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Abstract. A process-oriented niche specification (PONS)
model was constructed to quantify climatic controls on the
distribution of ecosystems, based on the vegetation map of
China. PONS uses general hypotheses about bioclimatic con-
trols to provide a “bridge” between statistical niche models
and more complex process-based models. Canonical corre-
spondence analysis provided an overview of relationships be-
tween the abundances of 55 plant communities in 0.1◦ grid
cells and associated mean values of 20 predictor variables.
Of these, GDD0 (accumulated degree days above 0◦C),
Cramer–Prenticeα (an estimate of the ratio of actual to equi-
librium evapotranspiration) and mGDD5 (mean temperature
during the period above 5◦C) showed the greatest predictive
power. These three variables were used to develop general-
ized linear models for the probability of occurrence of 16
vegetation classes, aggregated from the original 55 types by
k-means clustering according to bioclimatic similarity. Each
class was hypothesized to possess a unimodal relationship
to each bioclimate variable, independently of the other vari-
ables. A simple calibration was used to generate vegetation
maps from the predicted probabilities of the classes. Mod-
elled and observed vegetation maps showed good to excellent
agreement (κ = 0.745). A sensitivity study examined mod-
elled responses of vegetation distribution to spatially uniform
changes in temperature, precipitation and [CO2], the latter
included via an offset toα (based on an independent, data-
based light use efficiency model for forest net primary pro-
duction). Warming shifted the boundaries of most vegetation
classes northward and westward while temperate steppe and

desert replaced alpine tundra and steppe in the southeast of
the Tibetan Plateau. Increased precipitation expanded mesic
vegetation at the expense of xeric vegetation. The effect of
[CO2] doubling was roughly equivalent to increasing precip-
itation by ∼ 30 %, favouring woody vegetation types, par-
ticularly in northern China. Agricultural zones in northern
China responded most strongly to warming, but also bene-
fited from increases in precipitation and [CO2]. These results
broadly conform to previously published findings made with
the process-based model BIOME4, but they add regional de-
tail and realism and extend the earlier results to include crop-
ping systems. They provide a potential basis for a broad-scale
assessment of global change impacts on natural and managed
ecosystems.

1 Introduction

The patterns of vegetation and primary production on large
spatial scales are primarily controlled by climate. This gener-
alization applies not only to natural and semi-natural ecosys-
tems, but equally to the viability of different agricultural sys-
tems. It is useful to model the potential geographic distribu-
tion of vegetation types in terms of bioclimatic variables ex-
pressing the requirements of plants for warmth and moisture.
The same approach can be applied at the level of biomes,
vegetation types or species and can be carried out for agri-
cultural systems or specific crops. The value of modelling
potential distributions – i.e. those distributions that would be
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achieved in equilibrium with climate – is that it allows di-
rections of change in response to environmental changes to
be characterized irrespective of lags in the establishment of
new vegetation types, or in the responses of agricultural sys-
tems to changed conditions. Dynamic modelling of natural
changes in vegetation is well established, yet there are still
major differences among models (e.g. Sitch et al., 2008), and
dynamic modelling of land use change is at an early stage
(e.g. Rounsevell et al., 2012). The usefulness of dynamic
models depends strongly on their ability to correctly predict
directions of change, i.e. the potential distribution to which
the dynamic processes are tending. With huge advances in
the availability of relevant observations to constrain models,
and in the size of problems that can now be tackled using sta-
tistical methods, there is considerable scope to develop rela-
tively simple models, which are informed by process under-
standing but also firmly based on observations (see e.g. Smith
et al., 2013).

Anthropogenic climate change is beginning to shift the po-
tential and actual spatial patterns of ecosystems and species.
This much is clear from thousands of observations world-
wide of both expansions and contractions in species’ ob-
served ranges and phenologies (Rosenzweig et al., 2007).
Climate change is also creating conditions whereby certain
types of agriculture are increasingly marginal in some re-
gions (e.g. wheat growing in southwestern Australia (How-
den et al., 1999) and paddy rice planting in northern China
(Li and Wang, 2010)). In other regions, new modes of agri-
culture may be starting to become viable. These changes so
far have been subtle because climate change has been rela-
tively small in a global context, especially when compared
with natural interannual variability. But some degree of con-
tinuing climate change is unavoidable, and its effects are ex-
pected to become increasingly prominent during the coming
decades (Prentice et al., 2012). It is useful to foresee at least
the direction of such effects, even if their eventual magni-
tudes remain largely unpredictable.

The concentration of carbon dioxide ([CO2]) itself has
been recognized as a potentially important non-climatic fac-
tor that is already shifting vegetation patterns through its
effect on the competition between woody and herbaceous
plants through an increase in the water use efficiency of C3
plants, in addition to its effects on climate through the green-
house effect. This physiological effect of CO2 is a prominent
candidate to explain “woody thickening”, the tendency for
trees and shrubs to increase in abundance at the expense of
grasses, as has been observed in savannas worldwide (Pren-
tice et al., 2011). CO2 concentration also has an enhancing
effect on the growth and yield of C3 crops, although the rise
in [CO2] to date is thought to have been only a relatively
minor factor in increasing crop yields (compared with crop
breeding and other technological advances; Easterling et al.,
2007) and the positive effects may increasingly be offset by
negative effects of warming, especially in hot climates (Antle
et al., 2002).

So-called niche models or species distribution models –
empirical models fitted to species presence or abundance data
as a function of climate variables using statistical methods
– have been widely and successfully used to describe the
relationships between species distributions and climate (Pe-
terson, 2001), and more controversially to project responses
to future environmental changes (Warren, 2012; Pearson and
Dawson, 2003). One key limitation of niche models as usu-
ally implemented is that their responses are strongly depen-
dent on the choice of environmental predictors (Peterson,
2001). The selection of predictors is usually somewhat ar-
bitrary. Such models often rely on ordinary meteorological
summary variables (such as mean annual precipitation) that
are only indirectly related to the environment “experienced”
by the biota. Alternatively, in the BIOCLIM strand of mod-
elling, an attempt is made to represent bioclimate, but this is
done through the use of a set of ad hoc combinations of vari-
ables such as “annual temperature range” and “precipitation
of the warmest quarter” (Beaumont et al., 2005). The prob-
lem of equifinality in the choice of predictors is not entirely
avoidable, because correlations among different aspects of
climate mean that the “correct” predictors cannot be chosen
unambiguously on the basis of empirical correspondences
alone. It is therefore valuable to make use of basic process
understanding of the mechanisms controlling species’ via-
bility (Harrison et al., 2010) to derive composite bioclimatic
variables expressing different aspects of the environment.
Furthermore, it is reasonable to assume that different types
of environmental requirements (for example, for warmth and
moisture availability) act independently. This assumption al-
lows a considerable simplification of the modelling process
(e.g. Sykes et al., 1996). A further limitation of niche mod-
els as usually applied is that they do not include the modi-
fying effects of changes in CO2 concentration, even though
these are potentially very important (Keenan et al., 2011) and
are absolutely required in order to account for the nature of
observed, major vegetation changes over glacial–interglacial
cycles (Harrison and Prentice, 2003; Prentice and Harrison,
2009; Prentice et al., 2011; Bragg et al., 2013).

In this paper we adopt an approach that we call “process-
oriented niche specification” (PONS) because it provides a
“bridge” between empirical statistical modelling and com-
plex mechanistic modelling. The PONS approach is based
on the following underlying assumptions: (a) that the distri-
butions of ecosystems and species can be represented as the
consequence of a small number of bioclimatic controls; (b)
that these controls can be represented by “bioclimatic vari-
ables” derived from climate data; (c) that each control (when
correctly represented by a bioclimate variable) acts indepen-
dently, so that distributions can be represented through the
multiplication of functions describing relationships between
probability of occurrence and each variable independently;
and (d) that these relationships can be adequately represented
by either unimodal or monotonic functions. These principles
underlie earlier work by Sykes et al. (1996) and a more recent
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study by Gallego-Sala and Prentice (2013), who modelled
the world distribution of the blanket bog biome and its re-
sponse to climate change based on three independent biocli-
matic limits. Here we apply a PONS approach to model the
natural and managed vegetation of China, and we demon-
strate a novel method by which CO2 effects can be incor-
porated into a niche model. The approach is innovative in
combining a well-established technique in statistical niche
modelling (multiple logistic regression, which is closely re-
lated to the popular maximum entropy method; Phillips et al.,
2006) with algorithms used to estimate bioclimatic variables
for dynamic vegetation and biogeochemistry modelling, and
a process-based method to take account of CO2 concentra-
tion effects. By fitting models with linear and quadratic (but
not interaction) terms for each predictor, our modelling ap-
proach is consistent with Boucher-Lalonde et al. (2012), who
showed that the probabilities of occurrence of tree species in
North America could be predicted with high efficiency from
independent Gaussian functions of climate variables.

2 Methods

2.1 Study area

China, with the third largest land area of any country, con-
tains almost the entire range of world vegetation types from
rainforest to desert and from tropical to alpine vegetation
(Fig. 1). Furthermore, due to its large population and rapid
economic development, China is a key region where it is
important to identify potential risks and opportunities both
for the productivity and carbon storage of natural ecosystems
and for the production of food in agricultural systems.

Temperature variables generally decrease from south to
north in China. Elevation changes interrupt the latitudinal
trend, notably the extremely high and cold area of the Tibetan
Plateau, and some low-lying and hot areas in the northwest.
Moisture supply from the Pacific and Indian oceans gradu-
ally declines from the south towards the north and the in-
terior (Fig. 2). The natural vegetation patterns reflect these
temperature and moisture gradients (Fig. 1). The diversity of
agricultural systems is also closely related to climate. For ex-
ample, the Loess Plateau (see Supplement Figure for the dis-
tribution of geographical regions in China) and some valleys
in the interior of western China experience a moisture regime
similar to that of northeastern China, but are much warmer
in winter, allowing orchards to grow as well as annual crops
(Fig. 1). However in north China especially, irrigation is ex-
tensive, and it extends the climatic range of temperate crops
towards drier regions provided there is a local supply of wa-
ter for irrigation.

2.2 Data

The baseline climatology data were derived from records
of mean monthly temperature, precipitation and percent-

Fig. 1.The observed (upper panel) and predicted (lower panel) veg-
etation distribution in China. The plant communities from the Vege-
tation Atlas of China at a scale of 1: 1 million (Hou, 2001) were ag-
gregated into 16 vegetation classes based on their bioclimatic con-
text.

age of possible sunshine hours at 1814 meteorological sta-
tions (740 stations have observations from 1971 to 2000,
the rest from 1981 to 1990; China Meteorological Admin-
istration, unpublished data), interpolated to a 0.01◦ grid us-
ing a three-dimensional thin-plate spline (ANUSPLIN ver-
sion 4.36; Hancock and Hutchinson, 2006). We selected the
following 20 predictor variables, calculated as in Prentice et
al. (1993) and Gallego-Sala et al. (2011), for an initial ex-
ploratory multivariate analysis:

– mean temperature of the coldest (MTCO,◦C) and
warmest (MTWA,◦C) months

– mean annual temperature (MAT,◦C) and precipitation
(MAP, mm)

– accumulated (GDD0, ◦C; GDD5, ◦C) and mean
(mGDD0, ◦C; mGDD5, ◦C) temperature during the

www.biogeosciences.net/10/5817/2013/ Biogeosciences, 10, 5817–5830, 2013
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Fig. 2. The distribution pattern of the three bioclimatic predictors
used to construct models for each vegetation class: annual accumu-
lated temperature above 0◦C (GDD0), mean temperature of the pe-
riod above 5◦C (mGDD5), and the Cramer–Prentice index of plant-
available moisture (α).

growing season, taking 0◦C and 5◦C respectively as the
base temperature

– total (PAR0, mol photon m−2; PAR5, mol photon
m−2) and mean (mPAR0, mol photon m−2; mPAR5,
mol photon m−2) photosynthetically active radiation
during the growing season, defined as the period above
0◦C and 5◦C respectively

– annual equilibrium evapotranspiration (PET, mm a−1),
moisture index (MI, dimensionless) defined as the ra-
tio of MAP to PET, and the Cramer–Prentice plant-

available moisture index (α, dimensionless) (Prentice et
al., 1993) calculated as the ratio of annual actual to equi-
librium evapotranspiration. Actual evapotranspiration is
calculated by a soil moisture-accounting scheme as the
daily integral of the lesser of a demand term (PET)
and a supply term which is 1 mm h−1 times current soil
moisture (as a fraction of available water-holding capac-
ity). The calculation is based on monthly climatological
data, interpolated to a daily time step, and repeated over
a sequence of years until the annual cycle of soil mois-
ture converges.

– Three additional dimensionless variables were selected
to reflect the seasonal concentration (seasonality) and
the sine (Timingsin) and cosine (Timingcos) of the tim-
ing of maximum precipitation (Harrison et al., 2003).
Seasonality ranges from 0 (uniform through the year) to
1 (all in one month). Timing ranges from 0 (for precipi-
tation centred on January) throughπ /2 (April), π (July),
3π /2 (October) and back to 2π (January). The cosine of
timing thus ranges from−1 (summer dominant) to +1
(winter dominant) while the sine ranges from−1 (au-
tumn dominant) to +1 (spring dominant).

– We also included two variables (NPPLUE and NPPWUE,
in g C m−2 a−1), which are estimates of annual potential
net primary production (NPP) based on the light- and
water-use efficiency models (Wang et al., 2012), fitted
independently to an extensive forest production data set
(Luo, 1996).

The digitized vegetation map of China at the scale of 1: 1
million was used to obtain vegetation data. Fifty-five plant
communities (48 natural plant communities and seven crop-
ping systems) were aggregated into 16 vegetation classes
(Table 1) based on their bioclimatic context byk-means
clustering (Hartigan and Wong, 1979) of the 20 predictor
variables. We performed the clustering withk set at dif-
ferent values, and selectedk = 12 as a compromise be-
tween detail and tractability. Thek-means method, in com-
mon with most clustering algorithms, tends to avoid iden-
tifying classes with very few members. Some further ad-
justments were accordingly made. A few vegetation classes
with anomalous climatic distributions within each of the 12
machine-identified clusters were separated. The temperate
desert communities from twok-means clusters were merged
together as one vegetation class. “Temperate needleleaf for-
est” was identified as a single-type vegetation class due to its
unique bioclimatic space (low to median energy, medium to
high moisture). (Names of vegetation types here refer to the
English-language legend of the vegetation map.) “Temperate
microphyllous deciduous woodland” and “temperate grass-
forb community” were all considered to be temperate xeric
vegetation, with quite similar bioclimatic spaces, and were
grouped together. Three cultivation systems (“one crop annu-
ally and cold-resistant economic crops”; “one crop annually,
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H. Wang et al.: Data-based modelling and environmental sensitivity of vegetation 5821

Table 1.Allocation of observed plant communities from the Vegetation Atlas of China at a scale of 1: 1 million (Hou, 2001) to vegetation
classes, based onk-means clustering with modifications as described in the text.

Vegetation classes Plant communities

Sparse alpine vegetation 1) Alpine sparse vegetation;
2) alpine cushion dwarf semi-shrubby desert;
3) alpine cushion vegetation

Alpine tundra and steppe 4) Alpine tundra;
5) alpine grass, carex steppe;
6) alpine Kobresia spp., forb meadow

Boreal and subalpine forest
and shrubland

7) Cold-temperate and temperate mountains needleleaf forest;
8) subalpine broadleaf deciduous scrub;
9) subalpine broadleaf evergreen sclerophyllous scrub;
10) subalpine broadleaf needleleaf evergreen scrub;
11) alpine swamp

Temperate deciduous forest
complex

12) Temperate mixed needleleaf and broadleaf deciduous forest;
13) temperate broadleaf deciduous forest;
14) temperate grass-forb meadow steppe;
15) temperate grass and forb meadow;
16) temperate grass, carex and forb swamp meadow;
17) subtropical and tropical mountains needleleaf forest;
18) cold-temperate and temperate swamp;
19) one crop annually short growing period cold-resistant crops

Temperate woodland and dry
grassland

20) Temperate microphyllous deciduous woodland;
21) temperate grass-forb community

Temperate needleleaf forest 22) Temperate needleleaf forest
Temperate steppe 23) Temperate needlegrass arid steppe;

24) temperate dwarf needlegrass, dwarf semi-shrubby desert steppe;
25) temperate broadleaf deciduous scrub

Temperate desert 26) Temperate dwarf semi-arboreous desert;
27) temperate shrubby desert;
28) temperate shrubby steppe desert;
29) temperate semi-shrubby and dwarf semi-shrubby desert;
30) temperate succulent holophytic dwarf semi-shrubby desert;
31) temperate annual graminoid desert;
32) temperate grass and forb holophytic meadow

Subtropical montane forest 33) Subtropical mountains mixed needleleaf, broadleaf evergreen and deciduous forest;
34) subtropical broadleaf evergreen sclerophyllous forest

Subtropical forest complex 35) Subtropical needleleaf forest;
36) subtropical broadleaf evergreen forest;
37) subtropical monsoon broadleaf evergreen forest;
38) subtropical and tropical bamboo forest and bamboo scrub;
39) subtropical and tropical broadleaf evergreen and deciduous scrub;
40) subtropical and tropical evergreen xeromorphic succulent thorny scrub;
41) subtropical and tropical grass-forb community;
42) subtropical and tropical swamp;
43) two crops containing upland and irrigation annually, evergreen and deciduous orchards, economic forest;
44) two crops or three crops containing upland and irrigation rotate crops annually (with double-cropping rice),
evergreen orchards and subtropical economic forest

Subtropical deciduous and
mixed forest

45) Subtropical broadleaf deciduous forest;
46) subtropical mixed broadleaf evergreen and deciduous forest

Tropical monsoon forest
complex

47) Tropical monsoon rainforest;
48) tropical mangrove;
49) three crops annually, tropical evergreen orchards and economic forest

Tropical rainforest complex 50) Tropical rainforest;
51) tropical needleleaf forest;
52) tropical coral limestone broadleaf evergreen succulent scrub and dwarf forest

Cold-resistant crops 53) One crop annually and cold-resistant economic crops
Cold-resistant crops with
deciduous orchards

54) One crop annually, cold-resistant economic and deciduous orchards

Temperate crops 55) Three crops two years and two crops annually non-irrigation, deciduous orchard

www.biogeosciences.net/10/5817/2013/ Biogeosciences, 10, 5817–5830, 2013
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cold-resistant economic and deciduous orchards”; and “three
crops two years and two crops annually non-irrigation, de-
ciduous orchards”) in north China were separated from the
clusters to which they had been assigned, as the climatic
moisture range occupied by these types (due to irrigation)
exceeds that of otherwise bioclimatically similar natural veg-
etation types. Except for “one crop annually short growing
period cold-resistant crops”, with a similar climatic space to
the temperate deciduous complex, all the other cultivation
systems are typical of south China and share the same bio-
climatic space as the natural plant communities there. These
cultivation types were therefore kept within their machine-
identified vegetation classes (tropical monsoon forest com-
plex or subtropical forest complex).

Accurate fractional areas of each class were extracted in
ArcGIS from the digitized vegetation map at 0.1◦ grid reso-
lution. The bioclimatic data were up-scaled from the original
0.01◦ grid to the same 0.1◦ grid by simple averaging.

2.3 Data analysis

Canonical correspondence analysis (CCA; Ter Braak and
Prentice, 1998) was carried out based on 94 510 records for
the 16 vegetation classes and (as predictors) the 20 predictor
variables, for an initial exploration of the relationships be-
tween climate and vegetation. Non-vegetation grid cells (the
white area in Fig. 1), such as glaciers, bare ground, and lakes,
were excluded. The Akaike information criterion was used to
select the three most important among the bioclimatic vari-
ables for further analysis.

Generalized linear modelling (GLM) was applied to each
vegetation class separately, using the logit link function and
assuming a binomial distribution of the class frequencies.
This analysis is equivalent to multiple logistic regression.
The input data were the frequency of the class, and values
of the three selected bioclimatic predictors, at the grid cells.
In each case, we fitted an initial model including linear and
quadratic terms for each bioclimatic variable. In some cases,
one or more terms were excluded after this initial step, and a
new model fitted. Three criteria determined the exclusion of
particular terms:

(a) Terms whose inclusion led to unrealistic partial relation-
ships. This situation was sometimes encountered due to
high correlation between mGDD5 and GDD0 in both
the coldest and the warmest range of climates. The in-
clusion of both predictors resulted in sparse alpine veg-
etation, alpine tundra and steppe apparently responding
positively to GDD0, although they are more abundant
in colder climates. We therefore rejected GDD0 as a
predictor in these cases. Conversely, mGDD5 was re-
jected as a predictor for tropical forests, since the GLM-
predicted probability curve against mGDD5 peaked at a
very low value compared with the real distribution of
tropical forests.

(b) In a few cases, inclusion of quadratic terms resulted
in a U-shaped (rather than Gaussian) fitted distribu-
tion to a particular variable. This result led to the re-
jection of mGDD5 as a predictor for temperate desert.
Sparse alpine vegetation, boreal and subalpine forest
and shrubland also showed initial fitted U-shaped re-
sponses toα. In these cases just the quadratic term was
rejected, leading to a realistic (sigmoid) response toα.

(c) Terms for which the coefficients were not significant at
P < 0.05 were rejected. These cases were few because
of the very large sample size.

With the estimated regression coefficients and intercept
from the final fitted GLM, a predictive model is obtained for
each vegetation class. This can be written in a simple generic
form:

ln
Pi

1− Pi

= ai
1 + bi

1 × α + bi
2 × α2

+ ci
1 × mGDD5 (1)

+ci
2 × mGDD2

5
+ d i

1 × GDD0 × 10−3

+d i
2 × GDD2

0
× 10−6,

wherePi is the GLM-predicted probability for vegetation
classi anda, b, c, d are parameters specific for each veg-
etation class and for each of three predictor variables:α,
mGDD5 and GDD0. The parameter values for the finally ac-
cepted models are listed in Table 2.

A simple linear calibration was used to relate fitted prob-
abilities optimally to observed frequencies, as follows. For
each vegetation type, we performed the following ordinary
linear regression of the GLM-predicted class probabilities
(Pi) on the observed class frequencies (f 0

i ) with m1 andm2
as the regression parameters.

Pi = mi
1 + mi

2 × f 0
i (2)

This regression relationship was then inverted as Eq. (3) to
obtain the weighting factors (li1 andli2, Table 3) to be applied
to the GLM-predicted probabilities (Pi) and the calibrated
predicted probabilities (f ∗

i ), which were finally used in gen-
erating the predicted vegetation distribution map (Fig. 1):

f ∗

i = li1 + li2 × Pi . (3)

Negative values arising from this step were set to zero. The
predicted vegetation class at each grid cell is then the one
with highest predicted probability after weighting, i.e. the
one with highestf ∗

i . We also predicted the potential natu-
ral vegetation class at each grid cell by applying the same
criterion but excluding agricultural classes from considera-
tion.

There is a strong correlation (and therefore statistical
confounding) between winter and summer temperatures in
China, particularly in the eastern forest belts where both gra-
dients run from north to south. We added one additional
constraint to the model, namely that the MTCO for tropical
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Table 2. Parameters used in Eq. (1) for each vegetation class. All parameters are statistically significant atp < 0.001 exceptb1 andb2 for
subtropical montane forest significant atp < 0.05.

Vegetation classes a1 b1 b2 c1 c2 d1 d2

Sparse alpine vegetation 0.851 −1.988 0.000a −0.828 0.000b 0.000a 0.000a

Alpine tundra and steppe −2.544 9.306 −7.724 0.785 −0.219 0.000a 0.000a

Boreal and subalpine forest and shrubland −8.728 6.847 0.000a 1.591 −0.136 −1.202 0.000b

Temperate deciduous forest complex −14.037 16.486 −7.496 0.826 −0.043 1.817 −1.000
Temperate woodland and dry grassland −20.334 14.252 −11.166 0.185 0.000b 5.672 −0.782
Temperate needleleaf forest −35.632 57.222 −37.023 0.000b 0.000b 5.174 −0.649
Temperate desert −1.625 −9.357 −2.580 0.000a 0.000a 3.25 −0.525
Temperate steppe −9.703 19.535 −20.431 1.639 −0.087 −0.878 0.000b

Subtropical montane forest −21.705 23.719 −12.058 0.000b −0.091 5.783 −0.694
Subtropical forest complex −22.758 9.465 0.000a 0.000a 0.000a 4.930 −0.392
Subtropical deciduous and mixed forest −23.936 15.091 0.000b 0.000a 0.000a 2.998 −0.361
Tropical monsoon forest complex −30.611 10.898 0.000b 0.000a 0.000a 2.385 0.000b

Tropical rainforest complex −36.660 22.428 −22.769 0.000a 0.000a 7.442 −0.435
Cold-resistant crops −44.721 30.824 −20.914 0.000a 0.000a 20.973 −3.316
Cold-resistant crops with deciduous orchards−20.898 17.351 −15.347 0.000a 0.000a 8.471 −1.228
Temperate crops −51.822 23.104 −19.350 0.000a 0.000a 18.966 −1.946

a andb distinguish predictor terms excluded due to lack of realism in the fitted model and statistical significance, respectively. See text for further explanation of
these criteria.

rainforest complex must exceed 12◦C. The calibrated pre-
dicted probabilityf ∗

i for this vegetation class was reset to
zero whenever this constraint was not met. The constraint has
no effect on the predicted present distributions but was intro-
duced in order to eliminate the unrealistic prediction of trop-
ical rainforest in dry inland areas under some climate change
scenarios. The constraint is consistent with the known re-
quirement of tropical trees for warm winters.

2.4 Assessing goodness of fit

The kappa statistic (Cohen, 1960; Prentice et al., 1992) was
used to quantify the similarity between the predicted and ob-
served vegetation maps. Kappa is a suitable measure to com-
pare two maps where the variable mapped is a multi-class,
qualitative variable. Kappa ranges from zero to one. One
means perfect agreement; zero means agreement that is no
better than would be expected by chance, i.e. by random as-
signment of classes to grid cells.

2.5 Inclusion of a CO2 effect

[CO2] does not vary significantly in space, and cannot there-
fore be used as a predictor in the development of empirically
based models for vegetation and productivity. As a measure
of the effect of increased [CO2] on vegetation distribution,
we estimated the increase inα that would produce the same
gain in NPP, according to a process-oriented light-use effi-
ciency (LUE) model that has been fitted independently to an
extensive forest production data set (Wang et al., 2012). This
approach is based on the assumption that the major effect
of elevated [CO2] on vegetation distribution is to enhance

Table 3.Parameters used in Eq. (3) for each vegetation class.

Vegetation l1 l2

Sparse alpine vegetation −0.059 2.257
Alpine tundra and steppe −0.071 1.524
Boreal and subalpine forest and shrubland −0.055 2.123
Temperate deciduous forest complex −0.094 1.885
Temperate woodland and dry grassland −0.123 13.06
Temperate needleleaf forest −0.064 16.426
Temperate desert −0.049 1.347
Temperate steppe −0.116 2.223
Subtropical montane forest −0.011 6.574
Subtropical forest complex −0.058 1.285
Subtropical deciduous and mixed forest −0.07 13.75
Tropical monsoon forest complex −0.009 2.007
Tropical rainforest complex −0.004 2.784
Cold-resistant crops −0.089 2.844
Cold-resistant crops with deciduous orchards−0.191 7.970
Temperate crops −0.056 1.890

water use efficiency (Keenan et al., 2013), which is equiva-
lent to increasing water availability. To estimate this equiv-
alence, we fitted a multiple regression of the logarithm of
forest NPP (data as in Wang et al., 2012) againstα, mGDD5
and GDD0. The log transformation implies for the underly-
ing model that the effects of climate variables on NPP are
multiplicative. Then the contribution ofα (dimensionless) to
NPP (g C m−2 a−1) can be expressed as

lnNPP= a × α + b. (4)

Here,a is the fitted partial regression coefficient forα, with
a = 1.15, andb represents all other effects from intercept,
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mGDD5 and GDD0 together, which will then be eliminated
in deriving “effective”α at elevated [CO2]. Figure 3 shows
the relationship between ln NPP andα.

The LUE model of Wang et al. (2012) is used to estimate
the effect of elevated [CO2] on NPP, indicated by the ratio
(x) of NPP (g C m−2 a−1) at elevated (NPP′) and reference
(NPP0) [CO2]. According to this model, the ratio is depen-
dent on the leaf-internal [CO2] at reference [CO2] (ci , ppm),
the leaf-internal [CO2] at elevated [CO2] (c′

i , ppm) and the
CO2 compensation point (0, ppm), which is temperature-
dependent (Bernacchi et al., 2003):

x =
NPP′

NPP0
=

(c′

i − 0) × (ci + 2× 0)

(c′

i + 2× 0) × (ci − 0)
. (5)

The “effective” value ofα at elevated [CO2] (α′) is then given
by

α ′
=

1

a
× lnx + α. (6)

2.6 Sensitivity analysis

Sensitivity analysis was carried out to investigate the re-
sponse of the predicted vegetation pattern to the separate
and combined effects of a large increase in temperature, in-
crease or decrease in precipitation and increase of [CO2],
applied uniformly across the region. For comparability with
previously published results using the global BIOME4 model
(Wang et al., 2011), we applied the same environmental
changes as in that paper. Thus the mean temperature of each
month was increased by 5 K, the mean precipitation of each
month was increased or decreased by 30 %, and [CO2] was
doubled from a reference value of 376 to 732 ppm. These
changes were applied separately and in combination.

3 Results

3.1 Data analysis

The triangular pattern illustrated by the CCA biplot summa-
rizes the climate–vegetation relationship in China (Fig. 4a).
The vertex of the triangle to the right of the biplot rep-
resents the extreme of high temperature, rainfall and pro-
ductivity in south China. The other two vertices repre-
sent the dry and cold extremes, respectively, exemplified
by the interior deserts (upper left) and the high eleva-
tions of the Tibetan Plateau (lower left). Energy-related
variables (mGDD5, MTWA, mGDD0, PAR5, PAR0, PET,
GDD0, GDD5, MAT) and primary production (NPPLUE and
NPPWUE) tend to align together, pointing towards the high-
productivity vertex. Moisture-related variables (MI,α, MAP)
point in a direction opposite to the dry vertex. The shape
of this diagram indicates the fundamental trade-off between
high annual productivity (associated with climates that are
both warm and wet) and tolerance of dry or cold conditions,

Fig. 3. Partial residual plot (Breheny and Burchett, 2013) of ob-
served NPP (natural log scale) against the Cramer–Prenticeα index
of plant-available moisture. The partial regression line with confi-
dence band as shown was based on a multiple regression of ln NPP
againstα, GDD0 and mGDD5.

i.e. both dry and cold conditions are incompatible with high
productivity. The two precipitation timing variables point to-
wards the high-productivity vertex, consistent with the fact
that both cold and dry vegetation classes are associated with
strong summer or autumn rainfall maxima. Precipitation sea-
sonal concentration points away from the high-productivity
vertex, consistent with the negative effect of a prolonged
dry season on total annual productivity. As the length of the
thermal growing season declines towards cold climates, both
mPAR0 and mPAR5 increase (because the growing season
is increasingly restricted to the summer, when solar radia-
tion is at a maximum). Therefore, the direction of mPAR0
is almost opposite to MTCO. That the direction of mPAR5
is somewhat different to that of mPAR0 is consistent with
the fact that the cold-resistant vegetation types tend to have
cloudy conditions when temperatures exceed 5◦C, whereas
xeric vegetation types tend to have more sunny conditions.

The three variables GDD0, mGDD5 and α collectively
can predict almost exactly the same pattern as in Fig. 4a
(see Fig. 4b). GDD0 expresses the direction towards high-
productivity vegetation;α expresses the direction away from
dry conditions; mGDD5 expresses the direction towards cold
conditions.

3.2 Model testing

Table 2 summarizes the GLMs fitted to the frequencies of
each vegetation class as a function of these three variables.
These models were used with the calibration procedure (see
Table 3 for the calibration parameters for each vegetation
class) to generate maps of the predicted geographic distribu-
tion of each class with the highest calibrated predicted proba-
bility (f ∗

i ). Comparison of predicted and observed vegetation
distributions (Fig. 1) yielded a kappa value of 0.745, judged
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Fig. 4. Biplot of plant communities and environmental variables
with all sample sites (grey dots) from canonical correspondence
analysis using(a) 20 predictor variables, and(b) a subset of 3 pre-
dictor variables selected using the Akaike information criterion. See
text for the abbreviations of environmental variables, and Table 1
for the code numbers of plant communities. Vegetation classes are
distinguished with colours as in the legend of Fig. 1.

as “substantial” agreement according to the criteria of Cohen
(1960) and “good” (but very close to “excellent”) agreement
according to Monserud (1990).

The predicted vegetation map successfully captures the
distributions and boundaries of most vegetation types in
China. The distribution of the subtropical forest complex (the
most widely distributed forest class in China) is slightly over-
estimated, extending into areas occupied by tropical rainfor-
est along the south coast and northward into the temperate
crop region in the north. The tropical monsoon forest com-

plex along the south coast and the tropical rainforest com-
plex in the lowlands to the southeast of the Tibetan Plateau
and on Hainan Island are successfully predicted as separate
classes. The temperate deciduous forest complex and temper-
ate steppe are successfully predicted as the two major natural
vegetation classes in north China, separated according to dry-
ness. Temperate desert is correctly predicted as the most ex-
tensive vegetation class in northwestern China. Alpine tundra
and steppe are correctly shown as occupying a large part of
the Tibetan Plateau, transitioning to sparse alpine vegetation
in the north and to boreal and subalpine forest and shrubland
in the east; boreal and subalpine forest and shrubland are also
distributed in the high-elevation area of northeastern China.

The primary agricultural systems in north China are also
predicted well with temperate crops dominant across the
North China Plain, cold-resistant crops and deciduous or-
chard on the Loess Plateau, and cold-resistant crops in a
large area of northeastern China. The scattering of crop-
lands at the foot of mountains in Xinjiang Province are also
captured. Temperate crops are also (incorrectly) predicted
in the Yungui Plateau of southwest China. The real vegeta-
tion there is the predicted potential vegetation, i.e. the sub-
tropical forest complex; see upper second panel in Fig. 5.
Other crop systems that are included in the natural vegeta-
tion classes (temperate deciduous forest complex, subtropi-
cal forest complex and tropical monsoon forest complex) are
implicitly predicted within the distribution of these natural
vegetation classes.

Predictions of potential natural vegetation in areas cur-
rently dominated by crops are as follows (Fig. 5): temper-
ate woodland and dry grassland, temperate steppe, temper-
ate deciduous forest complex and temperate woodland in the
temperate zone, and subtropical forest complex in the sub-
tropical zone. Temperate woodland and dry grassland, as a
transition between temperate steppe and temperate decidu-
ous forest complex, is predicted as the potential vegetation
with continuous and extensive distribution in the temperate
zone.

3.3 Sensitivity analysis

Results of the sensitivity experiments are shown in Fig. 5. In-
creasing temperature by 5 K shifts the predicted boundaries
of most vegetation types northward and westward. Tropical
monsoon rainforest is predicted to occupy a large area in
south China and a small area in the Sichuan Basin. Across the
greater part of the Tibetan Plateau, alpine tundra and steppe
are predicted to be replaced by temperate steppe in the south
and in the north, and the temperate deciduous forest com-
plex, boreal and subalpine forest and shrubland in the east.
In this scenario, cold-resistant crops and deciduous orchards
become suitable for planting along the river valleys in the
southern part of the plateau.

Changes in precipitation by±30 % shift the bound-
aries of mesic versus xeric vegetation with respect to a
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Fig. 5. Changes in predicted vegetation distribution at projected scenarios, with a reference distribution at the baseline scenario (left panels
for both natural and agriculture vegetation types, right panels only for natural vegetation type).

northeast–southwest axis where the current precipitation is
at intermediate levels. In the southern (high-elevation) part
of this axis, increased precipitation causes alpine tundra and
steppe to give way to boreal and subalpine forest while
spreading slightly northward into the area currently occu-
pied by alpine sparse vegetation. In the northern part of this
axis, increased precipitation benefits the mesic vegetation
(boreal and subalpine forest and shrubland, the temperate de-
ciduous forest complex, temperate woodland and dry grass-
land) at the expense of xeric vegetation (temperate steppe,
temperate desert). The effects of decreasing precipitation are
broadly opposite to the effects of increasing precipitation. In-
creased precipitation also leads to more heterogeneous veg-
etation on the Loess Plateau, with temperate woodland and
dry grassland, temperate needleleaf forest and a temperate
deciduous forest mosaic all widely distributed. In the rest of
China, where precipitation is either very low or high, the veg-
etation distribution responds to precipitation changes much
less strongly. The boundaries of tropical forest and temper-
ate desert remain almost the same whether precipitation is
increased or decreased, while the northern boundary of the
subtropical forest complex shifts slightly to the north or to
the south.

[CO2] doubling is estimated to have effects similar to
those of increasing precipitation by 30 %, favouring more

woody vegetation in the forest–grassland transition region
(Fig. 5). In the temperate zone, [CO2] doubling produces a
shift from temperate steppe to temperate woodland and dry
grassland, and to temperate deciduous forest complex. On
the Tibetan Plateau, [CO2] doubling favours boreal and sub-
alpine forest and shrubland over alpine tundra and steppe.

4 Discussion

4.1 Comparison with previously published results

The prediction for current vegetation distribution is broadly
consistent with those made previously with the global
BIOME4 model. However, apart from slightly overestimat-
ing the extent of the subtropical forest complex (called warm-
temperate forest in BIOME4), the new empirical model cap-
tures some vegetation boundaries more accurately than the
BIOME4 simulation. We successfully distinguished sparse
alpine vegetation (tundra in BIOME4) from alpine tundra
and steppe (dry tundra in BIOME4) on the Tibetan Plateau.
The distributions of these classes are unrealistically sim-
ulated by BIOME4. The empirical model also more suc-
cessfully captures the boundary between temperate steppe
(grassland and dry shrubland in BIOME4) and the temper-
ate deciduous forest complex (temperate forest in BIOME4).
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BIOME4 overestimates the distribution area of temperate
steppe at the expense of temperate forest. By refining the
categories of forest vegetation, the empirical model also pro-
vides more detailed information about the most economically
productive semi-natural vegetation in China. Most impor-
tantly, the ability of the empirical model to predict cropland
distributions points towards a way to assess the changing
suitability of agricultural systems under scenarios of changes
in climate and [CO2].

As also shown by BIOME4, the transition region between
mesic and xeric vegetation along a northeast–southwest axis
is the region most likely to experience major vegetation
changes as a result of climate change. Warming is gener-
ally expected to favour woody vegetation there. The effects
depend on the trajectory of precipitation changes; without
an increase in precipitation, some regions suffer drought and
thus a decline in forests. However the positive effect seems
much stronger than the negative one, since water limitation
is not severe in the majority of this region. On the Tibetan
Plateau, where energy is the key limitation for woody plants,
boreal and subalpine forest and shrubland are predicted to
expand in response to warming, causing alpine tundra and
steppe to retreat westward. In the central part, temperate
woodland and dry grassland tend to expand at the expense
of temperate steppe, while the subtropical forest complex ex-
pands at the expense of temperate woodland. In semi-arid re-
gions in the north, warming benefits temperate woodland and
dry grassland at the expense of temperate steppe, but also
temperate steppe expands into the current distribution area
of the temperate deciduous forest complex, due to drought.
Changes in plant water availability, either directly due to
changes in precipitation or indirectly due to [CO2]-induced
changes in water use efficiency, are predicted to modify the
effects of warming by influencing the competition between
woody and herbaceous plants.

The Tibetan Plateau is identified both here and in the ear-
lier study with BIOME4 as a region liable to experience
large changes in vegetation as a result of climate change.
Both models predict that warming will cause alpine vegeta-
tion to retreat to the colder and drier areas toward the north.
But BIOME4 suggests that alpine vegetation will be replaced
mainly by forests, while the empirical model suggests that it
will be replaced by temperate steppe. The vegetation around
the eastern edge of the plateau was predicted by BIOME4
as being quite resistant to precipitation changes, but our new
empirical model identifies this region as particularly sensitive
to precipitation changes.

The present study indicates that the northern boundary of
the tropical monsoon forest complex would move northward
by as much as 4◦ of latitude and even emerge in the Sichuan
Basin. BIOME4 did not show this movement, probably be-
cause of the strong minimum temperature constraint ap-
plied to tropical forests in that model. The northward move-
ment predicted here is probably more realistic than the stasis
shown by BIOME4.

The empirical model makes no prediction about the veg-
etation on the North China Plain when temperature increase
is combined with precipitation decrease under recent [CO2].
This is the most severe scenario for mesic vegetation. The
region in question was identified as a sensitive area by
BIOME4, which predicted a transition to grassland and dry
shrubland. The empirical model makes no prediction because
the climate under this scenario is outside the range that the
empirical models could predict based on current observa-
tions. The actual vegetation is temperate croplands, which
are adapted to the climate with the help of irrigation. How-
ever, the North China Plain is one of the most water-scarce
regions in the world (having less than half the water availabil-
ity per person than water-scarce Egypt, in relation to its pop-
ulation). The observed warmer and drier climate over the last
four decades, combined with increasing water requirements
both for industrial production and in daily life, has already
exerted considerable pressure on irrigation systems. Most cli-
mate models suggest that precipitation should increase in this
region, but this is not certain and not predicted by all models
(Cruz et al., 2007). Thus irrigated agriculture in the North
China Plain represents a potential area of vulnerability to
changes in climate and water supply.

4.2 The climate sensitivity of agriculture

By including crops in our analysis, we could investigate
climate-dependent shifts in agricultural zones. Generally,
warming is projected to shift agricultural zones significantly
northward. This is directly demonstrated for the major crop-
ping systems in north China, and implicitly indicated by
the projected shift of natural vegetation types that include
some agricultural types. These findings are consistent with
data from the Chinese National Bureau of Statistics (2009)
showing that, during the period from the early 1980s to
2007, warming enabled a significant northward expansion
of rice planting in the northernmost region, between 48 and
52◦ N. By 2007 the planted area of winter wheat in northern
China moved northward by nearly 100 km compared with
the 1960s. Paddy rice, the new dominant crop in the origi-
nal corn-planting areas, has greatly expanded in Heilongjiang
Province (Li and Wang, 2010). However, our analysis also
points to the strong dependence of the cropland area in north
China on precipitation, and the importance of irrigation re-
quirements that could be limited by water supply. Unlike
rainfed crops, decreased runoff with climate change could
become an important limitation for the shift of irrigated crops
in some areas.

Agricultural systems that were included in natural vegeta-
tion classes showed relatively minor responses to precipita-
tion change, with one exception: “one crop annually short
growing period cold-resistant crops”, which was included
in the temperate deciduous forest complex. The effects of
[CO2] on crop distribution cannot realistically be assessed
in this framework, however, because the main mechanism
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would be via the total increase of C3 crop productivity due
to CO2 fertilization as well as water saving, rather than the
effects of enhanced water use efficiency mediated by compe-
tition.

Topography could limit agricultural expansion. Although
crops are predicted by the model in the Yungui Plateau, and
their area of suitability predicted to expand, the actual veg-
etation there today is forest. This area is well known for its
karst topography which makes agriculture difficult.

4.3 Regional variations in the response to uniform
perturbations of climate and [CO2]

According to projected climate trends summarized in Cruz et
al. (2007), warming over all of China is likely to be greater
during winter than summer, and the warming is likely to be
especially strong on the Tibetan Plateau and in semi-arid
regions. Mean precipitation will likely increase in most of
China but decrease in some western areas. Thus, woody veg-
etation will be favoured by future climate, as well as by el-
evated [CO2]. In other words, forests with their important
functions in carbon sequestration, water retention and high
biodiversity will likely continue to be the predominant nat-
ural vegetation cover in a large area of China, and the area
suitable for forests is likely to expand into regions currently
occupied by grasslands. The Tibetan Plateau and some in-
land desert areas are projected to experience large vegetation
changes.

4.4 Caveats

The prediction skill of our empirical model for the present
climate is inevitably highly reliant on the accuracy of the
gridded climate data used to develop and run the model. One
problematic region is the lower-elevation area to the south-
east of the Tibetan Plateau (Zangnan area, a disputed territory
between China and India) where the gridded climate data are
not well constrained by observations. This data problem is
probably the cause of the model’s underestimation of trop-
ical rainforest in this region, and means that the projection
of climate change effects here should be treated with scepti-
cism.

Here, we have shown results of climate change in the
form of stylized sensitivity experiments, rather than plausi-
ble scenarios of the future. The idea was to understand how a
uniform perturbation of climate would affect vegetation pat-
terns. It remains to be seen how realistic climate change sce-
narios, derived from climate models, translate into projected
effects on ecosystems in China. Realistic scenarios include
additional regional variations – in the climate changes them-
selves – and in particular, the whole region is not predicted to
get uniformly drier or wetter; but rather some areas are pre-
dicted to get drier and some wetter. Only [CO2] is expected
to change uniformly across the country. Another study has
applied future climate change projections derived from a set

of seven global climate model outputs, to assess likely di-
rections of change in vegetation distribution and productivity
during the 2070s (Wang 2013).

Due to the equilibrium assumption, the approach we ap-
plied here entails some unavoidable limitations. The fitted
empirical models do not predict when changes in vegeta-
tion are likely to happen. The predicted responses of veg-
etation distributions to climate could be achieved in reality
only some decades to centuries after the new climate state has
been established. Also, since we focused on the primary con-
trols of mean climatic conditions on large-scale patterns of
vegetation distribution, processes related to vegetation suc-
cession and migration, such as fire disturbances and dispersal
constraints, are not modelled. But despite these limitations,
the method described here makes good use of extensive ob-
servational data sets applying to the specific region of inter-
est. The results should therefore be a reliable guide to the
general direction and magnitude of changes to be expected in
the region in response to the prescribed scenarios of change
in [CO2] and climate.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
5817/2013/bg-10-5817-2013-supplement.pdf.
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