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Abstract. The impact of ocean acidification and carbona-
tion on microbial community structure was assessed during
a large-scale in situ costal pelagic mesocosm study, included
as part of the EPOCA 2010 Arctic campaign. The meso-
cosm experiment included ambient conditions (fjord) and
nine mesocosms withpCO2 levels ranging from∼ 145 to
∼ 1420 µatm. Samples for the present study were collected
at ten time points (t−1, t1, t5, t7, t12, t14, t18, t22, t26 to
t28) in seven treatments (ambient fjord (∼ 145), 2× ∼ 185,
∼ 270, ∼ 685, ∼ 820, ∼ 1050 µatm) and were analysed for
“small” and “large” size fraction microbial community com-
position using 16S rRNA (ribosomal ribonucleic acid) am-
plicon sequencing. This high-throughput sequencing analy-
sis produced∼ 20 000 000 16S rRNA V4 reads, which com-
prised 7000 OTUs. The main variables structuring these com-
munities were sample origins (fjord or mesocosms) and the
community size fraction (small or large size fraction). The
community was significantly different between the unen-
closed fjord water and enclosed mesocosms (both control and
elevated CO2 treatments) after nutrients were added to the
mesocosms, suggesting that the addition of nutrients is the

primary driver of the change in mesocosm community struc-
ture. The relative importance of each structuring variable de-
pended greatly on the time at which the community was sam-
pled in relation to the phytoplankton bloom. The sampling
strategy of separating the small and large size fraction was
the second most important factor for community structure.
When the small and large size fraction bacteria were analysed
separately at different time points, the only taxonpCO2 was
found to significantly affect were the Gammaproteobacteria
after nutrient addition. Finally,pCO2 treatment was found
to be significantly correlated (non-linear) with 15 rare taxa,
most of which increased in abundance with higher CO2.

1 Introduction

The acidification of our oceans, caused predominantly by
dissolution of anthropogenic carbon dioxide (CO2) in sea-
water, has the potential to affect the physiology of marine
microbes. Therefore, because marine microbes play a ma-
jor role in global biogeochemical cycles, this increase may
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have unforeseen consequences on ocean biogeochemistry
(Falkowski et al., 2008; Worden and Not, 2008). Experi-
mental manipulation of the partial pressure of carbon diox-
ide (pCO2) in marine mesocosms has demonstrated species-
specific physiological responses to elevated dissolved CO2
concentrations. For example, delayed or decreased coccol-
ithophore calcification (Delille et al., 2005), a significant in-
crease in photosynthetic capacity (Fu et al., 2008), higher
CO2 and N2 fixation (Hutchins et al., 2007), and a decreased
abundance of picoeukaryotes (Newbold et al., 2012) have
been observed. However, the response of bacterial commu-
nities to elevatedpCO2 concentrations is less defined, with
mixed reports of both significant increases in bacterial pro-
tein production (Grossart et al., 2006), and no significant
changes in microbial community structure (Tanaka et al.,
2008; Allgaier et al., 2008; Newbold et al., 2012). For exam-
ple, during the 2008 PeECE III mesocosms study, elevated
pCO2 had no significant impact on bacterial abundance, di-
versity, or activity; however, the community structure of the
small size fraction bacteria was significantly altered by the
induced phytoplankton bloom (Allgaier et al., 2008; Arnosti
et al., 2011; Riebesell et al., 2008).

While these existing studies have observed little impact of
elevatedpCO2 on microbial community structure, they were
all performed with molecular techniques that offered limited
taxonomic resolution (e.g. High-Performance Liquid Chro-
matography, Denaturing Gradient Gel Electrophoresis, Ter-
minal Restriction Fragment Length Polymorphism). To im-
prove that resolution, this study employed high-throughput
amplicon sequencing of 16S rRNA to characterize micro-
bial taxonomic community dynamics. High-throughput am-
plicon sequencing provides an efficient method to obtain a
deep molecular overview of microbial community structure,
without having to cultivate environmental isolates (Agogué
et al., 2011; Gilbert et al., 2009; Hubert et al., 2007; Huse
et al., 2008; Margulies et al., 2005; Sogin et al., 2006). In
this study, the variation of microbial assemblages was char-
acterised through time, across a gradient ofpCO2, in a large-
scale in situ pelagic mesocosm experiment in the coastal Arc-
tic Ocean. In addition to characterizing the detailed response
of the microbial community structure to elevatedpCO2, the
analysis of the 16S rRNA database provided insight on the
effect of isolating the water column in a mesocosm, and
to investigate the community structure response to elevated
pCO2.

2 Methods

2.1 Location and carbonate system manipulation

The European Project on Ocean Acidification (EPOCA) sup-
ported a large mesocosm experiment in the Arctic which was
conducted in the water of Kongsfjorden, Svalbard, Norway
(78◦56.2′ N, 11◦53.6′ E) during the months of June and July

2010. Throughout the experiment, diverse environmental pa-
rameters were measured to explore the effect of ocean acidi-
fication (OA) on multiple biological processes. Briefly, nine
mesocosms containing about 45 m3 of seawater and reach-
ing down to 15 m depth were deployed from Ny-Ålesund
andpCO2 was manipulated by the addition of CO2-saturated
seawater in seven mesocosms, resulting in initialpCO2 rang-
ing from∼ 286 to∼ 1420 µatm. Two of the mesocosms were
not manipulated and served as controls with startingpCO2
of ∼ 185 µatm. Additionally, samples were taken directly
from the fjord (initialpCO2 ∼ 145 µatm) in which the meso-
cosms were suspended and from which the mesocosm wa-
ter originated. These samples were used to monitor any nat-
ural changes inpCO2 that may occur in the ambient wa-
ter during the course of the experiment and were also im-
portant for detecting deviations inpCO2 between the fjord
and the untreated mesocosms with time. To promote phyto-
plankton growth, all nine mesocosms were subjected to nu-
trient additions (nitrate (NO3), phosphate (PO4) and silicate
(Si)) on day (t) 13, creating pre-nutrient (t−1 to t12) and
post-nutrient (t13 to t30) periods (Fig. 1). Detailed informa-
tion about the experimental set-up, the mesocosms deploy-
ment, the carbonate chemistry, and the nutrients additions
can be found in this issue in Riebesell et al. (2013), Czerny et
al. (2013a, b), Bellerby et al. (2013), and Schulz et al. (2013),
respectively.

2.2 Sampling, filtration and sample selection

A total of 10 L of water was collected using integrated wa-
ter sampler (Hydrobios, Kiel, Germany) between 0 and 12 m
water depth, from the fjord (∼ 145 µatm), and six meso-
cosms (startingpCO2 = 2× ∼ 185, ∼ 270, ∼ 685, ∼ 820,
∼ 1050 µatm) ont−1, t1, t5, t7, t12, t14, t18, t22, t26 and
t28 (Fig. 1). Only six of the mesocosms were chosen for this
study due to time, personnel and equipment constraints. The
collected water was first pre-filtered on a 20 µm sieve, and
sequentially filtered through a 10 µm, a 3 µm filter to iso-
late associate-particle bacterial fraction (large size fraction)
and through a 0.2 µm filter to isolate the small size fraction
(Durapore® 47 mm, Millipore). To avoid nucleic acid degra-
dation, processing of the samples from filtration to flash-
freezing (in liquid nitrogen) was performed within 30 min of
the sampling event. Samples were then stored at−80◦C until
DNA/RNA extraction.

2.3 DNA extraction, PCR, and Sequencing

Total nucleic acid was extracted from the 0.2 and 3 µm filters
using the “Total RNA and DNA purification – NucleoSpin®

RNA II RNA/DNA buffer” kits from Macherey-Nagel
(Macherey-Nagel GmbH & Co. KG, D̈uren, Germany).
Standard protocol with minor modifications was followed.
Changes to the protocol included making the filters brit-
tle by immersing the samples in liquid nitrogen while still
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Fig. 1. Chlorophyll a (µg/l) concentrations measurements plotted against days, where arrows 

marked time points analysed in the present study. Figure derived from Schulz et al. (2012).  
Fig. 1.Chlorophylla (µg L−1) concentration measurements plotted
against days, where arrows mark time points analysed in the present
study. Figure derived from Schulz et al. (2013).

in the cryovials to facilitate disruption and homogenization.
The filters were crushed with RNase-free plastic pestles and
lysozyme was directly added to the broken filter pieces while
still in the cryovial. Both the RNA and DNA were isolated
during the experiment. However, the RNA was kept for fur-
ther purposes. DNA quality and quantity were assessed by
micro-volume spectrophotometer nanodrop ND-1000 (Pe-
qLab GmbH, Erlangen, Germany) measurements. All sam-
ples were kept at−80◦C until further analysis.

Polymerase chain reaction (PCR) and sequencing were
performed following the Illumina HiSeq2000 and MiSeq V4-
16S rRNA protocol (Caporaso et al., 2012). Briefly, the V4
region of the 16S rRNA gene was amplified with region-
specific primers that included the Illumina paired-end flow-
cell adapter sequences (Illumina Inc., CA, USA). The bar-
code was read using the custom index sequencing primer
in an additional cycle (12 bp). Each sample was amplified
in triplicate, and was pooled afterwards. Each 25 µL PCR
reaction contained 12 µL of MoBio PCR Water (certified
DNA-free), 10 µL of 5 Prime HotMasterMix, 1 µL of For-
ward Primer (5 µM initial concentration), 1 µL Golay Bar-
code Tagged Reverse Primer (5 µM initial concentration),
and 1 µL of template DNA. The reactions were heated to
94◦C for 3 min for their initial denaturation, followed by 35
cycles in series of 94◦C for 45 s, 50◦C for 60 s, and 72◦C
for 90 s. The amplicons were quantified using Quant-it™

Picogreen® (Invitrogen by Life Technologies™, CA, USA),
and pooled in equal amounts (ng) into a 1.5 mL tube. Once
pooled, the entire amplicon pool was cleaned up with the
MO-BIO UltraClean® PCR Clean-Up Kit (MO-BIO Lab-
oratories, Inc., CA, USA). Finally, the pooled samples were

quantified using a Qubit® fluorometer (Invitrogen by Life
Technologies™, CA, USA), and the molarity was estimated
based on amplicon length. From this estimate, dilutions were
made down to 2 µM and the standard Illumina sample prepa-
ration for sequencing was followed. Pooled amplicons were
sequenced using custom sequencing primers, Read 1, Read
2, and Index. These sequencing primers were designed to
be complementary to the V4 amplification primers to avoid
sequencing of the primers. Amplicons were sequenced in
a paired-end, 100 bp× 100 bp cycle run on the Illumina
HiSeq2000, at a concentration of 4 pM with a 10 % PhiX
spike. An entire control lane devoted to PhiX is also useful
when sequencing low base diversity samples, like amplicons,
and was included in the present analysis.

2.4 Sequence data analysis

All sequence analyses were performed using Quantitative In-
sights Into Microbial Ecology v. 1.5.0 (QIIME; Caporaso et
al., 2010). QIIME defaults were used for quality filtering of
raw Illumina data (including chimeras). Unique operational
taxonomic units (OTUs) were picked against the Greengenes
(McDonald et al., 2012) database and pre-clustered at 97 %
identity; sequences that did not hit the reference collection
were discarded. Representative sequences were aligned to
the Greengenes core set with PyNAST (Caporaso et al.,
2010). All sequences that failed to align were discarded. A
phylogenetic tree was built from the alignment, and taxon-
omy was assigned to each sequence using the Ribosomal
Database Project (RDP) classifier (Wang et al., 2007) re-
trained on Greengenes. Samples were rarefied to an even
depth of 81 181 sequences and only the OTUs that appeared
at least twice in the dataset were included in the further anal-
yses; 106 singleton OTUs were not included in this analysis.

2.5 Statistical analysis

Multivariate analysis of microbial community structure was
carried out in CANOCO 4.54 (ter Braak andŠmilauer, 2002),
where the count of each OTU (97 % similarity) was used as
a measure of abundance. All analyses had samples as scal-
ing focus, and all species data were Hellinger-transformed
using the program PrCoord 1.0 (Legendre and Gallagher,
2001; ter Braak anďSmilauer, 2002). Analysis of variance
(ANOVA) followed by a Tukey test was done to test for
significant differences between treatments (i.e. control vs.
fjord, fjord vs. mesocosm, control vs. mesocosm) within each
abundant phylum. Detrended correspondence analysis of the
transformed OTU abundance data showed axis lengths< 3.0,
suggesting a linear treatment of the data (Ramette, 2007).
Redundancy analysis (RDA), with manual forward selection
and Monte Carlo permutation tests (999 permutations), was
used to evaluate effects of environmental variables (salinity,
temperature, pH, chlorophylla, etc.) on the microbial com-
munity composition. An indirect gradient analysis (PCoA)
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was used to plot the distribution of samples in ordination
space, with important environmental variables (as indicated
by forward selection) overlaid as supplementary data. Mi-
crobial community composition differences were assessed by
UniFrac (Lozupone and Knight, 2005) distance using QIIME
(Caporaso et al., 2010).

In order to assess whether or not particular taxa were sig-
nificantly influenced bypCO2, a Bonferroni-corrected g-test
was done using QIIME to remove significance due to chance.
All analyses were considered to have a significant difference
if p < 0.05 after Bonferroni correction.

Contour plots presenting mean abundance count plotted
againstpCO2 and time (days) of the three most abundant
genus of the OTUs significantly correlated topCO2 were
created using Ocean data view (Bremen, Germany).

3 Results

The 256 sequenced samples generated∼ 20 000 000
16S rRNA V4 reads (∼ 2 510 000 sequences per treatment);
which clustered at 97 % sequence identity into 6821 OTUs.

3.1 Experimental timeline

Phytoplanktonic bloom evolution was identified using the
daily measured chlorophylla (chl a) concentration (µg L−1)
(Fig. 1). The chla protocol and patterns are presented in
Schulz et al. (2013). Briefly, all treatments (fjord included)
underwent a natural bloom betweent0 andt11, with highest
chl a concentrations ont6. Subsequently, a second and third
strong phytoplankton bloom happened only in the meso-
cosms following nutrient addition ont13. The second bloom
had its highest chla concentration ont19 and the third one,
which varied greatly between mesocosms, reached its high-
est concentration ont27. These 3 blooms were represented as
four general phases in phytoplankton chlorophyll phases de-
fined by Schulz et al. (2013): phase 0 occurred from the start
of the experiment ont−4 until adjustment of CO2 was com-
pleted ont4; phase 1 started with the end of CO2 addition
on t4 until the nutrient additions ont13; phase 2 included
the end of the first bloom ont13 to the end of the second
bloom ont22; and phase 3 started from the end of the second
bloom ont22 and lasted until the end of the experiment, on
t30 (the chla minimum of the third bloom was not recorded)
(Fig. 1). Detailed fluctuations of chla, nutrient concentra-
tions, pH andpCO2 are presented in this issue in Schulz et
al. (2013) and Bellerby et al. (2013).

3.2 Community-structuring variables

The significant structuring variables for the total community
during the post-nutrient addition period (t13–t30) of the ex-
periment were (in order of explanatory importance) “fjord vs.
mesocosm origin” (i.e. whether the sample was from water
contained in a mesocosm or from the open fjord), sampling

strategy (i.e. physical fractionation into small and large par-
ticle sizes), Si concentration, PO4 concentration, mean pri-
mary production 14C-POC (PP), temperature (T ), and pH
(Fig. S1 and Table 1). The microbial community in the small
size fraction (0.2–3 µm) from the fjord and all the analysed
mesocosms was dominated by Proteobacteria (in order of
abundance: Gamma (γ )- , Alpha (α)- and Beta (β)- pro-
teobacteria) throughout the experiment. However, Proteobac-
teria began dropping in abundance gradually aftert7, coinci-
dentally with the increase in the abundance of Bacteroidetes
(Fig. 2). In the large size fraction (3–12 µm) Bacteroidetes
dominated consistently, while a fourth group comprised of
the “Cyanobacteria and eukaryotic chloroplasts” (which in-
cluded Chlorophyta, Haptophyceae, Rhodophyta and Stra-
menopiles) were also abundant (Fig. 2). The group classified
as “others” in the small size fraction was composed predom-
inately of Cyanobacteria at the beginning of the experiment,
and of Actinobacteria towards the end (Fig. S2). In the large
size fraction, the “others” group was extremely variable until
t7. For example, att−1 the fjord “others” group was domi-
nated by the Verrucomicrobia while the mesocosms “others”
groups was dominated by Actinobacteria; byt5 Firmicutes
dominated in most mesocosms, while being almost absent
from the fjord. At t7, the Actinobacteria was the dominant
taxa in the “others” group in all treatments for the remainder
of the experiment. At the end (t28), some Verrucomicrobia
increased in the control,∼ 270, and∼ 685 µatm mesocosms
(Fig. S2).

Once the community was analysed with regard to filter
size fraction (small vs. large size fraction), the structuring
community variables varied. The fjord had a significantly
different assemblage from the mesocosms in the small and
large size fraction before (origin 3 %–4 %) and after (ori-
gin 48 %–12 %) mesocosm nutrient addition (Table 2); how-
ever, the fjord and mesocosm communities were not signif-
icantly different until aftert5. The microbial community in
the fjord small size fraction was not significantly different
from the mesocosms communities in the pre-nutrient addi-
tion phase and only theγ -proteobacterial abundance was sig-
nificantly different (p < 0.05) between fjord and mesocosm
in the post-nutrient addition phase. The fjord large size frac-
tion microbial community was significantly different from
the mesocosms during both the pre- and post-nutrient ad-
dition phases. In particular, the “Cyanobacteria and eukary-
otic chloroplasts” group was significantly different between
fjord and mesocosms pre- and post-nutrient addition; while
the Bacteroidetes,α-proteobacteria and “others” were only
significantly different post-nutrient addition (Fig. 3 and Ta-
ble 3). Furthermore, the significant variables that correlated
with community structure changes in the small size frac-
tion were dimethyl sulphide (DMS-16 %), bacterial produc-
tion (bp-15 %), density (d-12 %) for the pre-nutrient period
(t−4 to t12), and origin (48 %),pCO2 (10 %), day (10 %) for
the post-nutrient period (t13–t30; Table 2). For the large size
fraction, these variables were oxygen (O2-7 %), DMS (7 %),
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Fig. 2. Microbial community overview of the most abundant phyla in (a) the small size 

fraction (0.2-3 µm) and (b) the large size fraction (3-20 µm) during t-1, t5, t7, t12, t14, t18, 

t22, t26 and t28; x-axis represents percentage of total OTUs and y-axis represents pCO2 in 

µatm. 

b) 

a) 

Fig. 2. Microbial community overview of the most abundant phyla
in (a) the small (0.2–3 µm) and(b) the large (3–12 µm) size fraction
duringt−1, t5, t7, t12, t14, t18, t22, t26 andt28; x-axis represents
percentage of total OTUs and y-axis representspCO2 in µatm

nitrate (NO3-5 %) and origin (4 %) for the pre-nutrient period
(t−4 to t12), and Si (27 %) and origin (12 %) for the post-
nutrient addition period (t13–t30; Table 2). Therefore, the
differences in the microbial community structure between
the fjord and mesocosms were primarily due to the addition
of nutrients to the mesocosms, and not topCO2 manipula-
tion, as the control mesocosms were not significantly differ-
ent from the elevated CO2 mesocosms post-nutrient addition.

3.3 pCO2 effect on microbial community

Although thepCO2 treatment was not identified as a major
community structuring variable, the relative abundances of
15 rare taxa (% abundance across time and treatment was
<0.22%; Table 4) were significantly correlated topCO2 lev-
els. From these 15 rare taxa in both small and the large
size fractions, 12 showed a significant but slight increase
with pCO2, having their maximum abundances in either the
medium (∼ 685 and∼ 820 µatm) or the high (∼ 1050 µatm)
pCO2 mesocosms. The remaining three decreased, with their
highest abundances in the lowest (∼ 185 µatm)pCO2 meso-

Table 1. Redundancy analysis showing the significant structur-
ing variables for the whole bacterial community during the post-
nutrient addition period (t13–t30). Significant values arep < 0.05.

Variables % p F

Origin 25 0.001 24.84
Fraction 14 0.001 17.77
Si 8 0.001 11.32
PO4 2 0.01 2.83
Primary production 2 0.026 2.31
Temperature 2 0.042 2.26
pH 1 0.029 2.36

Table 2. Results from RDA forward selection (with Monte Carlo
permutation tests) showing only the significant (p < 0.05) struc-
turing variables for the small (0.2–3 µm) and the large (3–12 µm)
size fraction during the pre-nutrient period fromt1 to t12 (a and
c, respectively) and post-nutrient period fromt13 to t30 (b and d,
respectively).

Variable % p F

Small size fraction

(a) Dimethyl Sulphide 16 0.001 9.79
Bacterial production 15 0.001 10.73
Density 12 0.001 9.65
NO2 5 0.001 4.54
Day 2 0.024 2.14
Origin 3 0.014 2.53

(b) Origin 48 0.001 35.75
pCO2 10 0.001 8.77
Day 10 0.001 11.43
CO2 4 0.001 4
Mesocosm 2 0.002 3.27
Turbidity 3 0.001 3.91
Primary production 14C 1 0.007 2.3
NH4 2 0.019 2.06
Density 1 0.032 1.99
Temperature 1 0.044 1.72
PO4 1 0.033 1.92

Large size fraction

(c) O2 7 0.002 3.81
Dimethyl sulphide 7 0.005 3.81
Origin 4 0.016 2.59
NO3 5 0.014 2.95

(d) Si 27 0.001 13.36
Origin 12 0.001 7.11
PO4 4 0.039 2.24

cosm, or before manipulation started (Fig. 4, Figs. S3 and
S4). The three most abundant of these 15 taxa were Methy-
lotenera (β-proteobacteria), Colwellia (γ -proteobacteria)
and Fluviicola (Bacteroidetes). Methylotenera and Colwellia
abundances were at their highest in, respectively, the∼ 686
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Fig. 3. Mean abundance (+/- SE) of the main phyla of the bacterial community for the fjord 

(~145 µatm), the control (2 x ~185 µatm) and the manipulated mesocosms (~270, ~685, ~820, 

~1050 µatm) of the small (a) and large (b) size fraction pre- (left) and post (right) –nutrient 

addition. Phyla with significant different p values (< 0.05) as a function of samples origin are 

marked with a *. 

b) 

a) 

Fig. 3.Mean abundance (±SE) of the main phyla of the bacterial community for the fjord (∼ 145 µatm), the control (2× ∼ 185 µatm) and the
manipulated mesocosms (∼ 270,∼ 685,∼ 820,∼ 1050 µatm) of the small(a) and large(b) size fraction pre- (left) and post- (right) nutrient
addition. Phyla with significantly different p values (<0.05) as a function of samples origin are marked with an∗.

and∼ 824 µatm mesocosms toward the end of the experiment
(t22). Fluviicola was present from the beginning of the ex-
periment, but decreased precipitously after CO2 was added
and then recovered in abundance aftert10, reaching its high-
est abundance in the 1050 µatm mesocosm betweent12 and
t22 (Fig. 4).

4 Discussion

4.1 Mesocosms and structuring effects

In this study, a large-scale mesocosm experiment was used
to investigate the impacts of OA on the microbial com-
munity structure in a coastal, high latitude marine pelagic
ecosystem. The experimental design provided the opportu-
nity to test for the effects of four differentpCO2 concentra-
tions (∼ 270,∼ 685,∼ 820,∼ 1050 µatm) against two neg-
ative controls (∼ 185 µatm) over a six-week period. In addi-
tion, mesocosm-specific experimental artefacts were moni-
tored by sampling the fjord microbial community through-
out the course of the experiment. The microbial community
structure post-nutrient-addition (t13) was significantly corre-

lated with seven variables, the most influential of which was
sample origin (fjord or mesocosm). The overall community
structure was not significantly different between mesocosms
(including control versus elevatedpCO2) over the course of
the experiment. The significant effect of the mesocosm en-
closures on microbial community structure could be due to
the mesocosms themselves (isolating a microbial community
from the surrounding fjord community) or since the effect
was not significant before nutrient addition, more likely due
to the addition of nutrients into the mesocosms att13.

The sampling strategy separating the community into size
fractions was the second most important variable in explain-
ing differences in community structure. Before nutrient ad-
dition, the communities in the small size fraction were not
significantly different between the fjord (ambient), control
mesocosms, and the elevatedpCO2 mesocosms. However,
after the addition of nutrients,γ -proteobacterial abundances
were significantly different between fjord and mesocosms,
and probably reflected the utilization of metabolites released
by decaying phytoplankton in the post-bloom system. In par-
ticular, the overall abundance of Bacteroidetes in the small
and large size fractions increased in post-blooms conditions,
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Table 3.Analysis of variance (ANOVA) showing the relationship in between each treatment pre- and post-bloom condition for (a) small and
(b) large size fraction bacteria of phyla with significant differences. Significant values arep < 0.05.

Time Phylum Treatment p

(a) Post-nutrient addition Gamma-proteobacteria fjord-control 0.001
mesocosm-control 0.140
mesocosm-fjord 0.038

Pre-nutrient addition “Cyanobacteria + euk.chloro” fjord-control 0.317
mesocosm-control 0.289
mesocosm-fjord 0.020

(b) Post-nutrient addition Bacteroidetes fjord-control 0.001
mesocosm-control 0.864
mesocosm-fjord 0.002

Alpha-proteobacteria fjord-control 0.002
mesocosm-control 0.787
mesocosm-fjord 0.006

“Cyanobacteria + euk.chloro” fjord-control 0.000
mesocosm-control 0.839
mesocosm-fjord 0.001

“Others” fjord-control 0.000
mesocosm-control 0.320
mesocosm-fjord 0.001

Table 4.Bonferroni-corrected g-test of significance (p < 0.05) listing 15 taxa significantly correlated with CO2, for both small and large size
fraction; bold highlights mark the taxa presented in Fig. 4. Greengenes OTU identifiers refer to prokMSA ids in the Greengenes database.

Greengenes % total
OTU Taxa Abundance sequences Response to elevatedpCO2 p

Identifier (20 863 517)

114 612 Methylotenera (genus) 2907 0.014 Highest in middlepCO2 0.000
144 699 Oceanospirillaceae (family) 1182 0.006 Increased withpCO2 0.000
105 727 Methylotenera (genus) 45 915 0.220 Highest in middlepCO2 0.000
151 803 Flavobacteriaceae (family) 1841 0.009 Increased withpCO2 0.000
522 744 Leucothrix (genus) 130 0.001 Decreased withpCO2 0.000
419 525 Sphingobacteriales (order) 171 0.001 Increased withpCO2 0.000
94 238 Oxalobacteraceae (family) 322 0.002 Highest in middlepCO2 0.000

402 252 Fluviicola (genus) 20 950 0.100 Increased withpCO2 0.001
592 739 Oleibacter (genus) 2976 0.014 Highest in middlepCO2/Increased 0.001
262 549 HTCC-1288 (genus) 25 0.001 Mixed, highest in high-middlepCO2 0.001
140 859 F lavobacteriumSuccinicans (species) 344 0.0001 Decrease withpCO2 0.004
235 556 Colwellia (genus) 32 153 0.154 Highest in high-middlepCO2 0.008
591 187 Flavobacteria (class) 231 0.001 Decrease withpCO2 0.010
243 032 Thioclava (genus) 59 0.0003 Mixed, highest in highpCO2 0.011
554 148 SC3-41 (family) 571 0.003 Minimum increase 0.027

possibly also as a result of the dissolved organic carbon
(DOC) released by a decaying algal bloom and aggregation
of dying phytoplankton, respectively. Theγ -proteobacteria
and Bacteroidetes generally include many phytodetritus-
assimilating organisms (Teske et al., 2011; Abell and Bow-
man, 2005; Pinhassi et al., 2004) and this would explain
their increase in abundance during the demise of the bloom.
Despite the observation that Bacteroidetes showed bloom-
related dynamics, and contradictory to the findings of Zhang

et al. (2012), no significant difference in the Bacteroidetes
abundance (in either fraction) was found between the con-
trol and elevatedpCO2 mesocosms, suggesting that ele-
vatedpCO2 did not impact the relative abundance of Bac-
teroidetes. However, their abundance in the fjord was sig-
nificantly lower than in the mesocosms, suggesting that the
nutrient addition or influence of the mesocosm enclosure did
have an impact.

www.biogeosciences.net/10/555/2013/ Biogeosciences, 10, 555–566, 2013



562 A.-S. Roy et al.: Negligible impacts on high-latitude bacterial community structure

 

Fig. 4. Contour plots presenting the mean abundance count of the three most abundant taxa 

that are significantly affected by pCO2 levels a) Methylotenera b) Colwellia and c) Fluviicola 

plotted against pCO2 (µatm, y-axis) and time (days, x-axis). Left and right panel represent, 

respectively, the small fraction size (0.2-3 µm) and large fraction size (3-20 µm). 

a) 

b) 

c) 

Fig. 4. Contour plots presenting the continuous interpolated mean abundance count of the three most abundant taxa that are significantly
affected bypCO2 levels(a) Methylotenera(b) Colwellia and(c) Fluviicola plotted againstpCO2 (µatm,y-axis) and time (days,x-axis).
Left and right panel represent, respectively, the small (0.2–3 µm) and large (3–12 µm) size fraction.

The large size fraction in the mesocosms also showed dif-
ferences in the relative abundance of dominant phyla fol-
lowing nutrient addition (t13). It has previously been es-
tablished that particle-associated assemblages were predom-
inantly connected to phytoplankton development (Riemann
et al., 2000; Allgaier et al., 2008). Furthermore, differences
in the “Cyanobacteria and eukaryotic chloroplasts” group
were measurable before nutrient addition. However these dif-
ferences appear to be related to the natural phytoplankton
bloom (which occurred in the fjord and mesocosms) that

reached its maximum ont7. The “post-nutrient addition” dif-
ferences were significant between the fjord and mesocosms
for almost every abundant phyla throughout the different
phytoplankton phases; suggesting that nutrient addition in-
fluenced autotrophic and heterotrophic microbial community
structure. However, no significant differences were found be-
tween the control and the elevated mesocosms, which sug-
gests that highpCO2 level was not an important community-
structuring variable for the large size fraction in this experi-
ment. Silica was the third most important structuring variable
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and is potentially related to diatom abundance (de Kluijver
et al., 2010). The recycling of Si from decaying diatoms, af-
ter a phytoplankton bloom, is carried out by a diverse fast
growing bacteria related to cytophagales (from Flavobacte-
ria; Riemann et al., 2000). Indeed, an increase in the abun-
dance of Bacteroidetes, which contains the Flavobacteria,
was observed in the post-nutrient addition phase.

However, no single environmental variable could account
for the microbial community composition of the large and
small size fractions for all of the phases of the mesocosm
experiment (Fig. 1). Rather a shift was observed between
pre- and post-nutrient addition with DMS concentration as
the most influential variable for the small size fraction un-
der pre-nutrient addition, while origin (Fjord vs. mesocosm)
was most influential under post-nutrient addition conditions.
Oxygen and Si were the most significant structuring vari-
ables for the large size fraction for the pre- and post-nutrient
addition, respectively. Variables associated with phytoplank-
ton bloom dynamics were most important for structuring the
community, especially when looking at the taxonomic shifts
between fjord, control mesocosms and elevatedpCO2 meso-
cosms. The differences were greater aftert13 because of the
two subsequent phytoplankton blooms that were triggered by
the nutrient addition. The differences were most evident in
the large size fraction, probably due to the association of the
bacterial community with phytoplankton aggregates. There-
fore, it is possible to state that nutrients, and the phytoplank-
ton blooms, were the main drivers of microbial community
structure in this experiment, which is in agreement with pre-
vious (Allgaier et al., 2008; de Kluijver et al., 2010) and
present studies (Sperling et al., 2013).

4.2 ElevatedpCO2 effect

The effect of elevatedpCO2 on microbial community struc-
ture has also been investigated in previous (Newbold et al.,
2012) or present mesocosms (Zhang et al., 2012), where no
evidence of a majorpCO2 effect on the general bacterial
community was found. However, other work suggests that
only the community structure of the small size fraction bac-
teria is significantly affected by elevatedpCO2 (Allgaier et
al., 2008). The extensive database of 16S rRNA sequence
obtained in this study provided the high resolution necessary
to study subtle but significant changes in community struc-
ture hinted at in prior studies. In agreement with Allgaier et
al. (2008), the effect of elevatedpCO2 in this experiment was
slight and only impacted the small size fraction bacteria after
nutrient addition, which corresponded to post-nutrient addi-
tion and post-bloom conditions (aftert13) in this study. This
increased post-bloom CO2 effect was previously observed in
other mesocosms experiments (Arnosti et al., 2011; de Klui-
jver et al., 2010), confirming a possible increased CO2 effect
under nutrient (N, P, Si) limitation.

While pH was shown to be a weak driver of microbial
community structure in our experiment, the direct impact of

pCO2 was found to be non-significant, except for 15 rare
taxa, which did show a response to elevated CO2. There-
fore, the level of taxonomic resolution afforded by this study
suggests that, in this ecosystem, rare organisms may be dis-
proportionately affected by acidification. The most abundant
of these 15 rare taxa was Methylotenera (genus) and had its
highest mean abundance in the mediumpCO2 mesocosms
(∼ 685 µatm). Species from this genus are generally aero-
bic, ubiquitous bacteria found in a wide range of O2, salin-
ity, temperature and pH. Methylotenera can colonize multi-
ple pH range (5 to 8.5) but grows optimally at pH 7.5 (Ka-
lyuzhnaya et al., 2006; Bosch et al., 2009), suggesting that
pH may strongly influence for distribution of this taxa. In-
deed, the pH close to this value fromt5 until the end of the
experiment in the mesocosms with apCO2 over∼ 685 µatm.
The highest abundance was found fromt22 until t28 where
the pH was 7.9 and 7.94. A lower pH was found (pHT 7.57–
7.80) in the∼ 1050 µatm mesocosm but this was not ac-
companied by an increase in Methylonera abundance, po-
tentially because thepCO2 concentration itself was toxic
to this species at this stage or this could represent meso-
cosm variability, suggesting a need for improved replica-
tion. Functionally, the species included in this genus have
been described as bacteria that require organic compounds
containing no carbon–carbon bonds (C1 compounds) like
methylamine and/or methanol as energy sources (Lidstrom,
2006; Kalyuzhnaya et al., 2006, 2010). These organic com-
pounds play an important role in the global carbon cycle be-
cause they are greenhouse gases whose emissions are on a
scale similar to methane (Chistoserdova et al., 2009). Fur-
ther investigation of the behaviour of these C1-compound-
degraders in response to elevated CO2 are, therefore, impor-
tant for understanding biotic influences on climate dynamics.
The second most abundant group of the 15pCO2-correlated
rare taxa was Colwellia, which is a versatile group with broad
temperature range tolerance. For example, the psychrophilic
Arctic marine strainColwellia psychrerythraeagrows at a
range of temperature from−1 to 10◦C (optimal growth
8◦C),Colwellia chuckchiensisat a range from 0 to 30◦C and
Colwellia asteriadisspp. at a range from 4 to 25◦C. These
organisms are also capable of colonising a wide range of pH
from 4 to 10 (Yu et al., 2011; Choi et al., 2010; Methé et
al., 2005).C. psychrerythreais considered a model organism
for psychrophiles and shows multiple molecular adaptations
to the cold, like enzymes for cryoprotection, for dissolving
high-molecular-weight organic compounds (ex. carbon), for
stability in extreme environments (extracellular polymeric
substances) and for cold-active processes (Methé et al., 2005;
Huston et al., 2004). These features make Colwellia spp. key
participants in carbon and nutrient cycling in the cold ma-
rine environments. Since some methanogenic enzymes were
previously found in Colwellia spp. (Methé, et al., 2005) one
can speculate that these compounds were found in greater
abundance toward the end of the experiment. This would also
support the presence of the Methylotenera, which increased
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in abundance towards the end of the experiment. Finally the
genus Fluviicola, the third most abundant OTU correlated
with pCO2, was dominant in the elevated CO2 mesocosms
(∼ 1058 µatm). Interestingly, Fluviicola was present at the
beginning of the experiment but decreased shortly after CO2
treatment started. The abundance increased under elevated
pCO2, but stayed low in mediumpCO2 mesocosms and ab-
sent in the controls, for both size fractions. Little is known
about this genus, making speculations about its ecological
role difficult.

5 Conclusions

In summary, multiple parameters were found to significantly
influence the structure of the bacterial community in Sval-
bard mesocosms. The most influential factors were the ori-
gin of the sample (fjord or mesocosms) and nutrient addi-
tion. Furthermore, the relative importance of sampling strat-
egy (small versus large size fraction), Si, PO4, primary pro-
duction, temperature, and pH in structuring the community
depended greatly on the time at which the community was
sampled in relation to the phytoplankton blooms. The di-
rect impact ofpCO2 was found to be significant for only
15 rare taxa and should be further investigated as analy-
sis of low abundance community members is known to be
problematic in 16S surveys (Bokulich et al., 2013). If con-
firmed, this limitedpCO2 effect could have evolutionary
consequences creating a shift in the taxa dominance and/or
diversity, profoundly affecting the structure of entire com-
munity in a high CO2 world. However, it should be noted
that thepCO2 conditions in which these organisms domi-
nated were super-elevated compared to predicted outcomes
for the surface ocean under current climate change scenar-
ios. Furthermore, the evolutionary response of the unicellu-
lar eukaryote Emiliania huxleyi to elevated CO2 was studied
by Lohbeck et al. (2012) and showed that only 500 asexual-
generations were necessary to permit evolution either via
adaptive changes from diverse genotype selection or via new
mutations. It would be interesting to investigate how the bac-
terial communities from the present mesocosms experiment
would evolve faced to extended elevated CO2 exposure, al-
lowing a longer population growth.

Future work should focus on exploring the
functional responses of the community (metage-
nomics/metatranscriptomics) to evaluate how elevated
pCO2 or OA influence these processes over a longer time
period.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
555/2013/bg-10-555-2013-supplement.pdf.
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Büdenbender, J., Engel, A., Krug, S. A., Ludwig, A., Nachtigall,
K., Nondal, G., Niehoff, B., Siljakova, A., and Riebesell, U.: El-
ement budgets in an Arctic mesocosm CO2 perturbation study,
Biogeosciences, in review, 2013a.

Czerny, J., Schulz, K. G., Ludwig, A., and Riebesell, U.: A sim-
ple method for gas exchange measurements in mesocosms and
its application for carbon budgeting, Biogeosciences, accepted,
2013b.

de Kluijver, A., Soetaert, K., Schulz, K. G., Riebesell, U., Bellerby,
R. G. J., and Middelburg, J. J.: Phytoplankton-bacteria coupling
under elevated CO2 levels: a stable isotope labelling study, Bio-
geosciences, 7, 3783–3797,doi:10.5194/bg-7-3783-2010, 2010.

Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast,
R., Bellerby, R. G. J., Frankignoulle, M., Borges, A. V., Riebe-
sell, U., and Gattuso, J. P.: Response of primary production and
calcification to changes ofpCO2 during experimental blooms
of the coccolithophoridEmiliania huxleyi, Global Biogeochem.
Cy., 19, GB2023,doi:10.1029/2004GB002318, 2005.

Falkowski, P. G., Fenchel, T., and Delong, E. F.: The micro-
bial engines that drive Earth’s biogeochemical cycles, Science,
320,1034–1039, 2008.

Fu, F.-X., Mulholland, M. R., Garcia, N. S., Beck, A., Bernhardt, P.
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