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Abstract. This study uses a neural network technique to pro-
duce maps of the partial pressure of oceanic carbon dioxide
(pCOsea

2 ) in the North Pacific on a 0.25◦ latitude× 0.25◦ lon-
gitude grid from 2002 to 2008. ThepCOsea

2 distribution was
computed using a self-organizing map (SOM) originally uti-
lized to map thepCOsea

2 in the North Atlantic. Four proxy
parameters – sea surface temperature (SST), mixed layer
depth, chlorophylla concentration, and sea surface salin-
ity (SSS) – are used during the training phase to enable
the network to resolve the nonlinear relationships between
the pCOsea

2 distribution and biogeochemistry of the basin.
The observedpCOsea

2 data were obtained from an extensive
dataset generated by the volunteer observation ship program
operated by the National Institute for Environmental Stud-
ies (NIES). The reconstructedpCOsea

2 values agreed well
with the pCOsea

2 measurements, with the root-mean-square
error ranging from 17.6 µatm (for the NIES dataset used in
the SOM) to 20.2 µatm (for independent dataset). We con-
firmed that thepCOsea

2 estimates could be improved by in-
cluding SSS as one of the training parameters and by taking
into account secular increases ofpCOsea

2 that have tracked
increases in atmospheric CO2. EstimatedpCOsea

2 values ac-
curately reproducedpCOsea

2 data at several time series loca-
tions in the North Pacific. The distributions ofpCOsea

2 re-
vealed by 7 yr averaged monthlypCOsea

2 maps were similar
to Lamont-Doherty Earth ObservatorypCOsea

2 climatology,
allowing, however, for a more detailed analysis of biogeo-

chemical conditions. The distributions ofpCOsea
2 anomalies

over the North Pacific during the winter clearly showed re-
gional contrasts between El Niño and La Niña years related
to changes of SST and vertical mixing.

1 Introduction

The ocean plays an important role as a major carbon reser-
voir for CO2 emitted to the atmosphere from fossil fuel burn-
ing, cement production, and biomass burning. The ocean
has absorbed about 48 % of the CO2 emitted to the atmo-
sphere by fossil fuel combustion since the Industrial Revo-
lution (Sabine et al., 2004). To evaluate the global budget of
oceanic CO2 uptake, measurements of the partial pressure of
CO2 (pCOsea

2 ) in surface seawater have been carried out over
the global ocean, with the highest intensity in the equatorial
Pacific (Feely et al., 1987, 2006; Ishii et al., 2009), the North
Atlantic (Cooper et al., 1998; Olsen et al., 2003; Schuster et
al., 2009), and the North Pacific (Inoue et al., 1995; Mur-
phy et al., 2001a; Zeng et al., 2002; Chierici et al., 2006).
A compilation of worldwide efforts to measurepCOsea

2 on
a global scale can be found in Takahashi et al. (2009). The
authors, led by a team at the Lamont-Doherty Earth Obser-
vatory (LDEO), computed a 35 yrpCOsea

2 climatology (for a
reference year 2000) on 4◦ latitude× 5◦ longitude resolution
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Fig. 1. Schematic map of the current system in the North Pa-
cific rewritten from Schmitz (1996) with the areas of three ocean
time-series stations and three areas for comparison of seasonal and
interannual variations ofpCOsea

2 and related oceanic parameters.
“KNOT”, “P”, and “ALOHA” denote ocean time-series station areas
in the North Pacific, and “WST”, “KE”, and “EST” denote ocean
areas of the western subtropics, Kuroshio Extension, and eastern
subtropics, respectively.

and estimated the annual global air–sea CO2 exchange at
−1.6± 0.9 PgC yr−1.

Neural network (NN) techniques can be generally de-
scribed as empirical statistical tools that resolve, to a certain
degree, the nonlinear and often discontinuous relationships
among proxy parameters without any a priori assumptions.
In the past decade a handful of authors have reported the ap-
plication of an NN technique to basin-scalepCOsea

2 analy-
sis (e.g., Lefèvre et al, 2005; Jamet et al., 2007; Friedrich
and Oschlies, 2009a, b; Telszewski et al., 2009), concentrat-
ing mainly on the North Atlantic Ocean. Most recently, Tel-
szewski et al. (2009) successfully applied a self-organizing-
map (SOM) based NN technique to reconstructpCOsea

2 dis-
tribution in the North Atlantic (10.5 to 75.5◦ N, 9.5◦ E to
75.5◦ W) for three years (2004 to 2006) by examining non-
linear/discontinuous relationship betweenpCOsea

2 and ocean
parameters of sea surface temperature (SST), mixed layer
depth (MLD), and chlorophylla concentration (CHL). One
of the main benefits of this approach over the more traditional
techniques, such as multiple linear regression (MLR), is that
there are numerous empirical relationships established (e.g.,
2220 in Telszewski et al., 2009) between examined parame-
ters, allowing for more accurate representation of the highly
variable system of interconnected water properties.

The North Pacific is dominated by two major current
regimes: the subarctic and subtropical gyres (Fig. 1). The
cold Oyashio Current and the warm Kuroshio Current are
the western boundary currents of the North Pacific subarctic
and subtropical gyres, respectively. The two currents meet
at midlatitudes in the western North Pacific and turn to-
ward the east as the North Pacific Current. The North Pa-
cific has been typically characterized as a high-nutrient, low-
chlorophyll region of the ocean at most of high latitudes be-
cause of the low influx of iron to the ocean surface (Dugdale

and Wilkerson, 1991), and as a low-nutrient, low-chlorophyll
region at the western and central low latitudes (Karl and
Letelier, 2008; Lin et al., 2011). The Bering Sea, which is
a marginal sea of the North Pacific, and coastal regions are
upwelling areas within which the transport of nutrient- and
CO2-rich subsurface water to the surface assures high bi-
ological productivity (Chierici et al., 2006). In the North
Pacific, there are expected to be thus quite large temporal
and spatial variations ofpCOsea

2 . Zeng et al. (2002) reported
that large temporal amplitude of1pCO2 (pCOsea

2 –pCOair
2 )

over 60 µatm was apparent in the western-central subarc-
tic and the eastern subtropics based on their measurements
between 1995 and 1999.

For analysis of temporal variability ofpCOsea
2 or 1pCO2

in the North Pacific, Stephens et al. (1995) estimated basin-
scale monthly1pCO2 distributions using simple linear re-
gression analysis betweenpCOsea

2 and SST in 1985. Re-
cently, Sarma et al. (2006) used MLR analysis to estimate
pCOsea

2 from SST and satellite-based CHL observations in
high-latitude regions of the eastern and western North Pa-
cific, but the applicability of the MLR equations was limited
to spring and summer. Takamura et al. (2010) also used MLR
analysis to reconstructpCOsea

2 distributions as a function of
SST and sea surface salinity (SSS) from 1999 to 2006 in mid-
latitudes (25 to 40◦ N, 120 to 150◦ W, 140 to 170◦ E).

The precise time-series analyses of pelagic oceanpCOsea
2

variability are limited to time-series stations (Bates, 2007,
2012; Dore et al., 2009; González-Dávila et al., 2010) where
monthly pCOsea

2 observations are available over extended
time periods. Two areas of frequent shipboard observations
of pCOsea

2 other than time-series stations are the eastern and
western equatorial Pacific (e.g., Feely et al., 2006; Ishii et
al., 2009), where the observed interannualpCOsea

2 varia-
tions are associated with the El Niño–Southern Oscillation
(ENSO). Another place where there have been frequent ship-
boardpCOsea

2 observations in the North Pacific is the 137◦ E
repeat line (Midorikawa et al., 2006), where a weak but sig-
nificant relationship betweenpCOsea

2 and ENSO has been
observed. A basin-wide analysis of observedpCOsea

2 vari-
ability (including the analysis of the interannual signal) has
not yet been successfully performed. An atmospheric CO2
inverse model (Patra et al., 2005) and an ocean biogeochem-
ical model (Valsala et al., 2012), however, suggest the possi-
ble correlation of thepCOsea

2 variability with Pacific Decadal
Oscillation (PDO).

Our goal in this study was to reconstruct temporal and spa-
tial variability of the pCOsea

2 distribution in the North Pa-
cific for seven years from 2002 to 2008 using the SOM tech-
nique applied to the observationalpCOsea

2 dataset obtained
by the NIES Volunteer Observing Ship (VOS) program. We
then compared the estimatedpCOsea

2 values with measured
pCOsea

2 values obtained from the NIES VOS program and
independent validation datasets in various areas of the North
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Pacific (Fig. 1). We also presented the change of thepCOsea
2

distribution in response to the ENSO events.

2 Method and datasets

2.1 Method ofpCOsea
2 estimation

The study area includes the North Pacific from 10 to 60◦ N
and from 120◦ E to 90◦ W, and is hereafter called the North
Pacific, although we have excluded coastal (bathymetric
depth< 500 m) and ice-covered (SST< −1.8◦C) areas from
the analysis. In this study, we hypothesized thatpCOsea

2
could be estimated by a linear function of time and an
SOM function (fSOM) of four independent variables: SST,
MLD, CHL, and SSS. The equation forpCOsea

2 then takes
the following form:

pCOsea
2 = a×(t−tref)+fSOM(SST, MLD, CHL, SSS). (1)

In Eq. (1)a is the secular rate of change of atmospheric
CO2 in µatm day−1, t denotes the date, and the reference date
tref is set to 30 June 2005. In addition, we assumedpCOsea

2
to be a linear function of time in order to take into account
the influence of anthropogenic CO2 emissions onpCOsea

2 , an
effect that could not be accounted for by SST, MLD, CHL,
or SSS. The anthropogenic influence onpCOsea

2 is consid-
ered negligible for relatively short analyses, e.g., three years
(cf., Lefèvre et al., 2005; Telszewski et al., 2009), but it
builds up to around 10 µatm after seven years. Midorikawa
et al. (2006) reported that the secular trend ofpCOsea

2 var-
ied from 1.3 to 1.8 µatm yr−1 (close to the rate of increase of
atmospheric CO2) in the western subtropical North Pacific
based on their measurements over 20 yr along 137◦ E. Wong
et al. (2010) also reported that their 30 yr time series of mea-
surements along Line P, the line connecting ocean station
P (50◦ N, 145◦ W) to the coast, showed that the long-term
trend of pCOsea

2 tracked the increase of atmospheric CO2
in the eastern subarctic region. Takahashi et al. (2006) con-
cluded that, for the most part, the increase of oceanic CO2 in
the North Pacific followed the increase of atmospheric CO2
for the last 35 yr with the increase rate varying geographi-
cally, reflecting differences in local oceanographic biogeo-
physical processes. We assumed in this study that the secular
trend of pCOsea

2 was approximately a constant fraction of
the rate of change of atmospheric CO2 over the North Pa-
cific. Specifically, we assumed the value of the coefficienta

in Eq. (1) to be 4.82× 10−3 (= 1.76/365.285) µatm day−1,
which is the rate of increase of atmospheric CO2 concentra-
tion converted from the CO2 mole fractions (xCOair

2 ) in the
GLOBALVIEW-CO2 dataset (GLOBALVIEW-CO2, 2011)
for the North Pacific region during the period of analysis.

The method for reconstructingpCOsea
2 is based on the

methodology of Telszewski et al. (2009), but we allocated
about three times as many neurons on a flat sheet map
(53× 115) to improve the estimate. A neuron in this study

is a vector that has four components: SST, MLD, CHL, and
SSS. The values of these components, the training dataset,
are prospectively normalized linearly (SST, SSS) or logarith-
mically (MLD, CHL) to create an even distribution among
the input variables (cf., Fig. 3 of Telszewski et al., 2009).
As indicated schematically in Fig. 2, three processes are ex-
ecuted in order to estimate basin-widepCOsea

2 fields in the
SOM analysis procedure.

First, a neuron’s weight vectors (xi), which are linearly
initialized, are repeatedly trained by input vectors (yj ), by
being presented with the normalized SST, MLD, CHL, and
SSS values, until the statistical composition of the training
dataset is extracted and the neural network sufficiently rep-
resents the nonlinear interdependence of proxy parameters
used in training (Training Process in Fig. 2a). At each step,
Euclidean distances (D) are calculated between the weight
vectors of neurons and the input vector:

D
(
xi, yj

)
=

[(
xi_SST− yj_SST

)2
+

(
xi_MLD − yj_MLD

)2

+
(
xi_CHL − yj_CHL

)2
+

(
xi_SSS− yj_SSS

)2
]0.5 . (2)

The neuron closest to the training data point in Euclidean
distance terms, here called the winner, is adjusted towards
its value by a fraction of this distance dictated by the linearly
time-decreasing learning function. At the same time, the neu-
rons in the vicinity of the winner are also adjusted towards
the value of the training data point by a fraction of the win-
ner’s adjustment in accordance with a time-decreasing Gaus-
sian function, as explained by Kohonen (2001). This process
results in clustering of similar neurons and self-organization
of the map. The observedpCOsea

2 dataset is not required at
this stage of the analysis.

Second, each neuron is labeled with an observedpCOsea
2

value. Technically, the labeling process follows the same
principles as the training process. The labeling data, which
in this study consist of the observedpCOsea

2 value assigned
to a reference year by adding/subtracting the assumed tem-
poral change ofpCOsea

2 and coincided with normalized SST,
MLD, CHL, and SSS values, is presented to the neural net-
work, and a winner neuron is found (Labeling Process in
Fig. 2b). Instead of adjusting the winner’s value, it is la-
beled with thepCOsea

2 value of the labeling data. This pro-
cess is carried out for each of the observedpCOsea

2 values.
After the labeling process, most neurons are labeled with a
pCOsea

2 value. Neurons are consequently represented by five-
dimensional vectors.

Third, the labeled SOM neurons are used to assignpCOsea
2

values to the geographical grid points of the North Pacific
(Mapping Process in Fig. 2c). The initial training dataset is
presented to the trained and labeled SOM map. Upon com-
puting the winner neuron, no adjustments are made. Instead,
the training data are assigned apCOsea

2 value of the win-
ner neuron. This value becomes apCOsea

2 estimate for time
and location determined by the spatio/temporal coordinates
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Fig. 2.Visualization of the processes that make up the procedure for SOM analysis.

Fig. 3. Composite cruise tracks from 1998 to 2008. Blue lines rep-
resent the cruises from 1998 to 2001 and red lines show the cruises
after 2002.

of each training datum after the temporal adjustment is done
as expressed in Eq. (1).

Consequently, thepCOsea
2 output produced in this work

has originally daily frequency and 0.25◦ latitude× 0.25◦ lon-
gitude resolution. The reconstructed monthlypCOsea

2 distri-
butions obtained as a result of this work will be available for
scientific purposes from the NIES’s Ship of Opportunity Pro-
gram (SOOP) website: http://soop.jp.

2.2 Training dataset (SST, MLD, CHL, SSS)

We used four high-resolution datasets – one each for
SST, MLD, CHL, and SSS – to train the SOM. We ob-
tained observed SST datasets from the Merged satellite
and in situ data Global Daily Sea Surface Temperatures
(MGDSST) project (http://goos.kishou.go.jp/rrtdb/database.
html) at a daily frequency and 0.25◦ latitude× 0.25◦ longi-
tude resolution (Kurihara et al., 2006). We obtained daily as-

similated MLD estimates from the GLobal Ocean ReanalY-
ses and Simulations (GLORYS) model by Mercator Ocean
(Le Centre National de la Recherche Scientifique, France)
with a horizontal resolution of 0.25◦ latitude× 0.25◦ lon-
gitude (Bernard et al., 2006; Ferry et al., 2010). Satellite
CHL data were obtained from MODIS-Aqua and SeaWiFS
Level 3 Standard products provided by NASA/GFSC/DAAC
at a frequency of eight per day and resolution of 9 km (http:
//oceancolor.gsfc.nasa.gov). We obtained assimilated SSS es-
timates from the MOVE/MRI.COM-NP model of the Mete-
orological Research Institute, Japan, at a frequency of 10 per
day and horizontal resolution of 0.5◦ latitude and 0.5◦ longi-
tude (Usui et al., 2006). For the analysis all parameters were
re-gridded onto a frequency of one per day and horizontal
resolution of 0.25◦ latitude× 0.25◦ longitude.

We compared the assimilated datasets of SST and SSS
with in situ measurements obtained by the NIES VOS
project. The values of their differences were calculated to be
about 0.01± 0.53◦C and 0.03± 0.18, respectively. O’Reilly
et al. (2000) reported that the CHL difference between ob-
served values and satellite-borne data was estimated to be
0.00± 0.25, while the uncertainty of MLD estimate has not
been reported. The above sources of uncertainty compose a
fraction of the overhaul uncertainty of the method described
in Sect. 2.7.1. In this study we have not attempted to assess
the relative significance of various sources of uncertainty in
the method.

2.3 pCOsea
2 datasets for labeling

To estimatepCOsea
2 fields in the North Pacific, it was neces-

sary to label the trained SOM neurons withpCOsea
2 values.

In the labeling process, observedpCOsea
2 data together with
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Table 1.Summary of NIES surface ocean CO2 measurements made by four volunteer observing ships in the Pacific Ocean.

Vessel name Period Observed area NDIR analyzer

M/S Skaugran Mar 1995–Sep 1999 North Pacific Rosemount Analytical
Model 880A

M/S Alligator Hope Nov 1999–Mar 2001 North Pacific Licor 6262
M/S Pyxis Jul 2002–present North Pacific Licor 6262 (–Apr 2006)

Licor 7000 (Apr 2006–)
M/S Trans Future 5 Jul 2006–present Western North/

South Pacific
Licor 6262

corresponding SST, MLD, CHL, and SSS values were used.
We utilized a subset of the North Pacific dataset collected
by the NIES VOS program. ThepCOsea

2 data are available
for public use from NIES’s SOOP website:http://soop.jp.
Information related to the four VOS lines is summarized
in Table 1, and their composite cruise routes are depicted
in Fig. 3. The commercial ships collaborating in the NIES
VOS program have taken part in trans-Pacific cruises be-
tween Japan and North America (10 to 55◦ N, 140 to 230◦ E)
since March 1995 and between Japan and Oceania (45◦ S to
35◦ N, 140 to 180◦ E) since July 2006. The ships sail reg-
ularly at intervals of about 5–8 weeks between Japan and
North America or Oceania. On the North America route the
volunteer ship sailed to the northern part of North America in
the early part of the NIES VOS program, but since 2003 the
route has occasionally shifted to the southeast to pass through
the Panama Canal (Supplement Fig. 1). On the Oceania route
the volunteer ship has sailed regularly on a biweekly basis,
with the shipping route mostly fixed since July 2006.

Although we reconstructedpCOsea
2 in the North Pacific af-

ter 2002, in the analysis we used some in situ data for years
1998–2001 due to the insufficient data coverage especially
in the subarctic region for years 2002–2008. The addition of
pCOsea

2 data from 1998 to 2001 to the labeling dataset im-
proved the coverage of monthly measurements (Supplement,
Fig. 2). The improved coverage facilitated reproduction of
the rapid drawdown ofpCOsea

2 due to phytoplankton photo-
synthesis during the spring bloom in the highly productive
western mid–high latitude region.

Murphy et al. (2001b) and Fransson et al. (2006) have both
described the technical intricacies of the ocean surface CO2
measurement system used by the NIES VOS program; there-
fore we only outline the basics here. The nondispersive in-
frared analyzer used for those measurements was changed
from a Licor 6262 to a Licor 7000 for the M/SPyxiscruises
in 2006 (Table 1). The CO2 standard gases were calibrated
by the NIES, and are traceable to the World Meteorologi-
cal Organization scale. The flow-through tandem equilibrator
provides a continuouspCOsea

2 output with high temporal res-
olution (Murphy et al., 2001b). ThepCOsea

2 measurements
were made every 10 s, and thepCOsea

2 data were 10 min av-
erages of those measurements. ThepCOsea

2 data were then

averaged on a daily basis within 0.25◦ latitude × 0.25◦ lon-
gitude grid boxes. Consequently, the number ofpCOsea

2 data
by the NIES VOS program amounted to 317 332, and a total
of 73 284pCOsea

2 data were binned as the labeling dataset.

2.4 Other oceanic CO2 datasets used for the validation
of estimatedpCOsea

2

To validatepCOsea
2 values reconstructed by the SOM analy-

sis, we used the fugacity of oceanic CO2 (f COsea
2 ) dataset

from the Surface Ocean CO2 ATlas (SOCAT:http://www.
socat.info) version 1.5 database. That dataset has been in
the public domain since September 2011, and has been sub-
ject to quality control as a part of an international collabo-
ration of more than 10 institutes (including NIES) that work
on ocean surface CO2 observations (Pfeil et al., 2013). In
the North Pacific, the SOCAT database contains thef COsea

2
values measured mainly by NIES, the Japan Meteorological
Agency (JMA), the Japan Agency for Marine-Earth Science
and Technology (JAMSTEC), and the United States National
Oceanic and Atmospheric Administration (NOAA). For con-
sistency with other datasets used in this study we recalculated
pCOsea

2 values from the obtainedf COsea
2 (Pfeil et al., 2013)

wherever necessary.
UnderwaypCOsea

2 data and mooringpCOsea
2 data col-

lected by Wong and Johannessen (2010) and Sabine et
al. (2010), respectively, were obtained from the Carbon
Dioxide Information Analysis Center (CDIAC;http://cdiac.
ornl.gov/oceans/). We used those data for the comparisons
near ocean station P. In addition, we usedpCOsea

2 values
calculated from measurements of dissolved inorganic carbon
(DIC) and total alkalinity (TA) at two stations: station KNOT
(44◦ N, 155◦ E, Wakita et al., 2010) and station ALOHA
(23◦ N, 202◦ E, Dore et al., 2009).

2.5 Ranges of the training/labeling dataset

As explained by Telszewski et al. (2009), one of the biggest
advantages of SOM analysis over the more traditional meth-
ods is the fact that the temporal and spatial distribution of
proxy parameters in the training and labeling datasets does
not influence the analysis. Instead ranges covered by these
parameters in each dataset, and more precisely their relative

www.biogeosciences.net/10/6093/2013/ Biogeosciences, 10, 6093–6106, 2013
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Table 2.Ranges of SST, MLD, CHL, and SSS in the training dataset, the labeling dataset, and the trained neurons. Percentages of the training
data within the range of the labeling dataset and the neurons are given for each parameter.

SST (◦C) MLD (m) CHL (mgm−3) SSS (psu)

Min. Max. Cover (%) Min. Max. Cover (%) Min. Max. Cover (%) Min. Max. Cover (%)

Training data −1.8 32.7 1 > 500 0.00 10 30.15 35.69
Labeling data −1.1 31.5 99.940 1 416 99.995 0.00 10 100 30.15 35.69 100
Neurons −0.6 29.4 96.651 1 194 99.807 0.00 3.2 99.778 31.79 35.58 99.886

overlap, determines whether the SOM will be able to re-
construct the distribution of the predicted parameter. Ranges
of the training/labeling datasets and the trained neurons are
summarized in Table 2. The training dataset SSTs varied be-
tween−1.8 and 32.7◦C; the MLD ranged from 1 m to more
than 500 m; CHL varied from 0 to more than 10 mg m−3; and
the range of SSS was 30.15–35.69. The values in the label-
ing datasets and neurons covered most of the range of val-
ues in the training dataset. However, the maximum MLDs in
the labeling dataset (416 m) and in the neurons (194 m) were
substantially lower than the maximum MLD in the training
dataset (> 500 m, Table 2). Our results indicate that the cor-
relation betweenpCOsea

2 and MLD was not apparent when
the MLD was deeper than 200 m (not shown), a result also
reported for the North Atlantic by Telszewski et al. (2009).
Therefore the MLD dataset is logarithmically normalized,
aligning its weight during training (high weight in low val-
ues and low weight in high values) with its actual influence
on the variability inpCOsea

2 . Such normalization means that
the MLD change from 10 to 100 m is comparable (in terms of
change of weight during training) to that from 100 to 1000 m.

2.6 ReconstructingpCOsea
2 distributions in winter

at high latitudes

The three products SST, MLD, and SSS provided full basin-
wide coverage from 2002 to 2008. However, the CHL data
were affected by the lack of satellite coverage from Novem-
ber to January at high latitudes of the North Pacific (north of
45◦ N) due to the low angle of the sun during that time and
enormous atmospheric correction required to retrieve the sig-
nal. To reconstructpCOsea

2 for this area during those months,
we assumed thatpCOsea

2 could be adequately characterized
by only three parameters: SST, MLD, and SSS. The rationale
for this assumption is that biological activity is relatively low
during the winter at high latitudes (e.g., Imai et al., 2002).
Therefore, we prepared another SOM trained by the three
parameters SST, MLD, and SSS. We generated complete
pCOsea

2 maps in the study area by combining thepCOsea
2 val-

ues obtained with the four-parameter SOM including CHL
with the values obtained with the three-parameter SOM ex-
cluding CHL in the area north of 45◦ N (14 % of the study
area) during the period from November to January. We cal-
culated the difference between thepCOsea

2 values estimated

with the four-parameter SOM and the three-parameter SOM
during the above period in the region between 40 and 45◦ N
and found it to be−2.0± 2.2 µatm. We added this difference
to thepCOsea

2 values obtained with the three-parameter SOM
in the area north of 45◦ N.

2.7 Uncertainty and improvement of thepCOsea
2

estimate

2.7.1 Uncertainty

For each in situpCOsea
2 measurement, the corresponding

SOM pCOsea
2 estimate was determined on the basis of the

spatial (0.25◦ longitude× 0.25◦ latitude grid) and tempo-
ral (daily intervals between 1 January 2002 and 31 Decem-
ber 2008) coordinates associated with the measurement. We
calculated the root-mean-square error (RMSE) between ob-
servedpCOsea

2 and estimatedpCOsea
2 values as follows:

RMSE=

√∑(
pCOsea

2 (estimate) − pCOsea
2 (observed)

)2

n
, (3)

where n is the number of points in the labeling dataset.
The RMSE provided an estimate of the uncertainty of the
method in reproducing the in situ measurements, and equaled
17.6 µatm, or 5.0 % of the averagepCOsea

2 of the in situ
dataset. A scatter plot of the estimatedpCOsea

2 against the
observedpCOsea

2 (Fig. 4) shows that the values are clustered
around the 1: 1 line with slightly more scatter at very high
pCOsea

2 . It should be noted that the reported RMSE is fairly
large for some applications of small geographical extent such
as determining air–sea CO2 flux at local and regional scales.

As an independent validation exercise, we calculated the
RMSE between the subset of the SOCAT dataset (all North
Pacific data from 10 to 60◦ N and from 120◦ E to 90◦ W for
2002–2008 inclusive) and our SOM estimate. Such a calcu-
lated uncertainty estimate turns out to be 20.1 µatm, which
makes this study similar to or more accurate than previous
reports for the region, despite its largest temporal extent to
date. Zeng et al. (2002) estimated the distribution of monthly
averagedpCOsea

2 in the North Pacific based on data from
the NIES VOS program from 1995 to 1999, and reported
that the estimatedpCOsea

2 agreed with the in situpCOsea
2 to

within an RMSE of 24.9 µatm. Sarma et al. (2006) used an
MLR method to estimate the distribution of monthly average
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Fig. 4. Scatter plot of estimatedpCOsea
2 with observedpCOsea

2 .
Colors indicate the number of data in a 1 µatm× 1 µatm bin.

pCOsea
2 in the North Pacific during the spring–summer pe-

riod in 1998, and reported that the derivedpCOsea
2 agreed

with the shipboardpCOsea
2 observations to within an RMSE

of 17–23 µatm.

2.7.2 Changes in the estimate scheme

We have implemented two major improvements over the pre-
vious attempt to utilize SOM neural network to compute
the pCOsea

2 distribution. In the first one, we followed the
suggestion of Telszewski et al. (2009) and Friedrich and
Oschlies (2009b) to use the SSS dataset as one of the train-
ing datasets to improvepCOsea

2 estimates. The motivation
behind using this parameter lies in thepCOsea

2 dependence
on (besides other factors) total alkalinity, which for most
parts of the global ocean, including the North Pacific, can
be accurately approximated from SSS. The SOM technique
makes very good use of this relationship, and improvements
in pCOsea

2 estimates are seen throughout the basin and are
especially apparent in high-gradient regions as described be-
low. Moreover, inclusion of SSS in the SOM analysis may fa-
cilitate differentiation between temporal and spatial oceanic
variability that could not be elucidated with only SST, MLD,
and CHL.

To quantify the improvement achieved by using the SSS
dataset, we generated anotherpCOsea

2 map derived with a
three-parameter SOM that excluded SSS and compared the
result with the four-parameter SOM result. The RMSE be-
tween NIES dataset and the three-parameter SOM estimate
was 20.0 µatm. Use of SSS in the training dataset therefore

Fig. 5. Comparison of 7 yr averaged monthlypCOsea
2 distributions

from 2002 to 2008 in February (upper) and August (bottom). Fig-
ures on the left are thepCOsea

2 distributions estimated from the
four-parameter SOM including SSS. Figures on the right were esti-
mated from the three-parameter SOM without SSS.

reduced the RMSE by 12 %. ThepCOsea
2 distributions were

also improved by the use of the SSS data. To visualize the
differences, we mapped 7 yr averaged monthlypCOsea

2 distri-
butions in February and August derived with and without in-
clusion of SSS in the training dataset (Fig. 5). The estimated
pCOsea

2 derived from the three-parameter SOM in February
is characterized by a smaller longitudinal difference in mid-
latitudes than thepCOsea

2 derived from the four-parameter
SOM. Furthermore, use of the four-parameter SOM enabled
reconstruction of quite highpCOsea

2 values in August in the
eastern low/midlatitude region, where the North Pacific Cur-
rent flows, whereas use of the three-parameter SOM failed
to reproduce this feature. Figure 6 shows the temporal varia-
tion of pCOsea

2 derived with the two SOMs in the North Pa-
cific Current region (36 to 38◦ N, 138 to 142◦ W). It clearly
shows that the agreement between observed and estimated
pCOsea

2 values was better for the four-parameter SOM than
the three-parameter SOM. The RMSE in the region was im-
proved from 15.9 to 10.6 µatm by inclusion of SSS. The im-
provement was especially apparent during the summer, when
highpCOsea

2 values (about 400 µatm) were observed.
Taking into account the influence of anthropogenic CO2

emissions on the trend ofpCOsea
2 was the second improve-

ment introduced in this study. As described above it was done
by adding or subtracting 1.76 µatm yr−1 (4.82× 10−3 µatm
day−1) to project observedpCOsea

2 values to thepCOsea
2 val-

ues in the reference year of 2005 (Eq. 1). The improvement
of the pCOsea

2 estimate by making this correction was not
spatially uniform. For example, the RMSEs were reduced
by adding the term from 10.2 to 9.1 µatm in the station P
area (48 to 52◦ N, 142.5 to 147.5◦ W), from 8.8 to 7.4 µatm
in the western subtropics (WST) area (14 to 18◦ N, 135.5
to 140.5◦ W), and from 10.8 µatm to 7.9 µatm in the station
ALOHA area (21 to 25◦ N, 155.5 to 160.5◦ W). In contrast,
the improvements at station KNOT area (43.5 to 45.5◦ N,
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Fig. 6. ThepCOsea
2 variations in the area (36–38◦ N, 138–142◦ W) where the North Pacific Current flows, estimated by the four-parameter

SOM including SSS(a) and the three-parameter SOM without SSS(b). The blue lines and the shaded areas indicate the mean values of the
estimatedpCOsea

2 and the spatial variability (3-σ ) calculated in the area, respectively. Blue circles are the in situpCOsea
2 values obtained

from the NIES VOS program. ThepCOsea
2 observations in the target areas include several grid points binned by 0.25◦ latitude× 0.25◦

longitude resolution, and the bar indicates the spatial variability (1-σ ).

153 to 157◦ E) and the Kuroshio Extension (KE) area (34
to 38◦ N, 155.5 to 160.5◦ E) were unclear (see in Fig. 1).
These regions appear to be the same areas where the re-
spectivepCOsea

2 trends are not close to that of atmosphere
(Takahashi et al., 2006). This suggests that applying a basin-
wide correction of 1.76 µatm yr−1 (4.82× 10−3 µatm day−1)

might not be the most advantageous, and a nonuniform ap-
proach should be employed in the future where subregion-
(province) specific correction should be calculated and ap-
plied. Overall in this study, inclusion of the secular trend
effect slightly, but statistically significantly (p < 0.05), re-
duced the RMSE for the whole of the North Pacific.

3 Temporal and spatial variation of pCOsea
2

3.1 Mapping of 7 yr averaged monthlypCOsea
2

distributions

Figure 7 presents a comparison of 7 yr (2002–2008) aver-
aged monthlypCOsea

2 distributions derived from SOM re-
sults for February, May, August, and November with LDEO
pCOsea

2 climatology (Takahashi et al., 2009). The SOM-
reconstructedpCOsea

2 distributions in this study clearly show
a tongue of very lowpCOsea

2 (about 320 µatm) water dis-
tributed (except in August) uniformly between the west-
ern and central midlatitude regions of the North Pacific
(Fig. 7). Such lowpCOsea

2 values are attributed to high rates
of photosynthesis (Kameda, 2003) and cooling of the sea-
water that occurred mainly in the subtropics. In addition,
a band of relatively highpCOsea

2 caused mainly by a sea-
sonal rise in temperature was also apparent during the pe-
riod from May to September in the western North Pacific
between 15 and 30◦ N. The temperature rise began in April
and amounted to about 2–5◦C. Following the temperature
dependence ofpCOsea

2 given by Takahashi et al. (1993),
δlnpCOsea

2 /δT = 0.0423◦C−1, the expectedpCOsea
2 rise due

to the temperature effect is about 30–70 µatm. The ob-
served increase in expectedpCOsea

2 is only about half of the
expectedpCOsea

2 rise due to temperature effects. The in-

Fig. 7. Distributions of the 7 yr averaged monthly meanpCOsea
2

in this study (panels on the left) and the LDEO monthlypCOsea
2

climatology (panels on the right, but with 8.8 µatm added to the
maps to change the reference year from 2000 to 2005) for February,
May, August, and November.

crease may have been attenuated by other factors such as
photosynthetic uptake of CO2.

The comparison with the LDEO climatology shows that
the SOM-reconstructedpCOsea

2 maps reveal similar large-
scale patterns to these known from the LDEO climatology.
However, the SOM results, due to its much higher spatio-
temporal resolution, allow for more detailed analysis of lo-
cal and regional features. Both studies show highpCOsea

2
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Fig. 8. Difference of thepCOsea
2 between the 7 yr meanpCOsea

2
in this study and the LDEO monthlypCOsea

2 climatology (but with
8.8 µatm added to change the reference year from 2000–2005). Pos-
itive values indicate higherpCOsea

2 in this study compared with the
LDEO climatology.

values (over 400 µatm) at high latitudes in the North Pa-
cific in February; however, the SOM-reconstructedpCOsea

2
distribution showspCOsea

2 -rich water between the Bering
Sea and the coast of northern Japan along the axis of the
cold, southward-flowing Eastern Kamchatka Current. As de-
scribed in Sect. 2.7.2, highpCOsea

2 values are apparent
from June to October in the eastern low/midlatitude region,
where the North Pacific Current and the California Cur-
rent flow, and the highpCOsea

2 field dominates. With re-
spect to the coastal region, low estimates ofpCOsea

2 stretch
along the coastline from the Aleutian Islands to the Califor-
nia Peninsula from May to October, when the concentration
of phytoplankton is high.

The map of differences between SOM results and LDEO
climatology for reference year 2005 is shown in Fig. 8. The
difference distribution is positive in the western subarctic and
the western subtropics and negative in the central-eastern
subtropics, the calculated monthly mean difference is close
to zero (−0.8 µatm), and its standard deviation is 11.2 µatm.

3.2 Reproducibility of temporal pCOsea
2 variations in

each of six regions

To facilitate a discussion about the temporal variations of
pCOsea

2 in the North Pacific, Fig. 9 shows the time series of
area-averagedpCOsea

2 estimated in this study for six specific
regions of the North Pacific along with observations made
during several campaigns at these locations as well as com-
puted estimates of Takamura et al. (2010). The grid size of
all the averaged areas except in the station KNOT area is set
to 4◦ latitude× 5◦ longitude, whereas the station KNOT area
is set to 43.5 to 44.5◦ N, 153 to 157◦ E to exclude the tran-
sition zone between the Kuroshio and the Oyashio. The es-
timatedpCOsea

2 values at each location generally agree well
with observed values and other estimates, with most of the
data lying within the spatial variability (triple the spatial stan-
dard deviation: 3-σ ) calculated for each area. However dis-
agreements greater than 20 µatm between estimatedpCOsea

2

Fig. 9. Interannual variation ofpCOsea
2 (µatm) within time-series

station areas and within ocean areas. The blue solid lines and shaded
areas show the monthlypCOsea

2 values and the spatial variability (3-
σ ) calculated in the respective areas. The grid size of all the aver-
aged areas except in the station KNOT area is set to 4◦ latitude× 5◦

longitude, whereas the station KNOT area is set to 43.5–45.5◦ N,
153–157◦ E. Blue circles and red dots are in situpCOsea

2 values ob-
tained from NIES measurements and the SOCAT database, respec-
tively. Black dots and crosses on panel(a) and(c) are thepCOsea

2
values calculated from measurements of DIC and TA reported by
Wakita et al. (2010) and Dore et al. (2009), respectively. Purple dots
on panel(b) are thepCOsea

2 values observed by Wong and Johan-
nessen (2010) and Sabine et al. (2010). In panel(c), the solid green
line denotes thepCOsea

2 values during the 2002–2006 period esti-
mated by Takamura et al. (2010). Note that the range of the ordinate
in the station KNOT area is larger than those of other station areas.

and observedpCOsea
2 , as exemplified in the area surround-

ing station KNOT (Fig. 9a), occur occasionally, but there
is no systematic overestimate by the SOM in this region.
The calculatedpCOsea

2 in station P area generally agree well
with the data from the NIES VOS program as well as with
pCOsea

2 values measured by an underway system from 2002
to 2003 and by a moored buoy system from 2007 to 2008
(Fig. 9b). The largest seasonal amplitudes tend to coincide
with the largest disagreements between the estimates (Zeng
et al., 2002). The calculatedpCOsea

2 values in the KE area
of the eastern midlatitude region (Fig. 9c) agree well with
the NIES dataset as well as with thef COsea

2 values from
the SOCAT dataset, with allpCOsea

2 values lying within the
spatial variability. The results of Takamura et al. (2010) also
agree with thepCOsea

2 measurements to within 15–20 µatm,
and the temporal pattern of those data is generally consistent
with thepCOsea

2 estimates within the spatial variability from
this study. The temporal variations ofpCOsea

2 in the WST
(Fig. 9d) and station ALOHA area (Fig. 9e) agree well with
the pCOsea

2 values in the SOCAT dataset, even though the
observedpCOsea

2 data used for the labeling process in the
SOM analysis rarely existed in these areas. The calculated
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Fig. 10. Anomalies from the monthly climatology for the period
box 2002–2008 for detrendingpCOsea

2 (upper), SST (middle), and
MLD (bottom) distributions during the winter of 2003 (panels on
the left) and 2008 (panels on the right).

pCOsea
2 values in the eastern subtropics (EST) area (14 to

18◦ N, 115.5 to 119.5◦ W) also agree well with the data from
the NIES VOS program (Fig. 9f). As shown in Fig. 9d–f,
the patterns of variation were similar in the WST, station
ALOHA, and EST areas. Keeping in mind that only data ob-
tained by the NIES VOS program were used in the SOM la-
beling process, these results suggest that the labeling process
allows for labeled SOM neurons to effectively learnpCOsea

2
variations frompCOsea

2 values observed in other subtropi-
cal areas. This confirms the earlier suggestions that the SOM
technique, to a larger extent than more traditional mapping
techniques, overcomes problems associated with temporal
and spatial scarcity of the labeling data (in situ) by putting
significant weight on the availability and quality of the train-
ing data (satellite and assimilation).

Finally, as an additional independent validation exercise,
we calculated the RMSE between all the independent data
visualized in Fig. 9 and equivalent SOM estimates. Such a
calculated uncertainty estimate turns out to be 20.1 µatm, al-
most identical to that obtained for SOCAT dataset, giving
more confidence in our error estimate.

3.3 Difference ofpCOsea
2 distributions during

ENSO events

The ENSO has a large influence on the climate of the North
Pacific (IPCC, 2007), and large fluctuations ofpCOsea

2 co-
incided with the ENSO cycle have also been observed in the

equatorial Pacific (Feely et al., 2006; Ishii et al., 2009). Based
on their measurements from 1983 to 2003, Midorikawa et
al. (2006) have suggested that the interannual variation of
pCOsea

2 in the western subtropical North Pacific is also re-
lated to the ENSO. Although the extent of the ENSO influ-
ence on oceanic and atmospheric variables is known to be
global (Trenberth and Caron, 2000), the impact of the ENSO
on the distribution ofpCOsea

2 over the entire area of the
North Pacific is not well understood. Figure 10 depicts the
estimated distributions of the detrendedpCOsea

2 , SST, and
MLD anomalies during the winters of 2003 (i.e., El Niño)
and 2008 (i.e., La Niña). Anomalies in Fig. 10 are deviations
from the monthly climatology for the period of 2002–2008.
El Niño/La Niña periods were chosen in accordance with
JMA’s definition based on the 5-month running mean SST
deviation for the NINO.3 region (5◦ S to 5◦ N, 90 to 150◦ W).

The patterns of SST anomalies in Fig. 10 are typical of
El Niño and La Niña winters (Trenberth and Caron, 2000;
Alexander et al., 2002). ThepCOsea

2 anomaly related to
ENSO events is easily discernible in the western-central sub-
tropical region, in the eastern subarctic region, and in the
eastern midlatitude region south of 30◦ N. For example, a
negativepCOsea

2 anomaly is apparent in the western-central
subtropical region in 2003 (El Niño), when the SST anomaly
was negative, whereas a positivepCOsea

2 anomaly is appar-
ent in 2008 (La Niña), when the SST anomaly is positive.
The opposite pattern is observed for the eastern midlati-
tude region south of 30◦ N. The amplitudes of the associated
pCOsea

2 anomalies are about 15 µatm, and their SST ampli-
tudes are 1◦C. ThepCOsea

2 change closely tracked the SST
change in accordance with the iso-chemical temperature de-
pendency of Takahashi et al. (1993).

A negative relationship betweenpCOsea
2 and SST is appar-

ent in the eastern subarctic North Pacific, where the signal of
thermodynamic changes on variations ofpCOsea

2 was oppo-
site to that seen in the subtropics. As indicated in Fig. 10, the
MLD anomaly clearly showed the typical pattern of ENSO
events (Alexander et al., 2002), and the MLD was approx-
imately 10 m deeper in 2008 than in 2003 in the region.
CLIVAR Repeat Section Line P data provided by Miller et
al. (2010) showed that surface (< 10 m) DIC concentration in
station P in February 2003 is about 35 µmol kg−1 lower than
in February 2008. By using CO2SYS program (Lewis and
Wallace, 1998; Robbins et al., 2010), the estimatedpCOsea

2
difference between February 2003 and February 2008 in the
region caused by the changes of surface DIC, TA, temper-
ature and salinity, is about 14 µatm. Since thepCOsea

2 dif-
ference between 2002 and 2008 based on the DIC measure-
ments is well consistent with the difference derived by the
SOM results, it strongly suggests that more CO2-rich sub-
surface water was entrained into surface waters during the
La Niña period than during the El Niño period.
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4 Summary

In this study we used the SOM technique of Telszewski et
al. (2009) to examine the temporal and spatial variations of
pCOsea

2 in the North Pacific during the period 2002–2008.
To improve thepCOsea

2 estimates, we used SSS as an addi-
tional training parameter and assumed a trend of increasing
pCOsea

2 to take into account the effect of anthropogenic CO2
emissions onpCOsea

2 . The estimated results revealed that the
SOM technique could satisfactorily reconstruct variations of
pCOsea

2 associated with bio-geophysical processes expressed
by the variability in four proxy parameters: SST, MLD, CHL,
and SSS. We calculated the uncertainty of thepCOsea

2 esti-
mation to be from 17.8 µatm for the NIES labeling dataset
to 20.2 µatm for the SOCAT dataset. The fact that the un-
certainty was reduced by about 12 % by inclusion of SSS
in the training dataset suggests that SSS can be a useful pa-
rameter for the estimation of temporal and spatial variation
of pCOsea

2 . We also found thatpCOsea
2 estimates were im-

proved by taking account of the temporal trend associated
with anthropogenic CO2 emissions.

The calculatedpCOsea
2 variations in six ocean areas gen-

erally agreed well not only with the NIES VOS program
pCOsea

2 data used for the labeling process but also with other
in situ pCOsea

2 datasets. Seven-year (2002–2008) averaged
monthlypCOsea

2 distributions were similar to 35 yr climatol-
ogy pCOsea

2 distributions (Takahashi et al., 2009). However,
the SOM-basedpCOsea

2 mapping, with its high spatial reso-
lution, reflected oceanic conditions with more detail. The es-
timated interannualpCOsea

2 variability revealed a difference
in the spatial pattern ofpCOsea

2 during the winter of the El
Niño period in 2003 and the La Niña period in 2008. A neg-
ative pCOsea

2 anomaly was apparent in 2003 in the western
subtropical North Pacific and in the eastern subarctic North
Pacific off the coast of Alaska, whereas a positive anomaly
was apparent in 2008 in the same regions. In the western
subtropical and eastern midlatitude regions, the correlation
of the pCOsea

2 variability with ENSO events seemed to be
related mainly to changes in the thermodynamic properties
of seawater. In contrast, similar correlation in the subarc-
tic North Pacific seemed to be related to changes in vertical
transport of CO2-rich subsurface waters.

Further improvement ofpCOsea
2 estimates will most cer-

tainly require an increase in the number of data points used
for labeling. With new datasets becoming available (SOCAT
version 2 and LDEO V2012) and offering relatively dense
annual data coverage in several oceans regions, we are now
in a position to commence a sensitivity study allowing for a
meaningful quantitative assessment to be made of the uncer-
tainty related to the amount of labeling data utilized during
the mapping process. In this study, 7 % of the neurons were
not labeled, suggesting that in situ measurements covering
a wider range of environmental conditions (as approximated
by SST, MLD, CHL, and SSS) are needed to enable the full
mapping potential of the method. We plan to undertake a

longer-term study covering global ocean using the commu-
nity quality-controlled (Pfeil et al., 2013) SOCAT collection
as the labeling dataset. This work will include a sensitivity
study hopefully allowing for quantification of the relation-
ship between the amount of the in situ data and the method’s
uncertainty estimate.

The number of neurons is also crucial for accuratepCOsea
2

estimation. In this study we used three times as many neurons
as Telszewski et al. (2009) to achieve adequate reproducibil-
ity of the pCOsea

2 estimates. However, the number of neu-
rons used in this study was based on the available comput-
ing power rather then determined by scientific need. It might
also be possible to improve thepCOsea

2 estimate by inclusion
of more ocean parameters. Sea surface height is a potential
training parameter with basin-wide coverage.

In addition to estimates in the North Pacific, long-term
global pCOsea

2 mapping based on such measurements is
also important for understanding interannual variations of
air–sea CO2 exchanges. AlthoughpCOsea

2 variations related
to climate changes such as the PDO have been reported
(Valsala et al., 2012), the overall impact of such changes
on globalpCOsea

2 variations is not well understood. In the
present study, the study area was confined to the North Pa-
cific. However, the SOM technique used in the present study
has the potential to estimatepCOsea

2 in regions where there
are insufficient numbers of observations, and such regions
will be our next target. It is axiomatic to say that further
pCOsea

2 measurements are critical, especially in the South
Pacific, where fewpCOsea

2 measurements have been made
(Sabine et al., 2013).

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/10/
6093/2013/bg-10-6093-2013-supplement.pdf.
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