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Abstract. National and international networks and observa-
tories of terrestrial-based sensors are emerging rapidly. As
such, there is demand for a standardized approach to data
quality control, as well as interoperability of data among
sensor networks. The National Ecological Observatory Net-
work (NEON) has begun constructing their first terrestrial
observing sites, with 60 locations expected to be distributed
across the US by 2017. This will result in over 14 000 auto-
mated sensors recording more than> 100 Tb of data per year.
These data are then used to create other datasets and sub-
sequent “higher-level” data products. In anticipation of this
challenge, an overall data quality assurance plan has been
developed and the first suite of data quality control mea-
sures defined. This data-driven approach focuses on auto-
mated methods for defining a suite of plausibility test pa-
rameter thresholds. Specifically, these plausibility tests scru-
tinize the data range and variance of each measurement type
by employing a suite of binary checks. The statistical basis
for each of these tests is developed, and the methods for cal-
culating test parameter thresholds are explored here. While
these tests have been used elsewhere, we apply them in a
novel approach by calculating their relevant test parameter
thresholds. Finally, implementing automated quality control
is demonstrated with preliminary data from a NEON proto-
type site.

1 Introduction

Observational ecology has historically focused on plot-
stand–ecosystem–watershed scales that are meant to be rep-
resentative of a larger ecosystem or region. By measur-

ing many ecological variables in great detail within these
scales, conclusions about larger-scale behavior can be drawn
(Schneider, 2001; Schimel et al., 2011). With the advent of
satellite observations, measurements can be made on a global
scale, but the number of ecologically relevant variables is of-
ten limited, and the linkage to ground-based measurements
can be lacking (DeFries et al., 2002). In an effort to en-
velop a larger sphere of inference and to increase our abil-
ity to scale ecology in time and space, many terrestrial-based
research stations have merged to form national and interna-
tional networks (and observatories) in which many measure-
ments can be made at numerous locations; for example, Long
Term Ecological Research (LTER: Franklin et al., 1990);
United States Climate Reference Network (USCRN: Karl et
al., 1995); Department of Energy – Atmospheric Radiation
Measurement network (DOE-ARM: Stokes and Schwartz,
1994); FLUXNET (Baldocchi et al., 2001); Global Lakes
Ecological Observation Network (GLEON: Hanson, 2008);
Critical Zone Observatory (CZO: Brantley et al., 2006); In-
tegrated Carbon Observatory System (ICOS:http://www.
icos-infrastructure.eu); Terrestrial Environmental Observato-
ries (TERENO: Zacharias et al., 2011); and now the Na-
tional Ecological Observatory Network (NEON: Keller et
al., 2008). In order to facilitate these observations, modern
technological advances have allowed for vast arrays of auto-
mated environmental sensors that can record high-frequency
data with minimal manual intervention and at relatively low
cost (Porter et al., 2009). The primary challenge associated
with these sensor networks is the establishment of consis-
tent data standards and compatibility across the entire net-
work. The final goal is to develop a framework for com-
parison among these networks and observatories by using
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accepted, statistically defensible approaches when compar-
ing whole measurement systems or individual instruments
as part of a larger rigorous quality assurance and data qual-
ity control program (Loescher et al., 2005; Ocheltree and
Loescher, 2007).

The NEON is currently constructing a continental-scale
observatory consisting of 20 eco-domains in the US, in-
cluding Alaska, Hawaii, and Puerto Rico (Fig. 1). Each of
NEON’s eco-domains has one representative “core site” that
will monitor the location continuously for 30 yr and two “re-
locatable sites” that will also operate continuously but will
move every 5–10 yr in order to address specific research di-
rectives of interest for that domain (as decided by the re-
search/user community). All the sites will contain a large
suite of automated terrestrial sensors mounted on towers,
placed in streams, and distributed in arrays of soil plots. In
addition, 10 mobile towers (with supporting infrastructure)
will be made available to rapidly deploy to targets of oppor-
tunity that otherwise would not be able to capture key eco-
logical information, e.g., immediately after a fire, flood, or
insect outbreak. NEON’s construction is currently scheduled
to end in 2017, at which time there will be more than 14 000
automated terrestrial sensors integrated into operations.

NEON is novel by design. It is the first ecological ob-
servatory linking site-based organismal ecology with abiotic
drivers and with regional spatial scaling. Taken in concert,
these observations embrace the cause-and-effect paradigm.
It is also novel in that each of these subsystems has been de-
signed with the other subsystems in mind, making it the first
truly integrated ecological observatory. By providing mea-
surements/procedures that are traceable to nationally and in-
ternationally recognized standards, a consistent, integrated,
and interoperable approach can be used to enable a consis-
tent means of data management and data quality. A com-
plete description can be found in the NEON Science Strategy
document (Schimel et al., 2011). NEON’s approach is at the
forefront of many other observatories that are currently in-
corporating interoperability into their design so as to enable
a global “network of networks” (GEO, 2010; NRC, 2011;
Suresh, 2012; IOM, 2013; USGCRP, 2013).

As large volumes of raw sensor data (> 100 TB yr−1) are
anticipated by these extensive, emergent networked obser-
vatories, it is imperative that a comprehensive data quality
assurance and quality control philosophy be adopted. In the
broadest sense, quality assurance (QA) defines the overarch-
ing plan for minimizing error and maximizing quality, while
quality control (QC) refers to the actual procedures that are
implemented as part of the QA plan (ISO/IEC 17025 2005,
Peppler et al., 2008). While there is no universal QA/QC sys-
tem for optimizing data quality, a number of common ap-
proaches have been implemented by large observation-based
networks (Table 1). In an effort to devise an efficient and
effective quality assurance program for NEON’s automated
terrestrial measurements, the optimal components of these

various quality assurance programs have been adopted (Tay-
lor and Loescher, 2011).

A core premise in the formalism of complex quality con-
trol is to scrutinize the validity of data in a multitude of ways
and to consider as many different types of error as possi-
ble (Gandin, 1969). To achieve this, NEON’s QA plan was
based on a traditional “three-stage” approach to data quality
control (Durre, 2008). The first stage focuses exclusively on
automated quality control procedures in which all acquired
data are screened by automated algorithms to identify sus-
pect data that are then flagged for further investigation in the
next stage. This second stage of QC performs data verifica-
tion by means of visual inspection; any flagged data from
the previous stage is either verified as being of poor qual-
ity or is accepted as high-quality data that are evidentiary
of an uncommon event. This approach minimizes the risk of
inadvertently eliminating the observation of a rare and po-
tentially interesting event for the sake of data quality (Es-
senwanger, 1969), and is consistent with the main principle
of complex QC in that no decision about the data is made
until all possible forms of QC tests have been performed
(Gandin 1988). The third stage relies on independent audit-
ing of the accepted dataset through an internally consistent
(NEON) auditing plan as well as through external input from
the user community. The end result is data that are of the
highest quality and are maintained at this level through nec-
essary reprocessing of data and version control. It should also
be noted that a robust QA/QC plan also includes steady-state
sensor calibration to traceable standards, and field validation
activity, which are not the subject of this study.

This paper will focus exclusively on the automated QC
methods that occur in the first stage, which are commonly
referred to as plausibility tests (O’Brien and Keefer, 1985;
Foken and Wichura, 1996; Foken et al., 2004; Fiebrich et al.,
2010). Other aspects of automated quality control, such as
redundancy tests, time series analysis, comprehensive uncer-
tainty estimation, etc., will be addressed in a later paper. Be-
cause of NEON’s large network size and 30 yr observational
lifetime, it is prudent to adopt a “data-driven approach” for
the first stage of automated QC. The principal philosophy
behind this approach is to optimize human resources (both in
the field and in the lab) by maximizing computer automation
(Smith et al., 1996). While the implementation of fully auto-
mated approaches has been well documented for individual
observation sites (Meek and Hatfield, 1994), it has proven to
be challenging for large networks (Shafer et al., 2000).

In comparison to the approaches that have been utilized
by other networks (Table 1), the methods presented here
are philosophically similar but they will be implemented in
a much more uniform, comprehensive, and automated way.
In addition, they are driven almost exclusively by a data-
determined approach. As much as possible, this minimizes
subjective, user-based decisions and attempts to automate
quality choices with guidance from existing data. While most
of the techniques used by other networks also implement
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Fig. 1. NEON’s 20 eco-domains and their associated ecological research sites. “Core sites” monitor the ecosystem continuously for 30 yr
while “relocatable sites” are moved every 5–10 yr in order to address specific research questions in a given domain. Some aquatic sites also
include an embedded experiment called STREON (see the NEON Science Strategy document for more details; Schimel et al., 2011).

automated quality control methods, decisions are often based
on arbitrary rules and can be implemented in inconsistent, ad
hoc ways. The robust, automated QA/QC methods proposed
here are further motivated by the need to optimize staff effort
for field maintenance, which has direct budgetary implica-
tions for long-term observations.

In practice, plausibility tests are essentially binary
“pass/fail” checks that are automatically applied to every sin-
gle observation (Graybeal et al., 2004). The pass/fail param-
eters for each test are calculated directly from the data and
stored in look-up tables. Because these parameters will be
unique for each sensor, each measurement type, and each lo-
cation, they will need to be dynamically updated on a reg-
ular basis and, potentially, be maintained at a seasonal or
monthly resolution. The theoretical basis for establishing this
approach, as well as a novel methodology for implementing
it, is the objective of this paper. A simple example applied to
a limited number of sensors will also be shown. Finally, the
limitations of this QC approach will be discussed.

2 Theory

2.1 Plausibility tests

Plausibility tests can broadly be defined as metrics that ex-
amine the range and variability of a given dataset. Here, we
describe these tests and how they are applied to the data. It
should be noted that nature of sensor data often depends upon
the phenomenon measured and not all of these tests will be
applicable to every situation. Where possible, examples are
used to demonstrate the efficacy of a given test. We apply this
approach to observational data collected from a sensor, and
assume (i) its field deployment is designed to best capture the
phenomena of interest and minimize other systematic biases
(Munger et al., 2012), and (ii) more advanced data products
derived from multiple sensor datasets may require additional
QA/QC approaches.

A range test checks that every recorded observation falls
within reasonable minimum and maximum values for a given
location and time of year. For example, if the temperature at
sea level in Hawaii was observed to be−30◦C, the range test
would flag this as implausible because this is lower than the
expected minimum value (i.e., out of range).

www.biogeosciences.net/10/4957/2013/ Biogeosciences, 10, 4957–4971, 2013
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Table 1.Example quality assurance plans currently in use at large environmental observatories.

Network Calibration Data Quality Control

and Agency Activities Acquisition Level 1 Level 2 Level 3

ARM-DOE Centralized perfor-
mance verification
with lab testing

Dynamic SOPs, sensor
replacement with trans-
fer standards

Automated quality
control and unit
conversion

Standardized visual
quality inspection

Instrument mentors,
review panels, and
data reprocessing

USCRN –
NOAA

Centralized perfor-
mance verification
with lab testing

Dynamic SOPs and
sensor replacement

Automated quality
control and unit
conversion

Standardized visual
quality inspection

Internal NOAA
departmental review

Oklahoma
Mesonet –
OU/OSU

Centralized perfor-
mance verification
with lab testing

Dynamic SOPs Automated quality
control and unit
conversion

Standardized visual
quality inspection

User community
review

Canadian
Carbon
Program –
CFCAS

PI-driven, ad hoc per-
formance verification

Dynamic SOPs with
transfer standards

Automated quality
control and unit
conversion

Standardized visual
quality inspection

Internal Environment
Canada/user
community review

AmeriFlux-
DOE

PI-driven, ad hoc per-
formance verification

Ad hoc SOPs with
transfer standards and
a roving system

Unit conversion with
non-standardized
quality flags

Ad hoc quality
control performed
at local site

Internal DOE/user
community review

SCAN-
USDA

Centralized perfor-
mance verification with
de facto acceptance

Dynamic SOPs Automated quality
control and unit
conversion

Standardized visual
quality inspection

User community
review

USGS Wa-
ter Quality
Monitoring
Network-
DOI

Centralized perfor-
mance verification
with on-site testing

Standardized SOPs
with minor dynamic
modifications

Daily visual quality
review at site

Standardized visual
quality inspection

Internal USGS
Water Service Center
review

Note: The Atmospheric Radiation Monitoring Network (ARM) is supported by the United States Department of Energy (DOE), (Stokes and Schwartz, 1994)
http://www.arm.gov/; the United States Climate Research Network (USCRN) is supported by the National Oceanic and Atmospheric Administration (NOAA), (Karl et al.,
1995)http://www.ncdc.noaa.gov/crn/; Oklahoma Mesonet is supported by the University of Oklahoma (OU) and Oklahoma State University (OSU) (McPherson et al., 2007)
http://www.mesonet.org/; the Canadian Carbon Program is supported by the Canadian Foundation for Climate and Atmospheric Science (CFCAS) (Margolis et al., 2006)
http://www.fluxnet-canada.ca/; the AmeriFlux Network is supported by the United States Department of Energy (DOE) (Baldocchi et al., 2001)
http://public.ornl.gov/ameriflux/; the Soil Climate Analysis Network (SCAN) is supported by the United States Department of Agriculture (USDA) (Schaefer et al., 2007)
http://www.ars.usda.gov/main/main.htm; and the United States Geological Survey (USGS) water quality monitoring network is supported by the United States Department of
the Interior (DOI) (Wagner et al., 2006)http://water.usgs.gov/owq/.

Two separate and distinct tests are used to check for a re-
alistic fluctuation of values over a designated period of time:
the “sigma test” and the “delta test”. The sigma test uses the
standard deviation or variance of the data over a given period
of time and compares it to a given threshold value (thresh-
old definition is discussed below). If the standard deviation
is below this sigma threshold then the observations have not
varied realistically and the test is failed. The delta test exam-
ines the difference between pairs of subsequent observations
over a given time period. If the difference is less than the
specified delta threshold, then the observations have not var-
ied realistically and the test is failed. By using both of these
tests in tandem, an instrument may appear to be function-
ing correctly but its output that is “stuck” at a constant or
near-constant value can be identified. For example, a radia-
tion sensor that is completely covered with snow may report
that there is adequate fluctuation between subsequent mea-
surements (i.e., pass the delta test), but the variance over a

24 h period will be lower than expected because it is not able
to view the daily change in solar radiation (i.e., fail the sigma
test). Therefore, these tests would flag the data over this 24 h
period as implausible.

Another test that is used to ensure that changes in a time
series of data are realistic over a given period of time is the
“step test”. It is similar to the sigma and delta tests in that it
checks the plausibility of data based on temporal variation,
but, rather than be concerned with the minimum fluctuations
over a given period of time, the step test scrutinizes the max-
imum fluctuations in the data. The step test compares suc-
cessive data points to determine if their difference exceeds
a maximum threshold. Missing data points are also typically
captured by a “null test”. This test focuses the number of
missing data points over a given period of time. This is dis-
tinct from a “gap test”, which identifies long periods of tem-
poral discontinuity in a time series. For example, a compro-
mised connection between a sensor and a data logger could
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result in realistic data variation (i.e., pass the step test) but
have an increased number of dropped data points (i.e., fail
the null test), so these data would be flagged as implausible.
Identifying both the duration and the frequency of gaps in a
given time series is crucial for later stages of quality control,
such as gap-filling and error analyses, and has significance in
the interpretation of natural variations, such as diurnal cycles,
seasonal cycles, etc.

2.2 Test thresholds

The automated application of these binary plausibility tests
is rather straightforward. It is, however, the estimation of the
parameter “thresholds” of these tests that poses the greatest
and most critical challenge. The statistical assumptions dic-
tate that these threshold parameters are ideally defined by
having a distribution of values that are objectively consid-
ered “reasonable” for every sensor at every site. The range,
step, delta, sigma, null, and gap parameter thresholds can all
be rigorously determined by constructing statistical distribu-
tions based on existing data over a period sufficiently long
to capture the full suite of variability. A representative dis-
tribution of range values, for example, is more effective than
simply using historical minima and maxima as there is no
way to ensure that these data themselves are reasonable, are
of quality, and are relevant in a changing climate.

Because the sensors monitor physical quantities that span
numerous distributions, it is not always possible to assume
one fundamental statistical distribution and calculate the de-
sired threshold quantities. However, as the point of interest
is not with the distribution of the data but rather with a sta-
tistical quantity derived from these data, a sampling distribu-
tion of the statistic can be constructed. Since sampling dis-
tributions are constructed from independent randomly sam-
pled data, the central limit theorem states that the distribution
will approach a Gaussian distribution as the number of sam-
ples approaches infinity (Rice, 2007). Therefore, regardless
of the nature of the underlying data, a properly constructed
sampling distribution of a statistic based on these data will
always follow a Gaussian distribution:

f (x) =
1

√
2πσ

2
e

−(x−µ)2

2σ2 , (1)

wherex is any random variable,µ is the population mean
of the random variable, andσ is the population standard
deviation of the random variable. For example, a statistic
for the minimum temperature at a given location will have
a Gaussian distribution constructed from minimum temper-
ature data points (discrete samples) over desired tempo-
ral periods (e.g., hourly, diurnal, monthly, seasonal, annual,
decadal, etc.). From this sampling distribution, inferences
about the population mean minimum temperature and popu-
lation minimum temperature standard deviation can be used
to define the minimum temperature value that will be used as
the threshold parameter for plausibility testing.

Because the Gaussian distribution is unimodal and sym-
metric, the random variable can be normalized by the stan-
dard deviation to yield a curve with the mean value centered
at zero (see Fig. 2). When this analysis is completed, the in-
tegral betweenµ − 3σ andµ + 3σ represents 99.7 % of all
the data, and the integral overµ− 2σ andµ+ 2σ represents
95 % of all the data. By exploiting these properties, we can
define consistent and objective threshold parameters for all
plausibility tests and, as the data volume increases, these val-
ues can easily be reassessed and updated.

Although these parameters can be constructed for all tests,
the exact details of the test, such as the sampling period and
sample size, will vary depending on the type of observation
and sensor. Because these emergent observatories, such as
NEON, will be measuring new physical quantities, it may
be challenging at times to find enough prior existing data to
adequately construct sampling distributions. In these cases,
best possible estimates of appropriate test parameters will be
constructed for initial plausibility tests and, after a sufficient
amount of NEON data have been collected, new parame-
ters will be estimated and periodically updated. In this sense,
this data-driven approach requires a “spin-up time” for suffi-
cient data to be available for informing threshold parameter
calculations. As observatories continue to make long-term
observations, these threshold parameters will require regu-
lar maintenance as they will be frequently recalculated from
augmented data records.

As is inevitable with almost all statistical inference, there
is an element of arbitrary choice in the decision level at which
the test parameters are defined. Because plausibility tests are
typically the first stage of quality control, it is prudent to esti-
mate these parameter thresholds such that these tests should
err on the side of heightened sensitivity. This is based on the
philosophy that it is better to flag good data and verify that
it is acceptable in the second stage of quality control rather
than neglect to flag poor quality data and have it be published
as plausible.

For the range test, which relies on checking extreme val-
ues, it is necessary to construct sampling distributions of
the minima and maxima observed for a given sample period
(Table 2). For many variables, the diurnal or semi-diurnal
timescales are often chosen as ecologically meaningful (e.g.,
temperature, radiation, humidity). It should also be noted
that the application of the range test to some variables may
not be statistically defined and/or quantitatively trivial (e.g.,
minimum wind speed or maximum wind direction) but can
still have merit for detecting implausibility (i.e., a wind di-
rection greater than 360 degrees is implausible). From the
constructed distributions of extreme values, acceptable range
thresholds are defined by the thresholdµ± 2σ . By using the
twice the standard deviation, 97.5 % of all values are consid-
ered acceptable, while the remaining 2.5 % will be flagged
as questionable/outliers. At NEON, this threshold calculation
will be applied to all incoming data streams unless explicitly
stated otherwise.

www.biogeosciences.net/10/4957/2013/ Biogeosciences, 10, 4957–4971, 2013
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Fig. 2. Histogram of simulated data following a Gaussian distribu-
tion with normalized mean 0 (dotted red line) and standard deviation
of 3. The range of values that lie between 3 standard deviations of
the mean (solid red lines) represent 99.7 % of all the data.

The sigma test relies on the variance/standard deviation of
the sample in a predetermined sampling time (Table 2). It, in
essence, scrutinizes the “standard deviation of the standard
deviations”. Consequently, a sampling distribution of all the
sampled standard deviations of the dataset will provide an in-
ference of the minimum/maximum expected variability of a
given parameter. A threshold ofµ ± 2σ (whereµ represents
the mean standard deviation of the distribution andσ is the
standard deviation of the distribution of standard deviations)
ensures that only the lowest/highest 2.5 % variability data is
flagged. In many cases, care must be taken when scrutinizing
the validity of this value and it will often need to be used in
conjunction with other plausibility tests to assure data qual-
ity. For example, if there is no precipitation over a three day
period (a very realistic case), the sigma test alone would re-
ject these data as having 0 variability. This false failure can
be corrected by having two-stage tests where “0 variability
conditions” are checked for consistency against other obser-
vations and/or plausibility tests.

Similar to the sigma test the delta test scrutinizes the vari-
ability of a dataset, but it focuses more on the observed
small-scale random variability (i.e., noise) rather than the
total sampled variability of a measured phenomenon over
a specified period. The delta test utilizes the difference be-
tween subsequent observations to check changes in the char-
acteristic random variability. The mean and standard devia-
tion of this sampling distribution represent how small-scale
random variability is correlated between subsequent obser-
vations throughout the desired time series. If this quantity
changes less than theµ − 2σ threshold, data are flagged as
being possibly “frozen” at a given value. Again, care must
be taken with this test to ensure that observations that com-
monly read 0.0 are not being inadvertently flagged when the
zero values are real natural phenomena. In some cases, it
may be advantageous to define the delta test threshold by the
sampling precision of the instrument/data acquisition system,

rather than statistical analysis of the time series alone. For
example, if the resolution of the instrument is 0.005, then it
may be more appropriate for the delta test to utilize a thresh-
old of ∼ 0.01 to test if values are frozen and only vary near
the instrument’s resolution.

The same distribution of subsequent observation differ-
ences is used to also define the threshold for the step test (Ta-
ble 2). Rather than scrutinize the smallest acceptable change
between measurements, this step test seeks to ensure that
there are no implausible, large increases in the variance struc-
ture between/among measurements. The threshold is defined
asµ+2σ to ensure that only data exhibiting the largest 2.5 %
of all data discontinuities are flagged. However, for this test
to be applied to paired data points in an automated fashion,
it is simplest to flag both points, thereby resulting in more
flags than the 2.5 % would indicate. A subsequent process-
ing of the flagged data (i.e., in the “data verification” stage of
QC) could then help identify which of these flagged values
is a distinct spike. However, if there is a sort of step-function
change in the mean of the time series, then additional ver-
ification will be required. It is for this reason that caution
must be taken when applying this test and should be accom-
panied by subsequent visual analyses of the time series for its
validation. For example, wind speed and direction can typi-
cally have large step changes that would be flagged by this
approach when indeed the data are valid.

The null test and gap test are used to monitor the loss of
data that could arise from problems associated with the in-
strument, the data acquisition system, or both. The null test
is intended to look for individual, missing data points within
a given sampling period, while the gap test is meant to look
for an extended period of missing data. The exact threshold
for acceptable data loss will vary with the physical quan-
tity being measured, the instrument, and sampling interval.
In some cases, this may simply be defined as an arbitrary
number (e.g., 0 or 1 maximum missing data value per day)
or by a local calibration cycle. For data that are sampled as a
continuous daily time series, the statistical approach that has
been used to define all plausibility thresholds should con-
tinue to be applied. A sampling distribution of the number of
missing data values over a given sampling period should be
constructed. In almost all cases, these two tests cannot be ap-
plied to a raw time series without defining a sampling period
in which a known number of samples is expected. As with
other parameters, a threshold ofµ+2σ is chosen for flagging
data with the null test. It should be noted that these param-
eters will only be representative of the sampling period, so
any portion of the time series in which there are known gaps
or null data points (e.g., during a calibration cycle) should
be removed prior to estimating the sampling distribution. For
data acquisition systems that do not report times with miss-
ing data notation, a gap test must be used to explicitly check
for missing data.

These six plausibility tests are summarized in Table 2.

Biogeosciences, 10, 4957–4971, 2013 www.biogeosciences.net/10/4957/2013/
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Table 2.The six plausibility tests employed in the first phase of NEON’s data quality control.

Problem Plausibility Underlying Statistical Calculation
to be Test Quantity Sampling
Identified Distribution

Data Outliers Range Test Extreme Values Max:µ + 2σ ,
Min: µ − 2σ

Change in Variance Sigma Test Standard Deviation µ − 2σ,µ + 2σ

Structure

Data Stuck at a Delta Test Differences of µ − 2σ

Singular Value Subsequent Pairs (or defined by sampling)

Jumps in Data Step Test Differences of µ + 2σ

Values Subsequent Pairs

A Dropped Data Null Test Missing Data µ − σ

Point (or defined by sampling)

Multiple Dropped Gap Test Large Gap of Defined by Sampling
Data Points Missing Data

While a Gaussian probability distribution function (Eq. 1)
can be constructed manually from historical climate data for
many variables, this process is computationally expensive
and inefficient for the amount of data generated by large
observatories. Without loss of generality, an algorithm that
calculates the first two moments of a Gaussian distribution
(the mean and variance, respectively) can be constructed dis-
cretely to be

x (d) =

H(d)∑
y

x (d,y)

H(d)∑
y

1

(2)

σ 2 (d) =

H(d)∑
y

[x (d,y) − x (d)]2

H(d)∑
y

1

, (3)

wherex is a measurement statistic on a given day,d, with a
historical dataset of measurements on this day,H(d), andx

andσ 2 are the derived mean and variance for this measure-
ment statistic. For example, this could be a dataset of daily
maximum temperatures observed at a specific location for
30 yr.

While this approach is computationally more efficient than
manually constructing these parameters, it does not include
all available information, such as temporally and spatially
adjacent observations. Once an observatory’s (or network’s)
operational phase has begun and there are more data repre-
sentative of the spatial and temporal variation available, al-
gorithms utilizing a combined approach for defining plausi-
bility parameters will be more appropriate (Hasu and Aalto-
nen 2011). As the spatio-temporal correlation length scales

are unique to each measurement statistic, a useful approach
is to incorporate weighting factors for their respective influ-
ence. This results in the following modifications to Eqs. (2)
and (3):

xi (d) =

Ni∑
j

Dd∑
d ′

H(d ′)∑
y

w1 (j, i) · w2
(
d ′,d

)
· xj

(
d ′,y

)
Ni∑
j

Dd∑
d ′

H(d ′)∑
y

w1 (j, i) · w2 (d ′,d)

, (4)

σ 2
i (d)=

Ni∑
j

Dd∑
d ′

H(d ′)∑
y

w1 (j, i) ·w2
(
d ′,d

)
·
[
xj

(
d ′,y

)
−xi (d)

]2

Ni∑
j

Dd∑
d ′

H(d ′)∑
y

w1 (j, i) · w2 (d ′,d)

, (5)

whereNi is the set of neighboring sites measuring the same
quantity,Dd is the set of adjacent dates upon which the quan-
tity is measured, andw1 andw2 represent the spatial and tem-
poral weighting factors, respectively. These weighting fac-
tors are defined as

w1 (j, i) =


0, j /∈ Ni

1, j = i

1
2e

−

(
|1ij |

z

)2

, j ∈ Ni/ {i}

w2
(
d ′,d

)
=


0, d ′ /∈ Dd

e
−

(
|d′

−d|
t

)2

, d ′
∈ Dd,

where |1ij | represents the distance between neighboring
sites in degrees,z represents the maximum allowable dis-
tance between neighboring sites, andt represents the max-
imum time period over which adjacent dates of observation
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are considered. The temporal weighting is based on observa-
tions changing linearly with time, and the spatial weighting
is based on traditional Barnes interpolation analysis (Barnes,
1964). When considering the values of these parameters, it
is necessary to assess the coherent structure of the measure-
ment variable and assign appropriate spatio-temporal scales.

When all of the plausibility test parameters have been de-
fined, the tests can be implemented in sequence for each
observation at each site. In observatory operations, the en-
tire testing procedure is automated in which individual data
streams are checked prior to any other data manipulation (as
part of the second phase of QC). It is important to note that
this approach is only utilized for the definition of plausibility
test parameter thresholds. Other internal tests, such as those
for consistency and redundancy, should also be performed
at a local site where spatio-temporal weighted observations
may not be most appropriate.

3 Results and test examples

3.1 Defining parameter thresholds

3.1.1 Temperature data

The implementation of these automated plausibility tests is
illustrated using temperature data from a NEON prototype
relocatable site in North Sterling, Colorado (40.461903◦ N,
103.029266◦ W; Domain 10 – Central Plains in Fig. 1).
These raw temperature observations were recorded in the
form of voltage across a platinum resistance thermometer
(PRT) (Barber 1950). It should be noted that these data were
intentionally not calibrated and contain numerous known er-
rors, which is useful for the purposes of this example.

A time series of 1 month of data sampled at 1 s intervals
in April–May 2011 were chosen as the “historical dataset”
for defining the threshold parameters for plausibility testing
(Fig. 3). As there are no adjacent observations or histori-
cal temperature records for this site, sampling distribution
parameters described in Eqs. (4) and (5) simply collapse to
Eqs. (2) and (3). The native sampling units of the PRT (mil-
livolts) were used here for the sake of brevity. In practice,
much more data will be used for defining threshold test pa-
rameters.

From this time series, statistical sampling distributions
were constructed by randomly sampling 100 data points,
1000 times. From each sample of 100 data points, a mean,
standard deviation were calculated according to Eqs. (2)
and (3), respectively. The statistical sampling distribution of
these mean values is shown in Fig. 4. Note that with only
1000 samples, the shape of the distribution approaches that
of the Gaussian shown in Fig. 2. By applying the central limit
theorem to this distribution, the inferred population mean is
113.3 mV. In practice, the number of data points available

Fig. 3. Time series of platinum resistance thermometer (PRT) ob-
servations in April–May 2011 from Domain 10: North Sterling,
Colorado. These data were intentionally not calibrated and contain
known errors.

will be constrained by the amount of available historical data
and temporally/spatially coincident data.

Using the same sampling characteristics, a statistical sam-
pling distribution of the upper and lower range limits (±2σ

for each extrema) can be constructed. From this distribution,
the value of the upper threshold range can be inferred to be
µ + 2σ = 119.2+ 2× (0.74) = 120.7 (see Fig. 5). It should
be explicitly noted that daily extrema were not used in con-
structing these sample distributions as this would not allow
the data be independent and randomly sampled, as required
in the construction of sampling distributions (although, in
practice, a sufficiently large volume of data would remove
this restriction). If a sufficiently large enough dataset of daily
extrema were available (e.g., years of daily maximum tem-
perature values), then this could be used as an alternative ap-
proach for constructing these thresholds. With this threshold
parameter now known, the range test simply consists of au-
tomatically checking all of the data to ensure that any values
above this threshold are flagged according to the above crite-
ria.

In a similar fashion, all parameters for step testing, sigma
testing, delta testing, and null testing were calculated by
constructing sampling distributions (or, as previously men-
tioned, they could be defined by the inherent data sam-
pling/acquisition rate of the sensor).

3.1.2 Precipitation data

To illustrate the efficacy of this technique on data with an un-
derlying non-Gaussian distribution, the same test parameter
threshold definition procedure was carried out on precipita-
tion data.

Hourly accumulated precipitation data collected at the
United States Climate Reference Network (USCRN) Station
in Boulder Colorado (40.0354◦ N, 105.5409◦ W) spanning
1 January 2009–31 December 2010 was utilized. As these
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Fig. 4. Statistical sampling distribution of the sample mean PRT
observation constructed from 1000 samples.

Fig. 5. Statistical sampling distribution of the sample mean maxi-
mum PRT observation added to twice the sample standard devia-
tion.

data have already gone through the rigorous QA/QC meth-
ods employed by USCRN (https://www.ncdc.noaa.gov/crn/
qcdatasets.html), it is unlikely that any spurious data will be
present to skew the test parameter threshold definitions.

A time series of 2 yr of data sampled at 1 h intervals was
chosen to demonstrate the naturally skewed distribution that
is expected for midlatitude precipitation (Fig. 6). Due to the
high volume of data, statistical sampling distributions were
constructed by randomly sampling 10 000 data points 10 000
times, with replacement. It should be noted that these num-
bers were chosen rather arbitrarily and, in practice, the size
of the available dataset is often the limiting factor in choos-
ing sample sizes. As with the temperature data, from each
sample of 10 000 data points, a mean and standard deviation
were calculated according to Eqs. (2) and (3), respectively.
The statistical sampling distribution of the sample maxima
is shown in Fig. 7. As is clearly evident, the statistical sam-
pling distribution is closely approximating that of the Gaus-
sian shown in Fig. 2, with an inferred population mean max-
imum close to 1 mm h−1. This value is expected from the
large number of nonrain events that occur at this site, which

Fig. 6.Distribution of hourly accumulated precipitation at the Boul-
der, Colorado, USCRN site over 2009–2010. For visual purposes,
the domain and range of this figure do not encompass all of the
data. The true peak in the distribution actually has a frequency of
over 15 000 for the zero precipitation event (0 mm accumulation),
and there are some isolated events where more than 8 mm of pre-
cipitation accumulates in an hour.

Fig. 7. Statistical sampling distribution of the sample mean max-
imum hourly precipitation observation added to twice the sample
standard deviation.

are assumed to be uniquely represented by the “zero val-
ues” (that is, we are assuming that the sensor has always
been in working order and that a reading of zero only repre-
sents days without precipitation). The resulting range thresh-
old parameters from this sampling distribution are [0, 1.12].
All values outside of this range should be flagged as poten-
tially implausible. However, because the non-precipitation
events (i.e., “zero values”) were included in the construction
of the sampling distribution, the maximum threshold for rain
events is biased toward a lower value than would typically
be appropriate for automated plausibility testing. This exam-
ple demonstrates the necessity of utilizing prior knowledge
of the observational dataset to interpret the meaning of the
thresholds that are derived.

The time series of these precipitation data, along with the
maximum threshold defined by the range test, are shown in
Fig. 8. The total dataset consists of 17 499 hourly obser-
vations with 409 values exceeding the upper range thresh-
old. This is equivalent to approximately 2.3 % of the data
being flagged, which is consistent with the expected 2.5 %
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Fig. 8.Time series of hourly accumulated precipitation observations
in 2009–2010. The dotted redline is the range parameter threshold
beyond which data should be flagged (∼ 2.3 % of the data should be
flagged).

associated with theµ + 2σ threshold defined in the preced-
ing section. In practice, for a quantity such as precipita-
tion, it would be advantageous to relax this definition to a
value closer toµ+3σ as variability associated with extreme
events is common. It also should be noted that, in this ex-
ample of high-quality data, these flagged values are entirely
expected to be “revalidated” in the other phases of QA/QC
(e.g., in comparisons with redundant sensors) and kept as
high-quality data.

3.1.3 Other data

In the two previous examples, care was taken to choose the
sampling windows and test parameters of interest to ensure
that derived Gaussian sampling distribution was representa-
tive of meaningful data quality control parameters. In some
sense, the selection of these parameters is arbitrary, but there
are definitely some parameters that are more optimized than
others. When presented with the challenge of defining the
parameters for automated plausibility testing on a number
of different measurements, several factors should be consid-
ered. In particular, the underlying temporal and spatial vari-
ability of the quantity of interest must be considered. A broad
based assumption is that a measurement is taken at a fre-
quency (and spatial distribution) to capture the natural mean
and variance structure of the desired phenomenon.

The primary factor was related to the underlying tempo-
ral and spatial variability of the quantity of interest and how
well measurement samples capture this variability. For exam-
ple, ambient air temperature is a slowly changing quantity
that typically follows a diurnal cycle. With a measurement
sampling rate of 1 Hz, there is confidence that the natural
variability of temperature will be well captured by the data.
With such a large amount of data, statistical sampling distri-
butions can be created that will adequately characterize the
test parameter of interest (e.g., daily maximum temperature).
Furthermore, when this is the case, “data windows” can be

defined in which subsets of data can be further scrutinized
for plausible variability.

For the converse case, where a quantity of interest is a
rapidly changing variable and it is not sampled very fre-
quently, it is unlikely that the dataset will be representative
of the true natural variability. For example, wind speed and
direction is a quantity that changes rapidly, sometimes with
diurnal dependence. If the wind were only measured once
every hour, these observations would not be able to capture
the actual variability of the wind, and any sigma or delta test
parameters would not be applicable for plausibility testing,
i.e., violating the assumption noted above. In such cases, it
is recommended that plausibility test thresholds be set con-
servatively so that data quality is heavily scrutinized a priori
until such time that an adequate dataset can be compiled.

Irregularly occurring variables also pose some challenges.
For example, precipitation measurements may have the ca-
pability to observe with very high frequency, but as precip-
itation does not typically follow a recurring cycle, its high
degree of natural variability makes threshold definition very
difficult. Most plausibility tests related to variability will of-
ten not be applicable, nor will a minimum range value be
useful (i.e., there are many days where no precipitation oc-
curs). However, as illustrated in the example above, maxi-
mum plausible hourly accumulated precipitation can be de-
fined and utilized for automated quality control. This further
demonstrates that the utility of a particular plausibility test is
unique for each measurement.

Of course, if a novel measurement is being conducted for
the first time and there is inadequate knowledge of the under-
lying sampling distribution and its ability to capture natural
phenomena, it will be challenging to determine any of these
parameters. In such a case, it is recommended that plausibil-
ity tests not be used at all until an adequate sample of these
data is obtained for inspection first.

3.2 Application to test data

The same prototype temperature observations from
Sect. 3.1.1 were used to illustrate the efficacy of plausibility
testing by employing these calculated threshold parameters.
A time series of 2 months of data sampled at 1 s intervals is
shown in Fig. 6. This represents approximately 5.2× 106

data points. These data will be considered the “test” data
upon which all of the plausibility tests should be conducted,
and, via visual inspection, it is obvious that there are some
poor quality data values (such as those that read “0 mV”).
Using the derived test parameters, these data were processed
with all six of the automated plausibility tests. The data that
failed these tests were flagged (Fig. 7).

The automated plausibility tests resulted in the following
analyses (e.g., data quality report with additional annotations
for explanation):
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Fig. 9. Time series of platinum resistance thermometer (PRT) ob-
servations in March–May 2011 from Domain 10: North Sterling,
Colorado. These data were intentionally not calibrated and contain
known errors.

– Range test: the range thresholds were found to be
104.04 to 118.56 mV. There were 150 643 values out-
side of this range, resulting in 3.2 % being flagged.

– Step test: the step threshold was found to be 0.2015 mV.
There were 36 values greater than this step resulting in
7.5 parts per million (ppm) being flagged, relative to the
size of the total dataset.

– Sigma test: the sigma thresholds were found to be 2.57
to 3.56 mV. Because the observations in this dataset
have considerable bias and variation (as intended), the
lower sigma threshold was much larger than the antici-
pated noise in the baseline observations. For this reason,
the lower variance test was not applied and the plau-
sibility of the variation over small timescales was as-
sessed solely by the step tests and delta tests. While this
is not nominally optimal, it does demonstrate appropri-
ate use for datasets with large random variability (i.e.,
noise), such as this. Utilizing the test for only the upper
sigma range and applied over a sliding window of 500
data points, there were 999 instances where the variance
was greater than the acceptable sigma range, resulting in
0.02 % of the data being flagged.

– Delta test: due to the narrow range of variation in the
observations, the delta threshold was found to be neg-
ative and, consequently, set to 0 for this test. This will
happen with observational datasets of this nature and
should typically have a threshold set at the precise reso-
lution of the sensor. For this particular prototype dataset,
this value was not available and the delta test was not ap-
plied. Nominally, the delta threshold would be applied
over a rolling domain sequence of∼ 100 data points, or
similar.

– Null test: the null threshold was found to be 12.6 miss-
ing data points. This was applied over a moving window

Fig. 10.Time series of platinum resistance thermometer (PRT) ob-
servations in March–May 2011 from Domain 10: North Sterling,
Colorado, but data that have failed QC tests are flagged as suspect.
The different colored symbols represent the different flags that have
been applied by the automated plausibility testing.

sequence of 50 data points resulting in 42 804 instances
where there were more missing values than the thresh-
old, causing 0.9 % to be flagged.

– Gap test: the gap threshold was chosen to be 5 min (this
was an arbitrary choice and not based on any statisti-
cal calculations). There were 116 time gaps greater than
this threshold, resulting in 24 ppm being flagged.

By combining all of the plausibility tests together, this re-
sulted in 194 581 data points being flagged, or 4.1 % of all
the data in question. It should be noted that many poor ob-
servations were flagged by multiple tests, so the total number
of flagged data points was not simply the linear addition of
flagged data points from individual failed tests.

It should also be noted that these tests can be made more
efficient through strategic sequencing. For example, data
points that are flagged by the range test could potentially be
disregarded when utilizing the sigma test. This would ensure
that the sigma test is more representative of the true variance
structure of the dataset in question and it will decrease the
likelihood of data points getting flagged twice. Of course,
there are circumstances where the nature of the observations
does not lend itself to this sort of sequencing, so, as with all
plausibility tests, the underlying structure of the data must
be considered when making these decisions. The implemen-
tation of such efficiencies at NEON is done through the use
of a quality metric scheme that aggregates data quality flags
to inform more sophisticated decision making. The details of
this scheme will be discussed in a subsequent publication.

The same time series of observations, with all flagged
data points removed, is shown in Fig. 8. In practice, of
course, flagged data points would undergo additional phase-
two quality control before ever being permanently removed
from the published data record. General statistics of the data
flags are also maintained for regular scrutiny and auditing in
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Fig. 11.Time series of platinum resistance thermometer (PRT) ob-
servations in March–May 2011 from Domain 10: North Sterling,
Colorado, but all of the flagged data have been removed, leav-
ing only observations that passed all automated plausibility tests
(∼ 4.1 % of the raw data was flagged).

phase-three QC. Consistent with NEON’s data-sharing pol-
icy, records of the flagged data and complete quality control
reports will be made freely available to all interested stake-
holders. It is hoped that this policy of transparency and avail-
ability will become the standard across all observatories and
networks.

4 Discussion

4.1 Comparisons with other data quality control
techniques

By using a data-driven approach to automated quality con-
trol, human interaction is minimized and arbitrary decisions
can be avoided. This objective approach avoids ambiguity
that has traditionally been associated with quality control
among different sensors and provides an extensive frame-
work upon which observatories with long observational life-
times can be sustained (e.g., NEON’s 30 yr planned lifespan).
As part of an overall QA plan, this approach must be used in
conjunction with other quality control and assurance proce-
dures (phases 2–3).

In contrast to other QC approaches (such as those outlined
in Table 1), this data-driven approach avoids the use of nu-
merous assumptions. Many networks employ a subset of the
plausibility tests discussed here in a way that utilizes static
threshold parameters and/or relies heavily on human-based
intervention. Utilizing these automated plausibility tests not
only minimizes human action, it also allows for thresholds
that are updated dynamically as more data are collected. In
this sense, this QC approach “learns” from actual data and
ultimately generates an optimized algorithm without any ex-
plicit modeling of variable behavior. This avoids the need for
assuming an underlying statistical distribution and eliminates
all prognostic modeling. This is advantageous for many vari-

ables that have not been previously observed in a large-scale
context and, therefore, are not well understood. Modeling
the behavior of NEON’s 14 000 simultaneous observations
is also computationally demanding, and potentially requires
a significant level of verification and validation before it can
be implemented in any automated way.

However, this approach is not without its limitations. In
particular, the lifetime of an environmental observatory (e.g.,
NEON) and its focus on climate change could result in a
record of observations where dynamic changes have sig-
nificantly modified threshold parameters. For example, in a
warming climate, temperature values that may seem excep-
tionally high or variable in 2012 may in fact be well within
normal conditions in 2042. As new data are collected and the
threshold parameters are updated, it is inevitable that pub-
lished data will need to be reprocessed into newer versions.
Climatological averages are typically recalculated every 10
years, so it can be expected that these changes will occur at
least this frequently.

The converse limitation is also true. As with most statis-
tical approaches, there is inevitably an element of arbitrary
choice when it comes to setting threshold limits. In the exam-
ples shown here, a two-standard deviation offset was chosen
for illustrative purposes. It should be noted that this resulted
in a significant number of “false-positive” plausibility test re-
sults in which seemingly good data were flagged (see Fig. 7).
This problem is typically managed in a number of ways: (A)
by choosing very liberal thresholds, (B) by implementing a
second phase of quality assurance in which flagged values
are further scrutinized, or (C) both. These options have their
advantages and disadvantages. In choosing option (A), “good
data” will very likely pass the tests and only the most egre-
gious of implausible data points will be flagged. However,
this approach does run the risk of allowing more “bad data”
to be accepted as false negatives. In choosing option (B),
more conservative thresholds can be chosen to ensure that as
many of the implausible data points as possible are flagged.
The downside to this approach is that all of the flagged val-
ues need to be revisited in a second phase of data verification
to sort the “good from the bad”, which consumes further re-
sources. In the implementation of NEON’s QC approaches,
option (B) has been chosen.

A fundamental limitation that should also be mentioned
is that of utilizing the central limit theorem as the founda-
tion of defining all plausibility testing thresholds. The cen-
tral limit theorem works well for distributions that are nearly
Gaussian. For statistics that have an underlying bimodal or
more complex distribution, the theorem will force the data to
conform to a Gaussian shape. For most of the measurement
thresholds considered by automated sensors, this will indeed
be the case, but for some measurements that do not yet have
an extensive historical archive or if a measurement is still
novel, it remains to be seen if this approach is valid. In some
sense, a lot of samples need to be made before evaluating a
QC approach.
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4.2 Toward better approaches

While automated data quality control through plausibility
testing establishes the core of an efficient and sophisticated
observatory quality assurance plan, it still requires long-term
maintenance. To this end, it must be designed with sufficient
flexibility to adapt to unforeseen quality control challenges
that will undoubtedly arise in the future. To assist with en-
hancing QC flexibility, we recommend complete records of
data flags and quality control reports be maintained through-
out the lifetime of the observatory. This permits the recalcu-
lation of running statistics of how threshold parameters for
particular measurements (and locations) behave over time,
and will inform how to manage this challenge.

This record of data quality will be augmented by a thor-
ough auditing plan that will not only scrutinize generated
data but also the quality control of this data. Independent,
random auditing is another method through which data QC
can be tested for efficacy. This will consist of audits on real
sensor measurements as well on test datasets that have ex-
pected outcomes. Failure to meet audit goals will result in
immediate scrutiny of the QC tests and be followed by sig-
nificant testing and potentially reimplementation of the QC
threshold parameters (and associated data reprocessing). All
of these details will be included as part of the data quality
record and should be part of the data providence and com-
municated to the data-user community. While extensive data
quality auditing requires additional resources, it is necessary
to establish the “quality of quality control.”

One way to maintain flexibility within the quality control
system is to ensure that all raw data are always archived. As
data quality control evolves, having the raw data available
ensures that reprocessing to enhance data quality can always
be achieved. As part of NEON’s QA plan, the intention of QC
is to identify (and remedy) problems, not simply eliminate
data outliers. As such, no data should ever be deleted and
the raw data should be permanently maintained by the host
Observatory and freely available to interested data users.

4.3 Future applications

Automated, data-driven QC could easily be implemented
at numerous other automated sensing networks. The most
obvious candidate for this is meteorological observato-
ries/networks. Often the historical construction of the infras-
tructure utilized by most met services limits the capacity for
such data-intensive QC. However, after an initial investment
of resources to implement this system, the maintenance re-
quired for this automated QC is minimal, and the resulting
data quality enhancement would more than offset these costs.
The question of how these automated QC tests would be ap-
plied to historical data raises another set of issues that would
need to be addressed on a case-by-case basis.

In addition to met services, there are many existing net-
works (such as those in Table 1) that could benefit from more

automated QC techniques. Regardless of the measurement,
instrumentation, and the cyberinfrastructure, these plausibil-
ity tests can almost always be implemented and used to en-
hance data quality. It is always necessary that this be imple-
mented as part of an overarching QA plan and, depending on
the observations of interest, may require very thorough data
auditing. For instances where a series of data is processed
using complex time series analysis (e.g., Fourier transforms,
wavelet analysis, etc.), care must be taken to ensure that auto-
mated corrections applied in one space do not yield spurious
results in another space. For instance, the removal of out-
liers from one time series could cause “jump discontinuities”
that contribute to large oscillations or “ringing” in the Fourier
transform of this time series. In these cases, data quality au-
diting can be used to identify where risks of such results are
probable, and the automated QC can be adjusted accordingly.
For the vast majority of observations, these standard plausi-
bility tests will be sufficient for enhancing data quality.

One of the biggest challenges for moving toward global
datasets of observations is that of network interoperability.
Without standardized approaches to network observations,
no two sets of data can adequately be combined in any
way. The future of network interoperability can only be en-
hanced when a well-planned, uniform approach to data QC
is adopted. While it is obvious that different observing net-
works will have differing demands for QC approaches and
implementation, “phase 1” plausibility tests will almost uni-
formly be required in one capacity or another. Using these
automated QC approaches can only assist with enhancing
data quality and, consequently, data usage.

5 Conclusions

With the rapid growth of national and international sensor
networks, the demand for data quality control in ecology will
grow to an unprecedented level. Network interoperability can
be best achieved by having unified approaches to QA/QC
methods and, it is hoped, that the methods presented here will
act as a primer for all other networks. By adopting methods
that can be implemented rapidly, such as these, a consistent
framework for data management can be established. It is only
through the use of these standardized approaches that global-
scale ecological questions can ever be addressed.
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