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1) Residuals in mass conservation and robustness of the results. 

 

After running the extended OMP analysis, we only select for our study those points with 

mass residuals below 4%. It’s worthy to remark that the vast majority of the data points 

present mass residuals considerably below this 4% limit; therefore, the water mass changes 

described are reliable. In Figure S1 we show the residuals associated to mass conservation 

in those points selected for our analysis, along both latitude and depth. 

 

 

Figure S1. Distribution of the mass conservation residuals (%) for each extended OMP 

analysis. 



2) Assessment of the uncertainty in the water mass mixing fractions as obtained after considering 

(a) spatial variations in end member properties (natural variability) and (b) temporal variations in 

end member properties (temporal variability). 

 

We have run a series of sensitivity tests by perturbing simultaneously all water types (end-

members) in the source water-mass matrix with a Gaussian noise through a series of Monte Carlo 

experiments. We have examined what is the influence on the resulting water-mixing fractions.  

 

For the first series of sensitivity tests, we consider the influence of natural variability of each 

parameter in the source regions where the water types were defined. For this purpose we have 

calculated the standard error associated to each parameter by averaging the standard errors obtained 

for such parameter in each source region. These standard errors are then multiplied by the Gaussian 

noise and the result is added to the corresponding original water type in the source water-mass 

matrix and then the OMP is solved. 

 

The influence of possible temporal changes of seawater properties in the source regions is 

considered in a second series of sensitivity tests. We have used the (largest) temporal trends of 

potential temperature (0.02 ºC/year) and salinity (-0.0005 psu/year) found in the AAIW formation 

region, in the eastern South Pacific (Schmidtko and Johnson, 2012), to estimate a standard error for 

the temporal variability of these parameters from 1993 to 2009. We could not find in the literature 

temporal trends in potential temperature or salinity in the source regions of the remaining water 

masses so we decided to use the AAIW salinity and potential temperature standard errors for all 

water masses. We are aware that the AAIW standard errors will probably represent overestimates 

for the remaining water masses (mainly for ESSW and PDW as they are defined below the sea 

surface). Therefore, all the results from these sensitivity tests (except for AAIW) must be 

understood as a ‘worst case’ scenario, mainly for ESSW and PDW. For all other parameters 

(nutrients and oxygen) we have used the same standard errors as calculated from the natural 

variability analysis. 

 

All the above sensitivity tests are run for  the upper and lower portions of the P19 and M77 datasets 

separately. The mixing fractions, obtained for all data points after each perturbed run, are used to 

obtain average standard errors. Finally, a global-weighted mean standard error is obtained for each 



water mass mixing fraction (Table S1); the weighting applied takes into consideration the number 

of data points in each subsection analysed with the OMP method. 

 

Mean standard 
error (%) 

AAIW ESSW STW SAAW PDW 

Natural variability 2.95 9.11 5.32 4.21 7.89 

Temporal 
variability 

2.42 7.64 5.08 5.25 4.45 

 

Table S1.  Mean standard errors in the water-mass mixing fractions as obtained with the extended 

OMP analysis after running the sensitivity tests through a series of Monte Carlo simulations. 

 

The global mean standard errors are quite low for AAIW (<3%) under conditions of both natural 

and temporal variability. This low variability gives us confidence in the results obtained and 

discussed in this paper. The worst results correspond to ESSW (9%) and PDW (5%). In the case of 

natural variability this is probably due to the fact that we use the averaged standard error (from all 

source regions) to characterize the natural variability of each parameter, despite the standard errors 

in potential temperature and salinity for ESSW and PDW are one or two orders of magnitude 

smaller than those of the remaining water masses (which were defined at the sea surface). In the 

case of temporal variability, these relatively large values are related to the fact that we use standard 

errors that overestimate the temporal change of potential temperature and salinity for these water 

masses (as explained above). 

 

3) Computation of the best fit between silicate and phosphate ( ΔSiO4: ΔPO4 ratio). 

 

The ratio ΔSiO4: ΔPO4 is affected by the dissolution of opaline silica (Hupe and Karstensen, 2000) 

and shows regional variations depending on the plankton composition (Poole and Tomczak, 1999). 

In order to tackle this issue we calculated, for each dataset separately and for both datasets together, 

the best linear fit (SiO4 = ratio* PO4) for the P19 and 774 datasets by means of a linear regression 

analysis. We then compared the mass residuals produced by the OMP for the different 

ΔSiO4: ΔPO4 ratios. 

 

In Table S2 we compare the goodness of the fit (R2) and the quality of the OMP solution (mean 

mass residual in %) for the 40:1 silicate to phosphate ratio (used previously in Llanillo et al., 2012), 



and for the optimal ΔSiO4: ΔPO4 ratios derived from each individual dataset and for both datasets 

together. We may clearly see that the 40:1 silicate to phosphate ratio produces the worst fit.  

 

Ratio R2 Mean mass residual (%) Std mass residual (%) 

P19 0.4993 P19 0.2977 

B
ot

h
 

40:1 - 

M77 0.6273 M77 0.5862 

P19 0.1397 P19 0.2977 

B
ot

h
 

16.61:1 0.4218 

M77 0.1184 M77 0.1920 

M
77

 

14.45:1 0.5741 0.0992 0.1947 

P
19

 

18.37:1 0.5707 0.1233 0.3060 

 

Table S2. Comparison of the goodness of the fit (R2) for different linear models between silicate 

and phosphate, as obtained for different subsets of data points (P19, M77 or both datasets together). 

The quality of the OMP solution (mean and standard deviation mass residuals in %) is also shown.  

 

According to the info summarized in Table S2, we have selected the ratios ( ΔSiO4: ΔPO4) obtained 

for the P19 and M77 datasets (18.37 and 14.45 respectively) because they produce the smallest 

mean mass conservation residuals while explaining the largest data variability (R2).  

 

4) Analysis in density space. 

 

We have done an analysis on density space in order to discern the influence of isopycnal heave on 

the changes described in the paper. Water mass changes in density space are shown in the revised 

manuscript. Here we show the OMP derived changed in physical transport of oxygen, respired 

oxygen, physical transport of nitrate, remineralized nitrate and denitrified nitrate (Figure S2). 
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Fig. S2. OMP derived changes in density space between March 1993 and February 2009 (M77-P19): (a) physical transport of oxygen 

(µmol/kg), (b) respired oxygen (µmol/kg), (c) physical transport of nitrate (µmol/kg), (d) remineralized nitrate (µmol/kg) and (e) denitrified 

nitrate (µmol/kg). 


