be described.

2.1 The MODIS data and preprocessing

The data used in this study are the MODIS Collection 5
LAI products (MOD15A2) derived from TERRA and AQUA
platforms. The products were downloaded from the land pro-
cesses distributed active archive center (https://lpdaac.usgs.
gov) for the 2000–2008 9 yr period. They correspond to 1 km
spatial sampling interval using a sinusoidal projection sys-
tem. The temporal sampling is 8 days based on a daily com-
position: all observations available in the 8-day composit-
ing window are accumulated, and the one getting the max-
imum FaPAR (Fraction of Absorbed Photosynthetically Ac-
tive Radiation) value is selected. The main MODIS LAI re-
trieval algorithm relies on the inversion of a 3-D radiative

transfer model using the red and near-infrared bidirectional
reflectance factor values, associated uncertainties, the view-
illumination geometry and biome type (within eight types
based on MOD12Q1 land-cover map) as inputs (Myneni
et al., 2002; Shabanov et al., 2005). If the main algorithm
fails, a back-up procedure is triggered to estimate LAI from
biome specific NDVI-based relationships. However, the LAI
estimates using the back-up algorithm are of lower quality
mostly due to residual clouds and poor atmospheric correc-
tion (Yang et al., 2006a, b). Hence, these estimates are not
used in this study and are considered as missing observations.
Although the MODIS LAI product has been extensively val-
idated (e.g. De Kauwe et al., 2011; Ganguly et al., 2008), a
high level of noise was inducing shaky temporal profiles and
unrealistic seasonality (Kobayashi et al., 2010), which justi-
fies the interest of using MODIS LAI products for smoothing
and gap-filling investigations.

A first preprocessing step was applied to remove unex-
pected abrupt variations in the time series: values that are
substantially different from both their left- and right-hand
neighbors and from the median in a 72 day length local win-
dow are considered as missing values as proposed (Jönsson
and Eklundh, 2004) in the TIMESAT toolbox. Further, for
Evergreen broadleaf forests presenting reduced seasonality
and high level of variability in the time series because of fre-
quent occurrence of residual cloud contamination, any value
lower than the first decile are eliminated since these usually
low LAI values are not expected in this canopy type.

2.2 The methods investigated

Eight candidate methods (Table 1) were selected, includ-
ing both decomposition techniques generally applied to the
whole time series and curve fitting methods working on a
limited temporal window. Decomposition methods split the
signal into additive components. The time series are then re-
constructed using only the components of interest, usually re-
moving the high frequency components considered as noise.
Decomposition methods should capture the seasonality and
the trend signals observed over the whole time series, which
may be exploited in the reconstruction phase to replace miss-
ing values. Curve fitting techniques adjust the parameters of
a functional by minimizing a cost function that is usually the
sum of quadratic differences between observations and sim-
ulations. Because the adjustment is operated over a limited
temporal window, only a limited amount of information is
used when filling gaps.

Iterative Caterpillar Singular Spectrum Analysis Method
(ICSSA)is a modification of the CSSA (Golyandina and Os-
ipov, 2007) method developed to describe time series and fill
missing data by decomposing the time series into empiri-
cal orthogonal functions (EOF). This modified version was
proposed by Kandasamy et al. (2012) to correct for overes-
timation of seasonal valleys and better fitting to the peaks
as compared to the original CSSA formulation. The method
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Table 1.List of the methods investigated. Length of processing window (whole means that the processing window is the whole time series)
and maximum gap length tolerated are indicated.

Abrev. Method Principles Processing Maximum Reference
window length gap length
(days) (days)

ICSSA Iterative caterpilar Decomposition into EOFs using Whole – Golyandina and Osipov (2007)
singular spectrum analysis Eigenvalue decomposition

EMD Empirical mode Decomposition into Whole 128 Huang et al. (1998)
decomposition IMFs by “sifting”

LPF Low pass filtering Fitting a harmonic curve to the Whole 128 Bacour et al. (2006b)
series. Followed by 2-pass
filtering of the residuals

Whit Whitaker Penalized least square Whole – Eilers (2003)
Regression – Smoothness is
governed by a parameter value

SGF Adaptive Savitzky–Golay filter with 72–112 – Chen et al. (2004)
Savitzky–Golay filter iterations to fit the upper
of the series envelope

TSGF Temporal smoothing Savitzky–Golay filtering with 48–128 128 Verger et al. (2011)
and gap filling flexible window and linear

interpolation for gaps
AGF Asymmetric Fitting asymmetric Gaussian 60–300 72 Jönsson and Eklundh (2002, 2004)

Gaussian filter Function to seasons
Clim Climatology Inter-annual median Whole 128∗ Baret et al. (2011)

for each 8-day period

∗ The maximum gap length applies on the yearly reconstructed time series, not on the original time series.

requires 2 parameters: the window length and the number of
eigenvectors (orthogonal functions) used for the reconstruc-
tion. Better reconstruction can be obtained for large number
of eigenvectors but at the cost of a decrease in the smooth-
ness. After trial and error, the number of eigenvector was set
to 1, and the window length was set to 40 days. This method
allows filling gaps and forecasting data at the extremities of
the time series.

Empirical mode decomposition method(EMD). This
method proposed by Huang et al. (1998) consists in decom-
posing the time series into a small number of intrinsic mode
frequencies (IMFs) derived directly from the time series it-
self using an adaptive iterative process where the data are
represented by intrinsic mode functions, to which the Hilbert
transform can be applied. The method requires setting 2 pa-
rameters: the threshold for convergence and the maximum
number of IMFs. The threshold for convergence is set to 0.3
according to Huang et al. (1998) and the maximum number
of IMFs was restricted to 10 after trial and error. The first
IMF, mostly affected by noise, was smoothed using a uni-
form mean kernel to remove the high frequency fluctuations
at the expense of a loss in the amplitude (Demir and Erturk,
2008). Note that the EMD method requires the time series to
be continuous. To allow the application of EMD to MODIS
time series, the missing data within 128 days were filled by
linear interpolation as proposed by Verger et al. (2011). How-
ever, when the time series contains gaps longer than 128
days, the whole series was not reconstructed. As a matter

of fact, linear interpolation provides generally poor perfor-
mances in case of long periods without observations.

Low pass filtering(LPF). This method originally pro-
posed by Thoning et al. (1989) was adapted by Bacour et
al. (2006b) for better retrieving the seasonality from AVHRR
time series. A time dependent function with 10 terms (2 poly-
nomial and 8 harmonic terms) is first adjusted to the data.
Then, the residuals of this first fitting are filtered with a low
pass filter using two cut-off frequencies defined to separate
the intra-annual and inter-annual variations. The final recon-
struction is obtained by summing the polynomial and har-
monic terms with the filtered residuals. Although this method
may also be considered to be based on curve fitting, it applies
over the time series as a whole. This method requires the data
to be continuous. Hence, similarly to the EMD method, the
gaps within 128 days were filled by linear interpolation. For
gaps longer than 128 days, LPF was considered unsuccessful
and, in this case, it results in missing reconstructed values for
the whole time series.

Whittaker smoother (Whit).This method proposed by
Whittaker (1923) is based on the minimization of a cost func-
tion describing the balance between fidelity expressed as the
quadratic difference between estimates and actual observa-
tions and roughness expressed as the quadratic difference be-
tween successive estimates. This balance is controlled by a
smoothing parameter. The higher this value is, the smoother
the result but at the expense of fidelity. Finding an appro-
priate value of the smoothing parameter is difficult, as it
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depends on the data. After trial and error the smoothing pa-
rameter was set to 100. The smoothness is also controlled by
the order of differentiation which is fixed to 3 as proposed by
Eilers (2003) for time series data sampled at regular intervals
but with missing observations.

Adaptive Savitzky–Golay filter (SGF). This method pro-
posed by Chen et al. (2004) iteratively applies the Savitzky–
Golay filter (Savitzky and Golay, 1964) to match the upper
envelope of the time series. This specific adaptation was de-
signed to minimize the effects of cloud and snow contam-
ination that generally decreases the estimates of vegetation
indices such as NDVI as well as biophysical variables such
as LAI. The original Savitzky–Golay filter consists in a lo-
cal polynomial fitting with two parameters: the length of the
temporal window used and the order of the polynomial. As
proposed by Chen et al. (2004), the values of these parame-
ters were optimized for each case to get the best match be-
tween observations and reconstructed values. However, the
range of variation of the window length was restricted to
72–112 days, and that of the polynomial order to 2–4. Miss-
ing data in the time series were filled by linear interpolation
independently of the size of the gaps as proposed in the orig-
inal version.

Temporal smoothing and gap filling (TSGF). This method
is another adaptation of the Savitzky–Golay filter where the
polynomial degree was fixed to 2 but the temporal window
may be asymmetric and variable in length. It was designed
by Verger et al. (2011) to better handle time series with miss-
ing observations. The temporal window corresponding to a
nominal date is adjusted to include at least 3 observations
within a maximum 64 days period on each side of the nom-
inal date. If less than 6 observations are available within the
maximum±64 days temporal window, the polynomial fitting
is not applied. The gaps in the reconstructed data are filled
by an iterative (2 iterations) linear interpolation within 128
days window. For periods with missing data longer than 128
days, the interpolation is not applied which results in miss-
ing data. The possible flattening of the reconstructed time
series observed over peaks was further corrected by scaling
the smoothed series to the observations in a local window
(Verger et al., 2011).

Asymmetric Gaussian fitting (AGF). This method has been
proposed by J̈onsson and Eklundh (2002, 2004) within the
TIMESAT toolbox. A Gaussian function is adjusted locally
over the growing and senescing parts of each season. The
functions are finally merged to get a smooth transition from
one season to another. This method can handle small gaps.
The original TIMESAT implementation of this method in-
cluded 3 conditions preventing the near-constant and noisy
data from being processed. Two of these conditions (mini-
mum seasonality in the data and maximum fraction of miss-
ing data of 25 %) were not considered here to enlarge its do-
main of validity in case of missing data. This thus allows
more rigorous comparison with the other methods. However,
the last condition was kept: the method was not applied over

seasons with gaps longer than 72 days and, in these cases,
reconstructions for the entire time series are not provided.

Climatology (Clim). The climatology describes the typical
yearly time course. It was included within the set of meth-
ods investigated since it may provide smooth and complete
time series with, however, no changes from year to year. The
climatology was computed every 8 days during a year by av-
eraging the values available over a±12 day window across
all the years of the time series. The climatology was then
corrected to provide more continuous and consistent tempo-
ral patterns as proposed in Baret et al. (2011). To provide
smoother values, a simple Savitzky–Golay filter was applied
(Savitzky and Golay, 1964). Note that the climatology may
present missing values when no observations in the 24 day
temporal window centered on a given date in the year were
available across, the years of the time series. In such situa-
tions, linear interpolation was used to fill gaps shorter than
128 days. Gaps longer than 128 days will result in missing
data. Once the average yearly time course was computed, it
was replicated across all the years considered to provide a
reconstructed time series.

2.3 Evaluation approach

The approach proposed to evaluate the methods is based on
two steps as sketched in Fig. 1. The first one is dedicated to
the preparation of reference time series over a limited number
of representative sites. As a result of this step, two time series
will be output: (i) a time series with no gaps and small uncer-
tainties considered as the reference (LAIref), and (ii) a time
series with no gaps with realistic uncertainties (LAIcomp).
In the second step, time series with variable occurrence of
missing data will be simulated (LAIsim) from the previously
LAI comp time series. Each method will be applied on this
LAI sim data to get the corresponding reconstructed time se-
ries (LAIrec). Finally, the LAIrec obtained with each of the
8 methods will be evaluated based on a range of metrics de-
scribing the fidelity, the roughness of time series and the ac-
curacy of phenological stages that can be derived from the
time series.

2.3.1 Generation of the reference and completed
LAI time series.

In the first step, few sites were selected with the objective
to show a wide variability of seasonal patterns while hav-
ing a minimal number of missing data. For this purpose, the
420 BELMANIP2 sites identified by Baret et al. (2006) to
represent the variability of vegetation types and conditions
around the world were considered. These 420 sites were first
classified according to GLOBCOVER land-cover map (De-
fourny et al., 2009) with the original classes aggregated into
5 main classes: shrub/savannah/bare area (SB), grasslands
and crops (GC), deciduous broadleaf forests (DB), evergreen
broadleaf forests (EB) and needleleaf forests (NF). For EB

www.biogeosciences.net/10/4055/2013/ Biogeosciences, 10, 4055–4071, 2013
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Fig. 1. Flow chart describing the approach used. Mi corresponds to methodi within the 8 investigated. LAIrec(Mi) corresponds to the
reconstructed time series based on methodMi .

and NF sites, most sites show significant fraction of miss-
ing data. The 5 sites showing the minimal gap fraction with
a large variability in seasonal patterns were finally selected.
The same process was applied to SB, GC and EB classes, re-
sulting in a total of 25 sites (5 sites for each of the 5 biome
classes) (Table 2, Fig. 2)

The eight methods presented earlier were applied to each
of the 25 sites and show very good agreement. The median
across all methods is a good approximation of the expected
LAI product values (Fig. 3) with 4 out of the 8 methods in-
vestigated very close (RMSE (root mean square error) lower
than 0.05) to the median across all methods. The time series
made with the median across the 8 methods will therefore be
considered as the reference values, LAIref, in the following.
This LAIref does not show any missing data since the gaps
in the original time series were filled by the reconstructed
values of the 8 methods. LAIref constitutes a good reference
with minimal uncertainties attached to the LAI values be-
cause of the temporal smoothing coming from each method
and the computation of the median across the 8 methods. A
second set of time series was generated to provide realistic
LAI values: the LAIori were complemented at the location
of missing data by LAIref values contaminated by a noise
that was randomly drawn within the distribution of residuals
(LAI ref-LAI ori) for each site. These realistic but continuous
temporal profiles with no gaps (LAIcomp) will be used in the

second step of the approach for simulating time series with
gaps.

2.3.2 Simulation of time series with gaps

In the second step, emphasis was put on the occurrence of
missing data (% gap). The gap structure observed over each
one of the 420 sites was applied to the completed time se-
ries (LAIcomp). This allows the gap structure to be more re-
alistic as compared to other strategies that would consist in
randomly simulating gaps. However, vegetation type and the
associated climate experienced, hence the cloud occurrence
and corresponding gap structure, are probably correlated. To
account for such possible dependency, the gap structure ap-
plied to one of the 25 sites was selected within the gap sites
belonging to the same vegetation class (Table 3). Note that
the balance amongst vegetation classes in BELMANIP2 was
preserved (Table 3) providing approximate representative-
ness of global scale conditions regarding the occurrence of
missing data: SB and CG represent about 2/3 of the land
area, associated with relatively low fraction of missing data
(gap percentage, Fig. 4). Forests represent about 1/3 of the
global land area with relatively high fraction of missing data.
However, sites with less than 9 observations for the whole
9 yr period (i.e. less than one observation per year in aver-
age) were not considered since none of the methods will be
able to provide a fair reconstruction of the LAI time course.
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Fig. 2.Location of the 25 sites being selected (◦) (Table 2) and the 384 sites used to simulate gaps in the data (×). SB: shrub savannah bare,
GC: crop grassland, DB: deciduous broadleaf forests, EB: evergreen broadleaf forests, NF: needleleaf forests.

Table 2.Sites selected for the study for the 5 biomes. The site num-
ber in BELMANIP2 ensemble of 420 sites, latitude and longitude
and fraction of missing data (% gap) are indicated.

Biome Site # Lat.(◦) Lon. (◦) % gap

Shrub Savannah 5 −34.02 −65.63 1
Bare (SB) 136 −18.46 44.41 3

176 12.49 36.34 2
186 10.70 39.41 1
293 −21.54 143.83 1

Crop Grassland 69 38.63 −98.91 5
(GC) 127 −27.61 27.95 1

225 35.09 −1.00 1
280 −31.38 116.87 1
338 25.99 68.52 0

Deciduous Broadleaf 131 −11.99 16.43 11
forests (DB) 146 −5.45 31.74 9

162 4.86 28.80 8
165 5.98 31.18 1
296 −16.45 142.62 1

Evergreen Broadleaf 19 −11.75 −53.35 41
Forests (EB) 30 −2.68 −63.65 48

50 17.59 −89.78 45
142 −4.60 23.44 38
320 24.54 121.25 41

Needleleaf Forests 54 28.39−108.25 11
(NF) 55 26.53 −106.68 13

62 39.49 −120.83 18
65 30.28 −83.85 16

244 43.86 −1.10 20

Table 3. Number of sites per vegetation class in BELMANIP2 set
of sites, and number of cases considered in the gap simulation ex-
periment.

Vegetation class SB CG DB EB NF Total

Nb. sites in
144 123 35 36 46 384

BELMANIP2
Nb. cases (time

720 615 175 180 230 1920
series) simulated

A total of 384 sites were used to simulate the gaps in the
data (Table 3). Because each vegetation class is represented
by 5 sites used for the LAIref and LAIcomp values, a total of
1920 cases (384× 5) with realistic LAI uncertainties and gap
structure were finally available.

2.4 Metrics used to quantify performances

The performances of the 8 methods considered in this study
were evaluated based both on LAI values as well as phenol-
ogy. Note that when the reconstructed LAI values (LAIrec
Fig. 1) were outside the definition domain (0< LAI rec < 7),
the reconstructed value was systematically set to the closest
bound (0 or 7). Note that in several situations, the methods
may fail to reconstruct the whole time series due to long pe-
riods of gaps. This will be quantified by the reconstruction
fraction (% reconstructions), i.e the fraction of dates with re-
constructed values in LAIrec time series, and the fraction of
successful gap filling (% success), i.e. the fraction of gaps
that were able to be filled.
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Fig. 3. Comparison between the original LAI values (LAIori) and
the median of the reconstructed values (LAIref) based on the 8
methods considered over the 25 selected sites (Table 2, Fig. 2)
(N = 7561; R2

= 0.90; RMSE= 0.231; Bias= −0.008). The col-
ors of this density plot correspond to the frequency of data in each
of the 0.1× 0.1 cells LAI values.

2.4.1 Metrics based on LAI values

The RMSE(root mean square error) computed over all cases
quantifies the fidelity of the reconstruction of the time series:

RMSE=

√√√√√∑N
j=1

∑nj

t=1

(
LAI j

rec(t) − LAI j

ref(t)
)2

∑N
j=1nj

, (1)

where LAIjref(t) and LAIjrec(t) are, respectively, the reference
and the reconstructed values for datet and casej , nj is the
number of dates with observations for casej andN is the
number of cases considered.

Finally, the metrics proposed by Whittaker (1923) called
here roughness will be used to quantify the shaky nature of
the reconstructed time series:

Roughness=

√√√√√∑N
j=1

∑nj

t=1

(
LAI j

rec(t) − LAI j
rec(t − 1)

)2

∑N
j=1nj

. (2)

2.4.2 Metrics based on phenology

The 5 evergreen broadleaf forest sites were excluded from
these metrics since the identification of seasonality was ques-
tionable at the single pixel scale considered in this study, and
would result in large uncertainties in the timing of pheno-
logical stages if they exist (some sites do not show obvious
seasonality). Three phenological events were considered: the
start of season (SoS), maximum of season (MoS) and end of
season (EoS). SoS and EoS were defined similarly to Jönsson
and Eklundh (2002) as the timing when LAI reaches 20 %

Fig. 4. Cumulated distribution of the fraction of missing data
(% gap) in the simulated time series (LAIsim) for each of the 5 veg-
etation classes (SB, CG, DB, EB, NF).

of the whole LAI amplitude before (SoS) or after (EoS) the
timing of maximum LAI (MoS). The reference dates of these
three stages were derived by applying this phenology extrac-
tion method to the LAIref data (Pref). Then the RMSE for the
timing of SoS, MoS and EoS are computed:

RMSE (days)=

√√√√√∑N
j=1

∑mj

s=1

(
P

j
rec(s) − P

j

ref(s)
)2

∑N
j=1mj

, (3)

whereP
j

ref(s) andP
j
rec(s) are, respectively, the reference and

the reconstructed dates for the phenological events and case
j , mj is the number of phenological events for casej (i.e. the
number of seasons in the time seriesj andN is the number
of cases considered).

3 Results

The methods will first be evaluated with regards to fidelity
and roughness of the reconstructed time series. Then, they
will be evaluated with regard to their ability to describe the
phenology. In both the cases, the impact of the occurrence of
missing data (% gap) and the length of gaps (LoG), i.e. the
number of days between two consecutive valid observations,
will be analyzed.

3.1 Performances for LAI reconstruction

Before investigating quantitatively the performances through
the several metrics envisioned, the main features of each
method will be qualitatively assessed. Five cases of LAIrec
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Fig. 5.Time series (LAIrec) reconstructed by the several methods in presence of medium occurrence of missing data (25 %< % gap< 35 %).
Black dots correspond to LAIcomp at the location of observations. Empty circles on the x-axis correspond to the dates of missing data. The
dashed black curve corresponds to LAIref. Note that because of the structure of missing data, EMD, LPF and AGF were not reconstructed
for sites 5 and 65, as well as AGF for site 338.

within the 1920 ones have been selected (Fig. 5) and their
temporal profiles plotted against LAIref. They represent
the 5 typical vegetation types under a medium occurrence
of missing data. Visual inspection shows that

– The climatology is often shifted from the reference tem-
poral profile, highlighting the inter-annual fluctuations,
particularly for non-forest vegetation types (SB and CG
in Fig. 5).

– In presence of periods with long and continuous missing
data, several methods were not able to reconstruct the
time series over these periods, particularly TSGF and
Clim, while AGF, EMD, LPF fail for the entire time se-
ries (SB in Fig. 5). However, the other methods (ICSSA,
Whit, SGF) showing continuity in LAIrec do not always
provide realistic (as compared with LAIref) reconstruc-
tions in such cases.

– When observations show a significant level of temporal
noise (the forest sites in Fig. 5: DB, EB and NF), sig-
nificant differences are observed between the methods,
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Fig. 6. (a) Fraction of gaps reconstructed (% success) as a function of the length of the gaps (LoG).(b) Fraction of dates reconstructed
(% reconstructions) as a function of the % gap. The horizontal dashed line represents the 50 % threshold of % reconstructions. The several
methods are represented by different colors. Some values were slightly shifted vertically to ease the reading when curves were overlapping.

both in terms of fidelity (closeness to LAIref) and rough-
ness, particularly for SGF and EMD.

3.1.1 Capacity to reconstruct the temporal series in
presence of missing data

All the methods were not able to fill all of the gaps, i.e. to
provide an estimated value in gaps. This was quantified by
the % success, i.e. the fraction of gaps that were able to be
filled. Whit, SGF, ICSSA allow to fill most of the gaps even if
they are very long (Fig. 6a). Conversely, EMD, LPF and AGF
show a rapid decrease of %Success with the length of the
gaps, with no reconstructions for gaps longer than 88 (AGF)
to 136 days (EMD, LPF). Even for small gaps, only 50 %
of them were filled. This is due to the fact that a specific
gap may be associated to other ones in a close vicinity in
the time series. TSGF is able to fill gaps up to gap length
of 128 days as expected by its definition. The climatology
shows also a progressive decrease of % success with gaps of
128 days length being filled in 80 % of cases because of the
accumulation of observations over the 9 yr period.

The capacity to fill individual gaps has consequences on
the reconstruction fraction (% reconstructions), i.e. the frac-
tion of dates with reconstructed LAI values, LAIrec, relative
to the total number of dates in the LAIcomp time series. Only
three methods (Whit, SGF, ICSSA) were able to provide a
continuous reconstructed time series over all the cases inves-
tigated (Fig. 6b) even for large occurrence of missing data
in agreement with Fig. 6a. In contrast, AGF is characterized
by the smallest %Success (Fig. 6a) and % reconstruction
(Fig. 6b): only 50 % of the dates are reconstructed for cases
with more than 25 % of missing data in their time series
(Fig. 6b). LPF and EMD that do not accept gaps longer than
128 days (Table 1) show also a similar drastic decrease of
the reconstruction fraction with the occurrence of missing
data in the cases considered (Fig. 6b). The TSGF method,
although also not filling gaps longer than 128 days is more

resilient to the occurrence of gaps: TSGF was able to recon-
struct more than 50 % of the data for cases with more than
60 % of missing data. When a gap longer than 128 days ap-
pears in a time series, the remaining parts of the time series
are reconstructed. This was not the case for LPF and EMD
for which the whole time series was not reconstructed for
cases having a gap longer than 128 days. Clim allows for the
reconstruction of most time series, even for cases with large
amounts of missing data, benefiting from the replications be-
tween years, cloudy days being not always the same day of
the year.

To improve the robustness of the metrics used to character-
ize the performances on LAI and phenology reconstruction
they will be computed only when % reconstructions> 50 %
(Fig. 6b). As a consequence, all the methods will be
compared for cases with less than % gap< 20 %; TSGF,
Clim, ICSSA, SGF and Whit will be compared for
20 %< % gap< 60 %; and for % gap> 60 %, only Clim, IC-
SSA, SGF and Whit will be compared (Fig. 6b).

3.1.2 Fidelity to LAI ref

Fidelity is quantified by RMSE. To better highlight the recon-
struction capacity of the methods, RMSE were computed by
comparing LAIrec with LAI ref either over actual dates with
observations or over dates with missing data in LAIsim. Re-
sults show that, except for Clim and SGF, all the other meth-
ods show generally good fidelity with LAIref for the dates
where observations are available (Fig. 7). These good per-
formances are observed almost independently from the oc-
currence of missing data (Fig. 7). The higher RMSE values
observed for SGF are due to a positive bias induced by the
fitting of the upper envelope of the observations. Clim shows
a RMSE value close to that of SGF (Fig. 7) that mostly refers
to the inter-annual variability of LAI seasonality.
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Fig. 7. RMSE as a function of % gap. The RMSE is computed be-
tween LAIref and the reconstructed LAIrec time series over dates
with actual observations in LAIsim. The values were slightly shifted
vertically to ease the reading when curves were overlapping.

Over dates of missing observations, the reconstruction ca-
pacity degrades rapidly as a function of the length of gaps
for all methods except Clim that keeps a RMSE value around
0.35 independent from the expected gap length (Fig. 8a). LPF
and TSGF provide the best performances up to gap length
around 100 days when Clim starts to be the best method.
AGF, Whit EMD and SGF show similar performances with
RMSE lower than the climatology up to gap length around
70 days, while ICSSA performances rapidly degrade with
the length of gaps. The fidelity of reconstructions in gaps
as a function of the fraction of missing observations in the
time series (Fig. 8b) derives logically from the reconstruc-
tion performances as a function of the gap length (Fig. 8a).
The RMSE values computed over dates of missing observa-
tions are relatively low for all methods up to % gap< 20 %.
Then SGF, Whit and ICSSA show a rapid increase of the
RMSE with % gap with poorer performances as compared to
Clim for % gap> 30 % (Fig. 8b). These three methods show
obvious artifacts when reconstructing long gaps (Fig. 5, non-
forest sites 5 and 338). TSGF shows relatively low RMSE
values up to 60 % gap (Figs. 7, 8b). Clim shows similar per-
formances over dates with missing data (Fig. 8b) and dates
with observations (Fig. 7) as expected since it is not depen-
dent on the local observations.

3.1.3 Roughness

The roughness was computed over the whole reconstructed
time series and is presented as a function of % gap (Fig. 9).
Results show that for % gap< 30 %, EMD and SGF show
the highest roughness values in agreement with the previous
qualitative observations (Fig. 5). The behavior of SGF is con-

trolled by its iterative nature that puts emphasis on fidelity
(relative to the upper envelope). For EMD, the 10 modes se-
lected were showing variable patterns and it was difficult to
find a better compromise between smoothness and fidelity.
ICSSA shows a roughness value close to that of Clim for
% gap< 20 %. However, the roughness of ICSSA strongly
increases when % gap> 20 %. This is partially due to in-
consistencies observed in its temporal pattern with abrupt
variations in the periods with high discontinuities in the data
(Fig. 5, jumps observed between the lowest and the highest
values when data are missing for non-forest sites 5 and 338).
AGF and LPF show the smoothest temporal profiles how-
ever limited to cases with % gap< 20 %. Whit provides al-
ways smooth reconstructed profiles, even for large amount of
missing data. This is obviously controlled by the smoothing
parameter. Whit is just slightly rougher than LPF and AGF.
TSGF shows a slightly higher roughness values than Whit for
the % gap< 30 %, with a significant decrease when % gap in-
creases. This is due to the linear interpolation used to fill the
gaps that explains also the decrease of roughness for EMD,
SGF and Clim when % gap increases.

3.2 Performances for describing the phenology

The capacity of the several methods to identify the main phe-
nological stages (SoS, MoS and EoS) was evaluated using the
dates derived from LAIref as a reference. The performances
(RMSE in days) were analyzed as a function of the occur-
rence of missing data (% gap). Results show a general degra-
dation of RMSE when % gap increases for the three stages
considered.

Closer inspection of performances in terms of RMSE
for SoS estimates shows large differences between methods
(Fig. 10a). For complete time series (% gap= 0), RMSE val-
ues are between 3 days (LPF) and 15 days (AGF), with the
exception of the climatology with a RMSE around 25 days,
indicating a significant inter-annual variability in the timing
of SoS. EMD, TSGF, Whit and SGF have RMSE around
10 days. For discontinuous time series, Whit, SGF and IC-
SSA show a continuous and steep increase of RMSE with
% gap. Conversely, the RMSE values of Clim and, in a lesser
way, TSGF increase moderately with % gap. Similar patterns
are observed for MoS (Fig. 10b) with however smaller dif-
ferences between methods for % gap< 20 % and a slightly
lower rate of increase of RMSE with % gap except for Clim.
The performances for EoS (Fig. 10c) appear to be very sim-
ilar to what is observed for SoS (Fig. 10a). The Climatol-
ogy (Clim) performs better than ICSSA, SGF and Whit for
% gap> 40 % for SoS and EoS, and for % gap> 50 % for
MoS. TSGF yields the smallest RMSE for % gap> 20 % for
SoS, MoS and EoS with however only small differences as
compared to Clim for EoS (Fig. 10a–c).
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Fig. 8. RMSE as a function of the length of gaps(a) and fraction of missing observations (% gap )(b). The RMSE is computed between
LAI ref and the reconstructed LAIrec time series over dates with missing observations in LAIsim.

Fig. 9.Roughness of LAIrec as a function of % gap in LAIsim.

4 Discussion and conclusion

This study compares 8 methods designed to improve the con-
tinuity and consistency of time series by filling gaps cre-
ated by missing observations and smoothing the temporal
profiles to reduce local uncertainties. However, the perfor-
mances of the different methods for processing time series
depend on their implementation (e.g. very different results
with two variants of Savitzky–Golay filter: SGF and TSGF).
The selected methods were applied here as close as possi-
ble to their standard implementation including the original
parameterization as proposed by their authors. When the pa-
rameters for each method were not known they were adjusted
using a trial and error approach. Other techniques based on
systematic cross validation could have been implemented.
This was not considered here since it would lead to signif-
icant increase in computation time not compatible with cur-

rent operational processing lines capabilities. The time series
considered correspond to actual MODIS LAI products over
a sample of sites that were selected to be both representative
of the diversity of seasonal patterns and of the distribution
of the missing observations. This approach was expected to
improve the realism of the context of the analysis that ac-
counts for the implicit links between the vegetation type and
the distribution of missing observations. This may be critical
for filling gaps or smoothing the time series. The approach
allowed defining a set of reference time series used to quan-
tify the accuracy of each of the 8 methods as a function of
the fraction of missing observations.

Results clearly show that some methods including LPF,
AGF and EMD were failing in about 50 % of the situations
when the fraction of missing observations was larger than
20 % which represents about 60 % of the situations investi-
gated here. This is partly due to the principles on which these
methods are based, but also partly to their implementation.
Consequently, great care should be taken with the implemen-
tation of such methods to improve their rate of applicability
in case of significant periods with missing observations. Con-
versely, ICSSA, Whit and Clim methods were applicable in
almost all situations while TSGF shows intermediate behav-
ior.

For the methods resilient to periods of missing observa-
tions of significant length, their capacity to provide realis-
tic interpolation between actual observations was challenged
in cases corresponding to medium to high fraction of miss-
ing data. SGF, designed to fit the upper envelope of observa-
tions, performs poorly (large RMSE and positive Bias) over
MODIS LAI time series. Better filtering principles are thus
required to reject outliers possibly contaminated by residual
clouds. ICSSA and Whit show unreliable interpolated val-
ues in the medium (few weeks) to large (few months) pe-
riods of missing data although these methods are adjusted
over the whole time series. The TSGF method appears to
provide the most reliable interpolation capacity due to its
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Fig. 10.RMSE relative to the timing (in days) of the start of season(a), maximum of season(b) and end of season(c). The RMSE is evaluated
between the phenological dates computed with LAIref and those derived from the reconstructed LAIrec time series using the several methods
investigated.

Fig. 11.RMSE as a function of Roughness observed over the reconstructed times series using the several methods. Color dots correspond to
the values for the different methods over the 25 sites for cases with % gap in the selected classes of occurrence of missing data: 0–15 %(a)
and 45–55 %(b). Note that EMD, LPF and AGF are only displayed for the lowest occurrence of missing data (0 %< % gap< 15 %). Black
circles correspond to LAIcompand black diamonds to LAIref. Lines correspond to the zero-offset linear regressions.

adaptive temporal window, although limited to gaps smaller
than 128 days. For longer periods without observations, the
Clim method appears to be the best one provided that enough
data are available over the time series of years used to build
the climatology. Note that the reconstruction performances
for the best methods and for gaps shorter than 100 days ful-
fills the GCOS criterion on LAI uncertainties (RMSE≤ 0.5)
(GCOS, 2010) although the reconstruction uncertainty is
only part of the error budget

Each method is based explicitly (Whit) or implicitly (the
other methods) on a balance between fidelity and rough-
ness. This is clearly demonstrated when plotting Rough-
ness and RMSE performances for each of the 25 selected
sites (Table 2, Fig. 2) for a class of occurrence of miss-
ing data (Fig. 11). For each method, all the 25 sites are ap-
proximately organized around a line passing through the ori-
gin. The slope of this line indicates the balance between fi-
delity and roughness. For relatively continuous time series
(0 %< % gap< 15 %), TSGF, ICSSA and Whit focus more
on fidelity than smoothness (Fig. 11a). Conversely, LPF,

EMD and AGF are focusing more on smoothness than fi-
delity. SGF constitutes a particular case because the fidelity
is targeting the upper envelope of the points, resulting in
larger RMSE values, while roughness is also quite important
as described previously. Clim provides the steepest slope,
with smooth temporal profiles but a loose match with ob-
servations. Note that the slope of Clim is in between that of
LAI comp and LAIref (for which RMSE was replaced by the
standard deviation between observations). For the larger oc-
currence of missing data (Fig. 11b), the slopes increase sig-
nificantly due to an increase of RMSE mostly due to inaccu-
rate reconstructions in the gaps, and a decrease of roughness
due to more simple patterns in the observations, except for
ICSSA as noticed earlier.

The slope between RMSE and roughness (Fig. 11) appears
thus a good indicator of the balance between fidelity (RMSE)
and roughness of each method and its associated sets of pa-
rameters. The overall performances may be described by the
distance to the ideal case (RMSE= Roughness= 0) in the
(roughness, RMSE) feature plane averaged over the 25 sites
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Fig. 12. Performances (distance to the origin) and slopes in the
(Roughness, RMSE) feature plane (Fig. 11) associated to each
method for 0 %< % gap≤15 % (×), 25 %< % gap≤35 % (�) and
35 %< % gap≤45 % (∇). Note that EMD, LPF and AGF are only
displayed for the lowest % gap class. The black arrow indicates the
effect of an increase of the fraction of missing data.

considered: the closer to the origin (0,0), the smoother and
the better match with LAIref (low RMSE). The behavior of
each method as a function of the occurrence of missing data
is well sketched in the (performances, slopes) feature plane
(Fig. 12). For low amounts of missing data, all the methods
provide good performances except SGF and Clim for the rea-
sons exposed previously. When the fraction of missing data
increases, each method follows a particular pattern (the black
arrow in Fig. 12) with a degradation of the performances and
an increase in the slope indicating more emphasis on the
smoothness of the temporal profiles through a reduction of
the roughness. For medium and high occurrence of missing
data, TSGF provides clearly the best overall performances
although restricted to gaps smaller than 128 days, followed
by Whit. SGF and ICSSA show poor performances.

The consequences of the application of the several time se-
ries processing methods on their capacity to describe phenol-
ogy characteristics were finally evaluated. As expected, the
methods providing the best accuracy on LAI estimation were
also more accurate for dating specific phenological events
such as start, maximum and end of season (Fig. 13).

The effect of gaps on the derivation of time series appears
as a major limitation of the accuracy of the reconstructed
temporal profiles. Techniques based on the processing of the
time series as a whole (ICSSA, EMD, LPF, Whit and Clim)
were not demonstrated to perform systematically better than
techniques based on a limited temporal window (AGF, SGF,

Fig. 13.Accuracy of the start of season retrieval expressed in RMSE
(days) as a function of the accuracy of LAI estimated expressed in
RMSE. The same colors (corresponding to methods) and markers
(corresponding to classes of % gap) as in Fig. 12 are used.

TSGF) although they were expected to fill long gaps with the
“experience” gained across the several years available in the
time series. Local methods were generally more faithful but
were lacking capacity to fill long gaps. Most methods were
performing poorer than Clim to gaps longer than about 100
days. Future works should therefore be dedicated to develop
methods where the features derived from the exploitation of
the several years available in the time series including the cli-
matology, could be injected more explicitly as a background
information for improving the reliability of methods work-
ing over a limited time window, such as a season or part of
it, with emphasis on the capacity to provide accurate pheno-
logical timing as proposed in Verger et al. (2013).
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