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Abstract. Ecosystem process models are important tools for
determining the interactive effects of global change and dis-
turbance on forest carbon dynamics. Here we evaluated and
improved terrestrial carbon cycling simulated by theCom-
munity Land Model(CLM4), the land model portion of the
Community Earth System Model (CESM1.0.4). Our analysis
was conducted primarily in Oregon forests using FLUXNET
and forest inventory data for the period 2001–2006. We go
beyond prior modeling studies in the region by incorporat-
ing regional variation in physiological parameters from>100
independent field sites in the region. We also compare spa-
tial patterns of simulated forest carbon stocks and net pri-
mary production (NPP) at 15 km resolution using data col-
lected from federal forest inventory plots (FIA) from>3000
plots in the study region. Finally, we evaluate simulated gross
primary production (GPP) with FLUXNET eddy covariance
tower data at wet and dry sites in the region. We improved
model estimates by making modifications to CLM4 to allow
physiological parameters (e.g., foliage carbon to nitrogen ra-
tios and specific leaf area), mortality rate, biological nitro-
gen fixation, and wood allocation to vary spatially by plant
functional type (PFT) within an ecoregion based on field plot
data in the region. Prior to modifications, default parameters
resulted in underestimation of stem biomass in all forested
ecoregions except the Blue Mountains and annual NPP was
both over- and underestimated. After modifications, model
estimates of mean NPP fell within the observed range of
uncertainty in all ecoregions (two-sidedP value = 0.8), and
the underestimation of stem biomass was reduced. This was

an improvement from the default configuration by 50 % for
stem biomass and 30 % for NPP. At the tower sites, modeled
monthly GPP fell within the observed range of uncertainty at
both sites for the majority of the year, however summer GPP
was underestimated at the Metolius semi-arid pine site and
spring GPP was overestimated at the Campbell River mesic
Douglas-fir site, indicating GPP may be an area for further
improvement. The low bias in summer maximum GPP at the
semi-arid site could be due to seasonal response ofVcmax
to temperature and precipitation while overestimated spring
values at the mesic site could be due to response ofVcmax to
temperature and day length.

1 Introduction

Modeling and understanding the response of terrestrial
ecosystems to changing environmental conditions and land
use change are primary goals of climate mitigation policy
(IPCC, 2007; Moss et al., 2010; NRC, 2010a; Pacala, 2010).
The Intergovernmental Panel for Climate Change (IPCC)
synthesizes estimates of future climate change impacts on
terrestrial carbon cycling through the use of a specific set of
global circulation models (IPCC, 2007). Among them is the
Community Earth System Model (CESM) of the National
Center for Atmospheric Research (NCAR). The land model
component (Community Land Model; CLM4) has been ex-
tensively used to evaluate and predict the net carbon uptake
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and loss from terrestrial biomes, particularly forests (Thorn-
ton and Zimmermann, 2007; Bonan et al., 2012).

Recent assessments of seasonal performance of multiple
terrestrial biosphere models indicated better performance in
forest ecosystems, particularly in evergreen forests, during
the summer growing season than in other biomes and sea-
sons (Schwalm et al., 2010). The highest skill across biomes
was in models that prescribed canopy phenology and did not
use a daily time step (Schwalm et al., 2010). In an assessment
with FLUXNET tower data, Schaefer et al. (2013) found that
none of the models estimated gross photosynthesis (GPP) at
all sites within observed uncertainty. The most important fac-
tor influencing model performance was light-use efficiency
computed from the slope of the GPP–light response curve.
This is influenced by photosynthetic parameters, indicating
better parameter values are needed for variables influencing
light use efficiency (LUE). The model evaluations also sug-
gested more detailed assessments need to be performed with
individual models. The photosynthesis model of Farquhar et
al. (1980) is widely used in vegetation models, and an eval-
uation at more than 200 FLUXNET sites showed that sim-
ple plant functional type (PFT) classification of photosynthe-
sis parameters introduces uncertainty in photosynthesis and
transpiration fluxes (Groenendijk et al., 2012b), and includ-
ing Vcmax seasonality can improve predictions (Groenendijk
et al., 2012a). The study suggested focusing on the effects of
seasonal foliar nitrogen onVcmax. In an assessment of CLM4
with FLUXNET data, Bonan et al. (2011) also found that the
bias in annual GPP could be reduced by including improved
estimates of photosynthetic parameters. Finally, CLM4 was
also found to overestimate shade-leaf photosynthesis leading
to overestimation of canopy GPP when the nitrogen limita-
tion functionality was inactive (Bonan et al., 2012), suggest-
ing a multi-layer canopy could improve initial GPP calcu-
lations before downregulation due to nitrogen limitation is
imposed.

In this paper, we evaluate the Community Land Model
(version 4.0) portion of the Community Earth System Model
(CESM1.0.4). CLM4 is the latest in a series of land models
developed for the CESM and runs at a half-hourly time step.
CLM4 includes coupled carbon and nitrogen processes and
examines the physical, chemical, and biological processes
through which terrestrial ecosystems affect and are affected
by climate across a variety of spatial and temporal scales.
Recent model releases include improvements to hydrology
and an integrated transient land cover and land use change
dataset (Lawrence et al., 2011a). The transient land cover
dataset includes historical wood harvest which is known to
have a large influence on Pacific Northwest forest carbon
storage and uptake (Harmon et al., 1990; Law et al., 2004).
When the carbon–nitrogen biogeochemistry is active, CLM4
uses prognostic canopy phenology to determine leaf and stem
area indexes (LAI and SAI) and vegetation height. Poten-
tial GPP is calculated from leaf photosynthetic rate without

nitrogen constraint. Actual GPP is computed from nitrogen
limitations to potential GPP.

Our objective was to evaluate carbon stocks and fluxes
simulated by CLM4 in a representative sample of Pacific
Northwest forests using independent datasets with different
spatial and temporal resolutions, rather than relying only on a
few eddy covariance tower sites as is typical. We utilized an-
nual carbon stocks and net primary production (NPP) com-
puted from over 3000 forest inventory plots that had been
scaled to the study region with remote sensing data to pro-
duce a spatial dataset (Hudiburg et al., 2011; Law et al.,
2012), and the seasonal data were gross photosynthesis from
two FLUXNET sites in the region (Krishnan et al., 2009;
Thomas et al., 2009). Model evaluation with an observation-
based spatially representative dataset such as federal forest
inventory (FIA) data is critical in order to constrain model es-
timates, facilitate model development and ultimately reduce
model uncertainty. Reduced model uncertainty is beneficial
for forest policy development of land use practices aimed
at increasing carbon sequestration. Combined with seasonal
data and analysis over a strong climatic gradient, diagnos-
tics can point to areas for model improvements. The specific
objectives of this study are to (1) evaluate regional model
performance against spatially representative FIA estimates
of stem wood biomass and annual NPP; (2) evaluate sea-
sonal model performance against monthly tower GPP utiliz-
ing observed physiological parameters; and (3) examine the
roles of modeled LUE, temperature, precipitation, and nitro-
gen limitation in determining seasonal patterns of GPP. Tem-
perature is a dominant control on the seasonal variation in
GPP (Schaefer et al., 2013), whereas nitrogen and water lim-
itation are major determinants of seasonal maximum GPP
(Lawrence et al., 2011b; Bonan et al., 2011).

The accuracy and uncertainty associated with regional
estimates of carbon fluxes by CLM4 is unknown because
model output is not usually validated against spatially rep-
resentative observations. The federal forest inventory (FIA)
collects data on an annual basis on all forestland regardless
of ownership or location, resulting in an intensively sampled
landscape through which modeled estimates of forest carbon
stocks and fluxes could be evaluated. FIA data provide mea-
surements that can be used to calculate the carbon density of
live and dead trees, woody detritus, and understory shrubs.
Wood increment data are also provided, allowing estimation
of 5–10 yr average bole wood production, depending on the
repeat measurement cycle. Combined with remote sensing
land cover products, reliable maps of wood carbon stocks,
net primary production, heterotrophic respiration (Rh), and
net ecosystem production (NEP) can be produced (Hudiburg
et al., 2011) to validate model output and identify model bi-
ases. The associated uncertainty in the FIA estimates can also
be calculated, providing a range of values or baseline con-
ditions modeling activities should be constrained by before
making predictions about future conditions.
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Here, we evaluate CLM4 with FIA data maps of wood
carbon stocks and NPP averaged for the years 2001–2006
in Oregon forests. We improve on model estimates by cal-
ibrating with supplemental plot data collected at over 100
sites across the study area. The region is characterized by
tremendous climate variation (Table 1), and it has been rec-
ommended that a minimum of 15 km resolution be utilized
in such heterogeneous terrain (Salathé et al., 2010). We uti-
lize a new downscaled 200 yr 1/8th degree (15 km) resolution
dataset specifically designed for use in the Pacific North-
west (Salathe et al., 2007). Furthermore, we also test the
model’s ability to determine the seasonal timing and mag-
nitude of GPP by comparing modeled estimates with eddy
covariance data in the region, and evaluate tower annual NPP
and GPP for consistency (Luyssaert et al., 2009). Finally, we
make modifications to model algorithms and plant functional
type physiological parameterization to improve model per-
formance. By using existing datasets and uncertainty quan-
tification, this research provides a solid scientific foundation
for evaluating carbon dynamics under conditions of future
climate change and land management practices at local and
regional scales.

2 Methods

2.1 Model description

The model used to simulate these processes is the Commu-
nity Land Model (CLM version 4.0) portion of the Commu-
nity Earth System Model (CESM1.0.4) of the National Cen-
ter for Atmospheric Research (Oleson et al., 2010). CLM4
uses hourly climate data, ecophysiological characteristics,
site physical characteristics, and site history to estimate the
daily fluxes of carbon, nitrogen, and water between the atmo-
sphere, plant state variables, and litter and soil state variables.
State variables are the live and dead carbon pools. CLM4
examines the physical, chemical, and biological processes
through which terrestrial ecosystems affect and are affected
by climate across a variety of spatial and temporal scales. The
basic assumption is that terrestrial ecosystems, through their
cycling of energy, water, chemical elements, and trace gases,
are important determinants of climate. Model components
consist of biogeophysics, hydrologic cycle, biogeochemistry
and dynamic vegetation. The land surface is divided into five
sub-grid land cover types (glacier, lake, wetland, urban, veg-
etated) in each grid cell. The vegetated portion of a grid cell
is further divided into patches of plant functional types, each
with its own leaf and stem area index and canopy height. The
multiple PFTs within the grid cell compete for water and nu-
trients on a single soil column.

Recent model improvements include updates to hydrology
and an integrated transient land cover and land use change
dataset that accounts for wood harvest. Updates to the hy-
drology include improved ground evaporation parameteri-

zation and snowpack heating and aging resulting in higher
snow cover, cooler soil temperatures in organic-rich soils,
greater river discharge, and lower albedos over forests and
grasslands (Lawrence et al., 2011a). The transient land use
dataset has been formatted for use by CLM4 from a global
historical transient land use and land cover change dataset
(Hurtt et al., 2006) covering the period from 1850–2005. The
dataset describes land cover and its change via four classes of
vegetation (crop, pasture, primary vegetation, and secondary
vegetation). The dataset also describes the annual fraction of
land that is transformed from one PFT to another including
the conversion of primary forest to secondary forest, which
is essential for studies attempting to track forest carbon stor-
age and uptake over time. This dataset essentially provides a
human-induced disturbance history of forests which can be
used to test the model’s ability to simulate carbon dynamics
following harvest.

2.2 Model calibration and forcing datasets

CLM4 has over 40 physiological parameters for each of the
17 plant functional types and a default constant mortality rate
of 2 % for all PFTs. The PFTs include 8 different forested
and 3 different shrub land PFTs (Appendix A; Tables A1
and A2). We use data collected on 100 supplemental plots
located throughout the study region (Fig. 1) to calibrate the
physiology parameters, mortality rate, and wood allocation
algorithms. Default physiology values were used for param-
eters where data was unavailable and for parameters which
are known to have little influence on biomass and NPP. As-
sessment and sensitivity analysis of CLM4 to the parame-
ter values has been tested and described (White et al., 2000;
Lawrence et al., 2011a), and we incorporate this knowledge
to facilitate our regional calibration. The supplemental plot
dataset includes measurements of specific leaf area (SLA;
projected), foliar carbon nitrogen ratios, litter carbon nitro-
gen ratios, and leaf longevity for the major tree species across
the study region. We use the PFT mean for each of these pa-
rameters in the calibrated physiology file for default model
configuration evaluation, hereafter indicated as “CLM4” in
figures and text. Prior modeling studies in this region indi-
cate that a dynamic mortality rate that varies with age and/or
disturbance type is necessary to predict the correct seasonal
and annual carbon fluxes (Turner et al., 2007), especially in
the drier forest types where mortality decreases as a percent-
age of live biomass as stands age. Mortality rates in Oregon
forests range from 0.5 to 2 % (Turner et al., 2007; Hudiburg
et al., 2009) in the absence of stand replacing disturbance.
Since dynamic mortality algorithms have not been incorpo-
rated into CLM4, we chose to use 1.0 % as a static mean
value for the default configuration simulations. To improve
on this, we parameterized CLM4 with PFT mortality rates
within each ecoregion based on inventory data (Hudiburg et
al., 2009). Ecoregions are areas within which ecosystems
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Figure 1 Fig. 1. Study region area (Oregon) divided by ecoregions
(BM = Blue Mountains, CR = Coast Range, CP = Columbia Plateau,
EC = East Cascades, KM = Klamath Mountains, NB = Northern
Basin, SR = Snake River, WC = West Cascades, WV = Willamette
Valley). Green circles represent FIA plots used for evaluating an-
nual model output, blue triangles are the supplemental plots used
for parameterization, and red squares are the FLUXNET tower sites
available for seasonal validation (Campbell River site in British
Columbia, Canada, not shown).

(and the type, quality, and quantity of environmental re-
sources) are generally similar (Omernik, 1987).

Offline simulations of CLM4 are typically forced with
the NCEP reanalysis dataset (Qian et al., 2006) provided
by NCAR. While this dataset includes the required climate
and forcing variables at a sub-daily time step, the resolution
(∼ 2◦) is not adequate for regional simulations in Oregon.
For this reason, we forced the model with a 1/8th degree re-
gional dataset assembled by the Climate Impacts Group at
the University of Washington (http://www.cses.washington.
edu/data/ipccar4/) downscaled from the ECHAM5 20th cen-
tury climate simulations used in the IPCC 4th assessment.
The regional dataset includes daily precipitation, minimum
and maximum temperature, and wind speed. Because CLM4
also requires shortwave radiation and relative humidity, we
calculated values incorporating algorithms from DAYMET
(Thornton et al., 1997) and methods for sub-daily calcula-
tions as described by G̈oeckede et al. (2010) (Appendix A).

2.3 Model simulations and evaluation

All model simulations are summarized in Table 2. Model
spinups required 650 yr to reach equilibrium conditions and
were performed using regional physiology parameters and
the downscaled climate forcing dataset (PNW). The fire mod-
ule was turned “off” for spinup because in some ecoregions,

biomass would “burn up” before reaching equilibrium con-
ditions. Based on previous experience with CLM4 in the re-
gion, fire combustion estimates were reduced by 50 %. Af-
ter spinup, control and transient simulations were run us-
ing the different model versions (see Sect. 2.6). The con-
trol simulations were run from 1850–2006 using preindus-
trial CO2 and N deposition levels (Ndep) and constant 1850
land cover. Transient simulations of each model version were
run by changing CO2, nitrogen deposition, land use and land
cover, and/or climate for the period from 1850–2006. Sepa-
rate simulations allow for attributing the responses due to cli-
mate, land use change, and model versions. Transient CO2,
Ndep, and land cover files are annual files covering the pe-
riod from 1850–2006. Ndep and land cover are spatially ex-
plicit datasets interpolated from a half-degree global dataset,
while the CO2 file is a single value for the entire region which
changes annually. For the FLUXNET tower sites, we used
the observed meteorological data for all tower site simula-
tions including spinup. Gap-filled hourly data included air
temperature, precipitation, shortwave solar radiation, wind
speed, and specific humidity. Finally, the modified version
of the code was used for spinup at the tower sites because
the biological nitrogen fixation equation was changed for the
Campbell River site (Arain et al., 2006; see Sect. 2.6).

2.4 Observations

We combined spatially representative observational data
from 3125 FIA plots measured during 2001 to 2006 with re-
mote sensing products on forest cover, ecoregion, and age
and a global data compilation of wood decomposition data
(Wirth et al., 2010) to provide current maps of the Pacific
Northwest state of Oregon (∼ 12 million hectares) for forest
biomass carbon stocks, heterotrophic respiration, net primary
production, and net ecosystem production. We included all
forestland in our analysis across all age classes (20–800 yr
old) and management regimes (Table 1). Plot values were
aggregated by ecoregion, age class, and forest type and this
look-up table was used to assign a value to each associ-
ated 30 m pixel. Methods and uncertainty of the inventory
biomass and carbon flux calculations are fully described in
Hudiburg et al. (2009, 2011). Tree biomass is calculated
using ecoregion- and species-specific allometric equations
from diameter at breast height (DBH) and height. Woody de-
tritus length and diameter are recorded along transects for
each plot in the FIA dataset. Woody detritus biomass is then
calculated from piece volume and decay class density. Wood
NPP is calculated using increment data from wood cores col-
lected on the FIA plots, foliage NPP is foliage biomass di-
vided by the average leaf retention time measured at the in-
tensive plots, and fine root NPP is calculated from fine root
biomass multiplied by the average root turnover rates from
intensive plot data.

Monthly mean values of GPP from eddy covariance tower
data and the associated uncertainty for the period from
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Table 1.Ecoregion and tower site characteristics in study region.

Ecoregion Forest (ha) Number plots Stand age Dominant forest types MAP MAT
(% of Total) private/public private/public (mm yr−1) (◦C)

Coast Range (CR) 2043332 294/216 34/75 Douglas-fir, Sitka spruce, redwood, 1742 11.0
(17) western red cedar, fir-hemlock

West Cascades (WC) 2 693 263 168/512 50/140 Douglas-fir, hemlock, mixed conifer, 1688 8.8
(22) red fir, western red cedar

Klamath Mountains 1 302 111 121/192 59/106 Mixed conifer, mixed evergreen, 1549 11.5
(KM) (10) red fir, Douglas-fir, riparian, oak
Willamette Valley 501 793 93/17 43/61 Douglas-fir, hemlock, riparian 1280 11.0
(WV) (4)
East Cascades (EC) 2 099 866 155/395 64/94 Ponderosa pine, mixed conifer, 630 9.1

(17) juniper, pine, red fir
Blue Mountains (BM) 3 364 151 243/614 71/100 Mixed conifer, ponderosa pine, 552 7.3

(27) juniper, spruce-fir
Columbia Plateau (CP) 88 922 80/47 80/47 Mixed conifer, ponderosa pine, 330 9.7

(<1) riparian
Northern Basin (NB) 253 690 80/130 80/130 Juniper, aspen, pinyon-juniper, 304 9.7

(2) ponderosa pine, mountain mahogany
Metolius Mature Site – 1 80 Ponderosa pine (secondary growth, 434 7.6
(me2) privately owned)
Campbell River Mature – 1 56 Douglas-fir (secondary growth, 1256 8.7
Site (ca1) privately owned)

Table 2. Regional and FLUXNET tower site simulations. Transient CO2, nitrogen deposition (Ndep), and land cover files are annual files
covering the period from 1850–2006. Ndep and land cover are spatially interpolated using the CLM toolkit from a half-degree global dataset,
while the CO2 file is a single value for the entire region which changes annually. Simulations marked with a∗ indicate tower/point simulations
(ca1 = Campbell River and me2 = Metolius Mature Site).

Name Years Climate forcing CO2/Ndep Land cover Mortality rate Physiology Model
(Years)

Spinup

S Oregon 650 PNW (1900–1949) 1850 1850 2 % PNW CLM4
S ca1∗,1,2 650 Tower (1998–2006) 1850 1850 1 % Ca1 CLM4stem
S me2∗ 650 Tower (2002–2007) 1850 1850 1 % Me2 CLM4stem

Control and Calibration

C Default 1850–2006 PNW (1900–1949) 1850 1850 1 % PNW CLM4
C eco3 1850–2006 PNW (1900–1949) 2000 2000 Varied PNWeco CLM4eco
C ecostem1 1850–2006 PNW(1900–1949) 2000 2000 Varied PNWeco CLM4stem

Transient and Modified

T PNW default 1850–2006 PNW (1900–1949; 1900–2006) Transient Transient 1% PNW CLM4
T PNW eco3 1850–2006 PNW (1900–1949; 1900–2006) Transient Transient Varied PNWeco CLM4eco
T PNW ecostem1 1850–2006 PNW (1900–1949; 1900–2006) Transient Transient Varied PNWeco CLM4stem
T ca1∗ 1850–2010 Tower (1998–2006) Transient Transient 0.08 % Ca1 CLM4stem
T me2∗ 1850–2010 Tower (2002–2007) Transient Transient 1.0 % Me2 CLM4stem

1 The stem wood to leaf allocation equation was modified to change with ecoregion (location).
2 Nitrogen fixation was increased for the Campbell River site spinup and simulations.
3 Physiological parameters such as foliar leaf nitrogen content were varied by species within ecoregions.

2001–2006 were downloaded from the FLUXNET database
for two tower sites in the region, one in a mesic fir forest
of the Coast Range ecoregion (Campbell River, BC) and
one in a dry pine forest of the East Cascades (Metolius,

OR). The provided uncertainty estimates for the flux tower
observations were calculated for the model–data synthesis
project by Schwalm et al. (2010). These sites represent ma-
ture secondary forest under private ownership (50–80 yr)
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with contrasting rates of biomass accumulation and NPP pri-
marily due to climatic conditions (Law et al., 2003, 2004).
Seasonal patterns of modeled GPP are compared with the
flux tower observations.

2.5 Uncertainty analysis

We calculated the total uncertainty in the current FIA esti-
mates using the propagation of error approach (Williams et
al., 2012). The propagation of error approach is a method
for combining error terms to calculate total uncertainty in an
estimate. Monte Carlo simulations were used to estimate the
uncertainty due to variation in region- and/or species-specific
allometry by using the mean and standard deviations for stem
biomass and NPP calculated using three alternative sets of
allometric equations. The full suite of species-specific equa-
tions that use tree diameter (i.e., DBH) and height (preferred)
were compared to a DBH-only national set (Jenkins et al.,
2003) and to a grouped forest type set. Total uncertainty in
FIA estimates was calculated as the combined uncertainty of
the allometric equations and land cover estimates (10 %) us-
ing the propagation of error approach (NRC, 2010a). Ecore-
gion level uncertainty estimates are represented in the fig-
ures by the gray error bars and in tables with “±” symbols.
For finer scale evaluation (i.e., grid cell size), the uncertainty
in the observations was used to evaluate model performance
using the reduced chi-square(x2) statistic (Schwalm et al.,
2010) and model bias defined as the mean of the model–data
residuals for different groups of interest. Inventory plot data
were grouped by ecoregion and then aggregated by precipi-
tation regime, biome type, and age group within each ecore-
gion. Plots with annual precipitation greater than 800 mm
were considered “wet” and less than 800 mm as “dry”. FIA
forest types are either evergreen needleleaf (ENF), decidu-
ous broadleaf (DBF), or mixed ENF/DBF (MXD). Complete
analysis and statistics were performed for all biomes, how-
ever since 92 % of the forested area in the study region is
ENF, we include only the ENF biome in the figures and tables
of this document. Age groups are defined as young (<60 yr)
and mature (>60 yr).

The reducedx2 is the squared sum of the residuals normal-
ized by the observation uncertainty and divided by the total
number of samples (i.e., the meanx2 for an arbitrary group
of interest):

Reducedx2
=

1

n

n∑
i=1

(
Modeledi − Observedi

2 · δi

)2

, (1)

where,δ is the uncertainty in thei-th observation, “2” nor-
malizes the uncertainty to correspond to a 95 % confidence
interval, and the summation is across the aggregated data
groups within each ecoregion (Schwalm et al., 2010). Re-
ducedx2 values close to 1 indicate model–data unity or
agreement. Model bias can be estimated as the mean of the

residuals:

Bias=
1

n

n∑
i=0

(Modeledi − Observedi) , (2)

wherei is the group of interest and positive values indicate
average overestimation by the model and negative values in-
dicate average underestimation.

2.6 Model development

We aimed to reduce overall uncertainty by calibrating with
known regional mean values and evaluating with inventory
data. This was in part due to an interest in evaluating the de-
fault model configuration with the fewest adjustments possi-
ble and utilizing the rich regional plot dataset. Testing the
performance in a diverse region aids diagnosis of param-
eter or structural deficiencies. As stated above, the default
configuration includes PFT specific physiological variables
(no seasonal variation), a constant mortality rate for all for-
est PFTs, and a single stem wood allocation equation for all
woody PFTs. After evaluation with the default configuration,
we tested the use of modified model versions where the phys-
iological parameters and mortality rates were allowed to vary
by PFT within ecoregion (CLM4eco) and where the stem
wood allocation equation in addition to the physiological and
mortality rates also varied by ecoregion (CLM4stem).

For CLM4 eco and CLM4stem, parameter values for fo-
liar C : N ratios, foliar N content in Rubisco, leaf longevity,
fine root C : N ratios, and specific leaf area were adjusted
according to field plot data from sites in each of the tested
ecoregions in the study area. The PFT physiological variable
input file was restructured so that two PFTs were assigned to
each ecoregion and surface datasets were modified to reflect
the new PFT assignments (Appendix A, Tables A1 and A2).
The CLM4 mortality module was then modified to assign a
different mortality rate based on the PFT. For CLM4stem,
the inventory data was used to construct ecoregion-specific
allocation to stem wood equations and the equations were
added to the CLM4 allocation module (Appendix A, Ta-
ble A4 and Fig. A1.)

Finally, CLM4 nitrogen fixation is controlled by a single
equation that determines the rate as a function of NPP, yield-
ing nitrogen fixation rates up to 1.8 g N m−2 yr−1, whereas
nitrogen fixation at the Campbell River site is reportedly
3 g N m−2 yr−1 (Arain et al., 2006). Because this is not a
parameter in the physiology file, we needed to modify the
equation in the source code for the Campbell River spinup
and simulations (Appendix A).

3 Results

3.1 Modeled results and regional totals

In general, CLM4stem modeled estimates of stem biomass
carbon (Fig. 2a) followed a west to east gradient with
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Figure 2 

Fig. 2.Maps of modeled CLM4stem estimates of(a)stem biomass,
(b) NPP,(c) NEP, and(d) Rh. Biomass is in units of Mg C ha−1 and
all others are in units of g C m−2 yr−1. Estimates are from the “all
transient” case which is representative of actual historical condi-
tions and includes changing climate, CO2 and nitrogen deposition
levels, and historical land use and land cover change.

higher values in the productive mesic western ecoregions
(i.e., Coast Range, West Cascades) and lower values in
the less productive dry eastern ecoregions (East Cascades,
Northern Basin). Stem wood biomass peaks in the West
Cascades at 360 Mg C ha−1 and is lowest in the Northern
Basin at 10 Mg C ha−1. NPP is highest in the Coast Range
with values up to 1100 g C m−2 yr−1 and lowest in North-
ern Basin at less than 100 g C m−2 yr−1 (Fig. 2b). Forest
NEP ranges from−200 g C m−2 yr−1 in the Blue Moun-
tains to 350 g C m−2 yr−1 in the Coast Range (Fig. 2c), and
Rh ranges from 20 g C m−2 yr−1 in the Northern Basin to
750 g C m−2 yr−1 in the Coast Range (Fig. 2d).

Total simulated regional tree carbon stocks are estimated
to be 1.2 Pg C with 61 % in the Coast Range and West Cas-
cades alone. For the period from 2001–2006, total forest
NPP and NEP averaged 57.6 and 12.7 Tg C yr−1, respec-
tively, indicating a strong sink in the region. Total modeled
harvested carbon equaled 4.9 Tg C yr−1, and total fire emis-
sions equaled 2.4 Tg C yr−1. After accounting for these re-
movals, the forest carbon sink (net biome production, NBP)
is still positive at 5.4 Tg C yr−1.

3.2 Model improvement and testing

We compared regional plot data of foliar chemistry and mor-
phological characteristics with the physiological file con-
stants used for the modeled runs. There is significant vari-
ation in both foliar carbon to nitrogen ratios and specific leaf
area (projected) between ecoregions according to plot data
(Fig. 3). The default configuration for CLM4 allows one fo-
liar C : N ratio and one SLA value per PFT.

41 
 

Figure 3  

Fig. 3. Observed values for ENF leaf carbon to nitrogen ratios(A)
and specific leaf area(B) from over 100 supplemental plots in the
region. The black bar represents the value used for single-value per
PFT parameterizations, versus the gray bars which were used for
CLM4 eco and CLM4stem simulations.

We experimented with physiological parameter spatial
variation (Fig. 4; CLM4eco), and found overall improve-
ment with ecoregion means of NPP, but stem carbon stocks
were subsequently underestimated. The default code for
CLM4 includes dynamic stem wood allocation, but it is a sin-
gle equation for all woody PFTs globally. Using the model
version CLM4stem, where we also changed the dynamic
stem allocation equation to vary by ecoregion, we found
an overall improvement in stem carbon stocks compared to
CLM4.

3.3 Spatial evaluation with inventory data

We show ecoregion means of the evergreen needleleaf biome
because it represents 92 % of the forested area in the region
and we do not have sufficient regional plot data for the decid-
uous broadleaf biome for evaluation. Before modifications,
CLM4 regional modeled mean stem biomass for the period
from 2001–2006 fell within the observed range of uncer-
tainty in the Coast Range and the West Cascades, was close
to observed range of uncertainty in the East Cascades and
was underestimated in the Klamath Mountains (Fig. 4a; gray
error bars indicate observation uncertainty). However, mean
simulated biomass was twice the observed mean in the Blue
Mountains. Simulated regional mean NPP was within the ob-
served range of uncertainty in the Coast Range, East Cas-
cades and Klamath Mountains, was slightly overestimated in
the West Cascades and was again almost twice the observed
mean in the Blue Mountains. After modifying the model
for ecoregion differences in input physiological parameters
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Figure 4. Fig. 4. Ecoregion means of modeled and observed evergreen
needleleaf PFT values for the period from 2001–2006. The ENF
biome covers 92 % of the forested area in the study region. Bar
plots show ecoregion ENF means and the associated observation
uncertainty.(a) Stem biomass, and(b) NPP. Estimates are from the
“all transient” case which is representative of actual historical con-
ditions and includes changing climate, CO2 and nitrogen levels, and
land use and land cover change.

(CLM4 eco), ecoregion mean stem biomass was within the
observed uncertainty in the Blue Mountains, but dropped
below the average in the West Cascades. Ecoregion mean
NPP was within observation uncertainty in all ecoregions af-
ter modification. After modifications to the stem allocation
equations, modeled ecoregion means of NPP were not sig-
nificantly different from observed means (two-sidedP value
0.8), and modeled means of stem biomass fell within the ob-
served range of uncertainty in the majority of the ecoregions.

Ecoregion means are a good first order approximation of
model performance and regional total evaluation, but can-
not be used to determine the dynamics that may be caus-
ing bias and reveal nothing about model fidelity at a smaller
scale. Statistical tests of model performance for stem car-
bon biomass revealed overall better agreement with inven-
tory data using the CLM4stem version of the model. At
15 km spatial resolution, reducedx2 statistics indicated ad-
equate model performance for the region as a whole for
both stem biomass and NPP (overall reducedx2 was 3 and
2, respectively). This was an improvement over the default

configuration by 50 % for stem biomass and 30 % for NPP.
Stem biomass agreement was best in the West Cascades,
Blue Mountains, and Coast Range (x2 <= 2; Table 3), fol-
lowed by the Klamath Mountains and East Cascades (x2 <

7). Within ecoregions, performance was generally better in
older age classes (Table 3).

NPP also improved when using CLM4stem, primarily be-
cause overestimation was reduced in the Blue Mountains and
West Cascades (Table 3). Overestimation in the Blue Moun-
tains exceeded 100 g C m−2 yr−1 with CLM4 before modi-
fications were made. However, reducedx2 statistics for the
Coast Range, East Cascades and Klamath Mountains did
not significantly improve. As with stem biomass, there was
better performance in wet versus dry stands, except in the
Klamath Mountains. Performance was better for both met-
rics in mature stands. This was especially true for the Coast
Range and West Cascades where thex2 values for CLM4
and CLM4stem were close to 1 for the mature age classes,
indicating model–data unity.

3.4 Evaluation with tower and supplemental plot data

Simulated monthly values for GPP were compared with 6 yr
of eddy covariance tower data at two sites in the region. At
the semi-arid mature ponderosa pine site (Metolius), a re-
ducedx2 value of 1.06 indicated good overall model perfor-
mance (values close to 1 indicate good model performance)
after accounting for observation uncertainty (Schaefer et al.,
2013). Observation uncertainty ranged from 12–100 % for
the Metolius site and 13–90 % for the Campbell River site. At
the semi-arid Metolius site, maximum GPP is lower for mod-
eled results (Fig. 5a) in all years except 2003 (a particularly
dry year) and 2006 (a wet year). Annual GPP was underesti-
mated by an average of 18 % (Fig. 5b). There was no notice-
able bias in the fall and spring months. At the mesic mature
Douglas-fir site (Campbell River), a reducedx2 of 1.5 indi-
cated weaker model performance than for the Metolius site,
although estimates were still within the observed range of
uncertainty for most months and annually (Fig. 5c and d). In
contrast to the Metolius site, model data mismatch occurred
primarily in spring with timing of peak GPP occurring one
month early and overestimated spring values. This resulted
in annual estimates that were on average 17 % greater than
observed GPP.

CLM4 includes direct downregulation of the photosyn-
thetic rate under nitrogen limitation, which effectively re-
duces GPP. We also compared GPP before downregulation
(Fig. 5a and 5b; “initial GPP”) with tower data and found
decreased model performance at both sites. Initial GPP was
overestimated by up to 200 g C m−2 month−1 at the Metolius
site, especially in the late summer months. Results were sim-
ilar at the Campbell River site where simulated summer max-
imum initial GPP was much higher than observed (Fig. 5c).
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Table 3.Stem carbon and NPP reducedx2 statistics and model bias by ecoregion, annual precipitation regimea, and age groupb for CLM4
and CLM4stem. Values marked with an∗ indicate good model performance (x2 < 2). Reducedx2 values close to 1 are within observation
uncertainty.

Stem carbon:x2 statistics

CLM4 simulations CLM4stem simulations

Ecoregion
Precipitation Age group Precipitation Age group

Dry Wet Y M Total Dry Wet Y M Total
CR – 3 4 1∗ 2 – 3 4 1∗ 2
WC 3 2 14 2 2 2 < 2 8 < 2∗ < 2∗

KM 1∗ 8 2 8 7 1∗ 6 1∗ 6 6
EC 5 6 15 5 4 5 5 14 5 4
BM 17 6 70 17 15 3 2 14 3 2
Overall 12 4 18 8 7 4 3 7 3 3

NPP:x2 statistics

CLM4 simulations CLM4stem simulations

Ecoregion
Precipitation Age group Precipitation Age group

Dry Wet Y M Total Dry Wet Y M Total
CR – 1∗ 2 1∗ 1∗ – < 2∗ 3 1∗ < 2∗

WC 3 1∗ 8 1∗ 1∗ 4 1∗ 6 1∗ 1∗

KM 1∗ 7 6 7 6 1∗ 7 6 6 5
EC 2 < 2∗ 8 < 2∗ 2 3 < 2∗ 14 3
BM 5 3 18 5 5 2 1∗ 8 2 2
Overall 4 2 7 5 3 3 2 6 4 2

Stem carbon: bias

CLM4 simulations CLM4stem simulations

Ecoregion
Precipitation Age group Precipitation Age group

Dry Wet Y M Total Dry Wet Y M Total
CR – −19 32 −100 −19 – −17 36 −100 −17
WC 13 −11 74 −40 −9 −7 −37 45 −65 −36
KM −85 −40 3 −53 −41 −77 −51 −7 −63 −50
EC −4 −49 20 −17 −11 −2 −48 18 −15 −9
BM 54 2 77 45 48 −4 −36 21 −11 −7
Overall 28 −17 46 −16 4 −5 −32 29 −41 −18

NPP: bias

CLM4 simulations CLM4stem simulations

Ecoregion
Precipitation Age group Precipitation Age group

Dry Wet Y M Total Dry Wet Y M Total
CR – −88 −88 −90 −88 13 20 −2 13
WC 93 94 79 97 96 78 55 24 62 58
KM −221 105 22 92 85 −140 93 −4 85 81
EC −30 −132 17 −54 −47 49 −60 87 30 35
BM 133 −66 149 104 112 17 −128 40 −6 2
Overall 69 14 19 50 43 27 25 32 29 31

a Dry =< 800 mm yr−1, Wet => 800 mm yr−1.
b Y = Young< 60 yr, M = Mature> 60 yr.
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Figure 5. 
Fig. 5. Simulated monthly GPP versus observed GPP at two
FLUXNET eddy covariance tower sites in the study region using the
CLM stem version of the model. Solid black circles and bars rep-
resent tower observations, gray squares are modeled values of GPP
before downregulation due to nitrogen limitation, and blue crosses
and bars are modeled GPP after downregulation. Black and gray er-
ror bars represent observed estimate uncertainty.(A) Monthly GPP
for the years 2002–2007 at the Metolius mature pine site in Oregon,
USA, (B) annual GPP at the Metolius mature pine site for 2002–
2007,(C) monthly GPP for 1998–2003 at the Campbell River fir
site, British Columbia, Canada,(D) annual GPP at the Campbell
River fir site.

We compared modeled and observed monthly light use ef-
ficiency with monthly average air temperature at each tower
site (Fig. 6). We define LUE as the monthly GPP as a func-
tion of monthly average incident solar radiation (shortwave
radiation). At the Metolius site, observed LUE increased with
air temperature to about 10◦C, then declines (Fig. 6a). In
other words, higher GPP is attained at lower radiation levels
at temperatures up to 10◦C. This pattern was also true for
the modeled relationship, but occurred less rapidly (Fig. 6b).
Simulated LUE is lower than observed LUE for lower ra-
diation and temperature conditions, but similar to observed
at higher light and temperature conditions. At the Camp-
bell River site, there is a smaller increase in LUE with tem-
perature than the Metolius site (Fig. 6c), and there is much
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Figure 6 

Fig. 6. 3-D surface plots of shortwave radiation versus GPP (LUE)
versus monthly average temperature.(A) Observed LUE versus
temperature at the Metolius site,(B) modeled LUE versus temper-
ature at the Metolius site,(C) observed LUE versus temperature at
the Campbell River site, and(D) modeled LUE versus temperature
at the Campbell River site. Model results for both sites are from the
CLM4 stem modified version of the model code. Model results for
the Campbell River site include increased biological nitrogen fixa-
tion.

less seasonal variation in temperature. There appears to be
a slight decrease in LUE with higher temperature in the
modeled results (Fig. 6d), whereas there is a consistent in-
crease with temperature in the observations. Simulated LUE
is higher than observed for lower radiation and temperature
conditions.

Annual biometric estimates of NPP were available from
the Metolius site and are often used as cross-checks with
tower data for consistency (Luyssaert et al., 2009). Modeled
annual NPP was underestimated by an average of 17 % when
compared to biometric estimates of NPP at the Metolius site,
while modeled GPP was underestimated by an average of
18 % compared to the eddy covariance data. However, the ra-
tio of NPP/GPP was nearly identical for both equaling 34 %
(observed) and 33 % (modeled).

We also compared observed and simulated monthly GPP
with growing season monthly precipitation (Fig. 7). For both
sites, winter precipitation is much higher and summers are
generally dry. At the Metolius site, 2002–2004 were partic-
ularly dry while 2005–2007 received average precipitation.
There does not appear to be a relationship with precipita-
tion at the mesic Campbell River site, whereas at the semi-
arid Metolius site, observed GPP increases for months with
less than 30 mm of precipitation. Simulated GPP is similar
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Figure 7 

 

  

Fig. 7. GPP (g C m−2 month−1) versus growing season (April–
September) monthly precipitation (mm) at the FLUXNET tower
sites,(A) Metolius mature pine site and(B) Campbell River ma-
ture fir site.

to observations for the higher precipitation months for both
Metolius and Campbell River, but underestimated in the low
precipitation months at the Metolius site.

4 Discussion

4.1 Modeled results and regional totals

Oregon is a diverse region due to the strong climatic gra-
dient from the coast inland (300–1800 mm precipitation per
year) and a total of 45 associated forest types, ranging from
temperate rainforests to semi-arid woodlands (Table 1). The
state is divided into 8 distinct ecoregions based on climate,
soil, and species characteristics, and includes a broad range
of productivity, age structures, fire regimes and topography.
The statewide regional patterns of carbon stocks, NPP, and
NEP are similar to the observed values in this study and
prior studies. Stem carbon stocks from over 8000 inventory
plots and 200 plots in Oregon showed stem carbon stocks
range from 60–420 Mg C ha−1 (Hudiburg et al., 2009) in the
more mesic ecoregions (Coast Range, Klamath Mountains,
West Cascades). Reported densities from the same studies for
the drier ecoregions (East Cascades, Blue Mountains) range
from 20 to 100 Mg C ha−1. The CLM4 stem estimates in this
study range from 10–400 Mg C in agreement with the re-
ported values. Pacific Northwest temperate forests have some
of the highest carbon stocks in the world (Keith et al., 2009),
with most of the carbon stored in the tree wood. Modeled re-
lationships of biomass accumulation over time and with in-
creasing age classes typically show a decrease in tree wood
biomass or it reaches an asymptote. However, observations
in the Oregon suggested otherwise (Hudiburg et al., 2009),

and modeled allocation to wood biomass in these regions was
modified in CLM4 to reflect these regional stand dynamics
(CLM4 stem).

Modeled NPP ranges from 100–1100 g C m−2 yr−1

(CLM4 stem) across the study region, agreeing with
the reported regional values of 100–900 g C m−2 yr−1

(Hudiburg et al., 2009) and falling within the range of 100
to 1600 g C m−2 yr−1 reported for temperate and boreal
forests (Luyssaert et al., 2008). The regional total NPP for
forests is 57.6 Tg C yr−1, a value very close to the observed
total of 58.2× 6.5 Tg C yr−1 calculated from inventory data
(Law et al., 2012). The regional modeled total NEP for
2001–2006 is also close to the reported value from inventory
data (12.8 versus 15.2± 1.6 Tg C yr−1; Law et al., 2012),
and Biome-BGC modeled results (17.0± 10 Tg C yr−1;
Turner et al., 2007), but lower than uncertainty of an inverse
modeling estimate (35.4 Tg± 11 Tg C yr−1; Göeckede et al.,
2010).

4.2 Spatial evaluation

After modifications were made, stem carbon stocks contin-
ued to be underestimated in all ecoregions. Performance was
generally better in older age classes, and underestimation of
stem biomass in old age classes was balanced by overesti-
mation of stem biomass in young age classes in some ecore-
gions. Stem wood allocation is a dynamic function of the cu-
mulative sum of annual NPP which results in different allo-
cation ratios at different age classes. In the Pacific Northwest,
the age-related biomass accumulation trajectories are known
to vary by ecoregion and management regime (Van Tuyl et
al., 2005; Hudiburg et al., 2009) with higher potential stem
biomass in the more productive ecoregions. The variation in
stem biomass within an ecoregion varies by a factor of 4, es-
pecially in the Klamath Mountains, and capturing this type
of variation would most likely require age-class dynamics
be added to CLM for more than just stem wood allocation.
Using existing foliage and wood NPP data computed from
supplemental plots, we developed dynamic ratios of wood to
foliage allocation that vary with annual NPP by ecoregion
(Fig. A1). Addition of subgroups within PFTs (e.g., pines
versus firs) for the ecoregions with larger variation would
also improve the model results, but may not be practical for
larger regions.

Implementation of ecoregion physiological variation and
mortality had a significant impact on NPP performance,
with better performance in mature forests for CLM4eco and
CLM4 stem. This is not surprising considering NPP tends
to peak early in stand development, decline and then remain
at a consistent level as stands age. The age-related variation
in this response varies by ecoregion and disturbance regime
(Law et al., 2004), and improvement to age-related allocation
may help to correct part of the discrepancies. When using
single-value parameterization of foliar C : N ratios and spe-
cific leaf area, we found underestimation of NPP by CLM4
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in the Coast Range and overestimation in the Blue Mountains
(Fig. 3), which are much higher in mesic versus semi-arid
forests (Matson et al., 1994). Maximum rates of carboxy-
lation (Vcmax) are determined by SLA and foliar nitrogen
content in CLM4. Prior modeling efforts with CLM4 also
found significant improvement in GPP estimates by using
site-specific parameterization ofVcmax (Bonan et al., 2011).

After implementing CLM4eco and CLM4stem, NPP
continued to be overestimated while stem biomass contin-
ued to be underestimated in the West Cascades, although
both were improved. Foliar nitrogen content in the Cas-
cade Mountain ecoregion is lower than that of the Coast
Range and Klamath Mountain ecoregions and has higher
specific leaf area. The positive bias in NPP was reduced
with ecoregion-specific parameterization, but this also re-
duced stem biomass. However, observed West Cascade stem
biomass is equal to or higher than Coast Range mean
biomass. Stem biomass density is affected by removal rates
through fire and harvest. The regional input harvest rates in
current decades match very closely with current estimates
(Turner et al., 2007), but the spatial variation varies with
overestimates in the West Cascades and Klamath Moun-
tains, which could be contributing to underestimation of stem
biomass overtime. Correcting the historical rates in the input
file would require thorough review of historical records and
is beyond the scope of this study. Fortunately, these values
can be easily adjusted to the user-prescribed rates for future
simulations.

Total regional modeled fire emissions are also overesti-
mated by 1.0 Tg C yr−1 which could also be contributing to
the underestimation bias. We reduced the fire woody biomass
combustion coefficients in the model by 50 % based on re-
gional data (methods Sect. 2.3), but we did not change the
fire prediction routine or fire burn area calculations. This is
an area of research for future versions of CLM (episodic
fire rather than a “slow trickle” of fire). In the meantime,
we made historical comparisons of CLM4 simulated burn
area (Fig. A2) with other datasets (MTBS: Eidenshank et
al., 2007; and GFED: van der Werf et al., 2010) and show
both over- and underestimation by CLM4stem. The Global
Fire Emissions database (GFED) underestimated burn area
by 15 % for the Oregon Biscuit fire in 2002 and was consis-
tently the lowest burn area estimate compared other models
in a synthesis by French et al. (2011).

Finally, nitrogen availability has recently been shown to
significantly impact the NPP to GPP ratio, with higher rates
of biomass production on sites with higher fertility (Vicca et
al., 2012). Our results support this hypothesis, with higher
biomass production in the forests with high foliar nitrogen
content (Figs. 2 and 3). Thus, the model represents nitrogen
influences on allocation and productivity quite well.

4.3 Seasonal evaluation

Simulating GPP correctly is important because most of the
subsequently calculated carbon fluxes are calculated from
GPP. In a model–data synthesis activity including 39 flux
sites and 26 models (CLM4 was not included), GPP was
generally found to be overestimated in the spring and fall
and underestimated in the summer, resulting in poor model
performance at most flux sites (Schaefer et al., 2013). We
found CLM4 simulated GPP at the Metolius site to be close
to the observed range of uncertainty (reducedx2

= 1.06) and
GPP was not over-predicted in fall and spring, resulting in
overall good model performance. However, GPP was under-
predicted in the summer months for some of the modeled
years (Fig. 5a). LUE was determined as the primary driver of
underestimation of GPP in summer months in the model–
data synthesis. Our analysis agrees with this as we found
LUE to be on average less efficient in the modeled results
than the observations, primarily in lower light and temper-
ature conditions. However, this does not necessarily mean
the low GPP bias in the model is caused by incorrect repre-
sentation of LUE. We also found a different range of tem-
perature thresholds for the range of LUE values, indicating
PFT-specific temperature thresholds may vary, especially in
the drier more extreme climates found in the eastern portion
of our study region. GPP was also found to be underesti-
mated for months with little to no precipitation (i.e., sum-
mer; Fig. 7a) indicating soil water availability or plant water
use efficiency need further investigation. When we did not
include nitrogen in the simulations, the “initial GPP” before
downregulation occurred as a result of nitrogen limitation,
leading to a positive summer bias. When nitrogen was in-
cluded in the simulations, downregulation brought the major-
ity of the simulated GPP monthly values closer to observed
values, but there was too much reduction in GPP in the sum-
mer months due to nitrogen constraints.

At the Campbell River site, modeled GPP was overesti-
mated in spring and maximum GPP was reached one month
early, resulting in overall overestimation of annual GPP. Fo-
liar nitrogen content and availability are both higher at the
Campbell River site than the Metolius site, as well as pre-
cipitation. Downregulation of GPP due to nitrogen limita-
tion does not result in underestimated summer GPP, however
spring initial GPP and downregulated GPP are both too high
and peak too early, indicating theVcmax response to temper-
ature and day length may need revising.

4.4 Summary of results and recommendations for
model improvement

CLM4 was evaluated against inventory data in Oregon
forests using the default configuration and regional param-
eterization. With default parameterization, initial results in-
dicated overall underestimation of stem biomass, except in
the semi-arid Blue Mountains where it was overestimated
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by 48 Mg C m−2. There was good general agreement with
observed NPP values. However, modeled ecoregion mean
NPP was overestimated in the Blue Mountains and mesic
West Cascades. Following initial default parameterization,
model improvements were made to account for ecoregion
differences in the physiological variables, foliar N content
and mortality, and this resulted in an overall improvement
in NPP estimates (all ecoregions fell within the observed
range of uncertainty). Changing the stem wood allocation al-
gorithm further improved the results, however wood carbon
stocks were still underestimated in the West Cascades and
Klamath Mountains (CLM4stem). Increasing the number of
sub-PFTs (e.g., pines, firs, and cedars) for the ecoregions
with larger variation, as well as adjusting known harvest rates
and improving the fire prediction and combustion algorithm,
should improve results beyond what we have shown here.

Using ecoregion-specific parameterization at 15 km spa-
tial resolution, reducedx2 statistics indicated adequate model
performance in all ecoregions for both stem biomass and
NPP (reducedx2 was equal 3 and 2, respectively). This was
an improvement from the default configuration by 50 % for
stem biomass and 30 % for NPP. Within ecoregions, there
was good performance (x2 < 2) in the Coast Range and West
Cascades. There was generally better performance in mature
stands and, apart from the Klamath Mountains, better perfor-
mance in wet stands.

Evaluation of CLM4 monthly GPP with eddy covariance
tower data revealed good model–data agreement from July
to December at the mesic site (ca1; Fig. 5c) and September–
May at the semi-arid site (me2; Fig. 5a). Summer GPP was
underestimated at the semi-arid site due to several possible
reasons, including variation in seasonalVcmax response to
temperature and soil water. We found a different range of
temperature thresholds for the range of LUE values indicat-
ing PFT-specific temperature thresholds may vary, especially
in the drier more extreme climates found in the eastern por-
tion of our study region. At the mesic site, overestimation of
spring GPP indicates that improvement toVcmax seasonality
in CLM4 will require adjustment to other factors in addition
to temperature, such as day length, in order to improve sum-
mer GPP.

This study provides a benchmark for which model evalu-
ation and subsequent development can be used in other re-
gions where the observations are available. There is a great
need for regional assessments using land surface models with
sub-grid accuracy to inform land management and policy. In
order for the scientific modeling community to help inform
policy and land managers about the carbon cycle implica-
tions associated with land use change, models need to be
able to capture the spatial and temporal landscape variability.
For example in Oregon, the variability in NPP varies tenfold
across the state, within the same plant functional type. Land
management policy (specifically forest) is being developed
and implemented without the use of process models that ac-
count for changing climate and environmental variables as

well as land use and management (e.g., harvest practices).
Because CLM4 has the ability to account for these factors,
it could be an especially useful tool for making predictions
about land use and land cover change if model improvements
were made to allow for variation within PFTs. Model struc-
ture need not substantially changed in order to do this, but
simply allow for user-defined PFTs that can be scaled in
quantity according to the region of interest. This would al-
low for less complex PFT structure in larger regions or in re-
gions where calibration datasets are not available, but would
not limit regional applications with rich datasets and more di-
versity. Additionally, a more dynamic PFT parameterization
would also be more suitable for further development of the
dynamic vegetation sub-model in CLM4.

Appendix A

A1 Methods for formatting regional downscaled
climate forcing dataset for use by CLM4

The regional downscaled dataset includes daily precipitation,
minimum and maximum temperature, and wind speed. To
format the datasets for use by CLM4, the required shortwave
radiation and relative humidity were calculated incorporat-
ing algorithms from DAYMET (Thornton et al., 1997), and
methods for sub-daily calculations as described by Göeckede
et al. (2010). We created hourly atmospheric forcing data
files to be used in offline CLM4 simulations. Source data
files are from the Climate Impacts Group (Salathe, 2008)
and are downscaled historical and future ECHAM5 AR2
files specifically designed for the Pacific Northwesthttp:
//www.cses.washington.edu/data/ipccar4/.

The specific variable calculations are as follows:

1. Air temperature: The regional input files provide daily
minimum and maximum temperature. Day length was
used to apply a diurnal pattern to the minimum and max-
imum temperatures.

2. Wind speed: The regional input files provide daily esti-
mates of wind in m s−1. Wind speed was assumed to be
constant for sub-daily time steps.

3. Relative humidity: Percent relative humidity was cal-
culated using the hourly mean temperatures calculated
above and vapor pressure.

– DAYMET and MTClim algorithms were used to
calculate vapor pressure from temperature, precipi-
tation, and solar radiation. Vapor pressure was then
used to calculate relative humidity (RH):

(a) RH = 100× (VP/SVP), where VP = the average
daily vapor pressure in Pascals and SVP = the
saturation vapor pressure. SVP varies with tem-
perature.
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Table A1. CLM4 PFT original configuration and the new subgroup
that replaced the original PFT for regional variation in CLM4eco
and CLM4stem.

CLM PFT Description New PFT

1 Evergreen needleleaf (temperate) CR all, KM fir*
2 Evergreen needleleaf (boreal) WC fir
3 Deciduous needleleaf (boreal) BM all
4 Evergreen broadleaf (tropical) WC, KM pines
5 Evergreen broadleaf (temperate) No change
6 Deciduous broadleaf (tropical) EC fir
7 Deciduous broadleaf (temperate) No change
8 Deciduous broadleaf (boreal) EC pines
9 Evergreen broadleaf shrub No change
10 Deciduous broadleaf shrub (temperate) No change

∗ Fir includes Douglas-fir and true firs.

(b) SVP = 610.78×exp(T /(T +238.3)×17.2694),
whereT is the current temperature in◦C.

4. Precipitation: The input files provide daily sums of pre-
cipitation. This needed to be distributed over the day,
but not evenly. CLM will evaporate off the water too
quickly and none of it will reach the plant roots. The
precipitation was split into 3 equal amounts of precipi-
tation and dropped at 8 h intervals, similar to the NCEP
dataset where it is dropped at 6 h intervals. We recog-
nize that more sophisticated diurnal precipitation algo-
rithms using site observations could be developed, but
more locations with sub-daily patterns of rainfall would
be necessary for the region.

5. FSDS (incoming shortwave radiation or incident solar):
This variable is not provided in the input files. Again,
DAYMET algorithms were used. The inputs required
are daily minimum and maximum temperature, precip-
itation, latitude, longitude, and elevation, all of which
are available from the downscaled regional dataset.

A2 Methods for making PFT modifications in CLM4

There are 17 PFTs in CLM4, eight of which are forested. Be-
cause we did not need the tropical or boreal PFTs, we reor-
ganized the PFT physiological file to represent the variation
between and within the temperate evergreen needleleaf PFT
among the ecoregions. The old and new PFT assignments
are shown in Tables A1 and A2. We also show the parame-
ters that varied for each new PFT. The surface datasets and
the dynamic PFT file were altered to match the new PFT as-
signments. Inventory and remote sensing data were used to
identify within region PFT percentage cover for “fir” versus
“pine”, where necessary. The FLUXNET tower sites were
also parameterized using site-specific observations and re-
gional observations where site-specific observations were not
available. Tower physiological parameterizations are in Ta-
ble A3.
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Fig. A1. (a) Supplemental plot ratio of annual stem wood produc-
tion to foliage production versus annual NPP for the mesic sites
(green) and semi-arid (red),(b) equations representing allocation to
stem wood production versus foliage production as a function of
annual NPP. The default CLM4 equation is blue and the modified
equations are for mesic (green) and semi-arid (red). 47 
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Fig. A2. Historical annual area burned in Oregon (km-2). Estimates
are from the Monitoring Trends in Burn Severity database (Eiden-
shink et al. 2007), the Global Fire Emissions Database (van der Werf
et al. 2010), and CLM4. CLM4 overestimates burn area in Oregon
for all years except for 2002 compared to the remote sensing-based
estimates. CLM4 does not include a fire suppression algorithm,
which could be contributing to the high bias. However, burn area
estimates do not exceed more than 2 % of the land area for any year.
GFED estimates are known to be the lowest for burn area compared
to other models (French et al., 2011).

A3 Methods for stem allocation modification in CLM4

The PFT physiology file includes an option to have the frac-
tion of annual NPP allocated to stem wood versus foliage
change with the increasing annual sum of NPP throughout
the year. The equation is for all forested PFTs:
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Table A2. Model physiological parameters that vary for subgroups of PFTs in each ecoregion.

New PFT Specific leaf Foliar Foliar % Leaf Mortality
(PFT number) area (SLA; C : N leaf N in longevity rate (%)

m−2 g−1 C) ratio Rubisco

CR all, KM fir (1) 0.013 35 5.0 5 0.8
WC fir (2) 0.013 48 5.0 5 1.0
BM all (3) 0.007 55 3.5 3 1.3
WC, KM pine (4) 0.009 50 3.7 3 1.0
EC fir (6) 0.010 43 3.7 5 0.8
EC pine (8) 0.007 56 3.7 3 1.0

Table A3. Model physiological parameters that varied from the CLM4 default parameter values for the Metolius mature pine and the
Campbell River mature fir FLUXNET sites.

New PFT Specific leaf Foliar Foliar % Leaf Fine root: Mortality
(PFT number) area (SLA; C : N leaf N in longevity leaf rate (%)

m−2 g−1 C) ratio Rubisco allocation

Metolius (me2) 0.009 50 5.0 4 1.2 0.8
Campbell River (ca1) 0.013 32 10.0 5 1.0 1.0

Table A4. Stem wood allocation equations for each ecoregion PFT. The equation was only varied for ecoregions where stem wood was
significantly over- or underestimated. Maximum allocation is the upper limit of annual NPP that will be allocated to stem wood production
versus foliage production.

New PFT Allocation equation Maximum
(PFT number) allocation

CR all, KM fir (1) 3.5/(1.0+ exp(−0.004× (annsumnpp(t) − 300.0))) − 0.4 3.0
WC fir (2) 3.5/(1.0+ exp(−0.004× (annsumnpp(t) − 300.0))) − 0.4 3.0
BM all (3) 2.3/(1.0+ exp(−0.0035× (annsumnpp(t) − 300.0))) − 0.27 1.7
WC, KM pine (4) 2.7/(1.0+ exp(−0.004× (annsumnpp(t) − 300.0))) − 0.4 2.2
EC fir (6) 3.5/(1.0+ exp(−0.004× (annsumnpp(t) − 300.0))) − 0.4 3.0
EC pine (8) 2.7/(1.0+ exp(−0.004× (annsumnpp(t) − 300.0))) − 0.4 2.2

Allocation ratio (A1)

= (2.7/(1.0+ exp(−0.004× (annsumnpp(t) − 300.0)))) − 0.4,

where “annsumnpp” is the total PFT NPP summed over the
year at the current time step (t). The ratio is constrained to
be 0.20 when NPP = 0 and does not exceed 2.2 for NPP val-
ues greater than 1000 g C m−2 yr−1. Using supplemental plot
data, we found annual stem wood to foliage NPP allocation
ratios as high as 3.7 for the mesic ecoregions and no higher
than 2.0 for the semi-arid ecoregions (Fig. A1a). We were
unable to investigate seasonal allocation ratios with the plot
data. We modified the equation to increase allocation to stem
wood versus foliage as stands age in the mesic ecoregions
compared to the default equation and decrease allocation to
stem wood versus foliage in the semi-arid ecoregions com-
pared to the default equation (Fig. A1b and Table A4).

A4 Methods for biological nitrogen fixation
modification in CLM4

Biological nitrogen fixation in CLM4 is a dynamic equation
based on the annual sum of NPP and is updated on an annual
time step. The equation is for all PFTs (not PFT dependent):

Nitrogen fixation(g N m−2 yr−1) (A2)

= (1.8× (1.0− −exp(−0.003× NPP))),

where NPP is the annual sum of net primary production, and
the function represents smaller increases in biological nitro-
gen fixation at higher levels of NPP to incorporate the hy-
pothesis that N fixation is eventually limited by other nu-
trients such as phosphorus. Maximum fixation rates do not
exceed 1.8 g N m−2 yr−1. The Campbell River fir site re-
ports rates of 3 g N m−2 yr−1 (Arain et al., 2006). Pacific
Northwest forests have reported additions of up to 15 g
of N m−2 yr−1 from native symbiotic nitrogen fixing plant
species which became established on cut or burned forested
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areas (Cleveland et al., 1999). However, the abundance and
distribution of these species is limited to early successional
forests following disturbance and would be difficult to pre-
dict by both ecoregion and plant functional type for the re-
gional simulations. Because we knew the exact disturbance
history and the reported rate for the Campbell River ma-
ture fir site (ca1) we modified the equation to yield up to
2.5 g N m−2 yr−1, retaining the limitation by other nutrients:

ca1 Nitrogen fixation(g N m−2 yr−1) (A3)

= (2.5× (1.0− exp(−0.006× NPP))),

where the rate yields higher rates of fixation for lower values
of annual NPP than the original equation to better represent
successional dynamics.
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Göeckede, M., Michalak, A. M., Vickers, D., Turner, D. P., and Law,
B. E.: Atmospheric inverse modeling to constrain regional-scale
CO2 budgets at high spatial and temporal resolution, J. Geophys.
Res., 115, D15113,doi:10.1029/2009JD012257, 2010.

Groenendijk, M., Dolman, A. J., Ammann, C., Arneth, A., Cescatti,
A., Dragoni, D., Gash, J. H. C., Gianelle, D., Gioli, B., Kiely, G.,
Knohl, A., Law, B. E., Lund, M., Marcolla, B., van der Molen,
M. K., Montagnani, L., Moors, E., Richardson, A. D., Roupsard,
O., Verbeeck, H., and Wohlfahrt, G.: Seasonal variation of pho-
tosynthetic model parameters and leaf area index from global
Fluxnet eddy covariance data, J. Geophys. Res., 116, G04027,
doi:10.1029/2011JG001742, 2012a.

Groenendijk, M., Dolman, A. J., van der Molen, M. K., Leuning, R.,
Arneth, A., Delpierre, N., Gash, J. H. C., Lindroth, A., Richard-
son, A. D., Verbeeck, H., and Wohlfahrt, G.: Assessing parameter
variability in a photosynthesis model within and between plant
functional types using global Fluxnet eddy covariance data, Agr.
Forest Meteorol., 151, 22–38, 2012b.

Harmon, M. E., Ferrell, W. K., and Franklin, J. F.: Effects on carbon
storage of conversion of old-growth forests to young forests, Sci-
ence, 247, 699–702,doi:10.1126/science.247.4943.699, 1990.

Hudiburg, T., Law, B. E., Turner, D. P., Campbell, J., Donato, D.,
and Duane, M.: Carbon dynamics of Oregon and Northern Cal-
ifornia forests and potential land-based carbon storage, Ecol.
Appl., 19, 163–180, 2009.

Hudiburg, T. W., Law, B. E., Wirth, C., and Luyssaert, S.: Regional
carbon dioxide implications of forest bioenergy production, Nat.
Clim. Change, 1, 419–423, 2011.

Hurtt, G. C., Frolking, S., Fearon, M. G., Moore, B., Shevliakova,
E., Malyshev, S., Pacala, S. W., and Houghton, R. A.: The un-
derpinnings of land-use history: three centuries of global grid-
ded land-use transitions, wood-harvest activity, and resulting sec-
ondary lands, Glob. Change Biol., 12, 1208–1229, 2006.

IPCC: IPCC expert meeting report: Technical Summary, Towards
new scenarios for analysis of emissions, climate change, im-
pacts, and response strategies, Intergovernmental Panel on Cli-
mate Change, Cambridge, 2007.

Jenkins, J. C., Chojnacky, D. C., Heath, L. S., and Birdsey, R.
A.: National-Scale Biomass Estimators for United States Tree
Species, Forest Sci., 49, 12–35, 2003.

Keith, H., Mackey, B. G., and Lindenmayer, D. B.: Re-evaluation
of forest biomass carbon stocks and lessons from the world’s
most carbon-dense forests, P. Natl. Acad. Sci. USA, 106, 11635–
11640,doi:10.1073/pnas.0901970106, 2009.

Krishnan, P., Black, T. A., Jassal, R. S., Chen, B., and Nesic, Z.: In-
terannual variability of the carbon balance of three different-aged
Douglas-fir stands in the Pacific Northwest, J. Geophys. Res.,
114, G04011,doi:10.1029/2008JG000912, 2009.

Law, B. E., Sun, O. J., Campbell, J., Van Tuyl, S., and Thornton, P.
E.: Changes in carbon storage and fluxes in a chronosequence of
ponderosa pine, Glob. Change Biol., 9, 510–524, 2003.

Law, B. E., Turner, D., Campbell, J., Sun, O. J., Van Tuyl, S., Ritts,
W. D., and Cohen, W. B.: Disturbance and climate effects on
carbon stocks and fluxes across Western Oregon USA, Glob.

Biogeosciences, 10, 453–470, 2013 www.biogeosciences.net/10/453/2013/

http://dx.doi.org/10.1016/j.agrformet.2006.03.021
http://dx.doi.org/10.1029/2010JG001593
http://dx.doi.org/10.1029/2011JG001913
http://dx.doi.org/10.1029/1999gb900014
http://dx.doi.org/10.1029/2010JG001469
http://dx.doi.org/10.1029/2009JD012257
http://dx.doi.org/10.1029/2011JG001742
http://dx.doi.org/10.1126/science.247.4943.699
http://dx.doi.org/10.1073/pnas.0901970106
http://dx.doi.org/10.1029/2008JG000912


T. W. Hudiburg et al.: Evaluation and improvement of the Community Land Model 469

Change Biol., 10, 1429–1444, 2004.
Law, B., Hudiburg, T., and Luyssaert, S Thinning effects on for-

est productivity: consequences of preserving old forests and
mitigating impacts of fire and drought, Plant Ecol. Divers.,
doi:10.1080/17550874.2012.679013, 2012.

Lawrence, D., Oleson, K. W., Flanner, M. G., Thorton, P. E., Swen-
son, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sk-
aguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization Im-
provements and Functional and Structural Advances in Version
4 of the Community Land Model, J. Adv. Model. Earth Syst., 3,
M03001,doi:10.1029/2011MS000045, 2011a.

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G.,
Lawrence, P. J., Levis, S., Swenson, S. C., and Bonan, G. B.:
The CCSM4 land simulation, 1850–2005: Assessment of sur-
face climate and new capabilities, J. Climate, 25, 2240–2260,
doi:10.1175/JCLI-D-11-00103.1, 2011b.

Luyssaert, S., Schulze, E. D., Borner, A., Knohl, A., Hessenmoller,
D., Law, B. E., Ciais, P., and Grace, J.: Old-growth forests as
global carbon sinks, Nature, 455, 213–215, 2008.

Luyssaert, S., Reichstein, M., Schulze, E.-D., Janssens, I. A., Law,
B. E., Papale, D., Dragoni, D., Goulden, M., Granier, A., Kutsch,
W. L., Linder, S., Moors, E., Munger, J. W., Pilegaard, K., Saun-
ders, M., and Falge, E. M.: Towards a consistency cross-check of
eddy covariance flux based and biometric estimates of ecosys-
tem carbon balance, Global Biogeochem. Cy., 23, GB3009,
doi:10.1029/2008GB003377, 2009.

Matson, P., Johnson, L., Billow, C., Miller, J., and Pu, R.: Seasonal
Patterns and Remote Spectral Estimation of Canopy Chemistry
Across the Oregon Transect, Ecol. Appl., 4, 280–298, 1994.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose,
S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M.,
Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi,
K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P.,
and Wilbanks, T. J.: The next generation of scenarios for climate
change research and assessment, Nature, 463, 747–756, 2010.

NRC: Verifying Greenhouse Gas Emissions Methods to Support In-
ternational Climate Agreements, edited by: Pacala, S. W., Na-
tional Academies Press, Washington DC, 2010a.

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G.,
Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton,
P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald,
C. L., Hoffman, F., Lamarque, J. F., Mahowald, N., Niu, G.-Y.,
Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A.,
Stockli, R., Wang, A., Yang, Z.-L., and Zeng, X.: Technical De-
scription of version 4.0 of the Community Land Model (CLM),
National Center for Atmospheric Research Boulder, CO, 257,
2010.

Omernik, J. M.: Ecoregions of the conterminous United States,
Map (scale 1:7,500,000), Ann. Assoc. Am. Geogr., 77, 118–125,
1987.

Pacala, S. W.: Verifying Greenhouse Gas Emissions: Methods to
Support International Climate Agreements, NRC, The National
Academies Press, Washington DC, 2010.

Qian, T., Dai, A., Trenberth, K. E., and Oleson, K. W.: Simulation
of Global Land Surface Conditions from 1948 to 2004, Part I:
Forcing Data and Evaluations, J. Hydrometeorol., 7, 953–975,
2006.

Salathe, E. P., Mote, P. W., and Wiley, M. W.: Review of scenario
selection and downscaling methods for the assessment of climate

change impacts on hydrology in the United States pacific north-
west, Int. J. Climatol., 27, 1611–1621, 2007.

Salath́e, E., Leung, L., Qian, Y., and Zhang, Y.: Regional climate
model projections for the State of Washington, Climatic Change,
102, 51–75, 2010.

Schaefer, K., Schwalm, C. R., Williams, C., Arain, M. A., Barr, A.,
Chen, J. M., Davis, K. J., Dimitrov, D., Hilton, T. W., Hollinger,
D. Y., Humphreys, E., Poulter, B., Raczka, B. M., Richardson, A.
D., Sahoo, A., Thornton, P., Vargas, R., Verbeeck, H., Anderson,
R., Baker, I., Black, T. A., Bolstad, P., Chen, J., Curtis, P. S., De-
sai, A. R., Dietze, M., Dragoni, D., Gough, C., Grant, R.F., Gu,
L., Jain, A., Kucharik, C., Law, B., Liu, S., Lokipitiya, E., Margo-
lis, H. A., Matamala, R., McCaughey, J. H., Monson, R., Munger,
J. W., Oechel, W., Peng, C., Price, D.T., Ricciuto, D., Riley, W. J.,
Roulet, N., Tian, H., Tonitto, C., Torn, M., Weng, E., and Zhou,
X.: A model-data comparison of gross primary productivity: Re-
sults from the North American Carbon Program site synthesis, J.
Geophys. Res., 117, in press,doi:10.1029/2012jg001960, 2013.

Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain,
M. A., Baker, I., Barr, A., Black, T. A., Chen, G., Chen, J. M.,
Ciais, P., Davis, K. J., Desai, A., Dietze, M., Dragoni, D., Fis-
cher, M. L., Flanagan, L. B., Grant, R., Gu, L., Hollinger, D.,
Izaurralde, R. C., Kucharik, C., Lafleur, P., Law, B. E., Li, L.,
Li, Z., Liu, S., Lokupitiya, E., Luo, Y., Ma, S., Margolis, H.,
Matamala, R., McCaughey, H., Monson, R. K., Oechel, W. C.,
Peng, C., Poulter, B., Price, D. T., Riciutto, D. M., Riley, W., Sa-
hoo, A. K., Sprintsin, M., Sun, J., Tian, H., Tonitto, C., Verbeeck,
H., and Verma, S. B.: A model-data intercomparison of CO2 ex-
change across North America: Results from the North American
Carbon Program site synthesis, J. Geophys. Res., 115, G00H05,
doi:10.1029/2009JG001229, 2010.

Thomas, C. K., Law, B. E., Irvine, J., Martin, J. G., Pettijohn, J.
C., and Davis, K. J.: Seasonal hydrology explains interannual
and seasonal variation in carbon and water exchange in a semi-
arid mature ponderosa pine forest in central Oregon, J. Geophys.
Res., 114, G04006,doi:10.1029/2009JG001010, 2009.

Thornton, P. E. and Zimmermann, N. E.: An improved canopy inte-
gration scheme for a land surface model with prognostic canopy
structure, J. Climate, 20, 3902–3923, 2007.

Thornton, P. E., Running, S. W., and White, M. A.: Generating sur-
faces of daily meteorological variables over large regions of com-
plex terrain, J. Hydrol., 190, 214–251, 1997.

Turner, D. P., Ritts, W. D., Law, B. E., Cohen, W. B., Yang,
Z., Hudiburg, T., Campbell, J. L., and Duane, M.: Scaling net
ecosystem production and net biome production over a hetero-
geneous region in the western United States, Biogeosciences, 4,
597–612,doi:10.5194/bg-4-597-2007, 2007.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu,
M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and
van Leeuwen, T. T.: Global fire emissions and the contribution of
deforestation, savanna, forest, agricultural, and peat fires (1997–
2009), Atmos. Chem. Phys., 10, 11707–11735,doi:10.5194/acp-
10-11707-2010, 2010.

Van Tuyl, S., Law, B. E., Turner, D. P., and Gitelman, A. I.: Vari-
ability in net primary production and carbon storage in biomass
across Oregon forests–an assessment integrating data from for-
est inventories, intensive sites, and remote sensing, Forest Ecol.
Manag., 209, 273–291, 2005.

www.biogeosciences.net/10/453/2013/ Biogeosciences, 10, 453–470, 2013

http://dx.doi.org/10.1080/17550874.2012.679013
http://dx.doi.org/10.1029/2011MS000045
http://dx.doi.org/10.1175/JCLI-D-11-00103.1
http://dx.doi.org/10.1029/2008GB003377
http://dx.doi.org/10.1029/2012jg001960
http://dx.doi.org/10.1029/2009JG001229
http://dx.doi.org/10.1029/2009JG001010
http://dx.doi.org/10.5194/bg-4-597-2007
http://dx.doi.org/10.5194/acp-10-11707-2010
http://dx.doi.org/10.5194/acp-10-11707-2010


470 T. W. Hudiburg et al.: Evaluation and improvement of the Community Land Model
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