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Abstract. Due to the heterogeneous nature of the land sur-
face, spatial scaling is an inevitable issue in the development
of land models coupled with low-resolution Earth system
models (ESMs) for predicting land-atmosphere interactions
and carbon-climate feedbacks. In this study, a simple spa-
tial scaling algorithm is developed to correct errors in net
primary productivity (NPP) estimates made at a coarse spa-
tial resolution based on sub-pixel information of vegetation
heterogeneity and surface topography. An eco-hydrological
model BEPS-TerrainLab, which considers both vegetation
and topographical effects on the vertical and lateral water
flows and the carbon cycle, is used to simulate NPP at 30 m
and 1 km resolutions for a 5700 km2 watershed with an ele-
vation range from 518 m to 3767 m in the Qinling Mountain,
Shanxi Province, China. Assuming that the NPP simulated
at 30 m resolution represents the reality and that at 1 km res-
olution is subject to errors due to sub-pixel heterogeneity, a
spatial scaling index (SSI) is developed to correct the coarse
resolution NPP values pixel by pixel. The agreement between
the NPP values at these two resolutions is improved consider-
ably fromR2

= 0.782 toR2
= 0.884 after the correction. The

mean bias error (MBE) in NPP modelled at the 1 km resolu-
tion is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1

in comparison with NPP modelled at 30 m resolution, where
the mean NPP is 668 g C m−2 yr−1. The range of spatial vari-
ations of NPP at 30 m resolution is larger than that at 1 km
resolution. Land cover fraction is the most important vegeta-
tion factor to be considered in NPP spatial scaling, and slope
is the most important topographical factor for NPP spatial
scaling especially in mountainous areas, because of its influ-

ence on the lateral water redistribution, affecting water table,
soil moisture and plant growth. Other factors including leaf
area index (LAI) and elevation have small and additive ef-
fects on improving the spatial scaling between these two res-
olutions.

1 Introduction

Remarkable progress has been made in the development of
land models as part of Earth system models (ESMs) over the
past few decades for predicting land-atmosphere interactions
and carbon-climate feedbacks (Bonan et al., 1993; Sellers et
al., 1997; Dai et al., 2003; Hong et al., 2009, 2012). Land
models intended for global climate simulations are often ex-
ecuted at coarse resolutions with or without some simple
consideration of the spatial variability within each modelling
grid, and therefore it is logical to be concerned with errors
in the simulated fluxes from ignoring the within-grid vari-
ability. The International Land Model Benchmarking (IL-
AMB) project (http://www.ilamb.org) identified a set of stan-
dard benchmarks to quantitatively evaluate the performance
of land models (Luo, et al., 2012). One benchmark for this
purpose would be a set of scaling rules to consider the impact
of sub-grid heterogeneity on energy and mass fluxes simu-
lated by land models.

Surface heterogeneity stems from both endogenous (bi-
otic) and exogenous (abiotic) sources (Moorcroft et al.,
2001). Endogenous heterogeneity is related to the spatial
variations in vegetation type and density, while exogenous
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heterogeneity is often caused by soil and topographical vari-
ations. Many studies have examined spatial scaling issues as-
sociated with endogenous heterogeneity (Wu and Qi., 2000;
Moorcroft et al., 2001; Maayar and Chen, 2006; Gimona et
al., 2006; Liu et al., 2010; Hong et al., 2009, 2012), while
there has been little attention given to exogenous heterogene-
ity for the purpose of spatial scaling over the land surface.

Spatial scaling refers to a process of taking information at
one scale and using it to derive information at another scale
(Jarvis, 1995). There can be three levels of complexity in spa-
tial scaling (Chen, 1999): (1) obtaining the mean value of a
quantity for a land area based on the areal fractions of the
cover type and the mean value of each cover type, i.e. a sim-
ple weighting process; (2) deriving a static surface parameter
(such as the leaf area index) using an algorithm in considera-
tion of the surface heterogeneity, and in this case the scaling
depends on the derivation algorithms; and (3) mapping a dy-
namic variable or a process (such as net primary productivity
(NPP) and evapotranspiration (ET)) that depends not only
on the surface endogenous and exogenous heterogeneity, but
also other conditions, such as meteorology. Chen (1999) ad-
dressed the second level of complexity in scaling a surface
parameter based on a contexture method. Simic et al. (2004)
and Maayar and Chen (2006) tackled the third level of com-
plexity through scaling the NPP and ET, respectively. Simic
et al. (2004) developed an algorithm for correcting errors in
NPP in coarse resolution pixels by considering endogenous
factors such as sub-pixel land cover fractions and the LAI
range. Maayar and Chen (2006) made a step forward in ET
spatial scaling by considering not only endogenous, but also
exogenous factors including sub-pixel soil texture and topo-
graphical variations using a distributed hydrological model.
In the present study, we attempt to improve the NPP scal-
ing methodology of Simic et al. (2004) by considering both
endogenous and exogenous surface heterogeneity, i.e. in ad-
dition to land cover and LAI, topographical parameters are
also considered in an eco-hydrological model (Chen et al.,
2005). This improvement is necessary because topography is
often variable over the land surface affecting water redistri-
bution over the landscape, and there has been little quantita-
tive investigation on the influence of topography on the NPP
distribution and the mean value at the landscape, regional and
global scales (Simic et al., 2004; Sun, et al., 2004; Bertoldi
et al., 2010).

Accurate estimation of NPP at regional, continental and
global scales is a necessary step in assessing the possible role
of these ecosystems in the global carbon cycle. It is, there-
fore, crucial to investigate and reduce sources of uncertain-
ties associated with large-scale estimates of NPP. It is shown
theoretically that vegetation heterogeneity and surface topog-
raphy are the important factors introducing biases in surface
parameter retrieval and ecological modelling (Chen et al.,
1999; Grant, 2004; Maayar and Chen, 2006). Considerable
errors can result from the overlook of sub-pixel variability of
vegetation (land cover, LAI) and surface topography (slope,

aspect, elevation) in modelling carbon and water fluxes at
regional and global scales (Arora et al., 2001; Kang et al.,
2004; Maayar and Chen, 2006). Because topography influ-
ences surface and subsurface water redistributions and there-
fore soil moisture in the root zone (Qiu et al., 2001), it pro-
nouncedly affects the spatial distribution and the magnitude
of vegetation productivity and carbon assimilation due to the
strong dependence of leaf stomatal conductance on soil wa-
ter conditions (Jarvis, 1976). Therefore, topography should
also be considered as an important factor in NPP mapping
and spatial scaling. The main purpose of this study are: (1)
to propose a spatial scaling index (SSI) to integrate the in-
fluences of vegetation heterogeneity and surface topography,
such as land cover type (LC), leaf area index (LAI), eleva-
tion, slope, and their interactions, on NPP estimates at coarse
resolutions; (2) to investigate the importance of considering
the topographical effects on soil water redistribution and NPP
distribution; (3) to investigate the relative importance of var-
ious vegetation and topographical factors in NPP scaling and
the methodology to combine them for large area applications;
and (4) to map and compare the spatial variations of NPP at
30 m resolution and 1 km resolution.

2 Methods

2.1 Model used

In this research, the BEPS (Boreal Ecosystem Productivity
Simulator) model (Liu et al., 1997, 1999, 2002, 2003) is cou-
pled with a hydrological model named TerrainLab (Chen et
al., 2005). The coupled model is capable of simulating the
spatial distributions of carbon and water fluxes between ter-
restrial ecosystems and the atmosphere under the influence
of topography. The model is driven by remotely sensed veg-
etation parameters (LAI, land cover type), climate, soil tex-
ture, and digital elevation model (DEM). Climatic inputs re-
quired to run the model include daily maximum, minimum,
mean and dew point temperatures, daily precipitation, and in-
coming solar radiation. Daily solar radiation was calculated
from daily amplitude of air temperature, precipitation, and
water vapour pressure. BEPS was developed based on the
Forest BioGeochemical Cycles (Forest-BGC) model (Run-
ning and Coughlan, 1988) with the following improvements.
The daily canopy photosynthesis is simulated by up-scaling
instantaneous photosynthesis at the leaf level (Farquhar et
al., 1980) through a temporal and spatial integration scheme
after sunlit and shaded leaf separation (Chen et al., 1999).
This scaling approach was developed to consider the nonlin-
ear effect of the diurnal variation in incoming solar radiation
on daily photosynthesis. Radiation intercepted and absorbed
by the canopy is simulated as a function of LAI, clumping
index and solar zenith angle (Chen and Cihlar, 1995; Liu et
al., 1997). Compared with daily gross photosynthesis derived
from tower flux data, this method is a large improvement over
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big-leaf models (Chen et al. 1999; Sprintsin et al., 2012).
Through the temporal and spatial integration, this model
greatly enhances the computation efficiency and therefore
suitable for the applications to large areas. BEPS has been
used in different ecosystems with a proven ability to provide
reliable estimates of NPP (Amiro et al., 2000; Matsushita and
Tamura, 2002; Sun et al., 2004). TerrainLab is a spatially dis-
tributed hydrological model, which was designed to provide
realistic simulations of daily soil moisture content and wa-
ter table for modelling carbon balance of terrestrial ecosys-
tems. This model carefully describes topographic effects on
the spatial variations of climatic variables and the movement
of soil water via a subsurface saturated flow mechanism. The
extraction of transpirational water from two soil layers (sat-
urated and unsaturated) is partitioned in terms of the relative
abundance of active roots using the methodology of Jack-
son et al. (1996). Each pixel is linked with its surrounding
8 pixels by saturated subsurface baseflow, which is com-
puted according to local slope and water table (Wigmosta
et al., 1994). Terrainlab has been modified and validated in
a forested watershed in Canada (Chen et al., 2005). The for-
mulations of BEPS and TerrainLab were introduced in detail
in previous publications (Liu et al., 1997, 1999, 2002, 2003;
Chen et al., 1999, 2005; Sonnentag et al., 2008; Govind et
al., 2010).

2.2 Simulation procedures

Two sets of simulations were conducted to analyse the effects
of vegetation heterogeneity and topography on NPP calcula-
tion. In the first simulation, the model was run at the 30 m
resolution, whereas the second run was made at the 1 km
resolution after all inputs at the 30 m resolution were aggre-
gated to the 1 km resolution. To generate the 1 km simulation
datasets, input data, except for land cover types, available at
the 30 m resolution were averaged to obtain input datasets at
the 1 km resolution (Fig. 1). As usual, the land cover type of
each 1 km pixel was assumed to be the dominant type, i.e.
having the largest percentage of coverage based on the land
cover image at the 30 m resolution. For the NPP run at the
1 km resolution, the vegetation was assumed to be uniform
with a unique cover type within each 1 km pixel. NPP distri-
butions at the 1 km resolution are therefore obtained in two
ways: (1) by averaging NPP modelled at the 30 m resolution
to the 1 km resolution, hereinafter referred to as distributed
NPP (NPPd), and (2) modelling NPP at the 1 km resolution,
referred to as lumped NPP (NPPl).

2.3 Algorithms for spatial scaling

The theory used in this research is the extension of
contexture-based scaling methodology presented by Chen
(1999). The algorithm assumes that NPPd represents the re-
ality, while NPPl is an approximation and can be improved
through a scaling procedure. The reason is that the effect
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Figure 1. Procedures for distributed and lumped NPP calculations. 25 
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Fig. 1.Procedures for distributed and lumped NPP calculations.

of surface heterogeneity within a coarse pixel is mostly pre-
served in the distributed calculation, while it is not the case
in the lumped calculations (Fig. 1). We, therefore, attempt to
develop a spatial scaling index (SSI) to integrate the effects
of vegetation heterogeneity and topography on NPP estima-
tion, in order to reduce errors in lumped NPP estimation. The
relationship between NPPd and NPPl is expressed as follows:

NPPd = NPPl × SSI (1)

SSI is needed for the adjustment of NPPl to the correct dis-
tributed value. It can be a function of two scaling indices

SSI= f (SSIs,SSIT) (2)

where SSIs and SSIT represent the scaling index related to
vegetation heterogeneity and topography, respectively. For
the first index, we further express it as a function of land
cover (LC) and leaf area index (LAI),

SSIs = f (LC, LAI ) (3)

A mathematical function is to be developed to quantify the
influence of subpixel land cover and LAI variations on the
mean NPP value of the pixel simulated without considering
these variations. For the second index, we consider it as a
function of elevation (ELE) and slope (SL):

SSIT = f (ELE, SL) (4)

This function is intended to quantify the error in NPP esti-
mation at the coarse resolution without considering the sub-
pixel variations in elevation and slope. In coarse resolution

www.biogeosciences.net/10/4879/2013/ Biogeosciences, 10, 4879–4896, 2013
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Figure 2. Study area with the locations of ground sites in Qinling Mountain in 8 

southern Shanxi Province in China（yellow square: LAI and tree-ring sampling plots; 9 

black dots: inventory data sampling plots; CF: conifer; MF: mixed forest; OL: open 10 

land）. 11 
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Fig. 2.Study area with the locations of ground sites in Qinling Mountain in southern Shanxi Province in China.

NPP simulations using BEPS-TerrainLab, the mean eleva-
tion and slope of each coarse pixel are considered, but these
simulations are only approximations of those made at 30 m
resolution and need to be corrected with the function.

NPPl is biased because input data used in the coarse reso-
lution simulation are the averages in each 1 km2 pixel and
only the ecosystem model parameters associated with the
dominant type are used. It is known that the responses of NPP
to topographical and LAI variations are nonlinear (Campbell
and Norman, 1998; Kenward et al., 2000), and hence NPP
simulated using the mean input values would differ from
that simulated with ranges of values about the mean values.
These differences are to be removed using these scaling in-
dices. For the convenience of mathematical operation, we ex-
pressed SSI as follows:

SSI= SSILC × SSILAI × SSELE × SSISL (5)

where SSILC, SSILAI , SSIELE, and SSISL, are functions that
correct the biases in the lumped calculation of NPP for the
individual factors of land cover, LAI, elevation, and slope,
respectively. Our scaling algorithm follows the methodology
of Maayar and Chen (2006) who assume that the influence of
these factors on lumped ET calculations are independent and
multiplicative, and therefore can be treated separately in the
algorithm development.

3 Site description and data processing

3.1 Site description

The experimental site is located in the southwest slope of
the Taibaishan Natural Reserve, in the middle of the Qin-
ling Mountain. This mountain significantly alters the climate
of interior China and its nearby areas in the southwest of
Shanxi Province (31◦42′ N–39◦35′ N, 105◦29′ E–110◦15′ E)
(Fig. 2). This site has elevations ranging from 518 m to
3767 m above the sea level and a transitional mountainous

climate of a warm temperate region in the northern sub-tropic
region. The annual precipitation is about 630 mm at low el-
evations and increases to about 1000 mm at the top of the
Taibaishan Mountain. The mean annual air temperature de-
creases from+9.5◦C at the bottom to−4.5◦C at the top of
the mountain. Influenced by topography, the Qinling Moun-
tain has different vegetation covers at different elevations and
terrain aspects, including pine (Pinus armandiFranch) and
broadleaf mixed forest at elevations from 1330 to 3420 m on
the northwest slope, conifer (Abies fabric(Mast.) Graib.,Pi-
nus tabulaeformisCarr.) and broadleaf mixed forest at el-
evations from 518 m to 1300 m on the north slope, conifer
forest in the alpine zone at elevations from 1250 m to 3400 m
on the west slope, and pine (Pinus armandiFranch) and
broadleaf mixed forest (Quercusspp.) at elevations from
912 m to 2428 m on the south slope. The pine and broadleaf
mixed forests are the dominant vegetation types. The veg-
etation density varies with topography, providing large dy-
namic ranges for analysing the effect of vegetation hetero-
geneity and topography on the spatial scaling of NPP. The
forest ecosystems are disturbed in various ways because the
local people cut trees and shrubs at low altitudes to feed live
stocks and to make furniture and building materials. Areas
with low slopes up to 20◦ near rivers are mostly converted to
irrigated farmland.

3.2 Data processing

Inputs data to BEPS-TerrainLab include LAI and land cover
maps derived from remote sensing, climate interpolated from
measurements at Taibai county weather stations, DEM, and
soil texture. All datasets are firstly prepared at the 30 m res-
olution on a UTM projection for the distributed run and then
resampled to the 1 km resolution for the lumped run.

LAI was measured at 9 sampling plots (yellow squares in
Fig. 2) using the TRAC instrument (Chen and Cihlar, 1995)
in June 2004, and tree rings were taken at the same time. The
area of each sampling plot is about 30 m× 30 m, which is
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equal to the grid size of the Landsat TM data. The geograph-
ical locations of these sites were obtained using a Magellan
global positioning system (GPS) with an accuracy of 5 m.
LAI was calculated according to the measured canopy gap
fraction after taking into account the element clumping in-
dex derived from the measured gap size distribution (Chen
and Cihlar, 1995).

The following variables were measured: bark thickness
and diameter at 1.3 m breast height (DBH), tree height,
crown base height (using a Vertex hypsometer), and crown
radius (estimated from beneath the canopy). The measure-
ments of DBH and bark thicknesses had a precision of 1 mm.
The height and width of tree crowns were measured with a
precision of 0.1 m. Data for validating the simulated annual
NPP are obtained from two sources: tree-ring data (9 plots)
and inventory data (black dots in Fig. 2). Tree-ring sam-
ples were collected with a 5-mm incremental borer applied
at DBH. The cores were immediately glued onto wooden
mounts and subsequently polished in laboratory with several
successively finer sandpapers. Tree-ring series were dated
following a standard procedure (Stokes and Smiley, 1968).
At least 9 dominant trees were cored at each site in plots
with no evidence of tree mortality. Two cores (one from the
north and one from the south) were taken at DBH for each
tree. In total, about 162 tree cores were collected. Tree age
ranged between 24 and 58 yr.

We adopted the relative growth method to measure the
biomass (Feng et al., 1999). The biomass of each component
of a tree (stem, branch, leaf, root) was estimated from tree
height and DBH using a formula derived from field measure-
ments. The increments of DBH were obtained from the tree
ring samples, which were then used to estimate the increment
of each biomass component of each tree from 2002 to 2003.
The annual NPP of a sampling plot was calculated according
to the number of trees in each plot and the biomass increment
of each tree between these two years, which was estimated
from the increment of DBH. In the study area, there was a
good relationship between measured LAI and NPP (Fig. 3).
Overall, annual NPP increased by 206 g C m−2 yr−1 per unit
LAI, and the model was able to capture 84 % of variability in
NPP measured using tree rings and inventory data (Fig. 4).

The remote-sensing, climate, soil and DEM data and their
processing methods were described in detail in Chen et
al. (2007).

The study area was divided into 20 patches to measure soil
moisture with Time Domain Reflectometers (TDR) during
1 July to 31 August in 2004. In each patch, one plot contain-
ing four sampling points is set up. At each sampling point,
soil moisture was measured at three depths: 5, 10 and 20 cm,
and a time series of soil moisture values is recorded at every
depth at every sampling point. The sampling plots are square
or rectangular in shape, ranging from 100 m2 (10 m× 10 m)
to 600 m2 (20 m× 30 m) in size, and covering different topo-
graphic settings, from flat to sloping terrain.
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Figure 3. Relationship between measured annual NPP and measured LAI. NPP was 2 

calculated based on tree ring increment and biomass measured in the field, and LAI 3 

was measured using TRAC in 2004. 4 
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Fig. 3. Relationship between measured annual NPP and measured
LAI. NPP was calculated based on tree ring increment and biomass
measured in the field, and LAI was measured using TRAC in 2004.
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Figure 4. Simulated NPP using BEPS-TerrainLab in comparison with NPP calculated 2 

from tree ring data collected in the summer of 2004. The solid line is the 1:1 line.  3 
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Fig. 4. Simulated NPP using BEPS-TerrainLab in comparison with
NPP calculated from tree ring data collected in the summer of 2004.
The solid line is the 1: 1 line.

In Fig. 5b, soil moisture in situ values at 5 cm depth is the
average daily value of each plot. Soil moisture in the unsat-
urated zone simulated by BEPS-Terrainlab for the sampling
plots correlate well with measured moisture at 5 cm depth,
with R2

= 0.84, RMSE=2.5 % (Fig. 5a). The model system-
atically underestimates the soil moisture possibly because er-
rors in estimating the field capacity based on soil texture.

www.biogeosciences.net/10/4879/2013/ Biogeosciences, 10, 4879–4896, 2013
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Fig. 5. Simulated soil moisture (SM) at 30 m resolution using
BEPS-TerrainLab in comparison with measured SM using TDR
during 1 July to 31 August in 2004(a); comparison of BEPS-
simulated SM with measured SM at various sites(b). The solid line
is the 1: 1 line.

However, the spatial variability of soil moisture is well cap-
tured by the model, judging from the close correspondence
between modelled and measured values at these plots dis-
tributed widely in the watershed (Fig. 5b). The ability of the
model in capturing the soil moisture spatial variability gives
us confidence in our NPP scaling.

4 Results

4.1 Comparison of inputs and NPP at two spatial
resolutions

The statistics of input data (LAI, LC, slope, elevation, as-
pect) and NPP calculated at the fine and coarse resolutions
are shown in Table 1. At the 30 m resolution, three land cover
types are distinguished, including coniferous forest (CF),
mixed (conifer and broadleaf) forest (MF), and small patches
of open land (OL). MF is the dominant land cover type ac-
counting for 60 % of the total watershed area, followed by
CF (25 %) and OL (15 %). After aggregating the land cover
types to 1 km resolution, the coverage of OL marginally re-
duced to 12 %, and the proportions of MF and CF changed

Table 1. Comparison of inputs and NPP results at 30 m and 1 km
resolutions (CF: coniferous forest; MF: Mixed forest; OL: open
land).

Parameters Units Mean Min. Max. S.D.

Fine resolution
LAI m2 m−2 3.2 0 6.7 1.4
LC % – 15 (OL) 60 (MF) –
Elevation m 1661 518 3767 471
Aspect ◦ 181.2 0.18 360 105.3
Slope ◦ 28.7 0 85.4 11.1
NPP-30 m g C m−2 yr−1 668.9 0 1016.9 288.5
NPPd

∗-1 km g C m−2 yr−1 672.2 1.36 920 211.1

Coarse resolution
LAI m2 m−2 3.3 0 4.7 1.0
LC % – 12 (OL) 70 (MF) –
Elevation m 1526 836 3159 416
Aspect ◦ 162.6 0.97 299 62.6
Slope ◦ 26.6 0 43.5 9.9
NPPl*-1km g C m−2 yr−1 683.7 1.32 931.2 210.2

∗ Open land fraction excluded.
NPPd denotes distributed NPP at 1 km resolution based on averages of 30 m
resolution NPP values. NPPl denotes lumped NPP.

to 70 % and 18 %, respectively. The value of open land LAI
is zero. In general, the average of mixed forest LAI was 3.1
with a range from 1.5 to 3.4, and the average of conifer forest
was 3.7 with a range from 3.2 to 5.9. The LAI of most pixels
are about 4.0. The slope at the 30 m resolution varied with a
mean of 28.7◦ and a maximum of 85.4◦. However, the slope
at the 1 km resolution varied with a mean of 26.6◦ and a max-
imum of 43.5◦, suggesting a considerable loss of slope infor-
mation at the coarse resolution. The elevation varied between
a minimum of 518 m and a maximum of 3767 m at the 30 m
resolution, and varied between a minimum of 836 m and a
maximum of 3159 m at the 1 km resolution. The elevation
range is larger at 30 m (3249 m) than at 1 km (2323 m). In
general, the mean values of the corresponding datasets shown
in Table 1 are very similar, but the ranges are reduced for all
variables at the coarse resolution.

Figure 6 shows a comparison of spatial distributions of
NPP at the 30 m and 1 km resolution. Although NPP values
at 30 m and 1 km resolution show similar spatial distributions
in general, the spatial variations of NPP at the 30 m resolu-
tion were more pronounced than that at the 1 km resolution.
Moreover, NPP values simulated at the 1 km resolution were
smaller than those at the 30 m resolution in the southern part
of the study area.

4.2 Relationship between NPPd and NPPl before
correction

Lumped NPP values compare relatively well with dis-
tributed NPP values (R2

= 0.78) for all pixels (Fig. 7). The
strongest relationship is observed within conifer-labelled
pixels (R2

= 0.81), and mixed-labelled pixels also have
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Figure 6. Comparison of spatial distribution of NPP simulated at 30 m resolution 5 

and 1 km resolution 6 
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Fig. 6.Comparison of spatial distribution of NPP simulated at 30 m
resolution and 1 km resolution.

a relatively strong relationship (R2
= 0.75). However, open

land pixels give a poor relationship (R2
= 0.26). When the

fraction of open land is slightly larger than that of other types,
the open land pixels at the 1 km resolution contain substantial
percentages of forests causing underestimation of NPP, i.e.
NPPl is negatively biased. Therefore, in principle, the pro-
ductive subclass (e.g. forest) from the open land area could
be separated according to the LAI values to reduce the NPP
estimation error (see Fig. 10).

4.3 Scaling based on land cover type

The algorithm is presented as follows:

SSILC = 1+

n∑
i=1

C
LC
ij .f LC

ij wherei 6= j (6)

wheref LC
ij is the area fraction of a non-dominant cover type

i in a pixel labelled as land cover typej ; C
LC
ij is the correc-

tion coefficient for a non-dominant cover typei present in a

coarse pixel (1 km in this study) labelled as (or dominated
by) land cover typej , andn is the number of non-dominant
land cover types within that pixel. Because a coarse reso-
lution pixel is treated with only one dominant cover type
in the lumped calculation, the fractions of non-dominant
cover types that exist in the pixel can cause errors in the
simulated mean NPP for the pixel because of the differ-
ences in NPP between the non-dominant cover types and
the dominant cover type. These differences are corrected us-
ing C

LC
ij (Table 2), which is obtained through the regres-

sion of NPPd/NPPl against the fraction of the cover typei
for pixels dominated by cover typej (Fig. 8). CLC

ij is taken
as the slope of the regression as it signifies the deviation
of NPPd/NPPl from 1 as the non-dominant cover type frac-
tion increases. Figure 8a–b are for the 1 km pixels dominated
by CF, Fig. 8c–d for the 1 km pixels dominated by MF, and
Fig. 8e–f for the 1 km pixels dominated by OL. It can be seen
that the ratio between NPPd and NPPl become less variable
with increasing areal fraction of a cover type, in particular
conifer and mixed forests. In CF dominated pixels, the mean
value of this ratio does not change much with MF fraction
(Fig. 8a) because the NPP values of MF and CF are similar.
The same reason can explain the small variation of the ratio
with CF fraction in MF dominated pixels (Fig. 8c). For CF
and MF dominated pixels, this ratio decreases with the OL
fraction in these pixels (Fig. 8b and d) because OL has lower
NPP than CF and MF. In OL dominated pixels (Fig. 8e and f)
NPPd/NPPl increases with increasing MF and CF fractions,
because CF and MF have much larger NPP values than OL.

Figure 9 shows the outcome of the land cover type cor-
rection for NPPl . The correction significantly improved the
agreement between NPPl and NPPd, particularly for open
land (Fig. 9c) withR2 improved from 0.26 to 0.52. How-
ever, a number of pixels containing large fractions of open
land are widely scattered. As discussed in Sect. 4.2, this sug-
gests that it is necessary to further consider LAI variability
(see Sect. 4.4).

4.4 Scaling based on both cover type and LAI

To correct the errors caused by aggregating LAI, an addi-
tional LAI correction (SSILAI ) was developed based on the
relative deviation of LAI values of the dominant land cover
type in a lumped pixel from the mean LAI value of the pixel.

SSILAI = (1+

n∑
i=1

C
LC
ij .f LC

ij Li) ∗ (1+ αLj ) wherei 6= j (7)

whereLi is the relative deviation of LAI values for a non-
dominant cover typei within a lumped pixel;Lj is the rela-
tive deviation of LAI values for the dominant coverj within
a lumped pixel; andα is a nonlinearity factor to describe the
NPP–LAI relationship for the dominant land cover type, and
the nonlinearity correction increases with the magnitude of
the LAI of the dominant cover type because the NPP–LAI
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Figure 7. Regression between distributed (NPPd) and lumped (NPPl) annual values 4 

before correction: (a) pixels dominated by the coniferous forest (CF-pixels) at the 1 5 

km resolution; (b) pixels dominated by the mixed forest (MF-pixels) at the 1 km 6 

resolution; (c) pixels dominated by open land (OL-pixels) at the 1 km resolution; and 7 

(d) all pixels for all land cover types (all-pixels). 8 
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Fig. 7. Regression between distributed (NPPd) and lumped (NPPl) annual values before correction:(a) pixels dominated by the coniferous
forest (CF-pixels) at the 1 km resolution;(b) pixels dominated by the mixed forest (MF-pixels) at the 1 km resolution;(c) pixels dominated
by open land (OL-pixels) at the 1 km resolution; and(d) all pixels for all land cover types (all-pixels).

Table 2.CLC
ij

, CSL
ij

, CELE
ij

coefficients used in the land cover correction (SSILC), elevation correction (SSIELE), and slope correction (SSISL).
The subscripts con, mix, and ol refer to coniferous forest, mixed forest, open land, respectively. The ELElow , ELEhigh, SLlow , SLmid and
SLhigh refer to elevation less than and equal to 1350 m, greater than 1350 m , slope 6–20◦, slope 21–40◦and slope 41–45◦, respectively.

Lumped pixels labelled as Lumped pixels labelled as Lumped pixels labelled as
coniferous forest Mixed forest openland

C
LC
mix-con C

LC
ol-con C

LC
con-mix C

LC
ol-mix C

LC
con-ol C

LC
mix-ol

0.0316 −0.5383 0.0737 −0.4303 1.0394 1.3386

Lumped pixels labelled as Lumped pixels labelled as –
ELElow ELEhigh

CELE
high-low CELE

low-high –

0.0529 −0.0528

Lumped pixels labelled as Lumped pixels labelled as Lumped pixels labelled as
SLlow SLmid SLhigh

C
SL
mid-low C

SL
high-low C

SL
low-mid C

SL
high-mid C

SL
low-high C

SL
mid-high

0.9982 −0.1261 −1.2307 0.0676 0.2417 1.0850
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Figure 8. Variation of average NPPd/NPPl as a function of the fraction of 2 

non-dominant land cover types in: (a-b) pixels dominated by the coniferous forest 3 

(CF-pixels); (c-d) pixels dominated by the mixed forest (MF-pixels); and (e-f) pixels 4 

dominated by the open land (OL-pixels)  5 

Fig. 8. Variation of average NPPd/NPPl as a function of the fraction of non-dominant land cover types in:(a–b) pixels dominated by the
coniferous forest (CF-pixels);(c–d) pixels dominated by the mixed forest (MF-pixels); and(e–f) pixels dominated by the open land (OL-
pixels).

becomes more nonlinear at higher LAI values. As shown in
Eq. (9), the LAI correction depends on both the variability
(Li) and the mean value (Lj ) of LAI in the pixel. Similar
to land cover correction, the correction for the LAI variabil-
ity for a non-dominant cover type is proportional to the areal
fraction of the non-dominant cover type and the difference in
NPP between the non-dominant and the dominant cover type.
If the LAI–NPP relationship is linear,α is zero. It should gen-
erally be between 0 and 1.

The importance of LAI variations within the same cover
type in the scaling process is demonstrated in Fig. 10. Al-
though there is only a slight improvement in the correlation
between NPPl and NPPd, pixels containing large fractions of
open land fall closely to the regression line after the addi-

tional LAI correction, suggesting that LAI plays a significant
role in capturing the interaction between open land and other
cover types.

4.5 Scaling based on slope and elevation

According to the pattern of NPP of forest (excluding OL)
changing with slope at the 1 km resolution (Fig. 11), slope
was classified into three ranges, that is 0–20◦, 21–40◦, > 41◦.

SSISL = f ((SL(0 ∼ 20),SL(21∼ 40),SL(> 41)) (8)
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Figure 9. Regression between distributed (NPPd) and lumped (NPPl) annual values 5 

after land cover (SSILC) correction: (a) pixels dominated by the coniferous forest 6 

(CF-pixels) at the 1 km resolution; (b) pixels dominated by the mixed forest 7 

(MF-pixels) at the 1 km resolution; (c) pixels dominated by open land (OL-pixels) at 8 

the 1 km resolution; and (d) all pixels for all land cover types (all-pixels). 9 

 10 

Fig. 9. Regression between distributed (NPPd) and lumped (NPPl) annual values after land cover (SSILC) correction:(a) pixels dominated
by the coniferous forest (CF-pixels) at the 1 km resolution;(b) pixels dominated by the mixed forest (MF-pixels) at the 1 km resolution;(c)
pixels dominated by open land (OL-pixels) at the 1 km resolution; and(d) all pixels for all land cover types (all-pixels).

The algorithm to correct the effects of slope on NPP is
similar to that used in the LC correction, i.e.

SSISL = 1+

n∑
i=1

C
SL
ij .f SL

ij wherei 6= j (9)

wheref SL
ij is the areal fraction of a non-dominant slope range

i in a pixel labelled as slope rangej ; C
SL
ij (Table 2) is a

regression coefficient for a particular non-dominant slope
rangei present in a coarse pixel labelled as (or dominated
by) slope rangej ; and n is the number of non-dominant
slope ranges within that pixel. The logic of Eq. (11) is similar
to that of Eq. (8), because the impact of the distorted slope
range on the lumped NPP calculation depends on the areal
fraction of the non-dominant range and the difference in NPP
between the non-dominant and dominant slope range.

The correlation between NPPd and NPPl is improved af-
ter SSISL correction (Fig. 11), especially after combining it
with LC and LAI corrections for open land pixels (Table 3)
in comparison with the case before any correction, indicating

that slope is a relative dominant topographic factor influenc-
ing NPP spatial scaling.

Because of NPP peaks at locations at about 1350 m above
sea level and decreases with further increase of elevation
from this height (Chen et al., 2007), two elevation sections
were analysed as follows:

SSIELE = f (ELE(< 1350),ELE(> 1350)) (10)

SSIELE = 1+

n∑
i=1

C
ELE
ij .f ELE

ij wherei 6= j (11)

wheref ELE
ij is the areal fraction of a non-dominant eleva-

tion rangei in a pixel labelled as elevation rangej at the
1 km resolution;CELE

ij (Table 2) is a regression coefficient
for a particular non-dominant elevation rangei present in the
coarse pixel labelled as (or dominated by) elevation rangej ;
andn is the number of non-dominant elevation range within
that pixel.

Biogeosciences, 10, 4879–4896, 2013 www.biogeosciences.net/10/4879/2013/



J. M. Chen et al.: Effects of vegetation heterogeneity and surface topography 4889

 46 

 1 

Figure 10. Regression between distributed (NPPd) and lumped (NPPl) annual values 2 

after land cover and LAI (SSILC+LAI) corrections: (a) pixels dominated by the 3 

coniferous forest (CF-pixels); (b) pixels dominated by the mixed forest (MF-pixels); 4 

(c)pixels dominated by open land (OL-pixels); and (d) all pixels for all land cover 5 

types (all-pixels). 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

Fig. 10.Regression between distributed (NPPd) and lumped (NPPl) annual values after land cover and LAI (SSILC+LAI ) correction:(a) pix-
els dominated by the coniferous forest (CF-pixels);(b) pixels dominated by the mixed forest (MF-pixels);(c) pixels dominated by open land
(OL-pixels); and(d) all pixels for all land cover types (all-pixels).

Table 3.Comparison of the correlations between NPPd and NPPl before and after various corrections.

LC/R2 Before After correction

correction LC elevation slope LC+ lai LC + sl LC+ ele LC+ lai + sl LC+ lai + ele LC+ lai + sl+ ele

conifer 0.815 0.915 0.822 0.843 0.919 0.915 0.916 0.925 0.926 0.926
mixed 0.758 0.855 0.765 0.781 0.858 0.857 0.857 0.859 0.861 0.862
openland 0.267 0.524 0.301 0.372 0.645 0.579 0.537 0.711 0.667 0.728
all LC 0.782 0.873 0.789 0.807 0.878 0.875 0.875 0.881 0.883 0.884

The SSIELE correction based on Eq. (13) improved by
a small extent the correlation between NPPd and NPPl
(Fig. 12), indicating that elevation is also a significant topo-
graphic factor to consider in NPP spatial scaling. The effec-
tiveness of individual corrections based on slope, elevation
and their combinations with LAI+ LC is given in Table 3. In
general, the independent elevation correction is smaller than
the slope correction. However, the elevation correction com-
bined with LAI+ LC is slightly larger than that of slope cor-
rection combined with LAI+ LC except for open land pixels,

suggesting a low level interaction of these factors in influenc-
ing the NPP spatial pattern.

4.6 Scaling based on all factors

Large improvements of NPPl are achieved for OL, CF and
DF pixels after applying corrections for all factors (land
cover, LAI, slope, and elevation) (Fig. 13, and Tables 3
and 4). The improvements are particularly significant for
OL pixels. The mean bias error (MBE) in NPP modelled
at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to

www.biogeosciences.net/10/4879/2013/ Biogeosciences, 10, 4879–4896, 2013



4890 J. M. Chen et al.: Effects of vegetation heterogeneity and surface topography

 47 

 1 

 2 

Figure 11. Regression between distributed (NPPd) and lumped (NPPl) annual values 3 

after slope (SSISL) correction: (a) pixels dominated by the coniferous forest 4 

(CF-pixels); (b) pixels dominated by the mixed forest (MF-pixels); (c) pixels 5 

dominated by open land (OL-pixels); and (d) all pixels for all land cover types 6 

(all-pixels). 7 

Fig. 11.Regression between distributed (NPPd) and lumped (NPPl) annual values after slope (SSISL) correction:(a) pixels dominated by
the coniferous forest (CF-pixels);(b) pixels dominated by the mixed forest (MF-pixels);(c) pixels dominated by open land (OL-pixels); and
(d) all pixels for all land cover types (all-pixels).

4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m
resolution, where the mean NPP is 668 g C m−2 yr−1 (Ta-
ble 4), and about 68 % mean bias error is reduced for the
entire watershed with these corrections. In term of percent-
age, the NPPl MBE was reduced from 2 % to 0.7 %, the total
correction resulted in a decrease of average mean bias error
(MBE) in NPPl from 1.9 % to 0.6 % for the coniferous for-
est and from 2 % to 0.1 % for mixed forest (Table 4). Table 4
also indicates that these corrections improved minimum and
maximum of NPPl values.

Vegetation heterogeneity and surface topography were of
almost equal importance in NPP spatial scaling (Table 3),
similar to the finding of Maayer and Chen (2006) for ET
scaling. The combination of three factors of land cover, LAI
and slope (SSILC+LAI +SL) made the largest improvement to
NPPl for open land (R2

= 0.7118), suggesting that slope is
especially a significant topographic factor influencing NPP
spatial scaling in a region with mixed open land and other
cover types. The result shows that different factors of vege-
tation heterogeneity and topography have different contribu-

tions to NPPl correction. These contributions are generally
additive, i.e. larger improvements are achieved with more
factors considered.

5 Discussion

Ambroise (1995) pointed out that large topography-driven
lateral redistributions of water and considerable topography-
related heterogeneities on all scales are the two main charac-
teristics of mountainous regions. Topography alters the wa-
ter cycle through its direct effects on the spatial patterns of
precipitation and potential ET and its indirect effect on the
spatial patterns of soil water content and streamflow genera-
tion. All these spatial patterns exert influences on the spatial
pattern of vegetation productivity. On a slope, the amount
of rainfall reaching the ground varies according to the slope
and aspect (Fig. 14), and the general tendency of increas-
ing soil moisture downslope is modulated by variations in
the depth of saturated or less-permeable layers. This ten-
dency can be amplified by a convergence of flows in laterally
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Figure 12. Regression between distributed (NPPd) and lumped (NPPl) annual values 3 

after elevation (SSIELE) correction: (a) pixels dominated by the coniferous forest 4 

(CF-pixels); (b) pixels dominated by the mixed forest (MF-pixels); (c) pixels 5 

dominated by open land (OL-pixels); and (d) all pixels for all land cover types 6 

(all-pixels). 7 
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Fig. 12.Regression between distributed (NPPd) and lumped (NPPl) annual values after elevation (SSIELE) correction:(a) pixels dominated
by the coniferous forest (CF-pixels);(b) pixels dominated by the mixed forest (MF-pixels);(c) pixels dominated by open land (OL-pixels);
and(d) all pixels for all land cover types (all-pixels).

Table 4. Statistics of the distributed and lumped NPP. Shown are averaged values of coniferous and mixed forest excluding open land in
2003. MBE is the mean bias error. All values are expressed in g C m−2 yr−1 (CF: coniferous forest; MF: Mixed forest; OL: open land).

Distributed NPP Lumped NPP before correction Lumped NPP after correction
CF MF All CF MF All CF MF All

Average 713.9 732.0 668.9 728.1 746.9 683.7 709.5 731.1 673.7
MBE – – – 14.2 14.9 14.8 −4.4 −0.9 4.8
Minimum 134.9 63.6 1.36 215.9 112.7 1.32 161.9 91.0 90.2
Maximum 920 912.4 920 931.2 926.8 931.2 936.5 942.2 942.2
Range 785.1 848.8 918.6 715.3 814.1 929.8 774.6 851.2 852.0

concave zones or attenuated by their divergence in laterally
convex zones (Dunne and Black, 1970; Anderson and Burt,
1978). The wettest conditions thus usually occur on shal-
low soils and in convergence zones at the bottom of concave
slops (Fig. 14). The spatial pattern of soil moisture, which
is controlled by the topography, determines the NPP spa-
tial pattern to a large extent. One of the main objectives of
coupling BEPS with Terrainlab is to estimate soil moisture
precisely (Chen et al., 2005), because a reliable simulation

of soil moisture is a must for reliable simulations of the net
carbon exchange between terrestrial ecosystems and the at-
mosphere. The water redistribution in the soil is controlled by
topography (Moore et al., 1988; Grayson et al., 1997; West-
ern et al., 1999; Qiu et al., 2001), and BEPS-Terrainlab can
therefore simulate the spatial variations of carbon and water
fluxes under the influence of topography. NPP is sensitive to
soil moisture in the rooting zone, and therefore the NPP spa-
tial variation with slope is mostly induced by the influence of
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Figure 13. Regression between distributed (NPPd) and lumped (NPPl) annual values 2 

after SSI correction: (a) pixels dominated by the coniferous forest (CF-pixels); (b) 3 

pixels dominated by the mixed forest (MF-pixels); (c) pixels dominated by open land 4 

(OL-pixels); and (d) all pixels for all land cover types (all-pixels). 5 
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Fig. 13.Regression between distributed (NPPd) and lumped (NPPl) annual values after SSI correction:(a) pixels dominated by the coniferous
forest (CF-pixels);(b) pixels dominated by the mixed forest (MF-pixels);(c) pixels dominated by open land (OL-pixels); and(d) all pixels
for all land cover types (all-pixels).

slope on soil moisture in the rooting zone. This may be the
reason that slope is an important factor to consider in NPP
spatial scaling. The resulting variations in soil moisture in the
rooting zone could be used to evaluate variations in NPP, and
the soil moisture scaling will be valuable to interpret NPP
spatial scaling (Figs. 15 and 16).

As shown in Fig. 15, NPP at 30 m resolution increases with
slope from 6◦to 25◦, varies slightly from 26◦ to 60◦, and then
decreases considerably from 61◦ to larger slopes, while NPP
at 1 km resolution increases with slope from 6◦ to 20◦, de-
creases slightly from 21◦ to 40◦, and then decreases sharply
from 41◦to larger slopes. Corresponding to these NPP varia-
tion patterns, soil moisture also shows the similar patterns
at both 30 m and 1 km resolutions, respectively (Fig. 16).
Specifically, at 30 m resolution, the average soil moisture in
the rooting zone during the growing season shows the fol-
lowing spatial patterns: (i) it has the largest values at loca-
tions with small slopes (generally at the bottom of hills) due
to convergence of water from upper slopes; (ii) it has medium
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Figure 14. Schematic diagram illustrating the processes of water redistribution at 5 

different positions of a slope. 6 
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Fig. 14. Schematic diagram illustrating the processes of water re-
distribution at different positions of a slope.

values at locations with medium slopes at which the gain of
water from upper slopes may be balanced by the transfer of
water to lower slopes; and (iii) it decreases with increasing
slope after a threshold value of about 63◦at which ground
water is drained to lower positions rapidly after rainfall. At
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Fig. 15.NPP variation with slope at 30 m and 1 km resolutions. The
range of slope at 1 km resolution is plotted at the same scale as that
at 30 m, but is much smaller because of the averaging process.

 

Fig. 16.Variations of the average soil moisture in the rooting zone
with slope during the growing season at 30 m and 1 km resolutions.

1 km resolution, the largest slopes disappear due to the aver-
aging process, and this distribution pattern is distorted. The
correction of NPPl based on slope is to remove the differ-
ence in NPP caused by the difference in this soil moisture
spatial pattern between these two resolutions. In Fig. 15, the
NPP values at small slopes are smaller than those at medium
range slopes because the soil was usually saturated in flat
areas (Fig. 16) and the plant growth is impeded under the
partially anaerobic conditions (Chen et al., 2005). This sug-
gests that, on the one hand, a reliable NPP simulation de-
pends closely on reliable soil moisture simulation, and on
the other hand, slope is the most important topographic fac-
tor affecting water redistribution and soil moisture, and hence
affecting the NPP spatial distribution. Slope is, therefore, an
important topographic factor to be included in NPP spatial
scaling in mountainous areas.

In general, the changes in NPP and soil moisture with
slope are larger at finer resolutions (at the 30 m resolution,
NPP ranges from 443 to 642; soil moisture ranges from
14.2 % to 24.0 %) than at coarser resolutions (at the 1 km
resolution, NPP ranges from 573.4 to 652.4; soil moisture
ranges from 17.1 % to 24.0 %). In addition to the topograph-
ical effect on water redistribution, forest was also disturbed
by human activities, such as timber harvest and clear-cutting
for farming. Therefore, NPP values are low in the locations
with the lowest slopes. At the highest slopes, soil moisture is

the lowest (Fig. 16), and the effect of limited available water
on forest growth causes NPP to be the lowest. In addition,
largest slopes generally occur at high elevations, and low
temperature becomes a negative factor in tree growth. There-
fore, NPP values are often the lowest at locations with the
highest slopes. NPP values are high at locations with medium
slopes where the soil moisture is optimum for tree growth.

Our results show that both exogenous factors, such as
slope and elevation, and endogenous factors, such as land
cover and LAI, are useful for NPP spatial scaling, i.e. to ap-
ply information at one scale to another. The spatial distribu-
tions of endogenous factors may be regarded as integrated
outcomes of all environmental conditions including climate,
soil, topography and disturbance and therefore are theoret-
ically most important factors to consider in spatial scaling
as they intrinsically include the accumulated influences of
endogenous factors over a large time scale (a few years to
a few decades). In this regard, the methodology adopted in
some land models (Bonan et al., 1993; Chen et al., 2012) to
compute fluxes for various cover type fractions having dif-
ferent mean LAI values within a grid is an effective way to
capture the first-order effects of within grid heterogeneity on
the grid-level computation. However, exogenous factors have
strong influences on the various instantaneous fluxes between
land and atmosphere due to the redistribution of water over
the landscape and their interactions with meteorological vari-
ables (at least radiation, but also often precipitation, tem-
perature and humidity). Moreover, eco-hydrological mod-
els attempted for hydrological and ecological simulations at
coarse resolutions would suffer from the inevitable distortion
to the topographical parameter fields, and this would also
be an issue for spatial scaling. Therefore, both endogenous
and exogenous factors should be integrated within a spatial
scaling scheme for the purpose of removing biases in the
coarse resolution results, and this scheme may be included
as a benchmark of land models. The methodology and theo-
ries proposed in this study will be helpful for developing this
scheme.

In this study, soil texture and depth are not included in
the scaling algorithm, although they are considered in the
hydro-ecological model. Soil texture has strong influence on
the land cover type (e.g. pine forests usually grow on sandy
soils), and therefore its influence might have been mostly in-
cluded in the scaling using land cover information. Soil depth
is not considered in this study because it is over 0.5 m at most
locations in the watershed and therefore not a strong limiting
factor for plant growth. In different landscape settings, it may
be worthwhile to consider these two additional parameters.

The scaling algorithm developed in this study is trans-
ferrable to other landscapes. However, some of the coeffi-
cients in the algorithm need to be adjusted for local values,
such as the mean differences in the flux of concern (NPP
in this study) among different cover types and topographical
classes. These differences can be estimated using a process-
based model or a simple model depending on the required
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accuracy for the flux. The application of our spatial scaling
methodology requires high-resolution maps of land cover,
LAI, slope and elevation. Attention should be given to the
accuracy of these high-resolution maps as their errors would
propagate to the final scaling results.

6 Conclusions

The BEPS-TerrainLab model, which is an eco-hydrological
model coupling an ecosystem model BEPS with a distributed
hydrological model TerrainLab, was applied to a mountain-
ous forested watershed, in Baohe River Basin in China.
Through studying the NPP results simulated at fine and
coarse resolutions, we draw the following conclusions re-
garding to NPP spatial scaling methodology for the purpose
of correcting errors in NPP modelling at coarse resolutions:

1. A spatial scaling index (SSI), which integrates the ef-
fects of vegetation heterogeneity (land cover, leaf area
index) and topographical variations (elevation, slope)
on NPP, is effective for correcting the errors in coarse
resolution NPP estimation.

2. Vegetation heterogeneity and topography are of almost
equal importance in determining the NPP spatial distri-
bution pattern and therefore its spatial scaling. The ef-
fect of vegetation heterogeneity on NPP spatial scaling
is generally larger than that of topography based on the
correlations between the distributed NPP and lumped
NPP.

3. The accuracy in NPP spatial scaling is incremental as
more factors are considered, suggesting that the effects
of these factors can be considered individually.

4. LAI and slope are especially significant factors for re-
moving errors in coarse pixel NPP estimation for open
land. Land cover is generally more important than LAI
in NPP spatial scaling. In scaling with topographical pa-
rameters, slope is generally more effective than eleva-
tion.

5. NPP spatial scaling in complex terrains depends much
on the amount of the distortion of the soil moisture
field at the coarse resolution. Topographical variations
are often greatly suppressed as the resolution decreases,
causing various biases in the estimation of radiation
and water flows. The spatial redistribution and move-
ment of ground water in complex terrains tightly control
the NPP distribution. Results of this study suggest that
it is indeed necessary to consider topography in NPP
modelling and spatial scaling in addition to considering
vegetation heterogeneity, although such effort would re-
quire the use of a distributed hydrological model.

6. In general, both endogenous and exogenous factors are
useful for spatial scaling of land surface fluxes and they

can be integrated into a comprehensive scaling scheme
for considering the influences on sub-grid heterogene-
ity on the grid level computation. A scaling scheme of
this type may be used to produce a new benchmark for
evaluating land models.

Acknowledgements.The study was funded by a project
(2010CB950704) of the Key Global Change Programme of
the Chinese Ministry of Science and Technology, the Key Project
of Chinese Ministry of Education (grant 308012) and the National
Key Basic Research Program of China (grant 2006CB40050X).
The authors are indebted to Qingjiu Tian, Fengming Hui and Xi-
uqin Fang at Nanjing University for assistance in the atmospheric
correction and land cover classification. Xianfeng Feng of the
Institute of Geographical Sciences and Natural Resources Research
provided initial assistance with BEPS. Technical assistance of
Gang Mo and Andrey Bulinko in coupling the BEPS and Ter-
rainlab was particularly important for this work. The authors also
thank those who participated in the field experiment, including
Guang Zheng, Wenjin Wang, and Ming Zhang and Weifang Jia,
who provided meteorology data of Weather Bureau of Taibai
County.

Edited by: N. Saigusa

References

Ambroise, B.: Topography and water cycle in a temperate mid-
dle mountain environment: the need for interdisciplinary experi-
ments, Agr. Forest Meteorol., 73, 217–235, 1995.

Amiro, B. D., Chen, J. M., and Liu, J.: Net primary productivity
following forest fire for Canadian ecoregions, Can. J. Forest Res.,
30, 939–947, 2000.

Anderson, M. G. and Burt, T. P.: The role of topography in control-
ling throughflow generation, Earth Surf. Processes, 3, 331–344,
1978.

Arora, V. K., Chiew, F. H. S. and Grayson, R. B.: Effect of sub-
grid scale variability of soil moisture and precipitation intensity
on surface runoff and streamflow, J. Geophys. Res., 106, 17073–
17091, 2001.

Bertoldi, G., Notarnicola, C., Leitinger, G., Endrizzi, S., Zebisch,
M., Della Chiesa, S., and Tappeiner, U.: Topographical and eco-
hydrological controls on land surface temperature in an alpine
catchment, Ecohydrology, 3, 189–204, 2010.

Bonan, G. B., Pollard, D., and Thompson, S. L.: Influence of
subgrid-scale heterogeneity in leaf area index, stomatal resis-
tance and soil moisture on grid-scale land–atmosphere interac-
tions, J. Climate, 6, 1882–1897, 1993.

Campbell, G. S. and Norman, J. M.: An Introduction to Environ-
mental Biophysics, Springer-Verlag, New York, 129–144, 1998.

Chen, J. M.: Spatial scaling of a remote sensed surface parameter
by contexture, Remote Sens. Environ., 69, 30–42, 1999.

Chen, J. M. and Cihlar, J.: Quantifying the effect of canopy archi-
tecture on optical measurements of leaf area index using two gap
size analysis methods, IEEE T. Geosci. Remote, 33, 777–787,
1995.

Biogeosciences, 10, 4879–4896, 2013 www.biogeosciences.net/10/4879/2013/



J. M. Chen et al.: Effects of vegetation heterogeneity and surface topography 4895

Chen, J. M., Liu, J., Cihlar, J., and Guolden, M. L.: Daily canopy
photosynthesis model through temporal and spatial scaling for
remote sensing applications, Ecol. Model., 124, 99–119. 1999.

Chen, J. M., Chen, X. Y., Ju, W. M., and Geng, X. Y.: Distributed
hydrological model for mapping evapotranspiration using remote
sensing inputs, J. Hydrol., 305, 15–39, 2005.

Chen, J. M., Mo, G., Pisek, J. Deng, F., Ishozawa, M., and
Chan, D.: Effects of foliage clumping on global terrestrial gross
primary productivity, Global Biogeochem. Cy., 26, GB1019,
doi:10.1029/2010GB003996, 2012.

Chen, X. F., Chen J. M., An, S. Q., and Ju, W. M.: Effects of topog-
raphy on simulated net primary productivity at landscape scale,
J. Environ. Manage., 85, 585–596, 2007.

Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B.,
Bosilovich, M. G., Denning, A. S., As Dirmeyer, P., Houser,
P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.:
The common land model, B. Am. Meteor. Soc., 84, 1013–1023,
doi:10.1175/BAMS-84-8-1013, 2003.

Dunne, T. and Black, R. D.: An experimental investigation of runoff
production in permeable soils, Water Resour. Res., 6, 478–490,
1970.

Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochem-
ical model of photosynthetic CO2 assimilation in leaves of C3
species, Planta, 149, 78–90, 1980.

Feng, Z. W., Wang, X. K., and Wu, G.: Biomass and productivity of
forest ecosystem in China, Science Press, Beijing, China, 1999.

Gimona, A., Birnie, R. V., and Sibbald, A. R.: Scaling up of a mech-
anistic dynamic model in a GIS environment to model temper-
ate grassland production at the regional scale, Macaulay Institute
Grass and Forage Science, 61, 315–331, 2006.

Govind, A., Chen, J. M., McDonnell, J, Kumari, J., and Son-
nentag, O.: Effect of Lateral Hydrological Processes on Photo-
synthesis and Evapotranspiration, Ecohydrology, 3, 394–410,
doi:10.1002/eco.141, 2010.

Grant, R. F.: Modelling topographic effects on net ecosystem. pro-
ductivity of boreal black spruce forest, Tree Physiol., 24, 1–18,
2004

Grayson, R. B., Western, A. W., Chiew, F. H. S., and Bloschl, G.:
Preferred states in spatial soil moisture patterns: local and nonlo-
cal controls, Water Resour. Res., 33, 2897–2908, 1997.

Hong, S. H., Hendrickx, J. M. H., and Borchers, B.: Up-scaling of
SEBAL derived evapotranspiration maps from Landsat (30m) to
MODIS (250 m) scale, J. Hydrol., 370, 122–138, 2009.

Hong, S. H., Hendrickx, J. M. H., and Borchers, B.: Down-scaling
of SEBAL derived evapotranspiration maps from Landsat (30 m)
to MODIS (250 m) scale. Int. J. Remote Sens., 32, 6457–6477,
2012.

Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala,
O. E., and Schulze, E. D.: A global analysis of root distributions
for terrestrial biomes, Oecologia, 108, 389–411, 1996.

Jarvis, P. G.: Interpretation of variations in leaf water potential and
stomatal conductance found in canopies in field, Philos. T. Roy.
Soc. B, 273, 593-610, 1976.

Jarvis, P. G.: Scaling processes and problems, Plant, Cell Environ.,
18, 1079–1089, 1995.

Kang, S., Lee, D., and Kimball, J. S.: The effects of spatial aggre-
gation of complex topography on hydroecological process sim-
ulations within a rugged forest landscape: development and ap-
plication of a satellite-based topoclimatic model, Can. J. Forest

Res., 34, 519–530, 2004.
Kenward, T., Lettenmaier, D. P., Wood, E. F., and Fielding, E.: Ef-

fects of digital elevation model accuracy on hydrologic predic-
tions, Remote Sens. Environ., 74, 432–444, 2000.

Liu, J., Chen, J. M., Cihlar J., and Park, W.: A process-based Boreal
Ecosystems Productivity Simulator using remote sensing inputs,
Remote Sens. Environ., 62, 158–175, 1997.

Liu, J., Chen, J. M., Cihlar, J., and Chen, W.: Net Primary Produc-
tivity Distribution in the Boreas Region From a Process Model
Using Satellite and Surface Data, J. Geophys. Res.-Atmos., 104,
27735–27754, 1999.

Liu, J., Chen, J. M., Cihlar, J., and Chen, W.: Net Primary Pro-
ductivity Mapped for Canada at 1-Km Resolution, Global Ecol.
Biogeogr., 11, 115–129, 2002.

Liu, J., Chen, J. M., and Cihlar, J.: Mapping Evapotranspiration
Based on Remote Sensing: an Application to Canada’s Land-
mass, Water Resour. Res., 39, 1189–1194, 2003.

Liu, F., Wu, X. B., Bai, E., Thomas, W. B., and Archer, S. R.: Spatial
scaling of ecosystem C and N in a subtropical savanna landscape,
Glob. Change Biol., 16, 2213–2223, 2010.

Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth,
E., Carvalhais, N., Ciais, P., Dalmonech, D., Fisher, J. B., Fisher,
R., Friedlingstein, P., Hibbard, K., Hoffman, F., Huntzinger, D.,
Jones, C. D., Koven, C., Lawrence, D., Li, D. J., Mahecha, M.,
Niu, S. L., Norby, R., Piao, S. L., Qi, X., Peylin, P., Prentice, I.
C., Riley, W., Reichstein, M., Schwalm, C., Wang, Y. P., Xia, J.
Y., Zaehle, S., and Zhou, X. H.: A framework for benchmarking
land models, Biogeosciences, 9, 3857–3874, doi:10.5194/bg-9-
3857-2012, 2012.

Maayar, M. E. and Chen, J. M.: Spatial scaling of evapotranspiration
as affected by heterogeneities in vegetation, topography, and soil
texture, Remote Sens. Environ., 102, 33–51, 2006.

Matsushita, B. and Tamura, M.: Integrating remotely sensed data
with an ecosystem model to estimate net primary productivity in
East Asia, Remote Sens. Environ., 81, 58–66, 2002.

Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method scaling
vegetation dynamics: the ecosystem demography model (ED),
Ecol. Monogr., 71, 557–586, 2001.

Moore, I. D., Burch, G. J., and Mackenzie, D. H.: Topographic ef-
fects on the distribution of surface soil-water and the location
of ephemeral gullies, Transactions of the American Society of
Agriculture Engineering, 31, 1098–1107, 1988.

Qiu, Y., Fu, B. J., Wang, J., and Chen, L. D.: Soil moisture variation
in relation to topography and land use in a hillslope catchment of
the Loess Plateau, China, J. Hydrol., 240, 243–263, 2001.

Running, S. W. and Coughlan, J. C.: A general model of forest
ecosystem processes for regional applications. I, Hydrological
balance, canopy gas exchange and primary production processes,
Ecol. Model., 42, 125–154, 1988.

Sellers, P., Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts,
A. K., Hall, F. G., Berry, J. A. Collatz, G. J., Denning, A.
S., Mooney, H. A., Nobre, C. A., Sato, N., Field, C. B., and
Henderson-Sellers, A.: Modelling the exchange of energy, wa-
ter, and carbon between continents and he atmosphere, Science,
275, 502–509, 1997.

Simic, A., Chen, J. M., Liu, J., and Csillag, F.: Spatial scaling of net
primary productivity using subpixel information, Remote Sens.
Environ., 93, 246–258, 2004.

www.biogeosciences.net/10/4879/2013/ Biogeosciences, 10, 4879–4896, 2013

http://dx.doi.org/10.1029/2010GB003996
http://dx.doi.org/10.1175/BAMS-84-8-1013
http://dx.doi.org/10.1002/eco.141
http://dx.doi.org/10.5194/bg-9-3857-2012
http://dx.doi.org/10.5194/bg-9-3857-2012


4896 J. M. Chen et al.: Effects of vegetation heterogeneity and surface topography

Sonnentag, O., Chen, J. M., Roulet, N. T., Ju, W., and Govind,
A.: Spatially explicit simulation of peatland hydrology and car-
bon dioxide exchange: The influence of topography, J. Geophys.
Res.-Biogeo., 113, G02005, doi:10.1029/2007JG000605, 2008.

Sprintsin, M., Chen, J. M., Desai, A., and Gough, C. M.: Evaluation
of leaf-to-canopy upscaling methodologies against carbon flux
data in North America, J. Geophys. Res.-Biogeo., 117, G01023,
doi:10.1029/2010JG001407, 2012.

Stokes, M. A. and Smiley, T. L.: An Introduction to Tree-ring Dat-
ing. University of Chicago Press, Chicago, 1968.

Sun, R., Chen, J. M., Zhu, Q. J., Zhou, Y. Y., Liu, J., Li, J. T., Liu,
S. H., Yan, G. J., and Tang, S. H.: Spatial distribution of net pri-
mary productivity and evapotranspiration in Changbaishan Nat-
ural Reserve,China,using Landsat ETM+ data, Can. J. Remote
Sens., 30, 731–742, 2004.

Western, A. W., Grayson, R. B., Bloschl, G., Willgoose, G. R., and
Mcmahon, T. A.: Observed spatial organization of soil moisture
and its relation to terrain indices, Water Resour. Res., 35, 797–
810, 1999.

Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed
hydrology-vegetation model for complex terrain, Water Resour.
Res., 30, 1665–1679, 1994.

Wu, J. and Qi, Y.: Dealing with scale in landscape analysis: an
overview, Geographical Information Sciences, 6, 1–5, 2000.

Biogeosciences, 10, 4879–4896, 2013 www.biogeosciences.net/10/4879/2013/

http://dx.doi.org/10.1029/2007JG000605
http://dx.doi.org/10.1029/2010JG001407

