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Abstract. To understand carbon cycling in marginal seas bet-
ter, particulate organic carbon (POC) concentrations, POC
fluxes and primary production (PP) were measured in the
East China Sea (ECS) in summer 2007. Higher concen-
trations of POC were observed in the inner shelf, and
lower POC values were found in the outer shelf. Similar
to POC concentrations, elevated uncorrected POC fluxes
(720–7300 mg C m−2 d−1) were found in the inner shelf, and
lower POC fluxes (80–150 mg C m−2 d−1) were in the outer
shelf, respectively. PP values (∼ 340–3380 mg C m−2 d−1)

had analogous distribution patterns to POC fluxes, while
some of PP values were significantly lower than POC fluxes,
suggesting that contributions of resuspended particles to
POC fluxes need to be appropriately corrected. A vertical
mixing model was used to correct effects of bottom sed-
iment resuspension, and the lowest and highest corrected
POC fluxes were in the outer shelf (58± 33 mg C m−2 d−1)

and the inner shelf (785± 438 mg C m−2 d−1), respectively.
The corrected POC fluxes (486 to 785 mg C m−2 d−1) in the
inner shelf could be the minimum value because we could not
exactly distinguish the effect of POC flux from Changjiang
influence with turbid waters. The results suggest that 27–
93 % of the POC flux in the ECS might be from the contri-
bution of resuspension of bottom sediments rather than from
the actual biogenic carbon sinking flux. While the vertical
mixing model is not a perfect model to solve sediment resus-
pension because it ignores biological degradation of sinking
particles, Changjiang plume (or terrestrial) inputs and lateral

transport, it makes significant progress in both correcting the
resuspension problem and in assessing a reasonable quanti-
tative estimate of POC flux in a marginal sea.

1 Introduction

Continental margins only account for 8 % of the surface
area of the ocean, but they contribute approximately 30 %
of global primary production (Liu et al., 2000). Walsh (1989)
proposed that continental shelf regimes were an important or-
ganic carbon source to the open ocean because marginal seas
have elevated phytoplankton primary production and higher
particulate organic carbon (POC) inventories as compared to
those in the open ocean. Thus, marginal seas are believed to
influence marine carbon biogeochemical cycling and fishery
crucially (Liu et al., 2010, and references therein; Chou et al.,
2009a, b, 2011; Gong et al., 2011). Indeed, one of the major
objectives of the international research project Land-Ocean
Interaction in the Coastal Zone (LOICZ) is to quantify the
exchange of carbon between continental shelves, marginal
seas, and the open ocean.

The East China Sea (ECS) is among the largest marginal
seas on the earth and has a high primary production (0.3
to 1.5 g C m−2 d−1) in coastal areas, particularly during the
summer months (Gong et al., 2003). According to previ-
ous reports, the ECS has been regarded as an important sink
(10–30 Mt C yr−1, 1 Mt= 1012 g) of atmospheric CO2 based
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on measurements of CO2 air–sea exchange (Tsunogai et al.,
1999; Peng et al., 1999; Wang et al., 2000; Shim et al., 2007;
Chou et al., 2013). Model-estimated organic carbon burial on
the broad ECS shelf was 7–10 Mt C yr−1 (Chen and Wang,
1999), and the estimated burial organic carbon transported
offshore was from 2 to 12 Mt C yr−1 (Liu et al., 2006, 2010).
While these estimations show large uncertainties, the net im-
balance of organic carbon fluxes in the ECS amounts to ap-
proximately 10–20 Mt C yr−1. Although fluxes of particles
and POC have been estimated in the ECS and adjacent ar-
eas (Hung et al., 1999, 2003; Hoshika et al., 2003; Oguri et
al., 2003; Iseki et al., 2003; Guo and Zhang, 2005; Zhu et al.,
2006; Hung and Gong, 2011), direct measurements of POC
fluxes in the ECS coastal region are very limited (Iseki et al.,
2003; Guo et al., 2010).

There is no simple means to estimate POC fluxes in the
marginal seas due to strong sediment resuspension, lateral
transport or dense shelf water cascading, although several
methods (carbon budget, vertical flux and box model) have
been used (Smith and Hollibaugh, 1993; Falkowski et al.,
1994; Oguri et al., 2003; Hoshika et al., 2003). Most im-
portantly, recent studies have shown that POC fluxes (mea-
sured by moored sediment traps, 300–5000 mg C m−2 d−1,
Iseki et al., 2003) were sometimes higher than PP in the ECS
(500–2500 mg C m−2 d−1, Gong et al., 2003, 2006; Liu et
al., 2010). Iseki et al. (2003) suggested that elevated POC
fluxes could be downslope transport of resuspended parti-
cles. As mentioned above, the ECS has the highest PP during
the summer (Gong et al., 2003, 2006). Therefore, possible
factors resulting in POC fluxes being higher than PP could
be sediment resuspension, fluvial particles or lateral trans-
port because dense shelf water cascading (mainly happens in
winter) in summer is unlikely in this case. To exclude resus-
pended POC of the sediments better in the marginal seas, we
measured POC concentrations and fluxes and used a vertical
end-member mixing model to calibrate the POC flux appro-
priately. Additionally, we also measured PP to constrain the
corrected POC flux in the ECS

2 Sampling and analytical methods

Seawater samples (32 stations) were collected aboard the
R/V Ocean Researcher Iin the ECS from 1 to 11 July 2007
(Fig. 1). Temperature was recorded using a SeaBird
model SBE9/11 plus conductivity–temperature–depth (CTD)
recorder, and salinity was determined with an Autosal sali-
nometer. Transmissometer (C-Star, Wet Lab, USA) data (TM
%) were recorded by the transmissometer attached to the
CTD. Seawater samples were collected using 20 L X-Niskin
bottles (General Oceanic Inc. USA) from different depths
(2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 90, 110, 150 m)
for measurements of chlorophylla (Chl a) and POC con-
centrations. The Chla samples were collected by filtering
1180 mL of seawater at inner shelf and 2030 mL for other
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Fig. 1. Sampling locations (black dots) and hydrography in the
East China Sea. The dashed band with red arrows represents the
main stream of the Kuroshio Current, and the pink arrows represent
the Taiwan Warm Current in summer. Red circles indicate the sur-
face sediment stations and the sediment trap deployment stations
in summer 2007. CDW: Changjiang diluted water, YSW: Yellow
Sea water, CUW: coastal upwelling water, TCWW: Taiwan Current
warm water, UW: Kuroshio upwelling water, KW: Kuroshio water,
SMW: shelf mixing water (mixing of a major CDW and a minor of
CUW+ YSW+ TCWW), after Liu et al. (2000), Kao et al. (2003),
and Chou et al. (2009a, b).

stations through a GF/F filter (pore size= 0.7 µm) and stored
at −20◦C until analysis. Top surface sediment samples (0–
2 cm) at sediment trap stations (e.g., stations S18, S19, S28,
S29, S5, S10, and S26) were collected using a box-core sam-
pler (Fig. 1). The sediment samples were then transferred
to the laboratory and frozen (−20◦C) until analysis. Briefly,
freeze-dried sediment sub-samples were first heated at 60◦C
and treated (2–3 treatments) with 2 N HCl to remove in-
organic carbon. POC concentrations were determined using
an elemental analyzer (Elementa, Germany) (Hung et al.,
2009a).

Concentration of Chla on the GF/F filter was determined
according to standard procedures using a Turner Designs 10-
AU-005 fluorometer by the non-acidification method (Gong
et al., 2000). The filters were ground in and extracted with
10 mL of 90 % acetone at 4◦C for 2 h under low light con-
ditions. Then, the mixture was centrifuged for 10 min at
3000 rpm. The concentration of Chla in the supernatant
liquid was measured fluorometrically with a fluorometer.
The precision in the determination of Chla is approxi-
mately ±7 % at 0.1 mg m−3. The detection limit of Chla
is 0.1 µg Chla L−1. Sub-samples (0.5–2 L for the inner and
middle shelves and 4–6 L for the outer shelf) for total sus-
pended matter (TSM) were filtered through pre-weight GF/F
filters (after pre-combusted at 500◦C for 6 h) and then rinsed
with about 20 mL of Milli-Q water. The analytical uncer-
tainty (one sigma error) for TSM was approximately 5–10 %
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Table 1.Parameters of bottom depth, euphotic zone (EZ) depth, uncorrected POC flux, and primary production (PP) in the ECS.

Water Station Bottom depth EZ Trap depth Uncorr. POC flux PP
mass (m) (m) (m) (mg C m−2 d−1) (mg C m−2 d−1)

CDW S18 47 15 20 3900 1897
CDW S19 38 22 20 7300 3045
SMW S28 60 50 30 200 600
CDW S29 57 26 20 750 3377
CUW S5 51 36 20 720 337
KW S10 154 90 120 80 1153
KW S26 118 74 100 150 442

as estimated from duplicate measurements. A few of TSM
values in the outer shelf were derived according to the rela-
tionship between TSM and TM % due to possible salt effect.

After measuring TSM concentrations, these GF/F filters
were used to determine POC concentrations (Hung et al.,
2010a, 2011). Sinking particles (7 stations) were collected
at 20 m (S18, S19, S29, S5) (inner shelf region), 30 m (S28)
(middle shelf region), 100 m (S26) and 120 m (S10) (outer
shelf region) (Fig. 1 and Table 1) by a drifting sediment
trap array, which consisted of six 6.8 cm diameter cylindrical
plastic core tubes with honeycomb baffles covering the trap
mouths (Santschi et al., 2003; Hung et al., 2009a, 2010b).
The array was attached to an electric surface buoy with a
global positioning system (GPS) antenna (TGB-500, TAIYO,
Japan). The trap tubes, filled with filtered seawater (sparkling
clear polypropylene filter, nominal size 0.5 µm), were de-
ployed for short-scale deployment (3–8 h) due to intensive
fishery activity. Sinking particles were filtered through pre-
combusted (500◦C, 6 h) quartz filters (Whatman QMA, pore
size= 1.0 µm). The swimmers caught on the filters were ob-
served using a microscope and carefully removed using for-
ceps. In brief, carbonate carbon on the filter was fumed
overnight by concentrated HCl in a vacuum desiccator and
then dried at 50◦C in an oven. POC concentrations in both
suspended and sinking particles were measured using an el-
emental analyzer after filters were HCl-fumed.

The precision in the determination of POC is approxi-
mately ±2 % at 20 µg C L−1. The detection limit of POC
is 5 µg C L−1. Selected samples contained two quartz filters;
the second was treated as a POC blank ranging from 0.8 to
2.0 µmol per 25mm quartz filter. The POC flux was extrapo-
lated to 24 h (= 1 day) on the assumption that the POC flux
at night was the same as that during the day. We thus feel
confident that diurnal variability in POC fluxes, if it exists,
is small compared to other sources of error in our measure-
ments. Trapping efficiency of the floating sediment traps in
the ECS and the oligotrophic water, based on the234Th /238U
disequilibrium model of Hung et al. (2004), ranged between
75 % (Li, 2009) and 80 % (Hung and Gong, 2007), respec-
tively. Concentrations of rare earth elements in the sinking
particles were processed by the total digestion method us-

ing mixed acids of Suprapur HF, HNO3 and HClO4 (all from
Merck, Germany) and measured by the quadrupole-based in-
ductively coupled plasma mass spectrometer (ICP-MS, Elan
6100, Perkin-Elmer Instruments, USA). The detailed proce-
dure has been given elsewhere (Hsu and Lin, 2010).

Primary production (PP) was determined by the14C
assimilation method (Parsons et al., 1984; Hung et al.,
2000; Gong et al., 2003). Briefly, water samples for the
PP measurements were pre-screened through a 200 µm
mesh and dispensed into acid-cleaned polycarbonate carboy
(10 L, Nalgene). Each subsample was inoculated with 10 µCi
NaH14CO3 before incubation. The PB-E (photosynthetic-
irradiance) curve at each sampling depth was determined us-
ing a seawater-cooled incubator illuminated for two hours
with artificial light. PP at each depth could then be calcu-
lated with the parameters from the PB-E curve. The euphotic
zone integrated primary production (IP) was calculated us-
ing a trapezoid rule. The detailed procedures can be found in
Gong et al. (2003).

3 Results

3.1 Hydrographic settings and distributions of Chla,
POC and TSM in the ECS

Surface waters were grouped into seven categories: (1) KW
(the Kuroshio water), (2) TCWW (the Taiwan Current
warm water), (3) CDW (the Changjiang diluted water),
(4) YSW (the Yellow Sea water), (5) CUW (the coastal
upwelling water), (6) SMW (shelf mixing water of CDW
and CUW+YSW+TCWW), and (7) UW (Kuroshio up-
welling water). The distributions of various water types dur-
ing the study period are shown in Fig. 1. KW primarily oc-
curred in the southeast corner; TCWW was present mainly
in the middle shelf of the ECS; CDW was confined mainly
to the northwest corner; YSW occurred in the northeast;
CUW was present along the coast (not including station
5) of mainland China beyond the influence of CDW, and
south of the YSW area the surface waters of the middle
shelf were TCWW+ YSW (stations 15, 16, 27, and 28).
The CDW+ CUW water type (station 30) occurred at the
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Fig. 2.Contours of surface temperature(A), salinity(B), chlorophyll (Chla) concentration(C) and POC concentration(D) in the East China
Sea in summer 2007, respectively.

boundary between CDW and CUW. This distribution of wa-
ter types is generally consistent with the known summer cir-
culation pattern in the ECS (Fig. 1) (Lee and Chao, 2003).

The surface distributions of temperature, salinity, Chla

concentration and POC concentrations in the ECS in
July 2007 are shown in Fig. 2a–d. Sea surface temperatures
(SST) at all stations were above 23◦C with lower SST in
the coastal and inner shelf regions and higher SST in the
outer shelf (Fig. 2a). Surface salinity gradually increased
from the coastal area toward the shelf edge (Fig. 2b). Dis-
tributions of surface Chla concentrations ranged from 0.3 to
8.9 mg m−3. Chla concentrations in the outer shelf were low
and increased moving landward towards the Chinese coast
and the Changjiang Estuary (Fig. 2c), becoming the highest
(> 5 mg m−3) in the Changjiang diluted water (CDW). The
higher Chla was supported by nutrient-rich water (Gong
et al., 2006; Hung et al., 2010b). Distributions of surface
POC concentrations varied between 40 and 450 µg L−1 in the
ECS. High concentrations (200–450 µg L−1) of POC were
observed in coastal surface waters (e.g., CDW, S19, S19A,
S29 and S18), followed by the middle shelf (80–160 µg L−1),
and generally decreased towards the shelf, with the lowest
values (40–70 µg L−1) found in the outer shelf (Fig. 2d) with
the exception high POC values (72–140 µg L−1) in the south-
ern ECS (e.g., stations 1 and 2A).

Vertical distributions of Chla, POC and TSM concentra-
tions in the inner and middle shelves (e.g., S18, S19, S29,

S5, S28) and outer shelf (e.g., S10 and S26) are shown in
Fig. 3a–f, respectively. In the inner shelf (e.g., stations 18, 19
and 29), elevated Chla concentrations (2–5 mg m−3) were
apparent in the surface layer. In contrast to the high Chla

concentration in the inner shelf (e.g., stations 10 and 26), the
outer shelf had low phytoplankton biomass (surface Chla

concentration< 0.4 mg m−3) (Fig. 3a and b). An interesting
feature is that at stations 5, 10, 26 and 28, maximum Chla

concentrations were always observed above the depth of the
euphotic zone (Table 1) and decreased with increasing depth.
Elevated POC concentrations were generally observed near
surface or subsurface waters and decreased with water depth
at most stations in the inner and middle shelves (Fig. 3c and
d).

3.2 Relationships between POC and Chla (TSM) and
C / N ratios in the ECS

Concentrations of POC and Chla showed a strong posi-
tive correlation in the ECS (Fig. 4a), suggesting that the
production of POC might be affected by the phytoplank-
ton activity. Our POC / Chla value (64 g g−1) is in agree-
ment with previous investigations in the northern East China
Sea and the Gulf of Mexico (13–94 g g−1, Chang et al.,
2003; 70 g g−1, Hung et al., 2009b). A good correlation
(POC / TSM= 0.93 µmol mg−1) between POC and TSM (ex-
cept for data marked by the blue circle) was also observed,
as shown in Fig. 4B. Zhu et al. (2006) also reported a similar
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Fig. 3. Distributions of vertical Chla (A andB), POC concentra-
tions (C andD) and total suspended matter (TSM) concentrations
(E andF) in the inner shelf (S18, S19, S29, S5, and S28) and the
outer shelf (S10 and S26) of the East China Sea. The different color
lines indicate the depths of the euphotic zone at stations (S18, S19,
S29, S5, S28, S26 and S10).

positive relationship (POC / TSM= 0.74 µmol mg−1) be-
tween POC and TSM in the inner shelf of the ECS in Oc-
tober and November, but they did not find a good relation-
ship between POC and TSM in the middle shelf. Moreover, a
significant correlation between POC and particulate nitrogen
(PN) was obtained, as shown in Fig. 4c, where the slope is
approximately 5.9, close to Redfield ratios suggesting a ma-
rine biogenic source of the particles. Figure 4d shows a good
relationship (some data away from the correlation line) be-
tween POC / TSM and the reciprocal of TSM suggesting that
the constituents of TSM are a mixture of two end-members:

one consisting of high POC content and low TSM, and the
other consisting of low POC content and high TSM.

3.3 Spatial variation of uncorrected POC fluxes and PP
in the ECS

Uncorrected elevated POC fluxes (720–7300 mg C m−2 d−1)

during the summer found in the inner shelf (trap depths
about 18–27 m above the bottom) stations S5, S18, S19,
and S29 were 720, 3900, 7300 and 750 mg C m−2 d−1, re-
spectively. Uncorrected high POC flux in the inner shelf
gradually decreased towards the middle shelf station S28
(trap depth about 30 m above the bottom) approximately
200 mg C m−2 d−1, and then the outer shelf stations S10
(80 mg C m−2 d−1 ) and S26 (150 mg C m−2 d−1) (trap depth
about 18–34 m about the bottom), respectively (Table 1).
Iseki et al. (2003) reported that seasonal POC fluxes
(100–3000 mg C m−2 d−1) in the inner shelf (e.g., station PN
12, marked in Fig. 1) of the ECS with the highest value oc-
curring in the bottom turbid layer (∼ 5 to 30 m above the
bottom) in winter (February to March) and fall (October),
and the lowest value in spring. However, Iseki et al. (2003)
did not have summer POC flux data in the inner shelf of
the ECS. Iseki et al. (2003) also found that high POC fluxes
(∼ 50–4000 mg C m−2 d−1) appear at the bottom turbid layer
in the middle (e.g., station PN8, the moored trap depths were
approximately 5 to 40 m above the bottom, Fig. 1) shelf of
the ECS with the highest POC flux in summer (August). In
the outer shelf (e.g., station PN5, the moored trap depths
were approximately 5 to 80 m above the bottom, Fig. 1), the
POC flux ranged from∼ 30 to ∼ 1100 mg C m−2 d−1 with
the highest value in winter and fall (Iseki et al., 2003). In
comparison, the uncorrected POC flux in the middle shelf in
summer is much lower than the value reported by Iseki et
al. (2003). However, the uncorrected POC flux in the outer
shelf in summer is similar to the value reported by Iseki et
al. (2003).

Distribution of PP in the ECS is similar to uncorrected
POC flux pattern with higher PP (1897–3377 mg C m−2 d−1)

in the inner shelf (S18, S19 and S29, except for
S5 with PP ∼ 337 mg C m−2 d−1) and lower PP (440–
1153 mg C m−2 d−1 ) in the outer shelf (S10 and S26).
Gong et al. (2003) reported that PP showed intensive
seasonal variation in the ECS with the highest value
(> 2000 mg C m−2 d−1) in the inner shelf in summer approx-
imately three-fold higher than that in other seasons. In com-
parison, most of measured PP values in this study were anal-
ogous to previously PP reported by Gong et al. (2003) and
Liu et al. (2010). Overall, one may see that some of POC
fluxes in the inner shelf are significantly higher than PP (Ta-
ble 1) suggesting that Changjiang might bring high fluvial
suspended particles, or some of POC fluxes were re-counted
due to resuspended particulate matter. Therefore, in the later
section, we will use a vertical mixing model to exclude the
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Fig. 4.Relationships between POC and Chla (A); POC and TSM(B); POC and PN(C); POC / TSM and 1/TSM(D) in the ECS.

possible influences from resuspended particulate matter from
the surface sediments.

3.4 Using a vertical particle mixing model to correct
POC flux

As mentioned above, some of uncorrected POC fluxes were
much higher than those of primary production, suggesting
that bottom sediment resuspension could be likely associated
with the elevated POC fluxes in the ECS. First, we used a ver-
tical particle mixing model derived by Morris et al. (1987)
to obtain two end-member values: one with high POC con-
tent and low total suspended matter (TSM), and the other
with low POC content and high TSM (Bloesch, 1994). The
two end-member mixing model is shown in Eq. (1) (Bale and
Morris, 1998).

C = (So(Co − Cs))/S + Cs, (1)

whereC is the observed POC concentration (%) in the mix-
ture,So the total weight of surface phytoplankton (mg L−1),
S the total weight of observed suspended particles (mg L−1),
Co the POC concentration of phytoplankton (%), andCs the
POC concentration of surface sediment (%). The data ofCs
andCo can be obtained according to the observed parameters
C andS by plotting suspended POC concentrations against
the reciprocal of observed suspended particle concentration,
TSM (Fig. 5). It is noted that SMW (shelf mixing water) was
composed of CDW (major) and YSW+ TCWW (minor) so
that we used the values of the slope obtained for CDW at
station 28.

Linear relationships between POC and TSM in the CDW,
CUW and KW all show significant correlations with low
p values (< 0.001, Fig. 5), suggesting that POC content
is mainly controlled by the mixing of two end-members,
thus attesting to the utility of this mixing model (Morris
et al., 1987; Bale and Morris, 1998). The slope in Fig. 5
is equal toSo (Co − Cs), and the intercept on they axis
(Cs) estimates a value for the POC value of the resus-
pended particles. The estimated POC concentrations in the
surface sediments (Cs) ranged from 1.3 to 1.8 % (Table 2).
The measured POC values in the surface sediments in the
ECS in this study ranged from 0.20 to 0.54 % (an average
value= 0.34± 0.14 %). Because the derived values ofCs in
the CDW are much higher than published data (Table 2),
herein the averageCs values (data from previous studies and
this study; see Table 2) are used to represent the POC con-
tent of the surface sediments rather than using the derived
Cs values. With theCs data, we assume a reasonable sur-
face phytoplankton weight (So =0.5 mg L−1) to solve theCo
values. The statistical data of intercept and slope in differ-
ent water masses (CDW, CUW and KW) are shown in Ta-
ble 3. The predictedCo (phytoplankton POC concentration)
values in different water masses ranged from 9.9 to 28.3 %,
which are in agreement with the published phytoplankton
culture data (Thalassiosira weissflogii(POC= 10.2–15.8 %);
Skeletonemasp. (POC= 10.7–14.8 %);Chaetoceros affinis
(POC= 8.1–16.8 %), Tseng, 2010). In comparison, both de-
rivedCo andCs in the ECS are comparable to previously data
reported by Sheu et al. (1995), Kao et al. (2003) and Tseng
(2010). The results demonstrate that our interpretation using
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Fig. 5. (A) Relationships between POC (%) and 1/TSM in the CDW
of the ECS.(B) Relationship between POC (%) and 1/TSM in the
CUW of the ECS.(C) Relationship between POC (%) and 1/TSM
in the KW of the ECS.

a two end-member mixing model to describe particle mixing
in the ECS seems to give reasonable results.

Secondly, with the two end-member values (Cs andCo),
we can use Eq. (2) (see below) reported by Bloesch (1994),
to estimate the ratio of resuspended particles to total sinking
particles in the ECS.

R/T = (Ct − Co)/(Cs− Co), (2)

where R represents the fraction of resuspended particles
(mg L−1, dry weight, dw) collected by a sediment trap,T

the total entrapped sinking particles (mg L−1, dw) collected

Table 2. Organic content (Cs, %) in the surface sediments in the
ECS.

Water Station Cs
1 Cs

2 Cs
3 Cs

4

mass (%)

CDW S18 1.8 0.19 0.67 0.54± 0.03
CDW S19 1.8 0.66 0.19 0.42± 0.20
SMW S28 1.8 0.38 0.29 0.25± 0.03
CDW S29 1.8 0.27 0.28 0.22± 0.02
CUW S5 1.7 0.45 0.88 0.49± 0.03
KW S10 1.3 0.29 0.42 0.24± 0.06
KW S26 1.3 0.28 0.23 0.20± 0.09

1 Model-estimated values,
2 Sheu et al. (1995),
3 Kao et al. (2003).
4 This study (average± 1 std,n = 4).

by a sediment trap, andCt the organic fraction of observed
sinking particles (%). WithCt, Co, andCs, the ratio (R/T )
of resuspended particles to entrapped sinking particles can
be estimated from Eq. (2). Consequently, the corrected POC
flux can be calculated based on Eq. (3).

Corrected (Corr.) POC flux= uncorrected POC flux× (1− R/T ) (3)

The detailed data ofR/T , uncorrected and corrected POC
fluxes are summarized in Table 4. The predictedR/T in
trapped particles of the ECS ranged from approximately
27 % to 93 % with higher values in the inner shelf and lower
values in the outer shelf, suggesting that sediment resus-
pension is a ubiquitous phenomenon in the ECS. If resus-
pension results in the outer shelf (27–58 %) of the ECS in
this study are excluded, the resuspension results (57–93 %)
in this study seem to be similar to the estimated resuspen-
sion ratios (70–94 %) in the inner and middle shelves of
the Yellow Sea and the ECS (Guo et al., 2010). The cor-
rected POC fluxes (58± 33–63± 36 mg C m−2 d−1) in the
outer and middle shelves gradually increased to 297± 168–
785± 438 mg C m−2 d−1, which are all lower than the PP
values (Table 5) in the ECS, revealing that appropriate cor-
rections for constraining POC fluxes in marginal seas are
necessary.

4 Discussion

4.1 Spatial POC variation, OC content in sediments and
possible POC flux impact in the ECS

The good correlations between POC and Chla (or TSM) are
found in most regions of the ECS, but there are some data
(i.e., the data in the blue circles in Fig. 4a, b and d) away from
the correlations. It is reasonable to predict that in situ phy-
toplankton species composition and abundance are mainly
responsible for production of POC, and thus result in good
correlations among these parameters in the ECS. For exam-
ple, Chang et al. (2003) reported strong spatial variation of
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Table 3.Statistical data of linear regressions of POC values versus the reciprocal of total suspended matter concentrations in the East China
Sea. The unit ofCs andCo is %.Co (max) andCo (min) represent the minimum and maximum derived POC concentrations of phytoplankton.

Water Station Slope (Cs) Co Co (max) Co (min)
mass So(Co − Cs) (So = 0.5) (So = 0.25) (So = 0.75)

CDW S18 13.9 0.54 28.3 56.1 19.1
CDW S19 13.9 0.42 27.9 55.7 18.7
SMW S28 13.9 0.25 28.0 55.8 18.8
CDW S29 13.9 0.22 28.0 55.8 18.7
CUW S5 8.5 0.49 13.3 26.1 9.0
KW S10 4.9 0.24 10.0 19.8 6.7
KW S26 4.9 0.20 9.9 19.7 6.6

So is the total weight of surface phytoplankton (mg L−1).
Co is the POC concentration of phytoplankton (%).
Cs is the OC concentration of surface sediment (%).

Table 4. Detailed values ofCt, R/T , uncorrected POC flux (Uncorr. POC flux) and corrected POC flux (Corr. POC flux± uncertainty) in
the different areas of the ECS.

Water Station Ct R/T Uncorr. POC flux Corr. POC flux
mass (%) (%) (mg C m−2 d−1) (mg C m−2 d−1)

CDW S18 6.1 80 3900 785± 438
CDW S19 2.0 93 7300 486± 275
SMW S28 9.9 65 200 69± 39
CDW S29 11.2 60 750 297± 168
CUW S5 5.9 57 720 307± 169
KW S10 7.3 27 80 58± 33
KW S26 4.2 58 150 63± 36

R represents the fraction of resuspended particles (mg L−1, dry weight, dw) collected by a
sediment trap.
T : total entrapped sinking particles (mg L−1, dw) collected by a sediment trap.
Ct: organic fraction of observed sinking particles (%).
Note: the uncertainty of the calculated fluxes was based on the standard deviation of threeCo
values (Co, Co (min), Co (max)).

carbon : Chla values in the ECS with low values in the in-
ner shelf and high values in the middle (or outer) shelves
using the POC–Chla regression (inner POC / Chla : mid-
dle POC / Chla = 13 : 93 g g−1) and phytoplankton cell vol-
ume (inner POC / Chla : middle POC / Chla = 18 : 67 g g−1).
Chang et al. (2003) also suggested that carbon : Chla vari-
ations are due to phytoplankton species difference and phy-
toplankton cell abundance. For example,Skeletonema costa-
tumandSynechococcusspp.,Synechococcusspp. andPseu-
dosolenia calcar-avis, andTrichodesmiumspp and nanoflag-
ellates are the main phytoplankton groups contributing au-
totrophic carbon in the inner (75 % of autotrophic carbon),
middle (79 % of autotrophic carbon) and outer (80 % of au-
totrophic carbon) shelves, respectively. Therefore, the insid-
ers in the dotted circles in Fig. 4a, b and d could be the re-
sults of different phytoplankton species composition and cell
abundance.

Vertical profiles of POC were reflected in elevated Chla

patterns in the inner shelf and outer shelf, while at stations 29
and 26, POC concentrations at the lower depths were higher

than at shallow depths, implying lateral transport or sediment
resuspension at greater depth. Similarly, vertical profiles of
TSM showed similar patterns as POC profiles (Fig. 3e and f).
One can easily see that TSM concentrations at lower depths
at all stations were higher than at more shallow depths, sug-
gesting that sediment resuspension and/or lateral transport of
TSM are remarkable features in the ECS. Iseki et al. (2003)
also suggested that the bottom turbid layer (BTL) is a poten-
tial source of downslope transport of resuspended particles
on the shelf.

Particle resuspension is known in the shelf to play a ma-
jor role in transporting carbon, but in the vicinity of large
rivers, plumes containing fluvial particles can also influence
POC fluxes. However, it is difficult to evaluate the con-
tribution of fluvial POC from the Changjiang River with-
out suitable tracers such as rare earth elements in both
suspended and sinking particles (Hsu et al., 2010). Alter-
natively, we can estimate the contribution of phytoplank-
ton carbon to total carbon in the inner shelf using pre-
viously reported autotrophic carbon based on cell volume
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measurements (Chang et al., 2003). The phytoplankton car-
bon level in the inner shelf was 143 mg C m−3 and accounted
for 47.7 % of POC concentration (∼ 300 mg C m−3; the de-
tailed information can be found in Chang et al., 2003). Never-
theless, other factors, such as dead phytoplankton cells, zoo-
plankton, resuspended particles, and fecal pellets are likely
sources of POC in the water column. The result suggests that
the Changjiang plume carrying fluvial particles in the water
column of the inner shelf approximately contributes< 50 %
to measured POC concentration. Moreover, distributions of
salinity, sigma-T (kg m−3) and NO3 in the inner shelf (sta-
tion 19, 19A and 29) are shown in Fig. 6a suggesting that
low PP in the inner shelf with riverine influence could be
caused by high turbidity and water stratification rather than
nutrient limitation. As a consequence, it will cause a highere

ratio due to low PP values. Furthermore, beside low PP in the
inner shelf, one may see the lowest PP appearing in the in-
ner shelf (i.e., S5) too. It could be mainly caused by nutrient
limitation (Fig. 6b) and high total suspended matter (TSM
> 1–2 mg L−1, e.g., a light effect). The low concentrations
of nitrate at station 5 support the phenomenon reflecting that
the higher POC was a passive result while the low PP is an
in situ measured parameter when incubated in the bottles. As
shown in Fig. 6b, the nitrate concentration in the water col-
umn at station 5 was almost close to zero, which will signif-
icantly inhibit phytoplankton growth, and then result in low
PP value. Therefore, thee ratio (POC flux / PP) will be in-
creased because of low PP.

As mentioned above, POC sources are mainly from in situ
phytoplankton (also zooplankton) production, detritus, ter-
restrial input, and fluvial carbon. Recently, a hypoxia zone
(dissolved oxygen concentration< 62.5 µM) has been no-
ticed in the estuarine and coastal regions of the ECS (Chen
et al., 2007, 2013; Wang, 2009; Zhu et al., 2011), but the
mechanisms for the occurrence of oxygen depletion is still
unclear. Our data support the contention that high organic
matter fluxes may consume oxygen in the near-bottom waters
off the Changjiang diluted water regions during the summer,
as was reported by Chen et al. (2007) and Zhu et al. (2011).

Most organic carbon (OC) concentrations in surface sedi-
ments in this study are slightly lower than previous data (Ta-
ble 2, Sheu et al., 1995; Kao et al., 2003). In comparison, OC
contents in surface sediments of the ECS ranged from 0.1 to
0.4 % for the majority of the ECS continental shelf sediments
(Lin et al., 2002). Other scientists reported that OC contents
in the ECS ranged from 0.1 to 0.9 % (Sheu et al., 1995; Kao
et al., 2003). It is difficult to find the real reasons to interpret
the difference among these studies. Lin et al. (2002) pointed
out that OC contents less than (or close to) 0.2 % were found
in the outer shelf area where approximately 90 % of the sed-
iments were composed of coarse-grained quartz and/or car-
bonate sand. Low concentrations of OC found in the middle
shelf and were possibly a combined result of limited fine-
grained and large sediments (Lin et al., 2000). It is worth not-
ing that the model-derived high values of surface organic car-

Fig. 6. (A) Distributions of salinity, sigma-T and nitrate in the in-
ner shelf stations S19, S19A and S29.(B) Distributions of vertical
nitrate (S26, S28, S10 and S5) in the East China Sea.

bon could be caused by extrapolation of the mixing model or
selective mobilization of lightest fraction (i.e., organic mat-
ter rich material) of the bed sediment during resuspension
(Jago and Jones, 1998; Jones et al., 1998; Bale and Morris et
al., 1998). In addition, the OC values (Table 2) in this study
were the average value of bed sediments within 2 cm rather
than only surface sediment (i.e., with elevated organic carbon
sediment).

4.2 Sensitivity of the vertical particle mixing model and
comparison of the resuspension of trapped matter
in different regions

Two parameters,Cs and Co, will affect the ratio of resus-
pended particles to total sinking particles in Eq. (2). If we use
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Table 5.Data of corrected POC flux (POC flux), primary production (PP) ande ratio (POC flux / PP) in the ECS.

Water Station Bottom depth EZ Trap depth POC flux PP e ratio
mass (m) (m) (m) (mg C m−2 d−1) (mg C m−2 d−1)

CDW S18 47 15 20 785± 438 1897 0.41± 0.23
CDW S19 38 22 20 486± 275 3045 0.16± 0.09
SMW S28 60 50 30 69± 39 600 0.12± 0.07
CDW S29 57 26 20 297± 168 3377 0.09± 0.05
CUW S5 51 36 20 307± 169 337 0.91± 0.50
KW S10 154 90 120 58± 33 1153 0.05± 0.03
KW S26 118 74 100 63± 36 442 0.14± 0.08

the predictedCs (C1
s in Table 2) and a fixedCt andCo, to es-

timate theR/T , the variation ofR/T in the study area ranges
from 4 % to 9 %, suggesting thatR/T is not significantly af-
fected byCs (detailed data shown in the Supplement). How-
ever, most derivedCs values are higher than the observed
OC values in the surface sediments of the ECS, suggesting
that discharge of suspended particles (with low carbon high
TSM) of the Changjiang River could affect the results be-
sides bottom sediment resuspension (Zhu et al., 2006; Guo
et al., 2010). These results illustrate that the derivedCs val-
ues need appropriate adjustment by field-observed OC data
in the sediments.

If we use a givenCo (So = 0.25 mg L−1, about 50 % of
uncertainty) and a fixedCt and Cs to estimate theR/T ,
the variation ofR/T ranges from 3 % to 51 % (on aver-
age 28 %) (detailed data shown in the Supplement). If we
changeCo to (So = 0.75) and fixCt andCs, the variation of
R/T ranges from 4 % to 51 % (on average 29 %). The re-
sults suggest thatCo is more sensitive thanCs. If we use
So = 0.5 mg L−1 to estimateR/T , then the predictedCo will
be 13.4 to 21.9 %, which is very close to the phytoplank-
ton culture data (10–17 %, Tseng, 2010). Overall, the vertical
mixing model is a simple approach to constrain the effect of
resuspended particles on POC flux effectively, but it is not a
perfect tool in the inner shelf in the turbid waters under flu-
vial influence, because resuspended particles cannot be com-
pletely separated from sinking particles.

As shown in Table 5, the corrected POC fluxes in this
study in the inner and middle shelves are much lower than
POC flux values reported by Iseki et al. (2003). Firstly, as we
mentioned, the mixing model cannot distinguish fluvial sus-
pended matter from resuspended sediments. Secondly, Iseki
et al. (2003) found elevated POC fluxes always occurring
within the bottom turbid layer, which might have significant
particle resuspension, but they did not calibrate it. Thirdly,
the deployment depths of sediment traps and hydrographic
settings between two studies are different so that it is diffi-
cult to compare them.

In coastal areas, continental shelves or marginal seas,
sediment resuspension phenomenon is ubiquitous (Lampitt,
1985; Jones et al., 1998; Bales and Morris, 1998; Bonnin et

al., 2002; Guo et al., 2010), but estimated resuspension by
model or two end-member approaches is limited. To date,
only a few investigations have reported the sediment resus-
pension impact on trapped matter or organic carbon in lakes,
shelf regions and deep water (Table 6, Rosa, 1985, Bonnin
et al., 2002; Heussner et al., 2006; Guo et al., 2010). For
instance, resuspension (or called rebound sediments) mat-
ter trapped by sediment traps in shallow water (< 100 m) re-
gion in Lake Ontario, Yellow Sea or ECS ranged from 63 to
94 % for trapped organic carbon and was approximately 85 %
for trapped matter (Table 6). In deep water, resuspension in
Faroe–Shetland Channel or Gulf of Lions ranged from 32 to
70 % for trapped matter (Table 6). In comparison, the esti-
mated results of resuspension in this study are in agreement
with previously reported results although survey regions are
different.

4.3 Possible carbon export in the ECS

POC fluxes in the ECS have been constrained by the ver-
tical mixing model, while it is difficult to distinguish the
effect of POC flux from Changjiang influence with turbid
waters. As discussed above, suspended particle discharge
from the Changjiang River may affect the POC flux cal-
culation in the inner shelf. Herein we only attempt to esti-
mate POC export in the outer shelf (i.e., stations 10 and 26).
The POC buried in the sediment of stations 10 and 26 (i.e.,
the outer shelf) is approximately 9 and 5 mg C m−2 d−1, re-
spectively (Tseng, 2010). The remineralization carbon in the
outer shelf is approximately 6 mg C m−2 d−1, according to
organic phosphorus mineralization to carbon ratio (Fang et
al., 2007). As a result, the lateral POC exports at stations 10
and 26 (i.e., the outer shelf of the ECS) are roughly 43 and
52 mg C m−2 d−1, respectively. The lateral carbon export rate
(i.e., e ratio= POC flux / PP= 0.05± 0.03–0.14± 0.08, Ta-
ble 5) in the outer shelf is similar to that in the oligotrophic
ocean, when compared to other investigations (Hung and
Gong, 2007,e ratio= 0.05–0.11 in the oligotrophic Kuroshio
water; Guo et al., 2010,e ratio= 0.18 in the middle shelf
of the ECS; Hung et al., 2010c,e ratio= 0.11–0.16 in the
middle shelf of the southern ECS). Particles can be carried
out of the ECS in the bottom turbid layer to remote regions
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Table 6.Estimated resuspension of total trapped mater or organic carbon collected by sediment traps in different regions.

Location Bottom depth Resuspension Reference
(m) (%, TM or OC)

Lake Ontario (inshore) 23 85 (TM), 63 (OC) Rosa (1985)
Lake Ontario (offshore) 130 33 (TM), 9 (OC) Rosa (1985)
Faroe–Shetland Channel 700–800 70 (TM) Bonnin et al. (2002)
Gulf of Lions (Planier) 500 & 1000∗ 32–41 (TM) Heussner et al. (2006)
Gulf of Lions (Lacaze) 500 & 1000∗ 60–67 (TM) Heussner et al. (2006)
Yellow Sea 73 94 (OC) Guo et al. (2010)
East China Sea 55–88 70–89 (OC) Guo et al. (2010)
East China Sea 38–60 57–93 (OC) This study
East China Sea 118–154 27–58 (OC) This study

∗ trap depth. TM: total trapped matter; OC: trapped organic carbon.

(Hoshika et al., 2003) and/or enter the open ocean interior or
partly deposited near northern Okinawa Trough (Fig. 1).

Besides the carbon export in the outer shelf of the ECS, we
also find a higher carbon export rate (e ratio= 0.09–0.41 for
CDW and 91 % for CUW) in the CDW and CUW regions.
The higher carbon export rate in the CDW regions is mainly
caused by strong phytoplankton primary production because
of high nutrient supply from the Changjiang River and/or
partly from the Changjiang plume carrying fluvial particles.
The highe ratios in this study are similar to the reported val-
ues in the middle Yellow Sea and in the upwelling region
off Zhejiang by Guo et al. (2010). While the nutrient sup-
ply in the CUW is not pronounced, the question arises as to
why the carbon export rate is so high. Possible explanations
are the following: (1) PP is limited by light intensity (due
to high suspended particles, TSM> 1–2 mg L−1), (2) nutri-
ent limitation in the surface layer or (3) strong vertical mix-
ing (e.g., water un-stabilization). Regardless of the POC flux
values in the inner shelf, there is another unanswered ques-
tion: where is the carbon going? This study indeed provides
quantitative POC flux data, but it is difficult to compare them
with direct evidence. Another possible transport pathway in
the inner shelf would be south, along the coast, with eventual
burial in the southern Okinawa Trough (Liu et al., 2000). Ac-
cording to Berelson (2002), the average settling velocity of
particles in the ocean ranges from 100 to 300 m d−1. Given
that the water depth in the ECS ranges from 30 to 200 m,
particles would settle in a day or less. In other words, par-
ticles are being transported, undergo continuous sinking and
resuspension in the bottom turbid layer (Hoshika et al., 2003)
or to the bottom of sediments. Tsai (1996) also reported that
when tidal currents flow eastward in the southern ECS, the
suspended particulate matter flux is elevated, revealing that
tidal currents are an important mechanism for transporting
particles from marginal seas to the open ocean. Therefore,
we suggest that lateral POC transport is driven by the interac-
tions of surface sediment resuspension with tidal currents, or
contour currents or via isopycnal diffusion. Apparently, fine
particles did not accumulate in the middle shelf (Kao et al.,

2003), suggesting that these fine particles were transported
elsewhere.

4.4 Rare earth element

Some rare earth elements (REEs) such as light rate earth el-
ements (LREES) have been used as proxies to evaluate sedi-
ment sources in numerous settings (Goldstein and Jacobsen,
1988; Zhang et al., 1998; Sholkovitz et al., 1999; Li et al.,
2013). Most LREES (Table 7) in this study have difficulties
in distinguishing suspended particles from sediments based
on their levels, but Eu concentrations in particles seem to
be a good tracer due to remarkable differences between sus-
pended particles and sediments. Therefore, we used the Eu
anomaly (Eu / Eu∗) (Eu∗

= 1.90± 0.07µg g−1 was the aver-
age value of Eu∗ in both sediment (1.85 µg g−1) and sus-
pended particles (1.95µg g−1), which was referred to from
the reported values of Zhang et al. (1998), who obtained a
linear interpolation between Sm and Tb on the chondrite-
normalized curve) to identify possible end-members (sus-
pended particles and sediments) that contribute to sinking
particles in this study. For example, the Eu / Eu∗ anoma-
lies on the sediment and suspended particles off the Yangtze
River (Changjiang) mouth (near station 19) were 0.48 and
0.67 (Fig. 7), respectively. The value of Eu / Eu∗ in the sink-
ing particles at station 19 was 0.62. If a two-end-member
mixing model is used to estimate the contribution of sus-
pended and sediment on sinking particles, the fractions of
suspended particles and sediment will account for 74 % and
26 % of sinking particles, respectively. The result suggests
that R/T (0.26) is significantly lower than the estimated
value (R/T = 0.93) by using TSM–OC mixing model. This
approach may not truly reflect resuspension value in this
study because the Eu anomaly value should be from this
study rather than from an estimated value from 10 yr ago
(Zhang et al., 1998). Moreover, particularly in shallow ar-
eas the dynamics of sediment settling and resuspension can
be highly dependent on the seasonal and interannual changes
of Changjiang discharge, which may affect the Eu anomaly
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Table 7. Concentrations of light rare earth elements (LREEs) in the sinking particles, sediment and suspended matter (SPM) in the East
China Sea.

Station La Ce Pr Nd Sm Eu Gd
(µg g−1) (µg g−1) (µg g−1) (µg g−1) (µg g−1) (µg g−1) (µg g−1)

S18 40.87 72.44 6.77 35.18 5.37 1.11 5.61
S19 44.29 78.94 7.86 40.40 6.25 1.23 6.18
S28 4.17 4.86 0.24 0.46 ND ND ND
S29 17.92 31.27 2.85 14.44 1.63 0.44 1.47
S5 42.80 78.76 7.15 37.01 5.09 1.06 5.21
S10 11.04 21.99 1.84 9.84 1.20 0.31 0.98
S26 23.88 43.20 4.19 21.64 3.27 0.65 3.22
Sediment∗ 43.00 86.00 ND 44.00 6.00 0.89 ND
SPM∗ 44.00 85.00 ND 40.00 6.00 1.31 ND

∗ The data of sediment and SPM were from the river mouth (near station 19) of Yangtze River in Zhang et al. (1998).
ND: no data.

value. Furthermore, we should provide Eu values in both sus-
pended particles and sediments, while the rare earth elements
in this study were not available due to the fact that we used
GF/F filters. The fractions of REE are a potential approach
to evaluate the possible contribution of suspended and resus-
pended particles in marginal seas where a large river emp-
ties into it. The estimated percentage of resuspended particles
based on REE is different from the mixed model on organic
matter, but it may reflect the fact that each component of
REE shows a distinctive nature during weathering, erosion,
and fluvial transportation (McLennan, 1989). As mentioned
before, the resuspension particles were likely from lightest
organic matter, which can be different from REE character-
istics, but REE data can provide another avenue to know if
suspension exists in the study area.

4.5 Comparing short-time measurements of POC fluxes
and PP values with long-time estimates of234Th-
derived POC fluxes and satellite-derived PP

In this study, one may ask questions if short-time (hours–day)
measurements of sediment-trap-measured POC fluxes and C-
14 incubation PP values are reliable. First, sediment traps
are often used to measure POC flux directly, despite possi-
ble biases by hydrodynamic and biological effects (Gardner,
1980; Gardner et al., 1983; Lee et al., 1988; Karl and Knauer,
1989). Furthermore, Marty et al. (2009) reported that short-
term fluctuations of POC fluxes were quite obvious with a
diel periodicity: higher POC fluxes during the night period
and lower POC fluxes during the day period. However, Li
(2009) investigated POC fluxes using a time series (4, 8,
12 and 24 h) of trap deployments in the ECS and found no
significant difference in POC flux between night and day.
Hung et al. (2010c) also reported that daytime POC fluxes
(8 a.m. to 5 p.m.) at 120 m and 150 m in the outer shelf of
the ECS off northeastern Taiwan in summer in 2008 were
46± 7 mg C m−2 d−1 and 48± 8 mg C m−2 d−1, respec-
tively. Nighttime POC fluxes (12 a.m. to 9 a.m.) at 120 m and
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Fig. 7. (A) Distribution of rare earth elements in the sinking parti-
cles of the ECS.(B) Normalized Eu distribution in the sinking par-
ticles of the ECS. The Eu∗ (1.90± 0.07 µg g−1) in Fig. 7 was the
average value of Eu∗ in both sediment (1.85 µg g−1) and suspended
particle (1.95 µg g−1), which was referred to from the Table 4 of
Zhang et al. (1998), who obtained a linear interpolation between
Sm and Tb on the chondrite-normalized curve.
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150 m were 53± 9 mg C m−2 d−1 and 44± 7 mg C m−2 d−1,
respectively, suggesting no variation in the fluxes occurred
between night and day. The inconsistent field observations
may reflect the fact that POC fluxes are affected by both
physical and biological processes simultaneously. Moreover,
content of sinking particles also contains other detritus, dead
phytoplankton cells, aggregates, etc. besides fecal pellets.
Our floating trap is designed to collect passive vertical par-
ticles below or close to the depth of the euphotic zone so
that we cannot catch active particles such as deep fecal pel-
lets, which is a difficult part to estimate in terms of its mass
and POC content. More studies are needed for this in the fu-
ture. Furthermore, the trapping efficiency of sediment traps is
variable and it may also give additional uncertainties to our
estimate of the POC fluxes in the ECS.

Besides sediment traps,234Th has been increasingly used
as a tracer to estimate POC flux due to its timescales
(weeks to month) in surface water (Coale and Bruland, 1985;
Santschi et al., 2006) based on calculation of the product of
the POC /234Th ratio in sinking particles and the234Th flux.
Although both methods have their uncertainties (see review
in Buesseler et al., 2006, 2007; Hung and Gong, 2010; Xu et
al., 2011; Hung et al., 2012), recent studies have shown that
both methods are complementary means for estimating POC
flux in the upper ocean in different marine environments in-
cluding the ECS, the Kuroshio, the South China Sea, the
Gulf of Mexico, and the oligotrophic northwestern Pacific
Ocean (Hung and Gong, 2007; Li, 2009; Hung et al., 2004,
2010c; Wei et al., 2011). The POC fluxes measured by sed-
iment traps and234Th approaches in the Kuroshio, the Gulf
of Mexico, and the South China Sea are in good agreement
if the ratio of POC /234Th is appropriately selected. These
results support that our short-time sediment trap method is
reliable.

Secondly, short-time (hours incubation) PP experiment
was conducted in the ECS covering all four seasons by Gong
et al. (2003), and the results showed seasonal variations with
elevated values in the inner shelf of the ECS and low val-
ues in the outer shelf of the ECS. For example, PP val-
ues in the southern ECS off northeastern Taiwan were ap-
proximately 400–500 mg C m−2 d−1 in summer under good
weather conditions. In comparison, Siswanto et al. (2009)
reported that the satellite-derived PP value (daily data) in
the southern ECS in summer in 2005 under non-typhoon
conditions was approximately 500 mg C m−2 d−1, which is
in good agreement with the PP values. Recently, Hung et
al. (2010c) reported that PP values estimated by the model
(1283 mg C m−2 d−1, Behrenfeld and Falkowski, 1997) and
by C-14 incubation (1773 mg C m−2 d−1, Gong et al., 2003;
1367–1945 mg C m−2 d−1, Shih et al., 2013) in the south-
ern ECS after typhoon events in 2007 and 2008 are quite
comparable if the analytical uncertainty (20–30 %) is con-
sidered. The enhanced PP after a typhoon event was mainly
caused by high nutrient supply via both vertical mixing and
upwelling. The detailed discussion can be found in Hung et

al. (2010c). In other words, data (POC fluxes and PP values)
obtained from short-term measurements by sediment traps
and C-14 incubation are comparable to long-term methods
such as234Th-derived approaches and satellite-derived PP
values.

5 Conclusions

This study involved direct measurement of POC fluxes and
primary production in the ECS. It was found that some of
POC fluxes were higher than primary production, suggesting
that the lower PP might be inhibited due to water stratifica-
tion and light limitation in the inner shelf. A vertical particle
mixing model was used to correct effects of bottom sediment
resuspension. The corrected POC fluxes in the inner, middle
and outer shelves thus obtained were 297± 168–785± 438,
69± 39 and 58± 33 mg C m−2 d−1, respectively, lower than
previously reported values (Iseki et al., 2003). The difference
between two studies could be caused by different trap de-
ployment depths, ignoring fluvial suspended matter influence
from Changjiang, or different trap deployment time. While
the vertical mixing model is still not a perfect model to de-
termine sediment resuspension fluxes accurately, because it
ignored biological degradation of sinking particles, terres-
trial, fluvial input and lateral transport, it does result in rea-
sonable quantitative estimates of export fluxes. It is a first
step towards the development of a better model to calibrate
POC flux in a highly suspended marine environment, which
is needed because carbon cycling in the marginal sea is more
complex than previously thought.

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/10/
6469/2013/bg-10-6469-2013-supplement.pdf.
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