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Abstract. Terrestrial ecosystem models used for Earth sys-
tem modelling show a significant divergence in future pat-
terns of ecosystem processes, in particular the net land–
atmosphere carbon exchanges, despite a seemingly common
behaviour for the contemporary period. An in-depth evalu-
ation of these models is hence of high importance to better
understand the reasons for this disagreement.

Here, we develop an extension for existing benchmarking
systems by making use of the complementary information
contained in the observational records of atmospheric CO2
and remotely sensed vegetation activity to provide a novel set
of diagnostics of ecosystem responses to climate variability
in the last 30 yr at different temporal and spatial scales. The
selection of observational characteristics (traits) specifically
considers the robustness of information given that the un-
certainty of both data and evaluation methodology is largely
unknown or difficult to quantify.

Based on these considerations, we introduce a baseline
benchmark – a minimum test that any model has to pass – to
provide a more objective, quantitative evaluation framework.
The benchmarking strategy can be used for any land surface
model, either driven by observed meteorology or coupled to
a climate model.

We apply this framework to evaluate the offline version
of the MPI Earth System Model’s land surface scheme JS-
BACH. We demonstrate that the complementary use of at-
mospheric CO2 and satellite-based vegetation activity data
allows pinpointing of specific model deficiencies that would
not be possible by the sole use of atmospheric CO2 observa-
tions.

1 Introduction

The terrestrial and oceanic biospheres currently absorb al-
most half of the fossil-fuel emissions, and thereby buffer
the atmospheric CO2 increase and reduce the rate of climate
change (Cox et al., 2000; Raupach et al., 2008; Le Quéŕe
et al., 2009). Because of the strong interactions between the
biosphere net carbon (C) uptake and climate in particular on
land (Cox et al., 2000; Friedlingstein et al., 2006, Arora et
al.2013), projections of future climate changes from Earth
system models (ESMs) need to accurately simulate the pro-
cesses that control the evolution of the terrestrial net C bal-
ance. However, despite a seemingly common behaviour of
C cycle models for the contemporary period, estimates of
the future C land balance by different terrestrial biosphere
models (TBMs) diverge significantly. This divergence con-
tributes strongly to the overall uncertainty in the future evo-
lution of the global carbon cycle (Friedlingstein et al., 2006;
Sitch et al., 2008; Arora et al., 2013). The apparently con-
tradictory behaviour underlines the difficulty of constraining
future projections of terrestrial models with current obser-
vations. This calls for an in-depth model evaluation that fo-
cusses on the model’s capacity to simulate key features of C-
cycle-related processes rather than simply ensuring that the
easily diagnosed simulated net land–atmosphere C exchange
agrees with estimates inferred from observations.

Several global model evaluation analyses have been pub-
lished in the last decades with respect to land model perfor-
mances of the carbon cycle (Anav, et al., 2013; Cadule et al.,
2009; Blyth et al., 2009; Randerson et al., 2009; Heimann
et al., 1998). However, they differ with respect to reference
dataset used, selection of the observational traits as well as

Published by Copernicus Publications on behalf of the European Geosciences Union.



4190 D. Dalmonech and S. Zaehle: Towards a more objective evaluation of modelled land-carbon trends

their computation, and mathematical formulations used to
quantify the data–model mismatch. These differences cause
uncertainty when it comes to ranking several land surface
models or to analyse the outcome from different evaluation
works. Recent model benchmarking initiatives (Randerson
et al., 2009; Luo et al., 2012) have therefore underlined the
need for the development of a standard set of tests and met-
rics applicable to any land surface model at different spatial
and temporal scale.

In addition to a lack of standards, a key challenge in eval-
uating global biosphere models comes from the uncertainties
in observations. From a perspective of data–model mismatch
quantification, given uncertainties in data and observation,
operators to link model and data exist. However, data error
and structural errors are often not known or provided quanti-
tatively (e.g. Raupach et al., 2005).

This study is an attempt to move toward a more robust
and a more objective evaluation framework by defining novel
tests/diagnostics and quantitative model performance mea-
sures that are robust against these mentioned unquantifiable
uncertainties. We first selected a parsimonious number of ref-
erence datasets that are as much as possible direct observa-
tions. In first instance, upscaled products such as that from
Beer et al. (2009) were not used as the fraction of gap-filled
information is not quantified. Atmospheric CO2 and remote
sensing data of vegetation activity were selected to take ad-
vantage of their spatial and temporal coverage and the com-
plementarity of their information content.

Atmospheric CO2 measurements and transport modelling
that links surface fluxes to these measurements are a valu-
able approach to evaluate TBMs since the atmospheric CO2
retains the signature of terrestrial ecosystem response to cli-
mate variability (Heimann et al., 1998; Randerson et al.,
2009; Cadule et al., 2010). However, atmospheric CO2 ob-
servations alone do not allow inference of the contribution
of vegetation and soil components to the observed signal,
such that a good fit might hide compensating model errors.
Remote-sensing observations of vegetation activity may pro-
vide complementary information as they reflect the climate-
and disturbance-related seasonal and interannual trends of
vegetation greenness (Peñuelas et al., 2009; Richardson et
al., 2009).

Rather than comparing average quantities, the analyses
presented here analyse how much relevant and robust infor-
mation, which helps constraining model projections, can be
extracted from observations. Hence, we select traits, in par-
ticular with respect to vegetation activity, that are based on
the information of changes with time, correlations with co-
variates, and the sign of the changes, as well as based on met-
rics that are sensitive to difference in sign and phase. Phas-
ing and extent of the climate variability simulated by Earth
system models (ESMs) often differs from observed climate
because of unforced variability (Deser et al., 2010). To cir-
cumvent the resulting mismatch from a direct comparison of
ESM simulations and modern observations, and to make key

characteristics of the observations useful for the evaluation
of ESMs, priority was given to traits and metrics that de-
scribe the relationship between climate variables and carbon
cycle processes rather than direct comparison of observed
and modelled time series.

The second innovation of our studies is that we impose
a lower acceptable model performance measure (baseline
benchmark) based on the assumption of a null model, i.e. a
model that does not show any trend in the quantity under
investigation. This lower boundary for each metric helps to
avoid misleading interpretation of the number returned by the
scores, and to provide a more informative and intuitively in-
terpretable analysis of the model performance. With respect
to the atmospheric CO2 traits, the aim is to quantify how
much information the land surface model adds to the signal
of ocean and anthropogenic fossil-fuel emissions and thus to
quantify how good the model is relative to the null hypoth-
esis (null model). The working line is thus as follows: the
analyses were performed on a seasonal and a de-seasonalized
signal to better identify C-cycle patterns and the relation-
ship between C-cycle-related processes and climate variabil-
ity. As detailed in Sect. 2, we selected several characteris-
tics (traits) of the observational data that are relevant to the
biosphere’s response to climate variability in terms of ter-
restrial C cycling patterns. We focussed on the the last three
decades (1980–2010) since this is the period with the best
data availability (Tables 2 and 3). For the selected tests, a
list of comprehensive metrics was selected to quantify model
performances according to the information content of iden-
tified traits. We then compared this metric to the reference
value of the metric obtained according to the baseline bench-
mark to arrive at a final score for the model.

In Sect. 3 we discuss the potential strengths and limita-
tions of the evaluation framework at the example of the the
JSBACH land surface model of the MPI-ESM (Raddatz et
al., 2007; Giorgetta et al., 2013) driven by reconstructed me-
teorology.

2 Materials and methods

2.1 Observational datasets

2.1.1 Atmospheric CO2

Atmospheric CO2 concentration recorded at remote measur-
ing stations were obtained from the flask data/continuous
measurements provided by different institutions (e.g. flask
data of NOAA/CMDL’s sampling network, update of Con-
way et al., 1994, Japan Meteorological Agency (JMA), Me-
teorological Service of Canada (MSC), and many others;
see R̈odenbeck, 2005). Simulated net land–atmosphere CO2
fluxes for the period 1980 to 2009 were transported to-
gether with estimated net ocean CO2 fluxes (Jacobson et al.,
2007; Mikaloff Fletcher et al., 2006, 2007 – one of the best
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available products based on Takahashi ocean dataset and in-
volving several biogeophysical ocean models) and fossil-fuel
fluxes (EDGARv.4.0, Olivier et al., 2001,http://edgar.jrc.
ec.europa.eu/faq.php) by means of an atmospheric transport
model (TM) to estimate atmospheric CO2 record at the mea-
suring stations. For our analysis, we used the TM3 model,
version 3.7.22 (R̈odenbeck et al., 2003), with a spatial res-
olution of 4◦ × 5◦ and driven by interannually varying wind
fields of the NCEP reanalysis (Kalnay et al., 1996).

The model-based time series of CO2 at the measuring sta-
tions were based on sampling simulated CO2 abundance at
the same time in which measurements were available in or-
der to reduce the representation bias. The temporal resolution
of CO2 data is the original resolution as recorded at the mon-
itoring stations (hourly to daily/weekly) and dependent of the
specific station.

Stations were selected in order to cover representatively a
latitudinal gradient (Table 1). Latitudinal and vertical trans-
port of CO2 differs among TMs (Yang et al., 2007), but these
differences are difficult to quantify and attribute to particular
model features (Gurney et al., 2003; Peylin et al., 2005). In
remote stations with simple topography, different TMs tend
to agree better and are expected to have less error. The selec-
tion of monitoring stations takes account of this by includ-
ing mainly oceanic/island stations as these remote stations
have a lower uncertainty and are only marginally influenced
by local C sources or sinks (MPI Biogeochemistry, tech-
nical reports 5–6:http://www.bgc-jena.mpg.de/bgc-systems/
pmwiki2/pmwiki.php/Publications/TechnicalReports).

Two estimates of the net land–atmosphere CO2 flux ob-
tained from inverting the observed atmospheric concentra-
tions using atmospheric transport modelling (hereafter re-
ferred to as standard fluxes) were also transported using the
same protocol as for the simulated TBM fluxes. These fluxes
were taken from the Jena inversion system, which relies
on the same TM3 transport model (Jena inversion version
3.7.22, available athttp://www.bgc-jena.mpg.de/∼christian.
roedenbeck/download-CO2/, update of R̈odenbeck et al.,
2003; R̈odenbeck, 2005, covering the periods 1996–2008
and 1981–2008, respectively). The standard fluxes were not
used to derive an absolute benchmark sensu strictu but as ref-
erence to compute additional traits as reported in Sects. 2.4.1
and 2.4.5.

2.1.2 Vegetation activity datasets

To characterize seasonal and interannual changes in veg-
etation activity, we rely on two satellite-based prod-
ucts: the SeaWiFS-FAPAR (Gobron et al., 2006a, b), the
fraction of photosynthetically active radiation absorbed
by vegetation, and the longer GIMMS-NDVI collection
g (http://glcf.umd.edu/library/guide/GIMMSdocumentation
NDVIg GLCF.pdf), which is the normalized difference veg-
etation index, retrieved from the AVHRR sensor records
(Tucker et al., 2005; Beck et al., 2011). Both FAPAR and

NDVI provide a measure of greenness integrating canopy
functioning. It has been previously shown that these quan-
tities are nearly linearly related (Myneni and Williams,
1994). The selected FAPAR data were provided as 10-day-
aggregated time series from September 1997 until June 2006
at a nominal spatial resolution of 2 km and were used to anal-
yse the seasonal cycle of vegetation activity (Table 2). The
GIMMS dataset contains biweekly data at a spatial resolu-
tion of 8 km from 1981 until 2006 and was used to estimate
long-term changes in vegetation activity (Table 3).

Satellite data were aggregated at the spatial resolution of
the TBM, including grid cells that are partially covered by
bare soils. With this approach, the aggregated signal indi-
rectly accounts for changes in vegetation activity and density.
A simple gap-filling procedure based on 2nd degree polyno-
mial interpolation in time was applied to replace bad-quality
flag data. All data were aggregated at the monthly tempo-
ral resolution. In the case of GIMMS-NDVI, the maximum
value composite (MVC) method was used (Holben, 1986). It
is assumed that the process of temporal and spatial aggrega-
tion of satellite-based vegetation activity smoothes out noise
in the data, and the uncertainty induced by the aggregation
might be considered negligible for our purpose. Tropical ar-
eas were excluded from the analysis due to the high uncer-
tainty in the interpretation of the satellite signal (Asner and
Alencar, 2010) and high uncertainties in NDVI datasets in
these regions (Huete et al., 2002; Brown et al., 2006).

2.2 The JSBACH model

JSBACH is the land surface model of the Max Planck In-
stitute’s Earth System Model (MPI-ESM) (Raddatz et al.,
2006; Giorgetta et al., 2013) In this study we use the ver-
sion that was used for the CMIP5 activity (JSBACH version
2.0). JSBACH considers 11 plant functional types, which oc-
cupy annually varying fractions (tiles) of a model grid cell,
prescribed from land-use data (see Sect. 2.2). Phenology and
C cycling is simulated explicitly for each tile, while the half-
hourly fluxes of energy and water are calculated for each grid
cell, based on the relevant average properties of vegetation
and soils across the tiles. The land-use emissions are com-
puted according to the method reported in Reick et al. in re-
view. JSBACH is applied here in offline mode, i.e. driven by
reconstructed daily meteorology (see Sect. 2.3), at the same
spatial resolution of the CMIP5 simulations of the MPI-ESM
(T63, corresponding to a 1.875◦

× 1.875◦ resolution at the
equator).

2.3 Climate and land-use forcing

Meteorological forcing data (air temperature and humid-
ity, shortwave and longwave incident radiation, precipita-
tion, and surface wind speed) for 1860 to 2010 were derived
from CRU-NCEP (CRU-NCEPv4Viovy, N. 2011, avail-
able from http://dods.extra.cea.fr/data/p529viov/cruncep/),
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Table 1.List of selected atmospheric CO2 monitoring stations and satellite-based vegetation activity datasets used in the analyses, as well as
the time period used for elaborations.

Label Name Lat. Lon. Years of
(degree) (degree) elaboration

ALT Alert, Canada 82.45 −62.52 1982–2008
BRW Point Barrow 71.32 156.6 1982–2008
STM Station ‘M’, Atlantic 66 2 1982–2008
CBA Cold Bay, Alaska 55.2 162.72 1982–2008
SHM Shemya Island, Alaska 52.72 174.1 1985–2008
MHD Mace Head, Ireland 53.33 9.9 1991–2008
AZR Azores 38.75 27.08 1995–2008
KEY Key Biscayne, Florida 25.67 −80.2 1982–2008
MLO Mauna Loa, Hawaii 19.53 −155.58 1982–2008
KUM Kumakahi 19.52 −154.82 1982–2008
GMI Guam, Mariana Island, Pacific 13.43 144.78 1996–2008
RPB Ragged Point, Barbados 13.17 −59.43 1987–2008
CHR Christmas Island 1.7 −157.17 1982–2008
SEY Mahe Island, Seychelles −4.47 55.17 1996–2008
ASC Ascension Island −7.92 14.42 1982–2008
SMO Tutuila, American Samoa, Pacific−14.25 −170.57 1982–2008
PSA Palmer station, Antarctica −64.92 −64 1982–2008
HBA Halley Bay, Antarctica −75.67 −25.5 1996–2008
SPO South Pole −89.98 −24.8 1982–2008

GIMMS GIMMS-NDVI – – 1982–2006
SW SeaWiFS-FAPAR – – 1998–2005

and were aggregated via conservative regridding to the T63
resolution of the MPI-ESM grid at daily resolution. These
data were used as model forcing as well as for the cli-
mate correspondence analysis. The standardized precipita-
tion index SPI was computed from the precipitation record
of the CRU observational dataset (Mckee et al., 1993; Lloyd-
Hughes and Saunders, 2002). SPI is suitable as indicator of
both dry and wet soil conditions. Irrespective of biomes or re-
gion, the 6-month cumulated precipitation data was used to
compute the SPI for each grid cell (see Appendix A for more
details). Land-cover and land-use change transition maps
were derived from Hurtt et al. (2006).

2.4 Evaluation methodology

The analyses in this study focus on seasonal and interan-
nual/decadal time scales. To identify these components from
the observed and simulated atmospheric CO2, as well as
vegetation activity and climatic drivers, a seasonal compo-
nent (up to annual time scale) and an interannual time scale
component were isolated using a filter implemented in the
Fourier space. We followed the method and the cut-off values
presented in Thoning et al. (1989), using Gaussian spectral
weights (R̈odenbeck et al., 2003). The outcome of the filter-
ing is (i) a seasonal component with a mean of zero, which
retains information up to the annual frequency with the very
high frequency (daily to biweekly) removed, and (ii) a de-

seasonalized signal, which includes all the frequencies lower
than the annual cycle – i.e. the interannual to decadal time
scales. In terms of interannual variability, this approach of
filtering is more advantageous than consideration of monthly
anomalies since a de-seasonalized signal provides a better
measure of the strength and persistence of interannual vari-
ability related to climatic and natural events as El Niño events
and volcanic eruptions.

The analysis of seasonal patterns aims not only at the rela-
tive phasing of vegetation growth and ecosystem respiration
and modelled phenology that affects the seasonal phasing of
the net land–atmosphere C exchange (Prentice et al., 2000)
but also at biogeophysical effects such as the water and en-
ergy exchanges (Notaro et al., 2007; Peñuelas et al., 2009).
Interannual variability and long-term trends of net land-C ex-
changes and vegetation activity are an important and crucial
aspect of the terrestrial ecosystem in a climate change con-
text. Changes of vegetation activity might have implications
to long-term potential for retaining more C in the system,
contributing hence to the biosphere–atmosphere feedbacks
and internal plant–soil feedbacks (Bonan, 2008).

In the following sections, we describe key features of the
atmospheric CO2 and vegetation activity obtained from the
decomposed signals (Table 2: seasonal time scales; Table 3:
interannual time scale). These traits are used to assess the ca-
pacity of the model to reproduce climate-variability-induced
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effects on terrestrial ecosystems. In addition, traits charac-
terizing the co-variability of vegetation features/atmospheric
CO2 and land climatic patterns are defined. Some of the se-
lected traits were analysed separately in three time intervals
(1982–1991, 1992–1997, and 1998–2006) according to two
breakpoint events: the Mount Pinatubo eruption in 1991, and
the El Niño event in 1997 – two of the most relevant natural
events occurred in the last three decades.

The systematic quantitative assessment of the correspon-
dence of anomalies and trends in simulated vegetation activ-
ity and net C exchange is performed using normalized met-
rics (see Appendix B for the mathematical description). The
proposed selected traits and metrics are suitable to be ap-
plied to land surface models run in either offline or fully cou-
pled mode because they are based on reproducing variabil-
ity and/or statistical relationships with the driving climate
rather than focusing on the absolute correspondence of the
variables. This strategy reduces potential biases in the assess-
ment due to uncertainty in the predicted climatic variability
(Deser et al., 2010).

Geographical regions at the continental scale consistent
with the regions used for the Transcom3 project (Gurney
et al., 2002; Fig. 1) were used to determine the influence
of net land–atmosphere CO2 fluxes from a particular region
to the signal at the monitoring stations following the pro-
cedure reported in Cadule et al. (2010). The characteriza-
tion of vegetation activity was performed at grid-cell level
and at regional level according to the same Transcom3 re-
gions. The Transcom3 region maps were further intersected
with the dominant vegetation map obtained from the Syn-
map vegetation classification of Jung et al. (2006) (see Ap-
pendix D). Grid cells with dominance of bare soil or ice, as
well as grid cells with no valid observations, were excluded
from the analyses.

2.4.1 Seasonality of Atmospheric CO2

The model’s capacity to simulate phase and amplitude of the
mean seasonal cycle of atmospheric CO2 (MSC) was evalu-
ated using the Taylor score (Taylor, 2001). The selected met-
ric gives more weight to the correspondence in phase instead
of amplitude (Taylor, 2001), which is the more reliable fea-
ture of transport models (Stephens et al., 2007). Additional
information on the land net C exchange is contained in the
latitudinal gradient of the amplitude of the mean seasonal
cycle (MSClg), which increases from the South Pole north-
wards because of the relatively higher land masses fraction in
the Northern Hemisphere (NH). A metric based on the vari-
ance of the amplitude data was used to assess the model per-
formance (Table 2 and Appendix B).

The relative contribution of the C fluxes from land (and
ocean) Transcom3 regions to the seasonal cycle amplitude
(MSCc) was computed using the atmospheric CO2 record
obtained by transporting the standard fluxes constrained on
the period 1996–2008 as reference. This choice was made so

as to overlap with the time period for which the SeaWiFS-
FAPAR data are available (see Sect. 2.4.2). The relative con-
tribution of each region to each single monitoring station in
both standard fluxes and modelled fluxes was compared us-
ing the Pearson correlation coefficient. This trait checks thus
also for the existence of potential inconsistencies between the
regional and seasonal distribution of net land-C fluxes from
the model and estimated by the inversion of atmospheric ob-
servations.

Changes in the seasonal cycle over time, referred to as the
monthly CO2 trend (MT), are quantified as the year-to-year
change in CO2 concentration for each month. Previous works
analysed solely the change in amplitude of the seasonal cy-
cle in Mauna Loa as response to land surface warming (My-
neni et al., 1997; Angert et al., 2005; Buermann et al., 2007),
while we focus on decadal trends in long-term northern sta-
tions, which exhibit a clearer signal. This trait summarizes
the seasonal change in the trend of land-C sink/sources in re-
sponse to climatic drivers and natural disturbances in the ex-
tratropical latitudinal band. The model–data correspondence
is analysed using the Pearson correlation coefficient.

The trend in the seasonal onset of net land-C uptake (C-dd)
was computed as follows: for each year, the algorithm looks
for the downward zero-crossing point of the seasonal time se-
ries of atmospheric CO2. The trend is thereinafter computed
on the extracted dates. This feature characterizes in particu-
lar the observed high-latitude ecosystem responses to recent
land surface warming and it is indirectly linked to the begin-
ning of the growing season (Keeling et al., 1996; Myneni et
al., 1997). Because the years 1991–1993 – i.e. the years fol-
lowing the Mount Pinatubo eruption – are an anomaly in this
trend (Lucht et al., 2002), these three years were excluded
from the analysis. The analyses for the MT and C-dd traits
focus on the stations in the extratropical latitudinal band with
a clear signal from land and low contamination of the trends
due to uncertainties in the fossil-fuel emissions (Table 2).

2.4.2 Seasonality of vegetation activity

A direct comparison of absolute values of remote sensing
data such as NDVI or FAPAR and their corresponding mod-
elled variable might be not a viable strategy, first and fore-
most because of different retrieval and post-processing al-
gorithms used to compute the final estimated FAPAR/NDVI
in different satellites products, and to remove, for exam-
ple, cloud contamination and atmospheric corruption, etc.
(e.g. the intercomparison study of Dahlke et al., 2013). This
implies that the outcome of a direct model–data comparison
is dependent on the reference dataset used. In addition, the
radiances recorded by satellites differ in the way that radia-
tion extinction is computed at the land surface in land surface
models. This difference does not allow a priori for a perfect
match between data and model.

www.biogeosciences.net/10/4189/2013/ Biogeosciences, 10, 4189–4210, 2013
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MPI-BGC Tech Rep 6: Rödenbeck, 2005

NEE (long-term/interannual) Ocean exchange (long-term/interannual)

NEE (seasonal) Ocean exchange (seasonal)

Figure 10: Correlation coefficients with respect to two example locations (as in Fig. 7) for the ‘long’ sensitivity set-up
(Sect. 3.4.2).

Figure 11: Map of the TransCom-3 regions (Gurney et al., 2002) over which the estimated fluxes are integrated to obtain
time series. Note that neighbouring land and ocean regions actually overlap each other beyond the coast line, with the
integration of fluxes being done separately for the individual flux components, according to whether they refer to land or
ocean processes. The apparent coast lines shown here correspond to a land/water map at the standard resolution of the
transport model.

43

Fig. 1. Map of the land regions used for the regional benchmark of phenology and the analysis of the biosphere fluxes, as defined in the
TransCom intercomparison studies (Gurney et al., 2002). The map shows the regions at TM3 resolution. Code: North American Boreal
(NAB), North American Temperate (NATe), South American Tropical (SATr), South American Temperate (SATe), Northern Africa (NA),
Southern Africa (SA), Eurasian Boreal (EAB), Eurasian Temperate (EATe), Tropical Asia (TrA), Australia (AUS), Europe (EUR). The ocean
was considered as a single region.

However, as shown in Dahlke et al. (2013) for the seasonal
information, the temporal evolution of the recorded signal is
likely to be a robust feature among datasets and the temporal
evolution of the modelled signal should resemble the refer-
ence dataset such that they can be evaluated by a metric that
is independent from the absolute values of the time series.
Because of the aforementioned reasons, we focused on met-
rics based on information on time and sign of changes as
indicated by the satellite data.

With respect to the seasonal signal, as a first step, grid cells
with only one detected growing season per year were selected
by analysing the autocorrelation of the seasonal record and
its significance. The shape of the seasonality of vegetation
activity was then characterized by two robustly identifiable
and meaningful phases of the phenological cycle: the time
of the beginning of the vegetative growing season, hereafter
referred to as time of onset (t-onset), and the time of the max-
imum FAPAR signal (t-max) (Randerson et al., 2009). Data
and model signals characterized by mean amplitude of the
seasonal record within 1 % of total FAPAR range were ex-

cluded from the analyses. The definition of the beginning of
the growing season is a subjective matter and a direct and
precise link to ground-level observation is difficult to iden-
tify (Lucht et al., 2002; Maignan et al., 2008; Verstraete et
al., 2008). Analogously to the method of estimating the be-
ginning of the net CO2 uptake reported in Sect. 2.4.1, the
proxy of the time of onset of vegetation activity is calculated
on the seasonal signal, and corresponds to the point in time
of the upward zero-crossing point of the seasonal curve (see
Fig. A1).

Linear differences of the most frequent month of time of
onset or maximum of FAPAR were computed between model
and data. Consequently this metric ranges between one (no
difference) to zero (6-month difference). The length of the
growing season was not used as additional trait because it is
poorly defined from satellite data as autumnal leaf colouring
and the simultaneous presence of living and dead leaves con-
founds the satellite signal, in particular in temperate regions
(Estrella and Menzel, 2006; Menzel et al., 2006).
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2.4.3 Interhemispheric gradient and trend of
atmospheric CO2

The long-term trend in atmospheric CO2 (C-LTT), given
known fossil fuel, land-use change emissions and net ocean
carbon fluxes, is an indication of the long-term net C balance
of the terrestrial biosphere (Prentice et al., 2000; le Quere et
al., 2009). The trend was computed from the mean annual
values of the de-seasonalized signals and compared directly
to the observations for stations covering the period 1982–
2008(Table 1). The interhemispheric gradient in atmospheric
CO2 abundance (IHG) measures the north–south differences
in atmospheric CO2 caused by changing balance of the in-
creasing fossil-fuel emissions in industrialized regions and
the net ocean and land-C uptake. For each year, this trait was
computed by subtracting the observed and modelled annual
CO2 concentration at the South Pole station (SPO) from the
respective station concentrations, as in Cadule et al. (2010).
The metric was based on the comparison of the standard de-
viation of modelled and observed data.

2.4.4 Trend of vegetation activity

Similar to atmospheric CO2, vegetation activity trends were
computed from modelled and reference data. Beck et al. 2011
indicated that the GIMMS-NDVI dataset is suitable for as-
sessing temporal changes of vegetation activity. However,
due to the unknown uncertainty of the absolute NDVI values,
the selected trait does not compare numerical trends. Instead,
the selected metric focusses on the robust trends in the data
and determines the spatial patterns of positive, negative, or
no significant trend in vegetation signal from the GIMMS-
NDVI dataset and compares this to the pattern in modelled
FAPAR (Table 3). For each grid cell, the metric calculation
was performed on annual values of the de-seasonalized veg-
etation time series. The non-parametric Mann–Kendall test
was used to determine whether a positive (greening), neg-
ative (browning) trend or no significant trend was detected
(two-tailed statistic). The advantage of this approach is that
it is robust against satellite drift and high-model internal vari-
ability that is, for instance, induced by high variability in the
climate simulated by an Earth system model. At the grid-cell
level, the metric is a binary score which measures whether
the model and data show a significant trend of the same sign.
The global-scale metric is then a ranking of a percentage
agreement for cells of a particular trend class.

2.4.5 Quantification of interannual variability:
atmospheric CO2 and vegetation activity
relationship with land climate pattern

The relationship between the seasonality of phenology and
local climatic drivers at grid-cell level was explored using
the annual variations of the time of beginning of the growing
season (t-onset; Table 2). The time series for the SeaWiFS-

FAPAR data is too short to allow for a trend analysis. There-
fore the correlation of thet-onset with the annual tempera-
ture, given the annual SPI as conditional variable, was taken
as a proxy. A ranking metric, analogous to the vegetation ac-
tivity trend metric, was computed according to cell-by-cell
agreement in terms of sign of the statistics, hence according
to significantly positive, negative, or non-existent correlation.

Interannual variability in vegetation activity was assessed
using de-seasonalized signals obtained from the GIMMS-
NDVI/modelled FAPAR aggregated to the Transcom3 land
region. Cross correlations between monthly records of veg-
etation activity and regional climatic variables, temperature
and SPI, were computed with lags up to 24 months (Table 3).
The South American Tropical region, Tropical Asia regions,
and grid cells with dominance of tropical forests in Africa
are excluded by the analysis (see Sect. 2.1.2).

The same approach was used to measure the relationship
between atmospheric CO2 growth rate and land surface cli-
mate (Table 3). The atmospheric CO2 growth rate is well
known to provide information on the interannual variability
of the biospheric response to climate variability and in par-
ticular land response at the ENSO time scale (Keeling et al.,
1995; Le Quere et al., 2003; Peylin et al., 2005). However,
most of the land surface climate shows some coherence with
this large-scale climatic feature (Buermann et al., 2003), such
that the CO2 signal in the atmosphere could be perfectly cor-
related, instantaneously or lagged, with climate over most of
the land regions. To reduce this problem, an empirical or-
thogonal function (EOF) decomposition of the atmospheric
CO2 records, obtained by transporting the “inverted fluxes”
from each land region, was computed. The three most con-
tributing land regions (to at least 80 % of the variability in the
observed total signal) for selected monitoring stations were
determined and only these were used in the analysis (see Ap-
pendix C).

The obtained statistically significant cross correlations
from data and model (vegetation and atmospheric CO2
growth versus regional climate) were compared with a corre-
lation metric in order to test if the model is able to return the
coupled patterns with time lags (see Appendix C).

The use of inverted fluxes to determine the most contribut-
ing regions at interannual time scale and for the EOF decom-
position does not affect significantly the results in terms of
model behaviour evaluation. However, it changes the degree
to which the observations can effectively constrain the model
if in the model domain a region contributes less than inferred
from the inverted fluxes.

The last selected feature of the carbon cycle uses the CO2
growth rate to compute an apparent land-C cycle sensitivity
to global temperature anomalies, defined as the slope of the
annual CO2 growth rate versus the aggregated annual land
surface temperature. The record at the station of Mauna Loa
(MLO) was used as proxy of evolution of globally averaged
atmospheric CO2 concentration (Zeng et al., 2005).
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2.5 The baseline benchmark and the final scores

The reference minimum (baseline benchmark) concept ap-
plied in this study compares the skill of the model under in-
vestigation with the score of the metric obtained assuming a
land biosphere that does not systematically contribute to any
signal. For the C-cycle analyses, the baseline benchmark is
set to be a biosphere without a terrestrial C-cycle ecosystem,
implying that the signal or trend in the observations is driven
by fluxes of fossil fuel and net ocean only (no-land case).
Since this lower benchmark is applied based on the same TM
for all the simulations, this further reduces the potential er-
rors introduced by transport modelling uncertainties. Scaling
the metric to the lower benchmark highlights the contribution
of modelled land fluxes to match the observed trait of the data
under consideration. In other words, the final score number
is the metric for an individual trait, cleaned by the contribu-
tion of other CO2 source/sink other than the modelled land
fluxes. Only for the CO2 drawdown test (C-dd; Table 2) is the
baseline benchmark set as zero trend (i.e. there is no trend on
land). A similar concept is applied for the vegetation activity
traits: the lower benchmark is provided by the case with con-
stant vegetation (no-change case). Only in the case of tim-
ing of the vegetation onset and maximum (t-onset andt-max
traits; Table 2) is the baseline benchmark set as the maximal
possible difference (6 months).

The final global model metricsM for each trait are com-
puted as follows: first, the metrics are computed for the CO2
signal in each monitoring station and in correspondence of
each Transcom3 region for the vegetation-related traits (Mor
in Eq. 1). The same statistic is also applied for the null-model
case to return the numerical metric value of the trait for the
baseline benchmark case (Mbasein Eq. 1). The original met-
ric is then scaled to a new, normalized metric (score) between
0 and 1 according to Eq. (1), where 1 indicates perfect data–
model match and 0 indicates that the model is not able to
perform better than a system without the representation of
the land biosphere.

M =
Mor − Mbase

1− Mbase
(1)

Secondly, the model performances are summarized in a po-
lar plot that goes radially from 0 (less skillful model), in the
centre, to 1 (skillful). The global scores are derived as fol-
lows: for the satellite-based scores, the global score is the
average of the scores computed for each Transcom3 region,
with the exception of the ranking-based scores, which are al-
ready computed at global scales. For the CO2-station-based
scores, the scores for each station were first averaged by lat-
itudinal band, and the global score was then derived as the
average of the scores computed by latitudinal band.

3 Results and discussion

In the following, we discuss the results of the above frame-
work at the example of the JSBACH model. The results for
the individual traits are summarized in Fig. 2. Table A1 re-
ports the results of the baseline benchmarking for compari-
son. Table 4 reports results per latitudinal band with regards
to CO2 traits, and global scores for the vegetation traits.

In this section an in-depth analysis of the mechanisms be-
hind data–model mismatch is not performed, but what we can
learn from observations and how can we use them to quantify
data–model differences is shown, as well as what the bench-
marking framework can tell about potential areas of model
deficiencies.

3.1 Seasonality of atmospheric CO2 and vegetation
activity (Table 2)

3.1.1 Seasonality of atmospheric CO2

The Taylor diagram (Fig. 3a) reports the data–model corre-
spondence in terms of phase and amplitude of the mean sea-
sonal cycle (MSC). JSBACH is in general capable of simu-
lating the phase of the seasonal cycle of CO2, with the ex-
ception of the stations south of the equator, which tend to
be out of phase. At those stations, ocean fluxes dominate the
signal, which can be seen in the large difference between the
low original and the higher scaled metric (Table 4). The anti-
correlation of the model’s seasonality might further indicate
either (or both) a high contribution of the signal from the
Northern Hemisphere or reveal effective out-of-phase sea-
sonal land-C fluxes. The in-depth analysis of the regional
contribution to the mean seasonal cycle (the MSCc trait) in-
dicates that the Eurasian Boreal and Eurasian Temperate re-
gions slightly but systematically contribute more to the sig-
nal in the stations above the 50◦ N than inferred from obser-
vations (Fig. A2). At the southern stations, the model sig-
nal from the South American Temperate region clearly dom-
inates the ocean signal (Fig. A2), suggesting that this region
has a seasonal cycle of net land–atmosphere C fluxes incon-
sistent with the atmospheric record. This inconsistency leads
to the low scores in the southern latitudinal band (Fig. 2, Ta-
ble 4).

The model clearly overestimates the amplitude of the MSC
across the global network of stations, as can be seen in the
latitudinal gradient of the amplitude of the mean seasonal cy-
cle (Fig. 3b). Although uncertainties in the transport model
could partially contribute to this, the steep drop of the CO2
concentration during the summer months (data not shown)
are an indication that an overestimation of spring C uptake
(i.e. too large global gross primary productivity) is responsi-
ble for the overestimation of the amplitude.
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Table 2. List of atmospheric CO2 and vegetation activity traits used for the analyses at the seasonal time scale. A detailed explanation of
metrics can be found in Sect. 2 and Appendices B and C).

Seasonal time scales

CO2 Trait Label Test Metric Section

Methods Results

Mean seasonal cycle MSC centred pattern variability Taylor (2001) 2.4.1 3.1.1
Eq. (B1)

Regional contribution MSCc relative contribution Pearson correlationr 2.4.1 3.1.1
to mean seas. cycle
Latitudinal gradient MSClg latitudinal pattern of standard-deviation-based 2.4.1 3.1.1
of MSC amplitude amplitude metric Eq. (B2)
Monthly CO2 trend∗ MT phase of the monthly pattern Pearson correlationr 2.4.1 3.2
(1982–91/1992–97/1998–2008)
CO2 drawdown points∗ C-dd direct comparison of single value comparison 2.4.1 3.5.1

numerical trend metric Eq. (B4)

Vegetation Trait Label Test Metric Methods Results

Time of onset of t-onset most frequent month absolute difference 2.4.2 3.1.2
phenology Eq. (B3)
Time of maximum t-max most frequent month absolute difference 2.4.2 3.1.2
activity of phenology Eq. (B3)
t-onset∼ drivers Onset-CL occurrence of positive/ spatial ranking 2.4.5 3.5.1

negative/no correlations

∗ Trait applied to the stations ALT, BRW, STM.

Fig. 2. Global atmospheric CO2 and vegetation activity scores for the JSBACH model according to the list of traits in Tables 2 and 3. The
polar plot goes radially from 0 (less skillful model), in the centre, to 1 (skillful). Since we only consider one model here, we refer to the
threshold value of 0.5 to indicate the model good/high performances and less good/low performances.

3.1.2 Seasonality of vegetation activity

Figure 4 shows that JSBACH simulates the time of onset with
a systematic lag of 1 to 2 months over large areas of the
Northern Hemisphere (NH). A major exception is the east

and south of the North American Temperate region, where
the model tends to lead the observed growing season. Given
the monthly temporal resolution of the analyses, these results
in the NH are still in line with the good performance in terms
of phase correspondence of the MSC of CO2 at the northern
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stations (Fig. 3a). However, results indicate that there is space
to improve the modelled phenology.

In large parts of the tropical latitudinal band, most of the
modelled signal is flat, in contrast to the detected seasonal
cycle recorded in the SeaWiFS data in seasonally dry topical
areas (Fig. 4). In these areas, which are dominated by rain-
deciduous vegetation, the occurrence of one growing sea-
son is driven by seasonality in rainfall. Similarly, the model
signal in the Australian scrubland does not show any clear
seasonality in contrast of the observations. The flat tropi-
cal signal and the detected differences up to 3–4 months in
some southern regions are responsible for the low aggre-
gated global model performance (Fig. 2, Table 4). The veg-
etation classes contributing most to the lower performances
are deciduous broadleaved forests and grassland, probably
mostly due to their geographical distribution and presence in
drought-prone areas (see Fig. A3).

The timing of the maximum analysis (t-max; data not
shown) returns similar geographical pattern to the “t-onset”
trait, but the differences are generally slightly higher. This as-
pect partly relates to the less well defined nature of the timing
of the maximum in regions with several months of full foliar
coverage. At the global scale, there are no discernible dif-
ferences between the two scores (Fig. 2, Table 4). These re-
sults show that the seasonality in the model is slightly lagged
in time, but without strong distortions in the signal in the
first period of the growing season in the Northern Hemi-
sphere. An improvement in phenology parameterization in
areas dominated by raingreen vegetation in the seasonally
dry tropical latitudinal band and drought-prone shrublands is
necessary. It is unclear from the analysis, however, whether
a too low sensitivity of raingreen vegetation to soil moisture
stress or a too low seasonal cycle of simulated soil moisture
as a result of problems with the modelled soil hydrology is
the cause of this phenomenon.

3.2 Monthly CO2 trend

As example for the trend in the monthly CO2 signal (MT),
Fig. 5a displays the trend computed for observed signal at
the Alert station (ALT) together with the contributions of
the net land and ocean C fluxes and fossil-fuel emissions.
For the selected northern stations, the observational analy-
sis shows that, in particular in the summer months (June–
July), the land is the most dominant contributor to the ten-
dency towards a more pronounced seasonal cycle. That is
to say, increased monthly land-C uptake rather than changes
in ocean fluxes and fossil-fuel emissions are responsible for
this trend. This feature is particularly strong in the period
1982–1991 and consistent across the selected stations, al-
though this trend is not always statistically significant for all
the months (Fig. 5a). The monthly CO2 trend in the period
1992–1997 is less clear (data not shown), while the nega-
tive trend of the summer uptake occurs in that of 1998–2006,
albeit weaker than for 1982–1991. The latter pattern likely

reflects the weakening of the positive land warming effect
on phenology during the growing season, which was partic-
ularly apparent in the 1980s (Myneni et al., 1997).

Using an additional TM simulation, we verified that the
observed weakening of the negative trend in summer is in-
deed mainly land induced and not induced by the interannual
wind fields used in the transport model. The experimental
results with constant wind (data not shown) confirmed that
interannually varying transport can contribute but does not
overwhelm the land-based trends in monthly CO2 concentra-
tions. Potential trends in the seasonality of fossil-fuel emis-
sions (Blasing et al., 2005) are unlikely to strongly affect this
trend (data not shown).

Figure 5b exemplarily shows that JSBACH is able to qual-
itatively return the seasonal-like shape of the monthly CO2
trend and the detected land-C uptake weakening, but it is
not able to fully explain the observed signal (Fig. 2 and Ta-
ble 4). Since the selected metric analyses the correspondence
of phase of the monthly trend, the non-perfect match could be
attributable to divergence in observed and modelled climate
sensitivities of photosynthesis and respiration.

3.3 Interhemispheric gradient and long-term trend of
atmospheric CO2 (Table 3)

The interhemispheric gradient trait (IHG), which evaluates
the interannual variability of the net land–atmosphere C ex-
change, agrees well between JSBACH and the observations
(results not shown, but see Fig. 2). However, the analysis on
the long-term C balance trend (C-LTT) shows that JSBACH
substantially overestimates the long-term trend compared to
observation (Fig. 6a), such that its score is actually lower
than the baseline benchmark at all stations (Fig. 2, Table 4,
Table A1). Since this detected data–model difference is un-
likely to be due to uncertainties in fossil-fuel emissions or
ocean net carbon fluxes (le Quere et al., 2009), this result is
due to a substantial underestimation of net land-C uptake.

3.4 Vegetation activity trend (Table 3)

Figure 6b displays the decadal patterns of the normal-
ized annual vegetation activity time series (GIMMS-NDVI
and JSBACH-FAPAR), excluding evergreen tropical forests,
glaciers, and desert areas. There appears to be a good qual-
itative global agreement, suggesting that phenological lim-
itations are not likely the cause for the aforementioned too
low increase in land C. However, the good agreement of the
global vegetation pattern is partly due to the compensation
of errors (Fig. 7). The observed, spatially extensive positive
trend in vegetation greenness in the period 1982–1991 is not
fully captured by the model because several areas have ei-
ther no trend or even a negative trend (in parts of the South
America, Australia, and South East Asia). During the years
1992–1997, no clear geographical pattern is detected (data
not shown). For the years 1998–2006, large areas with an
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a b 

Fig. 3. (a)Taylor diagram of the mean seasonal cycle of JSBACH.(b) Latitudinal gradient of the amplitude of the mean seasonal cycle. The
x-axis of the Taylor diagram indicates a mismatch in terms of amplitude and the y-axis provides information in term of phase correspondence.
Stations in the coloured list are sorted according to latitude: black, 90◦ N–60◦ N; red, 60◦ N–30◦ N; blue, 30◦ N–30◦ S; pink, 30◦ S–90◦ S.
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Fig. 4. Difference between the most frequent month of time of
onset for SeaWiFS-FAPAR data and modelled FAPAR (expressed
as months) during 1998–2005. Grey areas were masked out from
the analysis and indicate missing observations, dominance of trop-
ical evergreen rain-forests, desert or glaciers, or areas with more
than one growing season. Red cells indicate missing data from the
model.

observed positive trend in the period 1982–1991 appear to
have no or even negative trends. This phenomenon is only
partly reproduced by JSBACH: in the northern boreal regions
and in the Southern Hemisphere, particularly in the South
American Temperate region, the negative trends are simu-
lated.

The observed large-scale positive trends in vegetation ac-
tivity during the period 1982–1991 is consistent with pre-
vious results (Myneni et al., 1997; Zhou et al., 2003). How-
ever, our analysis underlines that the observed positive warm-
ing effect on greening has not been persistent in time, but
switched toward a neutral effect in the years 1992–1997 and
a localized negative trend in the years 1998–2006. The ob-

a 

b 

** 

** 

Fig. 5.Monthly CO2 trend in the station of Alert (Canada, ALT) for
the periods 1982–1991 and 1998–2008.(a) Observations, as well
as simulated contribution from fossil-fuel emission and net ocean
fluxes (**P < 0.01).(b) Monthly record for observations and mod-
elled data. Negative values for a specific month indicate a decrease
of seasonal atmospheric CO2, indirectly linked to an increase of
biosphere C uptake, and vice versa.

served negative pattern in the SH is generally consistent with
the trends in evapotranspiration and in particular soil mois-
ture reported in Jung et al. (2010) even though our analyses
ends in 2006, while theirs ends in 2008. Several factors might
contribute to the observed overall behaviour following the El
Niño event in 1997. These include recurrent drought events,
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pest outbreaks, and severe fire events over several regions
responsible for the detected negative trends in boreal areas
and the weakening of the summer C uptake that we reported
in Sect. 3.2 (van der Werf et al., 2004; Angert et al., 2005;
Goetz et al., 2005).

The low final score of JSBACH in this metric (Fig. 2, Ta-
ble 4) is in particular the result of the recurrent large-scale
negative trends in several areas in the SH and in south-east
Asia during the years of 1982–1991 and 1998–2006 (Fig. 7).
The non-quantitative nature of this comparison prohibits a
too strict interpretation of the mechanisms behind the model–
data differences. It is unclear whether these differences are
caused by the phenological scheme of the model, land-use
change protocol, or other factors such as the drought re-
sponse or fire processes. However, the disagreement in the
sign of the trend can be attributed to model deficiencies, and
the ranking metric provides a quantitative measurement of
the detected disagreement.

As aforementioned, despite the spatial model–data dis-
agreement, at global scale the errors in the model compensate
to return a positive vegetation activity trend. Assuming that
vegetation activity is linked to plant productivity, the under-
estimation of the net land-C uptake in JSBACH (Sect. 3.3) is
likely the consequence of a too high soil-C turnover rate.

3.5 Terrestrial ecosystems and climate variability

3.5.1 Growing season response to local climate (Table 2)

The timing of the CO2 drawdown point (C-dd) and the onset
of vegetation greening (t-onset) represent two independent
proxies to measure the effects of land warming on spring
phenology (Badeck et al., 2004; Menzel et al., 2006). There
is a tendency towards earlier CO2 drawdown at the stations of
STM, BRW, and ALT (Fig. 8a), although this trend is statis-
tically significant only for the latter two stations (P < 0.10).
Such a negative trend in time is consistent with the ad-
vance of spring phenology induced by land surface warming
(Fig. 8b): the correlation between climate variability and the
timing of vegetation onset is significantly negative with an-
nual temperature. Despite this trait constituting an emerging
empirical relationship, the negative correlation mainly in the
boreal areas, as clearly shown in Fig. 8b, is consistent to an
earlier green-up in warmer years.

JSBACH does not show any discernible trend in any of the
three stations (Fig. 8a, example for BRW), despite the fact
that it returns a similar correlation pattern at the start of the
growing season with local temperature (Fig. 8c), in particu-
lar in the extratropical northern areas. The final, global score
for this trait is very low, despite the good visual matching,
because of the low cell-by-cell correspondence (Fig. 2, Ta-
ble 4). These two analyses underline that the model, although
it realistically simulates the beginning of the growing season
(Sect. 3.1), is likely to respond too weakly to land surface
temperature anomalies.

3.5.2 Interannual variability of vegetation activity and
regional climate (Table 3)

The vegetation activity is analysed separately for each cli-
matic driver. It is not possible to clearly disentangle tem-
perature and precipitation effects. Nonetheless, the analysis
suggests that the NDVI at high latitudes is mainly correlated
with surface air temperature, where plant growth is mainly
limited by temperature. An exception to this pattern is Eura-
sia Boreal (EAB), which shows a higher co-variation of veg-
etation activity with precipitation pattern. NDVI in regions
with dominance of shrubs/grassland is mainly driven by pre-
cipitation anomalies – in agreement with previous studies
(Groeneveld and Baugh, 2007).

Figure 9a–b presents exemplary the computed cross cor-
relograms for Eurasia Temperate (EATe) and the North
American Boreal (NAB). The pattern returned in NAB,
which is common to NATe and EUR, reveals a strong co-
variation of vegetation activity and temperature in both data
and model. However, the model behaviour suggests a strong
correlation with temperature even in areas where the observa-
tions suggest a stronger covariation with precipitation (mea-
sures as SPI), as for instance in the EATe. One notable fea-
ture in these regions is that JSBACH shows a larger delay in
the response of vegetation activity to SPI than observed, with
differences of the order of 2–3 months (EAB, NA, SA). The
final JSBACH score is good for this trait (Fig. 2, Table 4)
when considering an average performance over all the re-
gions. Low scores are obtained in precipitation-driven areas
mainly due to the different time lag of the response, which
corresponds well with the aforementioned too low sensitiv-
ity of raingreen vegetation to seasonal drought.

The selected trait underlines the tendency of the system
to respond in a specific way to external forcing/climate, or
to respond instantaneously or with some lag, and the met-
ric is selected in order to be sensitive to model–data differ-
ence of phase rather than absolute differences of climate and
vegetation activity. An important aspect emerging from this
simple trait is that the detected delay could hide an incor-
rect representation of the effects of soil drought on vegeta-
tion growth or soil hydrology. The same regions in which the
model shows a delayed response to precipitation also show
a persistent negative trend in vegetation activity (Sect. 3.4,
Fig. 7). This pattern is evident in particular in South East
Asia, South America Temperate, and Australia, which are
mainly dominated by grasslands, shrub lands, or crops. Even
if other non-climatic effects at smaller spatial scales (i.e. land
degradation and management practices, and fire recurrence)
might affect vegetation cover and activity (Foley et al., 2005),
the longer lag in the co-variation of vegetation and precipi-
tation might be caused by the same model fault responsible
for the mismatch in the vegetation trends. From a biogeo-
physical point of view, this model feature could also indi-
cate a less reliable capability of the land surface model to re-
turn memory effects of the vegetation–precipitation pattern
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Table 3. List of atmospheric CO2 and vegetation activity traits used for the analyses at the interannual time scale (higher than annual
frequency). A detailed explanation of metrics can be found in Sect. 2 and Appendices B and C).

Interannual time scales

CO2 Trait Label Test Metric Section

Methods Results

Long-term trend C-LTT direct comparison of single value comparison 2.4.3 3.3
numerical trend metric Eq. (B4)

Interhemispheric IHG variability in time standard deviation 2.4.3 3.3
gradient based metric Eq. (B2)
CO2 growth rate – regional C-CL covariance with time lag Pearson correlationr 2.4.5 3.5.3
drivers relationships
Apparent C-land sensiti- C-CLsens direct comparison of single-value comparison 2.4.5 3.5.3
vity to surface temperature numerical trend metric Eq. (B4)

Vegetation Trait Label Test Metric Methods Results

Vegetation trend V-LTT occurrence of positive/ spatial ranking 2.4.4 3.4
(1982–91/1992–97/1998–2006) negative/no trends
Veg. activity∼ regional V-CL covariance with time lag Pearson correlationr 2.4.5 3.5.2
drivers relationships
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Fig. 6. (a)Long-term pattern of atmospheric CO2 at the station of Mauna Loa (MLO);(b) normalized annual values of vegetation activity
(excluding tropical, desert, and ice areas) for GIMMS-NDVI and modelled FAPAR. Period of reference 1982–2006. Dotted lines represent
the linear trend computed on the normalized data (qualitative analysis).

emerging in the real Earth system (Alessandri and Navarra,
2008; Hirschi et al., 2010) in a coupled Earth system model
setting.

3.5.3 Interannual variability of CO 2 growth rate and
regional climate (Table 3)

The analysis of the CO2 growth rate revealed distinctly dif-
ferent behaviour in two latitudinal bands: in tropical lati-
tudes, the correlation structure is similar between observa-
tions and model. However, JSBACH performs less well in

particular where the CO2 growth rate is mainly correlated
to temperature anomalies, as for instance in North Ameri-
can Boreal and North American Temperate regions (Fig. 9d).
It is noteworthy that this model deficiency occurs despite
the good correspondence in terms of vegetation temperature
(Fig. 9b). One potential reason for this phenomenon might be
modelled temperature sensitivities of ecosystem respiration
parameterization, particularly soil-C decomposition – incon-
sistent with the observations. However, it is also possible
that the CO2 signal at the monitoring station is influenced by
net land–atmosphere C fluxes in other extratropical regions,
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Fig. 7. Vegetation activity trend according to the Mann–Kendall statistics for the period of references is reported for GIMMS-NDVI and
modelled FAPAR. Red: positive monotonic trend (P < 0.10); blue: negative monotonic trend (P < 0.1); white: no significant trend; grey:
areas masked out from the analysis (grid cells with dominance of tropical forests, dominance of desert and ice).

Table 4. Final scores of atmospheric CO2 and vegetation activity.
Atmospheric CO2 scores are reported per latitudinal band. The nu-
merical values prior of the scaling to the baseline benchmark are
reported in brackets where they differ from the final scores. For the
acronyms refer to Tables 2 and 3.

Atmospheric CO2 traits Vegetation activity traits

MSC 90N60N 0.8 (/) t-onset 0.65 (/)
MSC 60N30N 0.86 (/) t-max 0.6 (/)
MSC 30N30S 0.57 (0.64) Onset-Cl 0.16 (0.42)
MSC 30S90S 0 (0.13)
MSCc 90N60N 0.97 (/)
MSCc 60N30N 0.97 (/)
MSCc 30N30S 0.42(0.46)
MSCc 30S90S 0 (0.19)
MSClg 0.43 (/)
MT 1982–1991 0.81 (0.87)
MT 1991–1997 0.54 (0.7)
MT 1998–2006 0.46 (0.51)
C-dd 0.09 (0.54)

C-LTT 90N60N 0 (0.56) V-LTT 1982–1991 0.3 (0.5)
C-LTT 30N30S 0 (0.56) V-LTT 1992–1997 0.1 (0.35)
C-LTT 30S90S 0 (0.53) V-LTT 1998–2006 0.7 (0.35)
IHG 90N60N 0.7 (0.98) V-Cl 0.6 (/)
IHG 30N30S 0.32 (0.75)
IHG 30S90S 0.9 (0.99)
C-CL 90N60N 0. (/)
C-CL 30N30S 0.22 (/)
C-CL 30S90S 0 (/)
C-CLsens 0.02 (0.28)

obscuring the local relationship. In general, the observed
weak correspondence for the station of BRW is also ob-
served for the station of ALT, while for the stations between
60◦ N and 25◦ N, no statistically significant co-variations
were found in observations (data not shown).

In all stations, where most of the contribution to the ob-
served concentrations is from tropical regions (e.g. South
American Tropical, Northern and Southern Africa), the re-
sults reveal a good correspondence of the pattern of the co-
variance. However, in contrast to the observations the mod-
elled correlation is weaker and sometimes not significant
(Fig. 9c). A comparison of the time series of atmospheric
CO2 and land surface climate (data not shown) reveals that
the modelled time series exhibits more variability than ob-
served and explained by, for instance, ENSO-related events.
The apparent global land-C sensitivity to land surface tem-
perature anomalies (C-Clsens) computed for the model is not
significant and very shallow (Fig. 10), in contrast to the ob-
served sensitivity (4.2 Pg C yr−1 K−1) (P < 0.01). It is not
possible to determine to what extent the missing fire mod-
ule in the current version of the model or the use of a spe-
cific transport model contribute to the observed–modelled
trait mismatch involving the CO2 growth rates. However, the
very low sensitivity returned by the model is comparable to
the baseline benchmark (assuming a neutral biosphere; see
Table 4), suggesting a deficiency in the model rather than a
conceptual error in the methodology.
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Fig. 8. (a)Atmospheric CO2 drawdown points (C-dd) as computed
at the station of Barrow (BRW) for observations and model.(b)
and(c) partial correlation between time of onset and mean annual
temperature computed for observations and JSBACH, for the pe-
riod 1998–2005. Red: positive correlations (P < 0.1); blue: nega-
tive correlations (P < 0.1); white: no significant correlations; grey:
areas masked out from the analysis (see text).

The CO2 growth rate is the result of several concurrent
biospheric and anthropogenic signals with dominance of land
contributions, coming from several areas on the global land.
Because of this large contribution from land, and the detailed
regional analysis we have performed, the CO2-growth-rate-

a b 

d c 

Fig. 9. (a)Cross correlation between precipitation pattern (SPI) and
vegetation activity in Eurasia Temperate (EATe).(b) Cross correla-
tion between temperature and vegetation activity in North Ameri-
can Boreal (NAB).(c) Atmospheric CO2 growth rate in the station
of Mauna Loa (MLO) and temperature pattern in the South Amer-
ican Tropical (SATr).(d) Atmospheric CO2 growth rate in Barrow
(BRW) and temperature patter in NAB. Dotted lines are confidence
intervals at significant level ofP < 0.05 (two-tailed statistics).

based traits are a useful diagnostic to indicate potential con-
flicts between model and observations that deserve further
investigation, even though a process attribution is not possi-
ble without the use of further data streams.

As suggested by Rafelski et al. (2009), a similarity in the
climate sensitivity of the underlying C processes at interan-
nual and decadal time scales is likely to exist and to be mostly
attributable to the land biosphere. This would imply that the
poor results obtained from the JSBACH model in the land-
C sensitivity trait could also indicate a potential for a model
deficiency at longer temporal scales with respect to the net
land-C exchange.

Common to most of the evaluation schemes, data and
model errors are not considered explicitly in the mathemati-
cal formulation of the metrics. This constitutes a major lim-
itation of this and other evaluation frameworks. As stated in
the introduction, uncertainties in observations or reference
datasets are not always provided or quantified, and this poses
challenges for the computation of model–data/model–model
differences and the significance of these distances. Structural
model errors can only be assessed with a dedicated study in-
vestigating the effect of alternative model structures on sur-
face fluxes, which is beyond the scope of a benchmarking
scheme. Conversely, the scheme proposed here can help to
quantify the model structural error if different model variants
are available. Where possible, we have minimized the con-
ceptual difference between model and observation by only
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Fig. 10.Apparent land-C sensitivity: CO2 growth rate in Mauna Loa
(MLO) versus global land surface temperature. Regression is signif-
icant atP < 0.01 for observations. Annual data points are omitted
for clarity.

considering those features (traits) that can be robustly com-
pared and have isolated the contribution of the land versus
oceanic and anthropogenic influences. The proposed evalua-
tion framework defines bounded metrics that allows stating
whether and how much the model adds information to the
simulation of carbon cycle trends and thus whether the model
lies in the range of acceptable performances. This provides
an additional constraint to the model performance.

4 Concluding remarks

Pertinent information on current C-cycle-related processes
contained in the atmospheric CO2 record and the satellite-
based records of vegetation activity were compiled and syn-
thesized into easily identifiable traits and a framework of in-
tuitively comparable metrics. The results of the exploratory
analysis of C-related processes and climate variability were
presented with emphasis on the robustness of the information
content of the observations, making use of both atmospheric
CO2 concentration and vegetation activity at the appropriate
time- and spatial scale of a global land surface model.

The results show that the simultaneous use of the atmo-
spheric CO2 record and satellite-based vegetation activity as
two independent datasets help to identify the sources of data–
model mismatch in terms of regional source of errors, or to
detect potential compensation errors. In particular, the sepa-
rate analysis of the atmospheric CO2 and vegetation activity
circumvent the problem that the atmospheric CO2 retains the

net effect of both vegetation activity (i.e. photosynthesis) and
ecosystem C release response.

The use of a baseline benchmark with a clear ecological
meaning was shown to be a valuable approach to provide a
more robust and objective quantification of data–model dis-
agreement. In addition, scaling the metric against a reference
case allows more independence by the section of a specific
metric and avoidance of misleading interpretation of the nu-
merical score.

A key component of the evaluation framework developed
here is that it is designed to be suitable and sensitive to
evaluate global land surface models both in offline mode –
i.e. when driven by observed climate variability – and fully
coupled to Earth system models with a different climate and
climate variability. Therefore, in addition to providing met-
rics for key traits that describe climatological mean variables,
we use a range of correlational metrics to analyse the climate
sensitivity of key carbon cycle traits. We demonstrate that
these metrics provide insight into the realism of the carbon
cycle simulation that go beyond an evaluation of mean states
and trends. In this paper, we described the framework and
applied it to an example model. The next step will be the use
of this framework to evaluate online and offline versions of
JSBACH. Nonetheless, even application of the benchmark-
ing framework for the evaluation of the JSBACH model in
offline mode already allows certain conclusions particular to
the model:

– The traits at seasonal time scales showed that high-
latitude terrestrial ecosystem patterns are a major
strength of JSBACH, with good performance both in
terms of mean vegetation activity and mean seasonal
CO2 cycle in the high-latitudinal stations. Lower per-
formance of mean pattern of phenology occurs in the
Southern Hemisphere, in particular in shrub-dominated
areas and in deciduous broadleaved forests in Southern
Africa. A systematic overestimation of the seasonal cy-
cle of CO2 points to a too high magnitude of the sea-
sonal land gross C fluxes.

– The observed weakening of the positive warming effect
in vegetation in the NH and the trend toward a neu-
tral/negative effect in the SH pronounced in last decade
are not fully captured by the model, both in CO2and
vegetation activity traits. The analysis of vegetation–
climate covariance revealed that the modelled ecosys-
tem response is primarily driven by temperature anoma-
lies, suggesting that this discrepancy might be associ-
ated with an incorrect sensitivity of vegetation to pre-
cipitation anomalies at interannual time scales.

– While the analysis of CO2 growth rate and climate
drivers returned a weak covariation of the atmospheric
signal with climate on selected regions on land, the
model deviates strongly from the observations both in
terms of the long-term trend of the atmospheric CO2,
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Table A1. Final scores of atmospheric CO2 and vegetation activity
for the baseline benchmark. Atmospheric CO2 scores are reported
per latitudinal band.

Atmospheric CO2 traits Vegetation activity traits

MSC 90N60N 0 t-onset 0
MSC 60N30N 0 t-max 0
MSC 30N30S 0.23 Onset-Cl 0.3
MSC 30S90S 0.45
MSCc 90N60N 0.1
MSCc 60N30N 0.1
MSCc 30N30S 0.18
MSCc 30S90S 0.91
MSClg 0
MT 1982–1991 0.2
MT 1992–1997 0.4
MT 1998–2006 0.25
C-dd 0.5

C-LTT 90N60N 0.56 V-LTT 1982–1991 0.3
C-LTT 30N30S 0.58 V-LTT 1992–1997 0.3
C-LTT 30S90S 0.55 V-LTT 1998–2006 0.3
IHG 90N60N 0.54 V-Cl 0
IHG 30N30S 0.39
IHG 30S90S 0.18
C-CL 90N60N 0
C-CL 30N30S 0
C-CL 30S90S 0
C-CLsens 0.26

and therefore the implied net land-C uptake, and the
apparent interannual land-C sensitivity to temperature
anomalies. The combined analysis of CO2 with the veg-
etation trend analysis suggests that a too high soil-C
turnover rate might be responsible for the underestima-
tion of net land-C uptake.

Appendix A

Computation of SPI index

The SPI is the transformation of the precipitation time se-
ries into a standardized normal distribution (z distribution).
First, a gamma distribution is fitted to the cumulative precip-
itation frequency distribution. The gamma distribution has
been used to fit the empirical frequency of data. Since the
gamma distribution is undefined for null values of the vari-
ables, the cumulative probability has been corrected accord-
ing to Lloyd-Hughes and Sanders (2002). Using an equiprob-
able transformation, the cumulative probability function of
the gamma distribution is then transformed into the normal
distribution function.
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Fig. A1. Exemplar of determination of time of onset of the seasonal
signal, zero centred, of the vegetation activity (SeaWiFS-FAPAR).
Time series extracted from one grid cell located in North American
Boreal.
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Fig. A2. Regional contribution to the mean seasonal cycle in the
stations of Barrow (BRW) and South Pole (SPO), expressed as per-
centage contribution. For the region labels refer to Fig. 1.
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Appendix B

In addition to the classical statistics as the Pearson correla-
tion coefficient (r), the squared correlation coefficient (r2),
cross correlation, and standard deviation statistics (σ ), met-
rics were selected as combination of some of the previous
statistics and built ad hoc for the specific trait analysed.
As reported in Taylor (2000):

4(1+ r)4

σ̂f +
1
σ̂f

2
(1+ R0)4

(B1)

In this metric, more weight is given to the capability of the
model to return the right phase of the trait rather than the am-
plitude. σ̂f = σm/σ0 is the ratio between the modelled stan-
dard deviation and the observed standard deviation of the
trait of interest.R0 is the maximum correlation achievable
and assumed to be 1.

Comparison of variability of the signal via standard devi-
ation:

4(
σ̂f +

1
σ̂f

)2
. (B2)

Linear differences metric:

|6− |O − M||

6
, (B3)

whereO is the observed value andM is the modelled value.
It is applied to the most frequent month of the variable ob-
served (0 when the maximum difference of the variables is
six months, 1 when no differences occur).

Single value comparison metric:

1

(1+ |(O − M)/O|)2
, (B4)

whereO is the observed value andM is the modelled value.
At exception of the Taylor statistics, all the other metrics

are symmetric.
Map cell-by-cell comparison metric:
The ranking metric specifies the number of agreement

cells against the total observed cell belonging to a spe-
cific class. The final score is the average over the selected
classes. Three classes were used in our framework: no statis-
tically significant relationship (i.e. no correlation, no trend
detected), positive relationship (i.e. correlation/trend), and
negative relationships (i.e. correlation/trend) detected.

In terms of lower benchmark, the case of constant vege-
tation has been used. This is the equivalent to analysing the
returned trend against a null hypothesis of non-changing veg-
etation. The average score obtained under this setting is equal
to 0.3, considering the agreement cell-by-cell to each single
class. The score of the model is thereinafter scaled to this
lower benchmark.

Appendix C

Additional constraints for the computation of the final
score

Negative correlations between model and dataset the final
score to 0, with the exception of the cross-correlation traits.
If the modeled signal has no standard deviation (i.e. constant
vegetation activity), the score is automatically set to 0, if the
observed signal has no standard deviation the score is set to
NA. Only grid cells with a valid observed signal were con-
sidered in the model–data comparison analysis.

Correlations and cross correlations, trend, and number of
growing seasons were tested against random noise (t two-
tailed statistics) at leastP < 0.1 significance. For the scores
based on cross-correlation statistics with climate drivers, the
score is set to NA when observations do not show any statis-
tically significant relationship. If the model does not return
any significant relationship, the score is set to 0.

When testing the degree and persistence of the association
between temporal series using two-tailedt test, potential au-
tocorrelations in the temporal series were considered by ad-
justing the degrees of freedom, hence the number of indepen-
dent information (Trenberth and Caron, 2000). We assume a
numberN/2 of independent information, where N is the total
number of months in the record (300 months).

For the atmospheric CO2 traits, the final score is the aver-
age of the scores obtained each individual monitoring station.
In terms of comparison to remote sensing data, the scores
were first aggregated by vegetation class for each Transcom3
region, and then further aggregated using a weighted average
and taking account of the number of grid cells belonging to
the specific vegetation class.

Appendix D

The Synmap classification vegetation map

The following vegetation classes of the Synmap dataset (Jung
et al.,2006) were considered: shrubs, grass, crop, decidu-
ous broad leaved forest (dbf), deciduous needle-leaved forest
(dnf), evergreen broadleaved forest (ebf), evergreen needle-
leaved forest (enf) along with unvegetated area (i.e. bared
soil, ice lands), and water. This way to aggregate the infor-
mation instead of using the model’s vegetation classification
helps to maintain flexibility and comparability across differ-
ent model platforms and thereby creates less uncertainties
in the performance evaluation analysis. The most dominant
class is computed as the one covering at least the 80% of the
total area of each grid cell.
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