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Abstract. We evaluate spatial structure in North American
CO2 flux observations using a simple diagnostic land sur-
face model. The vegetation photosynthesis respiration model
(VPRM) calculates net ecosystem exchange (NEE) using
locally observed temperature and photosynthetically active
radiation (PAR) along with satellite-derived phenology and
moisture. We use observed NEE from a group of 65 North
American eddy covariance tower sites spanning North Amer-
ica to estimate VPRM parameters for these sites. We inves-
tigate spatial coherence in regional CO2 fluxes at several
different time scales by using geostatistical methods to ex-
amine the spatial structure of model–data residuals. We find
that persistent spatial structure does exist in the model–data
residuals at a length scale of approximately 400 km (median
402 km, mean 712 km, standard deviation 931 km). This spa-
tial structure defines a flux-tower-based VPRM residual co-
variance matrix. The residual covariance matrix is useful in
constructing prior fluxes for atmospheric CO2 concentration
inversion calculations, as well as for constructing a VPRM
North American CO2 flux map optimized to eddy covari-
ance observations. Finally (and secondarily), the estimated
VPRM parameter values do not separate clearly by plant
functional type (PFT). This calls into question whether PFTs
can successfully partition ecosystems’ fundamental ecologi-
cal drivers when the viewing lens is a simple model.

1 Introduction

The rapid carbon dioxide (CO2) accumulation in Earth’s at-
mosphere in the second half of the 20th century (Conway
et al., 2009) has been partially offset by natural biogeochem-
ical processes. Without these buffers, atmospheric CO2 could
accumulate twice as fast: of the roughly 9 Pg of carbon hu-
mans release each year by burning fossil fuels (Boden et al.,
2012), only roughly half remains in the atmosphere as carbon
dioxide (Denman et al., 2007). The rest is absorbed by oceans
through air–sea gas exchange or by terrestrial and marine
flora through net primary production (NPP;Denman et al.,
2007). Terrestrial biological fluxes of CO2 through photo-
synthesis and respiration constituted a net sink from the at-
mosphere of 2 to 3 Pg C per year during the 1990s (Le Qúeŕe
et al., 2009), and they exhibit higher interannual variabil-
ity than oceanic fluxes (Bousquet et al., 2000; Le Qúeŕe
et al., 2009). Understanding terrestrial fluxes is crucial to un-
derstanding and predicting the increase in atmospheric CO2
caused by anthropogenic emissions.

Though the net global flux of CO2 to the atmosphere is
well constrained (Tans and Conway, 2005), continental bi-
ological CO2 fluxes are not well characterized, and their
drivers are, so far, poorly understood. Diagnostic skill at in-
terannual time scales is poor: land surface models consis-
tently fail to capture observed CO2 flux interannual vari-
ability (e.g.,Friend et al., 2007; Ricciuto et al., 2008; Pren-
tice et al., 2000). Predictive skill is also poor: a sampling
of terrestrial flux models project terrestrial sink strengths
for the year 2100 that vary widely in magnitude and sign
(Friedlingstein et al., 2006).
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4608 T. W. Hilton et al.: Spatial structure in land surface model residuals

One way to improve model performance is to collect addi-
tional data to constrain either model representations of eco-
logical processes (that is, model structure) or model param-
eters toward the ultimate goal of constraining terrestrial flux
estimates. These data sources include direct eddy covariance
flux observations, observed atmospheric CO2 concentrations
coupled with atmospheric transport models, and land surface
models. Model–observation residuals are another such data
source. Here we seek to use spatial structure in these residu-
als to derive new constraints on surface fluxes.

Land surface models integrate ecological and meteorolog-
ical drivers into a quantitative biological carbon flux esti-
mate for some land region. They are useful because they can
be used to extrapolate over large scales. Direct observation
footprints of even the most spatially dense CO2 flux obser-
vation networks cover only a tiny fraction of the land areas
they span. For example, even with seven eddy covariance
(EC) towers in a roughly 50 km× 75 km area,Goulden et al.
(2006) estimate that they directly observe less than 0.01 %
of that space. Land surface models estimate fluxes where di-
rect observations do not exist. Improving model diagnoses of
the magnitudes and drivers of terrestrial fluxes is a necessary
step toward improving overall predictive skill.

Atmospheric inversion calculations (e.g.,Rayner et al.,
1999; Gurney et al., 2002; Rödenbeck et al., 2003; Peters
et al., 2005, 2007) offer one approach to use observed at-
mospheric CO2 concentrations coupled to an atmospheric
transport model to further constrain terrestrial CO2 flux di-
agnoses. This approach usually divides the planet into re-
gions, and within each region typically solves for a correc-
tion to a prior flux estimate from a land surface model (e.g.,
Gurney et al., 2002). In regions of the world where CO2
concentration observations are scarce, there is little informa-
tion with which to correct the prior flux, and the resulting
flux estimations are therefore heavily dependent on the prior.
Rödenbeck et al.(2003) introduced a prescribed isotropic
spatial covariance to the prior, choosing a spatial correlation
scale of 1275 km based on the average scale of autocorrela-
tion among four different land surface models examined by
McGuire et al.(2001). Peters et al.(2005, 2007) propagated
inferred surface fluxes forward through time instead of using
a prior flux estimate calculated offline for each time step be-
fore beginning the inversion calculations. They also used an
ensemble Kalman filter to estimate a surface flux spatial co-
variance matrix. This relies on the assumption that flux errors
are independent at weekly time scales and at spatial regions
of 25 to 50 % of each continent (Peters et al., 2005), an as-
sumption that is conventional, though most likely not strictly
accurate (Peters et al., 2005).

Jacobson et al.(2007a,b) describe an inversion approach
that does not rely on prior fluxes on the grounds that mod-
eled regional prior fluxes must either be assumed to be in-
dependent or treated as spatially correlated with an explicit
spatial structure. In reality they are often correlated, though
the quantitative correlations are unknown (Jacobson et al.,

2007b, auxiliary materials).Jacobson et al.(2007b) show
that this assumption of independence results in overconfident
flux estimates. By eschewing prior flux estimates theJacob-
son et al.(2007a,b) study avoids this pitfall, but at the cost of
ignoring the knowledge of ecosystem behavior encapsulated
in the flux model: the resulting posterior flux uncertainties
are much larger than when modeled prior fluxes are included.
That is, removing the information provided by a land surface
model removes a significant constraint from the estimation.

Michalak et al.(2004) propose an inversion method that
uses an assumed spatial correlation structure among surface
fluxes, rather than estimates of prior fluxes themselves, to
constrain an inversion.Mueller et al.(2008) present an im-
plementation of that geostatistical method, imposing a spatial
covariance structure derived from net ecosystem production
(NEP) estimates obtained from the CASA model (Randerson
et al., 1997), whileGourdji et al.(2008) extend the analysis to
include meteorological and economic ancillary data sources
as constraints.Gourdji et al.(2010) present results for the
geostatistical inversion method applied to North America for
the year 2004, examining the impact of spatially dense data
within a relatively small region on the method’s ability to re-
cover continental model-generated CO2 fluxes. LikeJacob-
son et al.(2007a) these studies also do not include prior sur-
face flux estimates, again avoiding the errors introduced by
incorrect assumptions regarding the priors but at the cost of
ignoring the information a land surface model can provide.

Ideally, a flux diagnosis method would integrate all avail-
able sources of information. Here we focus on extracting
information from a land surface model, while minimizing
the overconfidence-producing assumptions demonstrated by
Jacobson et al.(2007a,b). Model–data residuals are the com-
bined effects of flux observation errors, model structural er-
ror, and natural variability uncaptured by the flux model. The
spatial behavior of model residuals sheds light on the pro-
cesses that drive fluxes. In the following analyses we will use
that information to produce a data-derived quantification of
the model–data residuals and their spatial structure that may
be used to constrain the fluxes.

Terrestrial flux drivers (meteorological and ecological) do
not appreciably vary at scales of, say, one centimeter; there-
fore model residuals should be correlated within some dis-
tance, however small. That distance is an upper bound on
the area that a model result for a single spatial point can
illuminate. Without a quantitative method for determining
a correlation structure for model residuals, it is convenient
to assume model residuals are independent and identically
distributed (i.i.d.) in space and time. For example,Pacala
et al. (2001), Peylin et al.(2002), Gurney et al.(2002), and
Peters et al.(2005) adopt this assumption in their inversions.
In fact, inversions that solve for corrections to regional prior
fluxes intrinsically assume that prior flux residuals are cor-
related within the time scale and spatial scale of the inver-
sion (Rödenbeck et al., 2003; Michalak et al., 2004). If they
are not, the inversion applies a uniform correction to a group
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of uncorrelated residuals, creating a source of error (Cheval-
lier et al., 2006). As noted,Rödenbeck et al.(2003) im-
pose a prior flux uncertainty spatial correlation length scale
of 1275 km. They base that distance on the autocorrelation
length scales of the four models used byMcGuire et al.
(2001). This depends on the assumption that the NEE range
among those four models is representative of flux model un-
certainty (Rödenbeck et al., 2003). Furthermore,Michalak
et al.(2004) point out that spatial structure, if existent, con-
tains information that constrains fluxes. A spatial covariance
matrix also identifies regions whose errors are strongly cor-
related. These correlated areas may then be assigned lesser
weights than uncorrelated areas to quantitatively acknowl-
edge that their results are, to some degree, redundant.Micha-
lak et al. (2005) present a maximum likelihood (ML) ap-
proach for quantitatively estimating spatial covariances for
prior flux error from model output, noting in reference to
prior error covariances that “it is recognized that these pa-
rameters are crucial to the inversion”.

We can improve on existing flux diagnoses by deriving di-
rectly from observed fluxes a residual covariance matrix to
characterize the spatial behavior of flux model residual cor-
relation. A necessary (and independently useful) prerequisite
for estimating a model’s residual covariance matrix is an es-
timation of the spatial scale at which the model’s residuals
are correlated. Here we present an analysis of the residual co-
variance matrix of VPRM (Mahadevan et al., 2008), a simple
land surface model.

We test the hypothesis that VPRM model residuals are
spatially correlated at length scales smaller than the North
American continent but larger than an individual EC tower
footprint. Analyzing the spatial scale of VPRM residual cor-
relation will provide that length scale. The AmeriFlux and
Fluxnet Canada networks of EC towers provide observa-
tions that allow us to directly analyze the spatial behavior of
VPRM residuals. If that correlation length scale proves larger
than the tower footprints, it will prove that the network of EC
flux towers in North America has sufficient spatial span and
density and has collected enough data across time to empiri-
cally define a flux model residual covariance matrix.

2 Methods

2.1 Land surface model

The vegetation photosynthesis and respiration model
(VPRM) of Mahadevan et al.(2008) is a simple diagnostic
terrestrial flux model. In spite of its simplicity, VPRM cap-
tures daily and annual cycles in CO2 fluxes reasonably well
(Mahadevan et al., 2008). VPRM structure and skill are de-
scribed in great detail byMahadevan et al.(2008). Here we
provide a brief overview of the model structure.

VPRM models net ecosystem exchange (NEE) as the sum
of a photosynthetic component (gross ecosystem exchange,
GEE) and an ecosystem respiration component. GEE is mod-
eled via the equation

GEE= λ · Tscale· Pscale· Wscale· EVI ·
1

1+ PAR/PAR0
· PAR. (1)

PAR is observed photosynthetically active radiation and
EVI is the satellite-derived enhanced vegetation index (Huete
et al., 2002). PAR0 and λ are user-supplied parameters.
Pscale, Wscale, and Tscale are dimensionless scaling terms.
They each take values between 0.0 and 1.0 and are defined
as follows.

Pscaleis satellite derived and describes the impacts of leaf
expansion and senescence on canopy-scale photosynthesis.
Pscale is defined as 0.0 outside of the growing season, 1.0
during growing season peak greenness, and is a linear func-
tion of the satellite-derived land surface water index (LSWI)
(Xiao et al., 2004a) during leaf expansion and senescence:

Pscale=
1+ LSWI

2
. (2)

Wscale is satellite derived and describes canopy moisture,
and is defined as

Wscale=
1+ LSWI

1+ LSWImax
, (3)

with LSWImax the growing-season maximum LSWI value.
The value of the third dimensionless scaling termTscaleis

taken from literature and describes the relationship between
photosynthesis and temperature.Tscaleis defined as

Tscale=
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax) −
(
T − Topt

)2
, (4)

with T air temperature, andTmin, Tmax, andTopt the mini-
mum, maximum, and optimum temperatures for photosyn-
thesis, respectively.Tscale is calculated from literature val-
ues ofTmin, Tmax, andTopt because the strong correlation be-
tween surface temperature and PAR results in numerical in-
stability when bothTscaleand PAR0 are estimated from flux
observations (Mahadevan et al., 2008).

Pscale, Wscale, andTscale, by definition, vary in both time
and space (Mahadevan et al., 2008, Eqs. 6, 7, 8).

Respiration (R) is modeled as a linear function of observed
air temperature (T ):

R = α · T + β (5)

with user-supplied parametersα andβ.
NEE is the difference between the photosynthetic flux and

the respiration flux:

NEE= R − GEE. (6)

www.biogeosciences.net/10/4607/2013/ Biogeosciences, 10, 4607–4625, 2013
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Within Eqs. (1), (5), and (6), λ governs the slope of
the light-response curve (the relationship between photosyn-
thetic CO2 flux and PAR).α defines the slope of the respira-
tion response to temperature. PAR0 defines a half-saturation
value for photosynthesis. That is, it specifies a PAR value
at which further increases in PAR no longer enhance photo-
synthesis, as other limiting factors become dominant. VPRM
places a PFT-specific floorTlow, 1◦C ≤ Tlow ≤ 5◦C, on sur-
face temperatures. Temperatures belowTlow are raised to
Tlow when calculating respiration.β thus specifies a minimal
level of respiration that occurs regardless of air temperature.

In its simplicity, VPRM offers two important advantages
over more complex models. First, it has only four user-
defined parameters and is computationally inexpensive. This
makes parameter estimation via data assimilation methods
that do not require parametric assumptions computation-
ally tractable. Second, as inputs, VPRM requires only air
temperature, photosynthetically active radiation (PAR), and
satellite-derived vegetation and moisture indices. Tempera-
ture and PAR can come from site-level observations when
modeling a point or, if the model is to be run globally, from
gridded reanalysis products. VPRM can thus be run glob-
ally, with no need to compile temporally filled meteorologi-
cal driver data. These advantages make VPRM a useful tool
both for producing diagnostic regional flux maps as well as
for evaluating spatial scales of model residuals in the manner
of Chevallier et al.(2006).

2.2 Data

To constrain VPRM parameter values and examine NEE
residuals, we use data from 65 North American eddy co-
variance flux towers. Figure1 shows the sites on a map,
and Table1 lists the sites and dominant plant functional
type (PFT). These data are part of the 2007 Fluxnet Syn-
thesis Dataset (http://www.fluxdata.org). For each site, this
dataset contains CO2 flux, air temperature, and PAR obser-
vations at 30 min intervals, as well as many other quantities
not needed for VPRM.

The Fluxnet dataset contains gap-filled NEE, as well as
non-filled NEE. Structurally, VPRM does not consider driver
data or flux results from previous time steps (Eq.6). VPRM
simply does not report an NEE at timesteps where the re-
quired driver data are not available. In light of this, and
to reduce potential residuals due to gap filling, we use
the non-filled data.

The 65 observation sites cover 9 of the 17 PFTs of the
International Geosphere-Biosphere Programme (IGBP) land
cover classification scheme (Loveland and Belward, 1997):
evergreen needleleaf forest (27 sites), deciduous broadleaf
forest (8 sites), mixed forest (3 sites), closed shrublands (7
sites), open shrublands (2 sites), woody savannas (1 site),
grasslands (7 sites), permanent wetlands (4 sites), and crop-
lands (6 sites). The eight PFTs not represented are the follow-
ing: deciduous needleleaf forest, evergreen broadleaf forest,

30°N

45°N

60°N

80°W100°W120°W

ENF
DBF
MF
CS
OS
WS
Gr
Wet
Crop

Fig. 1. The 65 eddy covariance flux tower sites from the Fluxnet
network (http://www.fluxdata.org) that provide observations for
VPRM parameterization and VPRM flux residual calculation. ENF:
evergreen needleleaf forest, DBF: deciduous broadleaf forest, MF:
mixed forest, CS: closed shrubland, OS: open shrubland, WS:
woody savanna, Gr: grassland, Wet: permanent wetland, Crop:
cropland.

savannas, water, cropland/natural vegetation mosaic, urban
and built-up, snow and ice, and barren or sparsely vegetated.

Site phenology, land surface water, enhanced vegetation
index (Huete et al., 2002), and land surface cover type are
calculated from reflectances measured by the NOAA MODIS
instrument, orbiting with the NASA Terra satellite since 2000
and the NASA Aqua satellite since 2002. Oak Ridge Na-
tional Laboratory extracts MODIS data for many Fluxnet
tower sites and makes them available on the World Wide Web
(ORNL DAAC, 2007).

For the present study, we use MODIS Collection 5 data
(ORNL DAAC, 2010). Collection 5 data offer improved pro-
cessing algorithms from Collection 4 (Friedl et al., 2010;
Didan and Huete, 2006). Site phenology is from dataset
M*D12Q2 (Strahler et al., 1999a), reflectances are from
dataset M*D43A4 (Strahler et al., 1999b), vegetation in-
dices are from dataset M*D13A2 (Huete et al., 2002,
1999), and IGBP land surface cover types are from dataset
M*D12Q1 (Loveland and Belward, 1997; Strahler et al.,
1999a). The “*” in M*D is either “O”, representing the
data from the Terra satellite, or “Y” representing the data
from the Aqua satellite. We considered only MODIS data
of “best” quality, as indicated by each MODIS product’s
associated quality assurance flags.

Biogeosciences, 10, 4607–4625, 2013 www.biogeosciences.net/10/4607/2013/
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Table 1. 65 North American eddy covariance sites used to parameterize VPRM and calculate VPRM flux errors. PFTs are taken from the
International Geosphere-Biosphere Programme (IGBP) land cover classification scheme (Loveland and Belward, 1997). The PFT classifica-
tions are taken from literature citations or investigator descriptions where available, and otherwise derived from MODIS 1 km land surface
classifications. Data are from the 2007 Fluxnet Synthesis Dataset.

Site Code Site Name Latitude Longitude Land Cover Reference

CA-Ca1 British Columbia – Campbell River – Mature Forest Site 49.870 −125.340 1 – Evergreen Needleleaf ForestHumphreys et al.(2006)
CA-Ca2 British Columbia – Campbell River – Clearcut Site 49.870 −125.290 1 – Evergreen Needleleaf ForestHumphreys et al.(2006)
CA-Ca3 British Columbia – Campbell River – Young Plantation Site 49.520 −124.900 1 – Evergreen Needleleaf ForestHumphreys et al.(2006)
CA-Gro Ontario – Groundhog River-Mature Boreal Mixed Wood 48.220 −82.160 5 – Mixed Forest McCaughey et al.(2006)
CA-Let Lethbridge 49.710 −112.940 10 – Grasslands Flanagan et al.(2002)
CA-Mer Eastern Peatland – Mer Bleue 45.410 −75.520 11 – Permanent Wetlands Lafleur et al.(2003)
CA-NS2 UCI-1930 burn site 55.910 −98.520 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS3 UCI-1964 burn site 55.910 −98.380 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS4 UCI-1964 burn site wet 55.910 −98.380 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS5 UCI-1981 burn site 55.860 −98.490 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS6 UCI-1989 burn site 55.920 −98.960 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS7 UCI-1998 burn site 56.640 −99.950 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-Oas Sask – SSA Old Aspen 53.630 −106.200 4 – Deciduous Broadleaf ForestBlack et al.(2000)
CA-Obs Sask – SSA Old Black Spruce 53.990 −105.120 1 – Evergreen Needleleaf ForestBergeron et al.(2007)
CA-Ojp Sask – SSA Old Jack Pine 53.920 −104.690 1 – Evergreen Needleleaf ForestHoward et al.(2004)
CA-Qcu Quebec Boreal Cutover Site 49.270 −74.040 7 – Open Shrublands Giasson et al.(2006)
CA-Qfo Quebec Mature Boreal Forest Site 49.690 −74.340 1 – Evergreen Needleleaf ForestBergeron et al.(2007)
CA-SF2 Sask – Fire 1989 54.250 −105.880 6 – Closed Shrublands Mkhabela et al.(2009)
CA-SF3 Sask – Fire 1998 54.090 −106.010 6 – Closed Shrublands Mkhabela et al.(2009)
CA-SJ1 Sask – 1994 Harv. Jack Pine 53.910 −104.660 1 – Evergreen Needleleaf ForestZha et al.(2009)
CA-SJ2 Sask – 2002 Harvested Jack Pine 53.950 −104.650 1 – Evergreen Needleleaf ForestZha et al.(2009)
CA-WP1 Western Peatland – LaBiche-Black Spruce/Larch Fen 54.960 −112.460 11 – Permanent Wetlands Syed et al.(2006)
US-ARM ARM Southern Great Plains site – Lamont – Oklahoma 36.610 −97.490 12 – Croplands Fischer et al.(2007)
US-Atq Atqasuk – Alaska 70.470 −157.410 11 – Permanent Wetlands Oechel et al.(2000)
US-Aud Audubon Research Ranch – Arizona 31.590 −110.510 10 – Grasslands Wilson and Meyers(2007)
US-Blo Blodgett Forest – California 38.900 −120.630 1 – Evergreen Needleleaf ForestGoldstein et al.(2000)
US-Bn1 Delta Junction 1920 Control site 63.920 −145.370 1 – Evergreen Needleleaf ForestLiu et al. (2005)
US-Bn2 Delta Junction 1987 Burn site 63.920 −145.370 4 – Deciduous Broadleaf ForestLiu et al. (2005)
US-Bn3 Delta Junction 1999 Burn site 63.920 −145.740 7 – Open Shrublands Liu et al. (2005)
US-Bo1 Bondville – Illinois 40.010 −88.290 12 – Croplands Meyers and Hollinger(2004)
US-Bo2 Bondville – Illinois (companion site) 40.010 −88.290 12 – Croplands Meyers and Hollinger(2004)
US-Brw Barrow – Alaska 71.320 −156.630 11 – Permanent Wetlands Harazono et al.(2003)
US-CaV Canaan Valley – West Virginia 39.060 −79.420 10 – Grasslands Wilson and Meyers(2007)
US-Dk1 Duke Forest Open Field – North Carolina 35.970 −79.090 10 – Grasslands Stoy et al.(2006)
US-Dk2 Duke Forest Hardwoods – North Carolina 35.970 −79.100 4 – Deciduous Broadleaf ForestStoy et al.(2006)
US-Dk3 Duke Forest – loblolly pine – North Carolina 35.980 −79.090 1 – Evergreen Needleleaf ForestStoy et al.(2006)
US-FPe Fort Peck – Montana 48.310 −105.100 10 – Grasslands Wilson and Meyers(2007)
US-Goo Goodwin Creek – Mississippi 34.250 −89.970 10 – Grasslands Wilson and Meyers(2007)
US-Ha1 Harvard Forest EMS Tower – Massachusetts (HFR1) 42.540 −72.170 4 – Deciduous Broadleaf ForestUrbanski et al.(2007)
US-Ha2 Harvard Forest Hemlock Site – Massachusetts 42.540 −72.170 1 – Evergreen Needleleaf ForestHadley and Schedlbauer(2002)
US-Ho1 Howland Forest (main tower) – Maine 45.200 −68.740 1 – Evergreen Needleleaf ForestHollinger et al.(1999)
US-Ho2 Howland Forest (west tower) – Maine 45.210 −68.750 1 – Evergreen Needleleaf ForestHollinger et al.(2004)
US-KS1 Florida – Kennedy Space Center (slash pine) 28.460 −80.670 1 – Evergreen Needleleaf ForestBracho et al.(2008)
US-KS2 Florida – Kennedy Space Center (scrub oak) 28.610 −80.670 6 – Closed Shrublands Powell et al.(2006)
US-Los Lost Creek – Wisconsin 46.080 −89.980 6 – Closed Shrublands Sulman et al.(2009)
US-Me2 Metolius – intermediate-aged ponderosa pine – Oregon 44.450 −121.560 1 – Evergreen Needleleaf ForestThomas et al.(2009)
US-Me4 Metolius – old-aged ponderosa pine – Oregon 44.500 −121.620 1 – Evergreen Needleleaf ForestAnthoni et al.(2002)
US-MMS Morgan Monroe State Forest – Indiana 39.320 −86.410 4 – Deciduous Broadleaf ForestSchmid et al.(2000)
US-MOz Missouri Ozark Site 38.740 −92.200 4 – Deciduous Broadleaf ForestGu et al.(2006)
US-Ne1 Mead – irrigated continuous maize site – Nebraska 41.100 −96.290 12 – Croplands Verma et al.(2005)
US-Ne2 Mead – irrigated maize-soybean rotation site – Nebraska 41.100 −96.280 12 – Croplands Verma et al.(2005)
US-Ne3 Mead – rainfed maize-soybean rotation site – Nebraska 41.180 −96.440 12 – Croplands Verma et al.(2005)
US-NR1 Niwot Ridge Forest – Colorado (LTER NWT1) 40.030 −105.550 1 – Evergreen Needleleaf ForestMonson et al.(2002)
US-PFa Park Falls/WLEF – Wisconsin 45.950 −90.270 5 – Mixed Forest Davis et al.(2003)
US-SO2 Sky Oaks- Old Stand – California 33.370 −116.620 6 – Closed Shrublands Luo et al.(2007)
US-SO3 Sky Oaks- Young Stand – California 33.380 −116.620 6 – Closed Shrublands Luo et al.(2007)
US-SO4 Sky Oaks- California 33.370 −116.620 6 – Closed Shrublands Luo et al.(2007)
US-SP1 Slashpine – Austin Cary – 65yr nat regen-FL 29.740 −82.220 1 – Evergreen Needleleaf ForestPowell et al.(2008)
US-SP2 Slashpine – Mize – clearcut – 3yr-regen-FL 29.760 −82.240 1 – Evergreen Needleleaf ForestBracho et al.(2012)
US-SP3 Slashpine – Donaldson – mid-rot – 12yr-FL 29.750 −82.160 1 – Evergreen Needleleaf ForestBracho et al.(2012)
US-Syv Sylvania Wilderness Area – Michigan 46.240 −89.350 5 – Mixed Forest Desai et al.(2005)
US-Ton Tonzi Ranch – California 38.430 −120.970 8 – Woody Savannas Ma et al.(2007)
US-UMB Univ. of Mich. Biological Station – Michigan 45.560 −84.710 4 – Deciduous Broadleaf ForestGough et al.(2008)
US-Var Vaira Ranch – Ione – California 38.410 −120.950 10 – Grasslands Ma et al.(2007)
US-WCr Willow Creek – Wisconsin 45.810 −90.080 4 – Deciduous Broadleaf ForestCook et al.(2004)
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Table 2.Total number of parameters resulting from the nine differ-
ent schemes used to group observation sites for VPRM parameter
estimation.

Site groupings in time
Monthly Annual All
intervals intervals available data,

2000–2006

Site groupings in space
Individual sites (65) 21 840 1820 260
PFTs (9) 3360 280 40
All sites together 336 28 4

We examine the time period 2000 to 2006, bounded in
2000 by the MODIS instrument launch and in 2006 by eddy
covariance flux availability.

2.3 VPRM parameter estimation

VPRM has four user-estimated parameters that may de-
pend on the location being simulated:λ, PAR0, α,
and β. In this section we describe how we estimated
these parameter values.

We seek the parameter values that cause VPRM NEE to
match observed NEE as closely as possible. We chose to
minimize the sum of squared errors (SSE; we define VPRM
residuals as NEEVPRM minus NEEobserved). If the residu-
als are normally distributed with a constant standard devi-
ation (i.e., homoscedastic), minimizing SSE is equivalent to
a maximum likelihood estimate (Hilborn and Mangel, 1997).

In reality, flux model residuals are neither independent nor
identically distributed. A double exponential distribution de-
scribes EC observation error better than the normal distribu-
tion (Richardson et al., 2006). EC observation error is also
proportional to NEE magnitude and wind speed (Richard-
son et al., 2006; Lasslop et al., 2008). Thus the strong daily
and seasonal cycles of NEE cause EC observation errors
to be temporally autocorrelated as well as heteroscedastic
(Lasslop et al., 2008). Lasslop et al.(2008) suggest a max-
imum likelihood approach for estimating flux model param-
eters; however, the method focuses on eddy covariance ob-
servation error. The combined impact of land surface model
structural error, incorrect parameter values, and natural vari-
ability – microscale variations in climate, ecosystem behav-
ior, etc. – may also exhibit statistically significant autocor-
relation (Ricciuto et al., 2008). We can approximate distri-
butions for each of those error sources from published lit-
erature; therefore the full likelihood function may be writ-
ten out as the integrated product of likelihood functions
for several different statistical distributions. Reducing that
integral to an analytical solution, however, is beyond the
scope of this study.

NEE varies on a number of different time scales (e.g.,
daily, annual) and space scales (e.g., local land use and PFT
heterogeneity, larger regions that experience similar climate

patterns). An ideal land surface model parameter estimation
method would allow parameter values to vary at space and
time scales matching the ecological variations in NEE. Op-
timizing parameter values in short time intervals and small
spatial windows would run the risk of overfitting as well as
incur unnecessary computational cost. We chose to examine
three temporal and three spatial windows for SSE minimiza-
tion – in time: monthly, annual, and all available data; and,
in space: individual sites, sites grouped by PFT, and all sites
together. This approach yields nine different parameter sets,
ranging from 4 to more than 21 000 parameter values. Table2
summarizes the nine parameter sets. There is not a clear con-
sensus in the literature regarding the “optimal” space–time
grouping of observations for parameter estimation; this al-
most certainly varies according to the modeling goal. This
study takes no position on the fitness of the various parame-
terizations considered for a particular modeling task. For our
main goal of determining whether model residuals are cor-
related at spatial scales longer than a few kilometers, it is
sufficient to demonstrate spatial correlation, or lack thereof,
across several different model parameterizations.

To search for parameter values that minimize SSE
we used differential evolution (DE) (Price et al., 2006).
DE is a genetic optimization algorithm that is both
fast and more reliable in identifying a global optimum
compared to gradient-based minimization algorithms. We
used the DEoptim package (Ardia and Mullen, 2009) for
the R language and platform for statistical computing
(R Development Core Team, 2007).

The Markov chain Monte Carlo (MCMC) optimization ap-
proach (e.g.,Metropolis et al., 1953) offers the advantage
of delivering probability density functions (PDFs), and thus
parameter uncertainties, rather than the single optimal value
estimates provided by DE. Because of the substantially in-
creased computational expense and the lack of a statistically
robust residual likelihood function, we chose to employ DE
to obtain the point estimates presented here.

Among the calibration sites used byMahadevan et al.
(2008), alpha varies between 0.051 for a permanent wet-
land to 0.234 for a spruce forest in Canada. Conducting an
optimization of another model based on light-use efficiency
(LUE), Lasslop et al.(2010) allowed the LUE parameter to
vary between 0.0 and 0.22. With a similar variety of biome
types represented by our sites, we expect similar values forλ.
Schaefer et al.(2012) suggest that among LUE-based mod-
els the LUE parameter (λ, for VPRM) is more influential than
other parameters on the photosynthesis side of the ledger in
determining GPP; we might therefore place more scrutiny on
optimizedλ values than on PAR0 values. Some of our empir-
ically derivedλ estimates (reported later) are somewhat out-
side the physically realistic bounds determined by field ob-
servations; we chose to allow these values due to their impor-
tance in simulating GPP and the relative simplicity of VPRM
structure.
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2.4 Quantifying spatial structure

The spatial covariance structure quantifies the spatial struc-
ture (or lack thereof) for an arbitrary function of space. The
semivariogram offers a concise visual summary of the co-
variance structure. The spatial functions of interest here are
VPRM NEE residuals, VPRM NEE, and observed NEE. This
section defines the semivariogram and describes its typical
behavior for geophysical quantities.

The semivariogram(γ ) is generically defined (Cressie,
1993) as

γ (h) =
1

2
var(Z(si) − Z(sj )), (7)

wheresi andsj are two locations in space,h is the distance
betweensi andsj , var denotes variance, andZ is some func-
tion of location–air temperature, VPRM NEE residual, etc.
If si andsj are near one another, one might expectZ(si) and
Z(sj ) to have similar values, causingγ to be correspondingly
small. Ash increases,Z(si) andZ(sj ) typically diverge, and
the value ofγ increases. At some sufficiently largeh, Z(si)

andZ(sj ) can become independent, causingγ to level off.
The value ofh where the leveling-off occurs is known as
the range, and the value ofγ at this leveling-off is known as
the sill. The range estimates the length scale of spatial corre-
lation in Z. These easily visualized semivariogram features
are formal parameters (range,φ; sill or variance,σ 2) of the
covariance function.

In the same way that the population mean provides a sta-
tistical estimator for a population’s expected value, there is a
statistical estimator to calculate an empirical semivariogram
(γ̂ ) from a set of observed data (Cressie, 1993):

γ̂ (h) ≡
1

2|N(h)|

∑
N(h)

(Z(si) − Z(sj ))
2, (8)

whereN(h) is the number of location pairs separated by dis-
tanceh, and theγ̂ notation distinguishes the estimated semi-
variogram from the theoretical definition of Eq. (7); other
terms are defined above. The separation distanceh may be
a precise distance for a single pair of locations, or may be
an aggregated separation distance for a number of pairs of
locations.

In this study we use the “robust” semivariogram estima-
tor of Cressie and Hawkins(1980). This estimator includes
a correction term for nonnormally distributed data, and also
reduces the impact of outlying data:

γ (h) ≡

(
1

|N(h)|

∑
N(h) |Z(si) − Z(sj )|

0.5
)4

2
(
0.457+

0.494
|N(h)|

) . (9)

Purely mathematically, Eq. (7) requires the semivariogram
to equal zero ath = 0 becauseZ(si)−Z(si) = 0. In practice,
measurement errors cause repeated measurements at a single

location to differ. Moreover, measurements are not made at
infinitesimally small separation distances. There is no infor-
mation aboutγ (h) at distances below the minimum separa-
tion distanceh present in the data. This unknown behavior
at smallh is sometimes called microscale variation. When
microscale variation or measurement error are present,γ̂ (h)

does not approach zero ash approaches zero. The value of
γ̂ (h = 0) is known as the semivariogram nugget, denoted
by τ2. Together, the sill, range, and nugget characterize the
semivariogram and yield much information about the spatial
structure ofZ.

In addition to providing the length scale of spatial corre-
lation for Z, the semivariogram also specifies the spatial co-
variance ofZ. Specifically,

cov(Z(s1),Z(s2)) =
1

2
var(Z(s1)) +

1

2
var(Z(s2))

−
1

2
var(Z(s1) − Z(s2)), (10)

with cov denoting covariance, which expresses the spatial co-
variance of VPRM residuals in terms of available quantities:
the first two terms on the right-hand side of Eq. (10) are the
variance within individual sites and the last term is the semi-
variogram.

Covariance parametersφ, σ 2, and τ2 may be estimated
directly from spatial data via maximum likelihood estimation
(MLE) by maximizing the log-likelihood function (Diggle
and Ribeiro Jr., 2007):

L(β,τ2,σ 2,φ) = −0.5
{
n log(2π) + log

{∣∣∣σ 2R(φ) + τ2I

∣∣∣}
+(y − Dβ)T (σ 2R(φ) + τ2I )−1(y − Dβ)

}
, (11)

with the covariance matrixσ 2R(φ)+τ2I expressed in terms
of φ (range),σ 2 (sill), andτ2 (nugget). The notationR(φ) al-
lows for parametric covariance families that have parameters
in addition to sill, range, and nugget (e.g., the Matérn fam-
ily). The identity matrixI specifies that the nuggetτ is de-
fined only at a point, not point to point (i.e., the off-diagonal
terms of the matrix are zero). The residual matrix(y−Dβ) is
the difference between observationsy and a model structure
given byDβ with model explanatory variablesD and model
parametersβ. MLE is the preferred approach for formal co-
variance parameter estimation (Diggle and Ribeiro Jr., 2007)
in large part because it considers the full set of available data
rather than relying on the summary provided by an empirical
semivariogram.

Fitting a parametric covariance function to observed
VPRM residuals provides three key outcomes: (i) the range
for VPRM NEE residuals; (ii) covariance of VPRM NEE
residuals at arbitrary separation distances – that is, a resid-
ual covariance matrix; and (iii), via kriging, a VPRM NEE
map that explicitly considers VPRM NEE residuals (Cressie,
1993). Figure 2 shows semivariograms for two common
parametric covariance functions. When a spatial field has
no spatial correlation, its semivariogram looks like the
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Fig. 2.Two examples of generic parametric variogram models. The
parameter symbols correspond to Sect.2.4 and Eq. (11). Because
these are purely illustrative, units for semivariance and distance are
irrelevant.

pure nugget covariance function. The exponential covariance
function is one example of a model describing a spatial field
that is correlated in space to a certain distance and uncorre-
lated beyond that distance.

For the nine VPRM parameterizations of Sect.2.3we cal-
culated seasonal mean VPRM residuals. We defined seasons
as December-January-February (DJF), March-April-May
(MAM), June-July-August (JJA), and September-October-
November (SON). Within each season we maximized the
negative log likelihood (Eq.11) to estimate covariance pa-
rameters for both the pure nugget as well as exponential
covariance functions (Fig.2). We then compared the pure
nugget and exponential fits using Akaike’s information cri-
terion (AIC) (Akaike, 1976). This experiment determines
whether the observed VPRM NEE residuals are better de-
scribed as covarying in space at some length scale (the expo-
nential covariance model) or as spatially independent even
at minimal distances (the pure nugget model). We follow
this experiment with two pseudodata experiments to assess
the tendency of 65 observation locations spread across North
America and our AIC test to choose the exponential covari-
ance function when no spatial covariance is present, or to
choose the pure nugget covariance model when the under-
lying field was generated from an exponential covariance
model. The rest of this paper describes our parameterization
of VPRM and our analysis of VPRM NEE residual spatial
structure.

3 Results

3.1 VPRM parameterization

As described in Sect.2.3 and Table2, we calculated VPRM
parameter values for nine different groupings of those sites
(three in space: individual sites, plant functional types, and
all sites together; three in time: monthly, annual, and all avail-
able data), conditioned on observations from 65 North Amer-
ican eddy covariance sites (Table1, Fig. 1).

median mean

1st quartile 3rd quartile

Croplands

Permanent
Wetlands

Grasslands

Woody
Savannas

Open
Shrublands

Closed
Shrublands

Mixed Forest

Deciduous
Broadleaf Forest

Evergreen 
Needleleaf Forest

0.0 0.4 0.8
λ PAR0(×103)

0 3 6 0.0 0.2 0.4
α

−2 0 2 4
β

Fig. 3. Box-and-whisker plots for values of VPRM parame-
ters, estimated monthly by plant functional type (PFT). Whiskers
show 1.5 times the interquartile range. Units for parame-
ters are as follows:λ: µmol CO2 m−2 s−1/µmol PAR m−2 s−1;
α: µmol CO2 m−2 s−1◦C−1; β: µmol CO2 m−2 s−1; PAR0:
µmol PAR m−2 s−1.

Figure3 shows the distribution of VPRM parameter val-
ues when estimated monthly within each PFT. Parameter dis-
tributions across PFTs for the other eight parameter sets in
Table2 are nearly identical to Fig.3. The parameter distribu-
tions are similar to those ofMahadevan et al.(2008). Most
striking in Fig.3 is the failure of the parameterization to dis-
tinguish among plant functional types.

It is perhaps unexpected that VPRM parameters do not
cluster by plant functional type. For example, one might ex-
pect that the model parameter estimates of a boreal needle-
leaf forest should be different from a cropland, for exam-
ple.Turner et al.(2003) andRuimy et al.(1994) both found
that light-use efficiency, calculated as observed GPP divided
by observed PAR, varied across different biomes. This sug-
gests that VPRM’sλ parameter should vary similarly across
PFTs. There is, however, also evidence that light-use effi-
ciency (LUE) is not consistent within PFTs (Ruimy et al.,
1994; Schwalm et al., 2006), particularly at daily time scales
(Schwalm et al., 2006). Another recent study assumes that
maximum LUE is constant across PFTs (Yuan et al., 2007).
Schwalm et al.(2006) also suggest intra-PFT LUE varies less
at annual time-scales than at daily scales. The values ofλ (the
VPRM LUE parameter) in Fig.3, relatively invariant across
different PFTs, differ from the results ofSchwalm et al.
(2006). More recently,Groenendijk et al.(2011) estimated
light-use efficiency parameter values by PFTs for a similar
photosynthesis model and found similar values among crop-
lands, and multiple forest types (evergreen broadleaf, ever-
green needleleaf, deciduous broadleaf, and mixed), while the
values for savannas and grasslands stood out; these param-
eterization results are similar to those presented here (Fig.
3). Kuppel et al.(2012) also found that multi-site parame-
terizations were able to reproduce site-level photosynthesis
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and respiration roughly as well as single-site parameteriza-
tions. The VPRM respiration parametersα andβ presented
here also do not vary much across PFTs; this is consistent
with previous studies indicating that PFTs are not predic-
tive of soil respiration (Raich and Tufekciogul, 2000; Bond-
Lamberty et al., 2004).

The similar parameter values in Fig.3 could be a conse-
quence of VPRM’s simplicity; perhaps a two-equation model
that takes climatology and phenology from satellite obser-
vations is only able to separate landscapes into “green –
photosynthesizing” and “brown – not photosynthesizing.”
These results offer hints; investigating the question rigor-
ously would require parameter PDFs to ascertain whether
the differences in Fig.3 are significant. That investigation
should also compare model fluxes across different parameter-
izations. It is possible, for example, that the remote sensing
data that drive VPRM are sufficient to separate the NEE of
different plant functional types without large parameter dif-
ferences. The question is intriguing, however. If PFTs truly
are not important for NEE diagnosis and prediction, the task
of estimating model parameters becomes much simpler: land
surfaces may then be simply classified as “green” and “not
green.”

3.2 VPRM NEE residual spatial structure

Qualitatively inspecting the shape of an empirical semivari-
ogram gives an intuitive sense for a function’s spatial covari-
ance. Figure4 plots binned semivariograms for JJA mean
VPRM NEE residuals. There is one curve for each of the
nine VPRM parameter sets considered (Table2); each point
shows the mean semivariance within a 300 km bin.

The nugget is small for the site-specific parameter sets
(black curves), and varies from 1 to 3(µmolCO2m−2s−1)2,
for the other six parameter sets. In units of standard devia-
tion, these six nuggets equal roughly 2.0 µmolCO2m−2s−1.
The nugget represents the combined influence of variations at
spatial scales smaller than the minimum separation distance
as well as the contributors to VPRM residuals (EC obser-
vation error, VPRM structural error, natural variability; see
Sect.2.3).

In general, the semivariances for each parameter set in-
crease from separation distances of 0 to roughly 800 km, and
level off or decrease thereafter. This suggests that VPRM
NEE residuals are correlated at distances up to 800 km. We
quantify this in the following results.

We are interested primarily in the parameters (range, sill,
nugget) of the covariance function that best describes the
VPRM residuals. To estimate these parameters, we employ
maximum likelihood estimation (MLE, described by Eq.11).

We fit both pure nugget and exponential covariance func-
tions (whose characteristic semivariograms are shown in
Fig. 2) to each of the nine sets of VPRM residuals summa-
rized by the binned semivariograms in Fig.4. Within each
VPRM parameter set we selected either the best-fit pure
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Fig. 4. June-July-August mean VPRM NEE residual empirical
semivariograms. Each point represents the mean semivariance and
mean separation distance from grouping pairs of towers into 300 km
bins. VPRM parameterizations are described in Table2. The left
vertical axis shows units of semivariance (γ̂ ), and the right verti-
cal axis shows units of standard deviation (σ ). σ is related toγ̂ by
σ = (2γ̂ )1/2. The parameter sets with fewer parameters show larger
semivariances, reflecting their poorer fit to the data. Visual inspec-
tion shows all parameter sets produce strongly increasing semivari-
ance at separation distances between 0 and roughly 750 km with a
relative leveling-off at larger separation distances.

nugget covariance function or the best-fit exponential co-
variance function using AIC (Akaike, 1974). AIC balances
goodness of fit (more parameters) against parsimony (fewer
parameters). Table3 shows seasonal range values for the
covariance function that optimally fit the observed VPRM
NEE residuals. Blank entries show instances where the pure
nugget function optimally fit the observed residuals; this in-
dicates that no spatial correlation is present in the VPRM
residuals. Among the 2000 to 2006 observed residuals, 92 of
252 (7yr× 4seasons× 9PFTs) were best described by the
exponential covariance function. Of those, the median range
is 402 km, albeit with considerable spread around that me-
dian.

To interpret this result, we must test the adequacy of 65
observation locations across North America (Fig.1) to de-
tect spatial correlations across hundreds of kilometers. The
maximum distance between towers in this group of 65 is
6557 km (US-Atq – US-KS1). To quantitatively test the de-
tection capacity of the dataset we generated 1000 Gaussian
random fields (GRFs) on a 6500× 6500 grid. Each GRF had
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Table 3. Range parameter values (km) for VPRM flux error best-fit parametric variogram models. VPRM parameterizations are described
in Table2. Where a value is present, Akaike’s information criterion (AIC) analysis concludes the exponential variogram model fit more
parsimoniously than the pure nugget model. Where the range is blank the pure nugget model fit most parsimoniously, indicating no spatial
correlation is present.

Season VPRM Parameterization Year
space time 2000 2001 2002 2003 2004 2005 2006

DJF site monthly 1640 3051 4 1518 605
site annual 1299 368 772 3787
site all data 403 2382 115
PFT monthly
PFT annual 249 301 48
PFT all data 258 460 76
all sites monthly 509
all sites annual 1 450
all sites all data 1 461

MAM site monthly 285
site annual 207
site all data
PFT monthly
PFT annual 748
PFT all data 769
all sites monthly 4
all sites annual 5
all sites all data 6

JJA site monthly 4130 1617 24
site annual 267 631 1354
site all data 34 405 1 368 316
PFT monthly
PFT annual 30 461 323
PFT all data 734 407 287 8
all sites monthly 401 537 289
all sites annual 401 534 292
all sites all data 404 534 296

SON site monthly 29 54 2059
site annual 227 314 840 4600 129
site all data 1004 2
PFT monthly 2689 710 56
PFT annual 406 1046 1466 70 77
PFT all data 1664 1183 89 35
all sites monthly 787 2199 20
all sites annual 746 1032 2288 0 16
all sites all data 649 1041 2086 0 19

an imposed exponential covariance structure with a speci-
fied range of 402 km (equal to the median VPRM NEE er-
ror seasonal covariance range reported in Table3.) We sam-
pled each GRF at 65 randomly generated locations and esti-
mated exponential and pure nugget covariance function pa-
rameters for each sample set using MLE in the same manner
that we estimated range values for the VPRM NEE residu-
als (Table3). Of the 1000 GRFs, AIC chose the exponential
covariance function for only 74. Of those 74, the median es-
timated covariance range is 936 km; the median estimated
covariance range across all 1000 GRFs is 313 km. This dis-

tribution of estimated range values is similar to the distribu-
tion estimated from the real VPRM NEE residual observa-
tions; Fig.5 plots the two distributions side by side. These
results suggest that the estimated range values for VPRM
NEE residuals (Table3) are consistent with a scenario where
VPRM NEE residuals have an exponential covariance struc-
ture with a range of roughly 400 km, and that 65 observation
locations in the United States and Canada are minimally ade-
quate for detecting that structure. That minimal sufficiency is
manifested in the imprecision of the median range of 402 km
(i.e., the spread around 402 km seen in Table3) and Fig.5.
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Fig. 5. Cumulative density functions for covariance range param-
eter, estimated by maximum likelihood estimation (MLE). Each
panel shows range values for seasonal VPRM NEE residuals (val-
ues in Table3) along with values from 1000 Gaussian random fields
(GRFs) with similar (and known) covariance structure. The left
panel shows the range distribution for only the pseudodata range
estimations where the exponential covariance model fit more op-
timally than the pure nugget; the right panel shows the distribution
for all 1000 GRFs and demonstrates that the spread of best-fit ranges
from the pseudodata experiment is quite similar to the spread among
real VPRM residuals.

The similarity in the spreads of best-fit ranges between the
observed VPRM residuals and the pseudodata experiment
(seen in Fig.5, left panel) supports this interpretation. The
Fluxnet 2007 Synthesis Dataset contains data from more sites
in 2003 and 2004 than the other years of the study period. In
this scenario of minimal network sufficiency for detection,
it makes sense that 2003 and 2004, the years with the most
data, are also the years with the most coherent residual spa-
tial structure (Table3).

We also must consider the possibility of spurious MLE re-
sults: that the observed VPRM NEE residual realization may
occasionally be better fit by an exponential covariance struc-
ture when the complete spatial field has no true structure.
We generated another set of 1000 GRFs, each containing
65 points within a 6500 by 6500 grid, and each specified
to have a pure nugget covariance structure. We calculated
MLE covariance function parameters for these 1000 fields.
AIC chose the exponential function over the pure nugget for
only 25 of the 1000 fields, suggesting that we might expect a
dataset like our VPRM NEE residuals to produce a spurious
exponential covariance structure in only a small minority of
realizations considered.

The detection rate of spatial correlation among real VPRM
residuals (92/252= 36%) greatly exceeds both the detec-
tion rate among similarly structured pseudodata (74/1000=

7.4%) as well as the spurious detection rate among pseudo-
data with no structure (25/1000= 2.5%). This result sug-
gests that the structure detected in the VPRM residuals is
unlikely to be specious; that is, it is unlikely that the true
spatial correlation length scale of VPRM residuals is 0 km.
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Fig. 6. Best-fit range values (km) for cumulative annual anomalies
of observed NEE, VPRM NEE, and VPRM NEE residuals. Best-
fit values were determined by AIC as described in Sect.2.4. The
number (0–6) plotted denotes the year (2000–2006). Years where
the pure nugget covariance function fit more optimally than the ex-
ponential are shown in the shaded box. Anomalies were calculated
as the departure from the mean value of 2000 to 2006 annual mean
cumulative observed values.

These results suggest quantitatively that JJA mean VPRM
NEE residuals are spatially correlated at a length scale on the
order of 400 km.

Anomalies from the 2000 to 2006 means for annual cu-
mulative VPRM NEE, annual cumulative observed NEE,
and annual cumulative VPRM NEE residuals displayed sim-
ilar spatial scales (Fig.6). This analysis tests the hypothesis
that while NEE itself varies significantly at spatial scales on
the order of 10 km (e.g.,Desai et al., 2008), NEE interan-
nual variability (IAV) is driven by more climatic phenomena
such as temperature and moisture that operate at much larger
scales (Law et al., 2002; Desai et al., 2008; Ricciuto et al.,
2008). If so, then we should see spatial correlation in an-
nual cumulative NEEobs anomalies (calculated by subtract-
ing annually integrated fluxes from their 2000 to 2006 mean
values). If VPRM is able to capture that large-scale varia-
tion, then annual cumulative NEEVPRM anomalies will show
similar spatial correlation. Any spatial structure that exists in
NEEobs anomalies that VPRM fails to capture should appear
in VPRM NEE residual anomalies.

Integrated annually, observed VPRM residuals follow
roughly a normal distribution (not shown), with a mean of 1.6
gC m−2 yr−1 and a standard deviation of 168.5 gC m−2 yr−1.
This mean annual residual is small relative to the 100 to 300
gC m−2 yr−1 sink typical of a productive North American
ecosystem. These results suggest that VPRM performs well
at the annual scale. This seems reasonable given that VPRM
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is driven largely by climate-driven quantities such as temper-
ature, EVI, and radiation, and suggests that VPRM performs
sufficiently well at annual time scales to provide insight into
spatial correlations of NEE interannual variability.

As with the VPRM NEE residual semivariograms, we
chose optimal anomaly covariance structures by AIC. Of the
seven years examined, NEEobsanomalies show correlation at
scales of roughly 1000 km only for 2006 (Fig.6). AIC chose
the pure nugget model for the other years considered. This
rate of detection is consistent with the rate of detection of
spatial structure among VPRM NEE anomalies (Fig.6). It is
also consistent with the detection rate of the pseudodata ex-
periment (Fig.5), in which we were able to detect a known
exponential covariance structure in only 74 of 1000 attempts.
This could indicate that large-scale structure does not consis-
tently exist. It could also suggest that NEE interannual vari-
ability could be shaped by larger-scale drivers than is NEE
itself, and that our flux tower spatial density is insufficient to
consistently detect it in a noisy NEE signal. This seems rea-
sonable; land use, which influences NEE, is markedly diverse
throughout the study area. Also, disturbance events that heav-
ily influence NEE (e.g., fire, insects, tree harvest) usually
do not impact 500 km stretches of land surface. VPRM is
strongly driven by climate variables (Eqs.1, 5), so spatial
structure in VPRM NEE interannual variability could sim-
ply reflect large-scale spatial structure in climatic interannual
variability. Though VPRM no doubt contains structural er-
ror, it is an attempt to combine climatic terms as ecological
research suggests they influence NEE. Therefore, we believe
it makes sense to investigate this combined effect of several
climate terms (that is, VPRM NEE) rather than attempt to
explain NEE interannual variability by searching for spatial
coherence in a number of climate variables individually.

Because VPRM NEE residuals are simply the difference
between NEEobs and NEEVPRM, the spatial behaviors of
these three quantities are interrelated. Where spatial structure
exists in observations, we expect it to be partitioned among
NEEVPRM and VPRM NEE residuals. Results in Fig.6 from
all nine VPRM parameter sets show strong spatial structure
in VPRM NEE residuals. This is particularly true among
parameter sets with fewer parameters (PFT and all sites in
space; annual and all data in time). This structure occurs at
length scales similar to the length scale exhibited by NEEobs.
Sill and nugget values for NEEVPRM and VPRM NEE resid-
uals are also of similar magnitude to the sill and nugget
for NEEobs. VPRM NEE residuals are the combination of
NEE observation error, VPRM structural error, and natu-
ral variability. Because of its correlation to NEE magnitude
(Richardson et al., 2006), we expect the NEE observation er-
ror component of VPRM residuals to reflect whatever spatial
structure is present in NEE itself. It therefore makes sense
that the spatial structure present in NEEobs is not partitioned
exclusively into NEEVPRM or VPRM NEE residuals but ap-
pears in both.

The covariance sill value provides an estimate of variance.
The sill values (Fig.7) for the annual anomalies of annual
cumulative VPRM NEE, annual cumulative observed NEE,
and annual cumulative VPRM NEE residuals display stan-
dard deviations (Fig.7, right-hand axis) on the order of the
annual cumulative NEE typically observed by an eddy co-
variance site. This suggests that annual VPRM errors at a
single location in space are on the order of the flux at that
point. If annual VPRM errors are indeed spatially correlated
at length scales of 500 to 1000 km, as suggested by Fig.6,
then spatially aggregating VPRM NEE at that length scale
should provide a method to reduce the VPRM error variance.

4 Discussion

Our findings are relevant to both land surface model
upscaling as well as atmospheric inversion studies,
though several important uncertainties should guide
consideration of our results.

4.1 Caveats

Several caveats accompany these implications. The structural
simplicity of VPRM allows us to conduct parameter estima-
tions that use many thousands of model evaluations. The de-
signers of VPRM achieve that simplicity by abstracting the
broadest drivers of NEE out of what is in reality a com-
plex ecology and by considering only short-term drivers of
NEE. Longer-term drivers, such as carbon pools (e.g.,Curtis
et al., 2002) and disturbance histories (e.g.,Thornton et al.,
2002), are known to be first-order drivers as well. VPRM is
able to credibly partition the contributions of photosynthesis
and respiration to observed NEE (Mahadevan et al., 2008).

Biogeosciences, 10, 4607–4625, 2013 www.biogeosciences.net/10/4607/2013/



T. W. Hilton et al.: Spatial structure in land surface model residuals 4619

However, these simplifications caution us against attempting
site-specific ecological interpretation of short-term fluctua-
tions in VPRM parameter values, fluxes, and residuals.

In addition, the carbon cycle community’s understanding
of the statistical properties of land surface model NEE resid-
uals remains rudimentary. Several studies have explored the
distribution of NEE observation error (e.g.,Richardson et al.,
2008, 2006; Lasslop et al., 2008). Richardson et al.(2006)
find that the observational error to exhibit a double exponen-
tial distribution observation error, however, is but one com-
ponent of NEE model residuals. In the absence of a rigorous
likelihood function that integrates all of the sources of un-
certainty that contribute to NEE model residuals, we have
used the mathematically simple sum of squared NEE resid-
uals to estimate VPRM parameters. Implementing a statisti-
cally proper likelihood function is nontrivial and is the sub-
ject of ongoing research.

It is possible that VPRM residuals covary differently in the
east–west direction than north–south or in different regions
of the world, or that plant functional types, site disturbance
history, or some other land surface descriptor is of first-order
importance. The present spatial density of eddy covariance
observations limits our ability to test these ideas. The resid-
ual spatial covariance of a more complex model structure
may also be different. Computational limitations at this time
preclude the rigorous optimization of more than a handful
of parameters, so we have chosen to focus our attention on
VPRM, whose relatively small number of parameters may
be rigorously estimated in their entirety.

4.2 Implications

It is critically important to quantitatively tailor NEE model
parameter estimates to the domain in which the model is to be
run; generic parameter values can reproduce observed NEE
poorly (Ricciuto, 2006). Good NEE simulation is crucial to
calculating accurate model errors, which are in turn crucial
to detecting model error spatial structure.

The spatial length scale of land surface model NEE resid-
ual covariance bears directly on atmospheric inversion cal-
culations. Inversions seek to use observed atmospheric CO2
concentrations to refine estimated biological CO2 fluxes
within a region of defined boundaries, with the estimated
fluxes typically coming from models. Intrinsic to the method
is the assumption that prior flux errors are correlated within
each region treated as a separate unknown (Rödenbeck et al.,
2003; Michalak et al., 2004). Moreover, this correlation must
be assumed to exist at both the time scale of the inver-
sion as well as the spatial scale of the inversion regions.
Our results indicate strongly that this implicit assumption
is valid at seasonal time scales (Table3) and, for annual
anomalies, for annual time scales. The relevant spatial scale
is approximately 400 km.

Kaminski et al. (2001) and Engelen et al.(2002) de-
scribe in detail the aggregation error an inversion incurs

when this assumption is violated, and recommend includ-
ing an error covariance matrix in the inversion to quantita-
tively de-emphasize areas of large uncertainty and observa-
tions in close proximity to one another.Schuh et al.(2009)
confirm the issue for a regional inversion, and suggest that
post-aggregating a high-resolution inversion is preferable to
a coarser scale inversion. The methods developed here derive
this covariance structure quantitatively from eddy covariance
observations.

The estimated length scale of any model’s residual spa-
tial covariance is a function of both the model structure’s ca-
pacity to estimate NEE as well as the capacity of the North
American flux tower network to constrain modeled fluxes. A
more complex model structure should reduce model struc-
tural error. Each source of model NEE error should have a
characteristic length scale, and reducing or changing a par-
ticular error source should therefore change the residual co-
variance length scale accordingly. We therefore expect the
magnitude of residual spatial covariance length scale to vary
somewhat between different models. The methodology pre-
sented here provides a method to estimate error covariance
length scale for any land surface model.

The length scale derived here (order 400 km) is smaller
than the scale of 1275 km estimated byRödenbeck et al.
(2003), and is based on eddy covariance flux measurements
rather than land surface model comparison. Our length scale
also contrasts starkly with the conclusion of minimal spatial
covariance presented byChevallier et al.(2006). Potentially
incorrect prior flux error covariance assumptions are but one
source of error that an inversion must consider. Scarcity of
well-calibrated CO2 concentration observations, for exam-
ple, pushes inversion calculations toward regions larger than
1000 km (e.g.,Butler et al., 2010). The North American Car-
bon Program’s Mid-Continental Intensive (MCI) region is a
notable exception to this scarcity of CO2 concentration ob-
servations (Lauvaux et al., 2011), and presents an opportu-
nity to investigate the impacts of prior flux error covariance
assumptions more deeply. Solving for too many regions in
an inversion (that is, too many unknowns) risks overfitting
the data, and solving for too few risks oversimplifying the
inversion and producing over-confident results. We suggest
that for the purposes of minimizing spatial aggregation er-
ror, inversion calculations should optimally use regions with
spatial scales on the order of 400 km.

Our finding that VPRM does not resolve different PFTs
through its parameter values was mildly surprising to us.
Though not a primary focus of this study, this results can
be viewed in at least two different lights. First, studies wish-
ing to provide first-order regional NEE estimates via a low-
complexity land surface model may not need to distinguish
among PFTs for parameterization on pure statistical grounds.
This could lead to considerable savings in computation time
and CPU resources. Second, PFTs are commonly assumed to
partition land into sections with functionally different partic-
ipations in the carbon cycle (Beer et al., 2010; Ciais et al.,
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2005; Xiao et al., 2008). Our results suggest that PFTs may
not be the most useful predictor of a land area’s carbon cy-
cle dynamics, and that alternative partitioning schemes may
be more skillful. Stand age and disturbance history are inter-
esting “land surface NEE descriptor” alternatives to PFTs.
Thornton et al.(2002) used the BiomeBGC model to ex-
plore the impacts of disturbance history, PFT, site climate,
atmospheric CO2 concentration, and nitrogen deposition on
NEE variability among seven evergreen sites spanning North
America, and concluded that of those, disturbance history
dominated.Goulden et al.(2006) examined seven eddy co-
variance sites within 50 km of each other that were recov-
ering from burn disturbances that occurred 0, 5, 14, 22, 39,
∼ 73, and∼ 153 yr previously. They found that mid-growing
season EVI and CO2 fluxes took roughly 50 yr following
a burn disturbance to become approximately interannually
constant. That 50 yr period included transition from primar-
ily deciduous species to primarily black spruce. These results
and others suggest that disturbance history could be at least
important as climate and plant functional type to understand-
ing NEE for large areas. Although VPRM does not directly
include disturbance history in its structure, its impacts ripple
through a VPRM diagnosis. When parameters are estimated
for specific sites by optimizing model NEE to observed NEE
the parameter values themselves must contain some informa-
tion about all of the drivers of NEE, including disturbance
history. Plant functional type, though not included directly in
VPRM structure, is also determined in part by species suc-
cession following a disturbance, and EVI is also impacted by
disturbances (Goulden et al., 2006). Thus, VPRM NEE di-
agnoses and estimated parameters must contain some infor-
mation about disturbance history. That said, through the lens
of VPRM that information is convoluted with other drivers
of NEE. This makes it difficult to assess disturbance directly
through VPRM.

The results ofGoulden et al.(2006) suggest, at least for
boreal evergreen forests, a satellite record on the order of
50 to 100 yr or longer could be necessary before stand age
and recovery from disturbance can be widely and directly
described by remote sensing. Recent Landsat products have
begun to assemble landscape disturbance records beginning
in the 1980s (Huang et al., 2010), offering an opportunity to
assess these influences at larger scales

5 Conclusions

Using observed NEE from 65 North American eddy covari-
ance sites for the years 2000 through 2006, we make point
estimates of parameter values for VPRM, a simple land sur-
face model. We then estimate and analyze covariance struc-
tures of VPRM NEE residuals in the interest of quantifying
spatial structure in the residuals.

PFTs demonstrate little skill as land surface classifications
for model parameter estimation. This may allow large-region

model studies to partition land surfaces into a “photosynthet-
ically active or not” dichotomy, thereby simplifying model
parameterization.

The semivariogram analyses presented here demonstrate
that VPRM NEE residuals are spatially correlated at length
scales well beyond individual tower footprints but well short
of continental scales. Depending on the model parameter-
ization, that length scale lies somewhere between 100 and
900 km, with a median value of roughly 400 km. This result
is consistent at both seasonal and interannual time scales, and
demonstrates that the North American EC tower network is
minimally sufficient to define a VPRM residual covariance
matrix. This information will allow us to construct a map of
VPRM North American CO2 fluxes, optimized to eddy co-
variance observations.

Our estimated covariance functions for model NEE resid-
uals prove that the North American flux tower observation
network is adequate for determining a land surface model
residual covariance matrix.

A quantitative land surface model error covariance ma-
trix can help to improve atmospheric inversion-derived
ecosystem–atmosphere CO2 flux estimates as well as esti-
mate accompanying uncertainties more accurately. This, in
turn, can help improve mechanistic understanding of the ter-
restrial carbon cycle, furthering the goal of increasing the
predictive skill of land surface models.
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