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Abstract. We present a Simple Diagnostic Photosynthe-
sis and Respiration Model (SDPRM) that has been devel-
oped based on pre-existing formulations. The photosynthesis
model is based on the light use efficiency logic for calculat-
ing the gross primary production (GPP), while the ecosystem
respiration (Reco) is a modified version of an Arrhenius-type
equation. SDPRM is driven by satellite-derived fAPAR (frac-
tion of Absorbed Photosynthetically Active Radiation) and
climate data from the National Center for Environmental Pre-
diction/National Center for Atmospheric Research Reanaly-
sis (NCEP/NCAR). The model estimates 3-hourly values of
GPP for seven major biomes and dailyReco. The motivation
is to provide a priori fields of surface CO2 fluxes with fine
temporal and spatial scales for atmospheric CO2 inversions.
The estimated fluxes from SDPRM showed that the model is
capable of producing flux estimates consistent with the ones
inferred from atmospheric CO2 inversion or simulated from
process-based models. In this Technical Note, different anal-
yses were carried out to test the sensitivity of the estimated
fluxes of GPP andReco to their driving forces. The spatial
patterns of the climatic controls (temperature, precipitation,
water) on the interannual variability of GPP are consistent
with previous studies, even though SDPRM has a very sim-
ple structure and few adjustable parameters and hence it is
much easier to modify in an inversion than more sophisti-
cated process-based models. In SDPRM, temperature is a
limiting factor for the interannual variability ofReco over
cold boreal forest, while precipitation is the main limiting
factor ofReco over the tropics and the southern hemisphere,
consistent with previous regional studies.

1 Introduction

The terrestrial biosphere plays an important role in the re-
gional and the global carbon cycle, and thus the climate sys-
tem. Therefore, understanding the role of the land biosphere
in the global carbon budget is necessary, particularly the re-
sponse and feedback of carbon fluxes to climatic controls.
The terrestrial carbon cycle involves a set of biogeochemical
processes that vary on a wide range of spatial and temporal
scales. These processes can either reduce the level of atmo-
spheric carbon or increase it, and are themselves sensitive to
changes in climate, atmospheric CO2, water availability, and
land use. To understand the role of the terrestrial biosphere in
the global carbon cycle, and thus their behavior in the future,
it is crucial to quantify the processes that transfer carbon be-
tween the terrestrial biosphere and the atmosphere and their
relations to the drivers.

Several techniques have been used to estimate carbon
fluxes. Direct measurements of carbon fluxes using eddy co-
variance methods are an essential approach to measure and
monitor carbon fluxes at local scales with high temporal reso-
lution (Baldocchi, 2003; Baldocchi et al., 2012). These mea-
surements only represent the fluxes at the scale of the tower
footprint, usually on the order of a few square kilometers or
less (Baldocchi, 2003). There are many regions of the globe,
the tropics in particular, where measurements are incomplete
or entirely lacking. Thus, the coverage as well as the accuracy
of these measurements is not sufficient for obtaining confi-
dence at regional/global scale flux estimates (Friend et al.,
2007).
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As an alternative source of information, atmospheric
CO2 measurements have played a key role in assessing
source/sink distributions on global scales using atmospheric
CO2 inverse modeling (top-down approach) (e.g.,Enting
et al.(1995); Kaminski et al.(2002); Bousquet et al.(2000);
Rödenbeck et al.(2003); Baker et al.(2006)). However, con-
sistent multi-year observations are currently only available at
a discrete set of surface stations, which only provide large-
scale information on surface fluxes. Moreover, the atmo-
spheric concentration only reflects the combined effect of all
processes acting at the surface (natural and anthropogenic).
Accordingly, they provide little or no information about the
underlying processes responsible for the estimated fluxes.

Terrestrial biosphere models (bottom-up approaches) also
simulate the carbon fluxes between the atmosphere and
the terrestrial system. These models range in complexity
from simple regression “statistical” models to more complex
process-based models. The simple statistical biosphere mod-
els are mainly based on empirical relations between one or
more estimates of biological processes (e.g., soil respiration)
and important climatic variables (e.g., temperature, precipi-
tation) (e.g.,Raich and Schlesinger(1992); Lloyd and Taylor
(1994); Reichstein et al.(2003, 2005)). On the other hand, the
process-based models integrate knowledge of physiological
and ecological processes to model the response of the system
to environmental changes (Potter et al., 1993, 2012; McGuire
et al., 2001; Sitch et al., 2008). Several studies have shown
that the interannual variations (IAV) in ecosystem productiv-
ity simulated by different ecosystem models show large dif-
ferences (McGuire et al., 2001; Schwalm et al., 2010; Keenan
et al., 2012). This is because different models have different
formulations representing ecosystem processes and environ-
mental stresses that dominate the interannual variability. The
validation of the terrestrial biosphere models is difficult on a
large scale, due to difficulties in scaling up small-scale mea-
surements (e.g., eddy flux measurements)

In the light of the above, terrestrial biosphere models
(bottom-up) and inverse models (top-down) have been com-
bined into a multiple-constraint approach (e.g.,Kaminski
et al. (2002); Rayner et al.(2005); Turner et al.(2011)). In
such an approach, key parameters of the biosphere model are
optimized such that the mismatch between the modeled and
the observed atmospheric CO2 concentrations is minimized.
This way, both the information on finer spatio-temporal res-
olution from the biosphere models and the large-scale atmo-
spheric information is exploited. Optimizing model parame-
ters instead of the fluxes themselves potentially allows more
understanding about individual underlying processes.

Kaminski et al.(2002) introduced a systematic method for
optimizing parameters. They optimized the controlling pa-
rameters of the Simple Diagnostic Biosphere Model (SDBM)
introduced byKnorr and Heimann(1995) with respect to the
seasonal cycle of atmospheric CO2 concentrations. These op-
timized parameters are then used to run the model to predict
diagnostic quantities of interest, such as net primary produc-

tivity (NPP). A more complex approach, usually known as a
carbon cycle data assimilation system (CCDAS), was intro-
duced byScholze et al.(2003) andRayner et al.(2005). In
CCDAS, they extended the work ofKaminski et al.(2002)
by replacing SDBM by the more sophisticated prognostic
terrestrial biosphere model, the Biosphere Energy Transfer
Hydrology Scheme (BETHY) (Knorr, 2000). The model can
be run in prognostic mode to predict the behavior of the ter-
restrial biosphere under climate change. As the BETHY pro-
cess model is not linear, the minimization algorithm in the
CCDAS is a complex task.

We envisage to follow this multiple-constraint approach,
but using a diagnostic biosphere model that is as simple as
possible, while still capturing as much as possible fine-scale
structure of the surface fluxes as provided in available driving
fields, and involving only a small set of parameters that can
modify the model behavior on larger scales. As a first step
towards this, the aim of this Technical Note is to present the
Simple Diagnostic Photosynthesis and Respiration Model
(SDPRM) that we developed based on pre-existing formula-
tions. To some extent, SDPRM is set up in a process-oriented
way, but nevertheless essentially as an empirical relationship
between net ecosystem exchange (NEE) and a set of driving
variables expected to be the essential controls. By coupling
this model with the Jena inversion system (in a follow-up
study), the model parameters will be optimized based on at-
mospheric CO2 data; this coupling will be described in a sub-
sequent paper.

The outline of the Technical Note is as follows: Sect.2
describes the empirical equations of the Simple Diagnos-
tic Photosynthesis and Respiration Model (SDPRM) and the
data used. Section3 shows and discusses the results of the
model. A global assessment of the importance of the climatic
controls in limiting the interannual variability of GPP and
Reco are presented and discussed in Sect.3.3.

2 Simple Diagnostic Photosynthesis and Respiration
Model (SDPRM)

The NEE of CO2 is the balance between the photosyn-
thetic CO2 uptake by plants through gross primary produc-
tion (GPP) and CO2 emission through Ecosystem Respira-
tion (Reco) by plants and soil, (NEE =Reco – GPP). Many
diurnal and seasonal patterns of atmospheric CO2 concen-
tration are dominated by only these two processes (Denning
et al., 1996; Heimann et al., 1998). The Simple Diagnostic
Photosynthesis and Respiration Model (SDPRM) expresses
these two processes as an instantaneous function of the frac-
tion of Absorbed Photosynthetically Active Radiation (fA-
PAR), and climate drivers (temperature, precipitation, and
radiation). Additional processes including fire, dissolved or-
ganic carbon (DOC) and dissolved inorganic carbon (DIC)
losses in rivers, erosion, and land use changes also influence
the interannual and decadal dynamics in atmospheric CO2
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(Canadell et al., 2000; Pacala et al., 2001; Stoy et al., 2005;
Randerson et al., 2005; van der Werf et al., 2010), but are
not explicitly included into the model. SDPRM estimates 3-
hourly values of GPP and dailyReco over the period (1982–
2006) on a grid-scale resolution (4◦ latitude× 5◦ longitude).

2.1 Data

2.1.1 GIMMS NDVI

SDPRM requires two types of satellite-based information: a
land cover classification into plant functional types (PFTs),
and fAPAR as a proxy for vegetation greenness. Previous
studies show that changes in the normalized difference veg-
etation index (NDVI), the contrast between red and near-
infrared reflectances of vegetation, indicate changes in vege-
tation conditions proportional to fAPAR (Sellers, 1985; Ne-
mani and Running, 1989; Los et al., 2000). Therefore, the
global NDVI data set produced by the Global Inventory Mod-
eling and Mapping Studies (GIMMS) – version g – is used to
estimate fAPAR using an algorithm described byLos et al.
(2000) (see AppendixA). The GIMMS NDVI data are avail-
able at the Global Land Cover Facilityhttp://glcf.umiacs.
umd.edu/at a biweekly temporal resolution from 1982 to
2006 and a spatial resolution of 8 km× 8 km. The GIMMS
NDVI data are derived from imagery obtained from the Ad-
vanced Very High Resolution Radiometer (AVHRR) instru-
ment onboard the NOAA satellite series 7, 9, 11, 14, 16 and
17 (Tucker et al., 2005).

GIMMS NDVI data are chosen because they cover a
longer time period (1982–2006) compared to other satel-
lite data sources (e.g., MODIS). The data are collected by
a consistent series of instruments. In addition, several inde-
pendent studies used earlier versions of the GIMMS NDVI
data and showed a reasonable agreement between GIMMS
NDVI and other measures of vegetation (Davenport and
Nicholson, 1993; Malmstrom et al., 1997; D’Arrigo et al.,
2000). Nevertheless, as with any satellite-based measure-
ment, GIMMS NDVI suffers from numerous deficiencies in-
cluding sensor degradation, cloud/snow contamination, lim-
itation due to viewing geometry, and atmospheric effects.
Therefore, GIMMS NDVI has been corrected by the data
provider for some effects which are not related to vegeta-
tion change (Tucker et al., 2005). Nevertheless, it is still
likely that after the corrections some contamination remains.
Some sources of errors in the NDVI data set are not ac-
counted for (i.e., soil background reflectance) as well. There-
fore, GIMMS NDVI spatial/temporal variations for a certain
region/time are affected by these corrections/errors, produc-
ing some variations, which may not related to actual varia-
tions in the vegetation. These errors in NDVI translate di-
rectly to errors in fAPAR.

2.1.2 Land Cover Classification

To produce a land cover classification into plant functional
types (PFTs), the synergetic land cover data set (SYNMAP)
from Jung et al.(2006) are projected to the GIMMS NDVI
grid (8 km× 8 km). Subsequently, its classifications are ag-
gregated into seven major PFTs (see Table1, Fig. 1, and
Fig. 2). As a criterion of this aggregation, the spatial ex-
tent of the aggregated PFTs should not be too small in order
to be distinguishable by the envisaged atmospheric observa-
tions through the atmospheric inversion calculations (follow-
up study). Therefore, classes of limited extent are joined to
others of similar phenological properties. Also, all decidu-
ous and mixed forests are joined into DxF (see Table1) (de-
spite ecological differences between them). The layout of the
classes is a compromise between spatial diversity of these re-
sponses (demanding many classes) and the limited informa-
tion available in the data (demanding few classes). For each
PFT, a density map (fractional cover) 0≤ %PFT(x,y) ≤ 1 is
obtained by summing up the density maps of the original
land-surface classes:

%PFT(x,y) =

∑
class∈PFT

%class(x,y). (1)

The density map of all (non-ignored) land cover classes is
written as:

%veg(x,y) =

∑
PFT

%PFT(x,y). (2)

where latitude is they axis, and longitude is thex axis.

2.1.3 Meteorological data

SDPRM also needs meteorological fields (temperature, pre-
cipitation, shortwave radiation, specific humidity) as input,
taken from the improved reanalysis data set from the Na-
tional Center for Environmental Prediction/National Cen-
ter for Atmospheric Research Reanalysis (NCEP/NCAR)
(Kalnay et al., 1996) for the period 1982–2006. The data set
consists of a reanalysis of the global observational network
of meteorological variables (wind, temperature, pressure, hu-
midity). The NCEP/NCAR data set are T62 gaussian grid
(192× 94) with temporal resolution of 6 hours or daily. It is
aggregated to the resolution of 4◦ latitude× 5◦ longitude as
in SDPRM.

2.2 Photosynthesis model

GPP is modeled as a function of climatic and soil variables,
and uses satellite-derived estimates of the vegetation’s light-
absorbing properties (e.g.,Randerson et al.(1996); Sell-
ers et al.(1996b); Kaminski et al. (2002); van der Werf
et al. (2004)). In general, these models are known as light
use efficiency (LUE) models, first introduced by (Monteith,
1977). Here, we follow MOD17, primary production prod-
ucts algorithm for calculating GPP (Running et al., 1999;
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Table 1. SYNMAP (Jung et al., 2006) land cover classification and its aggregation into seven major PFTs. See Table2 for the descriptive
abbreviations used for the PFTs.

SYNMAP (Jung et al., 2006) 7 major PFT’s

Class Life forms Tree leaf type Tree leaf longevity PFT(index)

1 Trees Needle Evergreen ENF (1)
2 Trees Needle Deciduous DxF (3)
3 Trees Needle Mixed DxF (3)
4 Trees Broad Evergreen EBF (2)
5 Trees Broad Deciduous DxF (3)
6 Trees Broad Mixed DxF (3)
7 Trees Mixed Evergreen DxF (3)
8 Trees Mixed Deciduous DxF (3)
9 Trees Mixed Mixed DxF (3)
10 Trees & Shrubs Needle Evergreen ENF (1)
11 Trees & Shrubs Needle Deciduous DxF (3)
12 Trees & Shrubs Needle Mixed DxF (3)
13 Trees & Shrubs Broad Evergreen SAV (5)
14 Trees & Shrubs Broad Deciduous SAV (5)
15 Trees & Shrubs Broad Mixed SAV (5)
16 Trees & Shrubs Mixed Evergreen SAV (5)
17 Trees & Shrubs Mixed Deciduous SAV (5)
18 Trees & Shrubs Mixed Mixed DxF (3)
19 Trees & Grasses Needle Evergreen ENF (1)
20 Trees & Grasses Needle Deciduous DxF (3)
21 Trees & Grasses Needle Mixed DxF (3)
22 Trees & Grasses Broad Evergreen EBF (2)
23 Trees & Grasses Broad Deciduous SAV (5)
24 Trees & Grasses Broad Mixed SAV (5)
25 Trees & Grasses Mixed Evergreen DxF (3)
26 Trees & Grasses Mixed Deciduous DxF (3)
27 Trees & Grasses Mixed Mixed SAV (5)
28 Trees & Crops Needle Evergreen CRO (7)
29 Trees & Crops Needle Deciduous CRO (7)
30 Trees & Crops Needle Mixed CRO (7)
31 Trees & Crops Broad Evergreen CRO (7)
32 Trees & Crops Broad Deciduous CRO (7)
33 Trees & Crops Broad Mixed CRO (7)
34 Trees & Crops Mixed Evergreen CRO (7)
35 Trees & Crops Mixed Deciduous CRO (7)
36 Trees & Crops Mixed Mixed CRO (7)
37 Shrubs - - SHR (4)
38 Shrubs & Grasses - - SHR (4)
39 Shrubs & Crops - - SHR (4)
40 Shrubs & Barren - - SHR (4)
41 Grasses - - GRS (6)
42 Grasses & Crops - - GRS (6)
43 Grasses & Barren - - GRS (6)
44 Crops - - CRO (7)
45 Barren - - (ignored) (8)
46 Urban - - (ignored) (8)
47 Snow & Ice - - (ignored) (8)
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Fig. 1.The SYNMAP (Jung et al., 2006) land cover data set aggregated into seven major PFTs in the GIMMS NDVI grid (8 km× 8 km) (see
Table1). PFT labels are described in Table2. The fractional cover map for each PFT with a spatial resolution of 4◦ latitude× 5◦ longitude
are shown if Fig.2.

Heinsch et al., 2003 [accessed 31 December 2009]; Running
et al., 2004). The 3-hourly values of GPP is calculated as

GPP= PAR × fAPAR × ε, (3)

whereε (gC/MJ) is the light use efficiency, fAPAR is the
fraction of absorbed PAR, and PAR is calculated as 45 % of
incident solar radiationI (Nobel, 1991) as

PAR(x,y, t) = 0.45 · I (x,y, t), (4)

where latitude is they axis, longitude is thex axis, and time
is the t axis. Theε is calculated by attenuating maximum
light use efficiencyεmax (mass of assimilated carbon per unit
energy of absorbed radiation) via the effect of temperature
(gT ) and vapor pressure deficit (gVPD) factors as

ε = εmax · gT · gVPD. (5)

The attenuation factorsgT andgVPD are simple ramp func-
tions of daily minimum temperatureTmin and vapor pressure
deficit VPD (difference between actual partial pressure of
water vapor and saturation water vapor pressure, in Pa). The
dependence on daytime mean VPD is defined as

gVPD =


1, VPD < VPD1
VPD0−VPD
VPD0−VPD1

, VPD1 < V PD < VPD0

0, VPD > VPD0

. (6)

The dependence on daily minimum temperature is defined as

gT =


0, Tmin < Tmin,0
Tmin−Tmin,0
Tmin,1−Tmin,0

, Tmin,0 < Tmin < Tmin,1

1, Tmin > Tmin,1

(7)

with Tmin,0 = −8◦C. The values ofTmin,1, VPD1 and VPD0
are given in Table2 for each PFT. Then, GPP formula for
each PFT can be written as

GPPPFT(x,y, t) = εmaxPFT · %PFT(x,y)

· f PARPFT(x,y, t) · PAR(x,y, t)

· gVPDPFT(x,y, t) · gTPFT(x,y, t), (8)

where%PFT(x,y) is the density map (fractional cover) for
each PFT (see Eq. (1)). The values ofεmaxPFT are given in
Table 2 for each PFT. Incident radiationI (x,y, t) is cal-
culated from the downward shortwave radiationISW(x,y,t)
from NCEP meteorological reanalysis (AppendixB). Finally,
VPD(x,y, t) is calculated as a daytime mean from specific
humidity q (kg kg−1), surface pressurep ≈ 101300Pa, air
temperature at 2 m heightT (◦C) , and the ratioκ = 0.62197
of the molar masses of water vs. air (AppendixC).

2.3 Ecosystem respiration model

The respiration model comprises both autotrophic and het-
erotrophic respiration because, due to similar dependencies
on driving data, it is not expected that the signals from
both can be separated from the atmospheric CO2 measure-
ments (by the envisaged coupling the model to the inverse
model in a follow up study). Following the formulations in-
troduced byLloyd and Taylor(1994) andRaich et al.(2002)
and the modification made byReichstein et al.(2003), the
daily values of Ecosystem Respiration (Reco) are calculated
over all non-ignored land cover classes using the following
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Fig. 2. Fractional cover map for each Plant Function Type PFT with a spatial resolution of 4◦ latitude× 5◦ longitude. The total fractional
cover of PFTs is shown in the lower right panel.

equations:

Reco(x,y, t) =

(
R0 + RLAI · rLAI (x,y)

)
%veg(x,y) (9)

· rT [E,T (x,y, t)] (10)

· rP [P0,K,P (x,y, t)], (11)

whereR0 (set to 0.8 gC m−2 d−1) is the base respiration
rate at the reference temperature, andRLAI (set to 2.50
gC m−2 d−1) is the respiration rate on maximum leaf area in-
dex (LAImax). %veg(x,y) is a density map of all non-ignored
land cover classes (Eq. (2)). The parametersR0 and RLAI
are assumed constant over all PFTs because there is no solid

Biogeosciences, 10, 6485–6508, 2013 www.biogeosciences.net/10/6485/2013/



B. Badawy et al.: Simple Diagnostic Photosynthesis and Respiration Model 6491

Table 2.Descriptive abbreviations used for PFTs and the values of PFT-dependent parameters of the photosynthesis model.εmax: maximum
light use efficiency per PFT,Tmin,1PFT: the daily minimum temperature at whichε = 0.0 (at any VPD), VPD1PFT: the daylight average
vapor pressure deficit at whichε = 0.0 (at anyTmin), VPD0PFT: the daylight average vapor pressure deficit at whichε = εmax (for optimal
Tmin). The values of the parameters are modified from the Biome Properties Look-Up Table (BPLUT) for MOD17 (Heinsch et al., 2003
[accessed 31 December 2009]).

Abbreviation (index) Class full name εPFT Tmin,1PFT VPD1PFT VPD0PFT
(gC/MJ) (◦)C (Pa) (Pa)

ENF (1) Evergreen needle 1.0 8.3 650 3100
EBF (2) Evergreen broadleaf 1.0 9.1 1100 3600
DxF (3) Deciduous/mixed forest 1.2 9.5 935 3350
SHR (4) Shrubland 0.8 8.7 970 4100
SAV (5) Savanna 0.8 11.4 1100 5000
GRS (6) Grassland 0.6 12.0 1000 5000
CRO (7) Cropland 1.1 12.0 930 4100

information on how to break them down spatially (Reichstein
et al., 2003; Migliavacca et al., 2011). The leaf area index
dependence (rLAI (x,y)) is calculated as the average of the
yearly maximum fAPAR value (Los et al., 2000) as

rLAI (x,y) = max(fAPAR(x,y, t)). (12)

The temperature dependence is calculated as

rT [E,T ] = exp

(
−E

[
1

T − T0
−

1

Tref − T0

]
,

)
, (13)

whereT (◦C) is the daily temperature at 2m obtained from
NCEP/NCAR data set,E = 135 K (the activation energy pa-
rameter ofLloyd and Taylor(1994)), T0= −46◦C (minimum
temperature) as inLloyd and Taylor(1994) andTref =13◦C
(reference temperature, taken from the 1901–2002 mean of
the CRU data set over land, available at the University of
East Anglia Climatic Research Unit (CRU) (http://www.cru.
uea.ac.uk/). The precipitation dependence is written as

rP [P0,K,P ] =
P + P0

P + P0 + K
, (14)

where P (mm/month) is the precipitation summed over
the previous 30 days andK = 2.15 mm/month (the half-
saturation constant of the hyperbolic relationship of soil res-
piration with monthly precipitation), taken fromReichstein
et al. (2003). The parameterP0 is fixed to the approximate
global value of 1.55 mm/month (95 % confidence interval:
[0.2,2.5]) taken fromReichstein et al.(2003).

The a priori values of the parameters (R0, RLAI , K, E)
are modified from the soil-respiration values of
Reichstein et al.(2003) assuming that soil respiration
accounts for 60 % of ecosystem respiration.E corresponds
to Q10 = 1.47 (Reichstein et al., 2003), which is a relatively
low value, reflecting the fact that the present model is
formulated in terms of air temperature (rather than the more
usual soil temperature) which has more temporal variability
than the temperature of the soil and most of the plant

tissue that drive ecosystem respiration. The leaf area index
dependence (replaced by fAPAR) describes the status of
vegetation structure. Therefore, the model introduced here
accounts for both climate and biological variations in soil
respiration (Reichstein et al., 2003), while still being much
simpler than process-based models.

2.4 Filtering and aggregation

To test the performance of SDPRM, the estimated fluxes
from the model are shown on a variety of spatial and tempo-
ral scales. The main focus of the analysis is the interannual
variability and the monthly mean seasonal cycle of the flux
estimates.

To obtain the interannual variability, the estimated fluxes
are filtered by subtracting the mean seasonal cycle and most
variations faster than 1 year (filter with Gaussian spectral
weights, as inRödenbeck(2005)). This filter essentially re-
tains annual averages. Likewise for the spatial resolution of
the results, the estimated fluxes are integrated either into
three latitudinal bands (90◦ S–20◦ S, 20◦ S–20◦ N and 20◦ N–
90◦ N) or into the land regions as defined in the TransCom3
project (Gurney et al., 2002) (see Fig.3).

3 Results and discussion

3.1 fAPAR

Figure4 shows the time series of the full-temporal variability
and the running annual average (box-car filter) of the calcu-
lated fAPAR from GIMMS NDVI data set. The time series is
aggregated over three latitudinal bands (for a map of the re-
gions see Fig.3). In the Northern Hemisphere, fAPAR has
striking seasonal changes, i.e., small values in winter and
high values in summer, reflecting the vegetation phenology
of the region. Over the tropics, the interannual variability has
more variations because the major drivers associated with

www.biogeosciences.net/10/6485/2013/ Biogeosciences, 10, 6485–6508, 2013
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(A) Three latitudinal zones

(B): TransCom regions

Fig. 3. Map of the land regions over which the estimated fluxes are integrated to obtain time series.(A) land regions for three latitudinal
bands defined as (90◦ S–20◦ S, 20◦ S–20◦ N and 20◦ N–90◦ N). (B) land regions as defined in the TransCom3 project (Gurney et al., 2002).

the growing season (e.g., precipitation, temperature) have
high variations. Also, the natural variability in atmospheric
aerosols and column water vapor may have created surface-
independent variations in the GIMMS NDVI record (Tucker
et al., 2005). As a consequence, fAPAR inherited these varia-
tions that may not be caused by vegetation variation. In June
1991, a major volcanic eruption occurred (the Pinatubo erup-
tion), injecting large quantities of aerosols into the earth’s
stratosphere. These aerosols and subsequent cooling can ex-
plain the decline in the interannual variability of fAPAR dur-
ing the period from 1991 to 1993 over the tropics. This indi-
cates that GIMMS NDVI data may be problematic in certain
regions/periods and should be used with caution (Hall et al.,
2006; Nemani et al., 2003) (a detailed analysis is beyond the
scope of this paper). Consequently, by using satellite-derived
fAPAR data set to drive the photosynthesis model, GPP esti-

mates will be affected by a substantial variability in fAPAR
that is not related to actual changes in the vegetation function
(see Sect.3.2.1).

3.2 Model comparison

In an inversion calculation as the envisaged use of the model,
a priori fluxes already need to be structurally compatible with
reality, as otherwise it is not possible to find realistic re-
sults by changing parameterKaminski and Heimann(2001).
Therefore, several analysis are performed to test the perfor-
mance of the model and its ability to produce suitable a priori
fields for the inversion. The estimates of NEE (Reco – GPP)
from SDPRM are compared with the land flux inferred from
the atmospheric measurements of CO2 using updated results
from Rödenbeck(2005) (called here STD-inv). This is in or-
der to assess to which extent the a priori land fluxes from
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Table 3. Climatic contributions to the interannual variability of GPP andReco over different land regions. The contribution was calculated
using Eq. (15) and16.

GPP Reco

Land regions VPD Radiation Temperature Precipitation Temperature

Land total 0.43 0.39 0.18 0.32 0.68
Northern Hemisphere 0.47 0.10 0.43 0.13 0.87
Tropical land 0.44 0.56 0.00 0.51 0.49
Southern Hemisphere 0.89 0.09 0.02 0.83 0.17
North American bor. 0.17 0.05 0.77 0.02 0.98
North American temp. 0.77 0.14 0.09 0.40 0.60
South American trop. 0.46 0.53 0.00 0.74 0.26
South American temp. 0.76 0.21 0.03 0.68 0.32
Europe 0.56 0.17 0.27 0.14 0.86
Northern Africa 0.58 0.42 0.00 0.62 0.38
Southern Africa 0.76 0.24 0.00 0.91 0.09
Eurasian boreal 0.28 0.10 0.63 0.10 0.90
Eurasian temperate 0.53 0.34 0.13 0.45 0.55
Tropical Asia 0.11 0.89 0.00 0.55 0.45
Australia 0.91 0.09 0.01 0.88 0.12

SDPRM are consistent in structure to the variability inferred
from the atmospheric measurements.

In addition, the estimated carbon cycle components (GPP,
Reco) from SDPRM are compared with the results of the
BIOME-BGCv1 process-based model (Trusilova and Churk-
ina, 2008) as an independent means for validation. This is to
substantiate that SDPRM formulations make sense also in a
process understanding. BIOME-BGCv1 is based on the core
of the BIOME-BGC version 4.1.1 (Thornton et al., 2005 [ac-
cessed: Dec. 2010]) point-based model. BIOME-BGC prog-
nostically simulates the states and fluxes of carbon, nitrogen,
and water within the vegetation, litter, and soil components of
a terrestrial ecosystem (AppendixD). The BIOME-BGCv1
model uses the NCEP/NCAR meteorological fields as driv-
ing data.

3.2.1 CfAPAR vs. VfAPAR

To remove the spurious variation in fAPAR due to the resid-
ual contamination effects, NEE alternately is estimated by as-
suming constant vegetation (i.e., 1982–2006 mean seasonal
cycle of fAPAR) (hereafter referred to as SDPRM-CfAPAR).
Then NEE estimates from SDPRM-CfAPAR are compared
with NEE driven by the full-temporal variability of fAPAR
time series (referred to as SDPRM-VfAPAR). In both runs,
we use varying climate (daily NCEP/NCAR reanalysis data).

Figure5 shows the comparison between the anomaly (de-
viation from the mean of 1982–2006) of IAV of NEE from
SDPRM-CfAPAR and SDPRM-VfAPAR and the estimated
land flux from STD-inv. The fossil fuel emissions is sub-
tracted for STD-inv line. In STD-inv, the yearly totals and ge-
ographical distribution of the fossil fuel emissions are taken

from the Emission Database for Global Atmospheric Re-
search (EDGAR) (Source: European Commission, Joint Re-
search Centre (JRC)/Netherlands Environmental Assessment
Agency (PBL). Emission Database for Global Atmospheric
Research (EDGAR), release version 4.0.http://edgar.jrc.ec.
europa.eu, 2009). In Fig.5, IAV of NEE from SDPRM-
VfAPAR has some striking peaks, in particular over the trop-
ics, during the period 1991–1993 compared to STD-inv. This
can be explained by the variability in fAPAR (inherited from
GIMMS NDVI) during the period from 1991 to 1993 over the
tropical region due to Pinatubo eruption, which injected large
quantities of aerosols into the stratosphere. These aerosols,
along with smoke from biomass burning and dust from soil
erosion and other factors, can introduce a significant vari-
ability in AVHRR NDVI record (Tucker et al., 2005) and
hence fAPAR data set. Also, volcanic aerosols can reduce
the photosynthetic activity by reducing the amount of sun-
light reaching vegetations (Oliveira et al., 2007; Krakauer
and Randerson, 2003). The statistical analysis shows low
correlation coefficient between the global total of NEE from
SDPRM-VfAPAR and the global land fluxes from STD-inv
(r = 0.31).

On the other hand, IAV of NEE from SDPRM-CfAPAR
can capture a substantial fraction of IAV of land fluxes as
inferred from the atmospheric information using STD-inv.
The correlation coefficient between the two land estimates is
higher (r = 0.53) compared to SDPRM-VfAPAR, and there-
fore SDPRM-CfAPAR is used in the following sections. The
better agreement between SDPRM-CfAPAR and STD-inv
indicates that most of the interannual variability of NEE is
dominated by the climate signal (Mercado et al., 2009).
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(A)

(B)

Fig. 4. Integrated fAPAR time series calculated from GIMMS NDVI across three latitudinal bands:(A) time series of the full-temporal
variability of fAPAR, (B) time series of the running annual average (box-car filter) of fAPAR. For a map of the regions see Fig.3.

3.2.2 SDPRM vs. BIOME-BGCv1

The comparison between the calculated NEE from SDPRM-
CfAPAR and NEE simulated by BIOME-BGCv1 is illus-
trated in Fig.6 for 3 latitudinal bands (see Fig.3). The land
flux estimates from STD-inv is shown in the same figure. It
shows that IAV of NEE from SDPRM-CfAPAR (Fig.6B)
has a similar pattern compared to the NEE simulated by
the BIOME-BGCv1 model, in particular over the tropics
(temporal correlation coefficientr = 0.63). Similarly, Fig.7b
shows the same comparison but for TransCom3 land regions
(see Fig.3). SDPRM-CfAPAR and BIOME-BGCv1 agree in

many temporal features over most of the regions. In contrast,
STD-inv has higher IAV of the land flux as well as a dif-
ferent pattern compared to SDPRM-CfAPAR and BIOME-
BGCv1. Due to the scarcity of the atmospheric CO2 obser-
vations, the results of STD-inv might not be well constrained
over smaller regions. Also, missing processes (e.g., fire) in
the biosphere models can also be the reason for the discrep-
ancies between the flux variability shown in Fig.7b.

The monthly mean seasonal cycle of the flux estimates
from the three models are shown in Fig.6a and Fig.7a. The
general phase of the seasonal cycle of NEE from SDPRM-
CfAPAR is similar to the seasonal cycle of the land flux
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Fig. 5. The comparison between the anomaly (deviation from the mean of 1982–2006) of the IAV of the estimated NEE from SDPRM-
CfAPAR (using the mean seasonal cycle of fAPAR) [Blue] and SDPRM-VfAPAR (using the full variability of fAPAR) [Magenta dashed]
and the total land flux estimated by STD-inv [Black]. The time series are integrated over three latitudinal bands (for the map of the regions see
Fig. 3) and de-seasonalized and filtered for interannual variability (as inRödenbeck(2005)). The fossil fuel emissions have been subtracted
for STD-inv line.

estimated from STD-inv over northern hemispheric land
(NH), though the amplitude is higher in SDPRM-CfAPAR.
In terms of phasing, however, SDPRM-CfAPAR agrees
much better to the atmospheric information (STD-inv) com-
pared to the more sophisticated model (BIOME-BGCv1),
which leads STD-inv by about 2 months in various regions,
especially in the northern high-latitudes. In addition to NEE,
we also compare the carbon cycle components (GPP and
Reco) from SDPRM-CfAPAR with the results from BIOME-

BGCv1, for both the monthly mean seasonal cycle and IAV
(Fig.8 and Fig.9). The comparisons show that GPP andReco
from SDPRM-CfAPAR agree well with those from BIOME-
BGCv1 although both models are using different algorithms
for calculating GPP andReco. In the MOD17 algorithm used
in SDPRM for GPP calculation, VPD is the only variable di-
rectly related to environmental water stress, while both VPD
and soil water content are used for water stress calculations
in BIOME-BGCv1.
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(A) Monthly mean seasonal cycle (B) Interannual Variability

Fig. 6. The comparison between NEE estimates from SDPRM-CfAPAR [Blue], BIOME-BGCv1 [Red], and the land flux estimated by
STD-inv [Black] for the monthly mean seasonal cycle(A) and for the interannual variability(B). The time series are integrated over three
latitudinal bands (for the map of the regions see Fig.3) and de-seasonalized and filtered for interannual variability (as inRödenbeck(2005)).
The fossil fuel emissions have been subtracted from STD-inv line.

In Fig. 9a, the monthly mean seasonal cycles ofReco
from SDPRM and BIOME-BGCv1 are presented. As men-
tioned earlier, the parameters and the structure of the respira-
tion model in SDPRM were chosen from the soil-respiration
model ofReichstein et al.(2003) which was calibrated using
field measurements from Europe and North America. Also,
Reco is calculated in SDPRM using only climate drivers and
the maximum fAPAR and independent of GPP. But in the
real world,Reco is strongly connected to GPP on seasonal
timescales (Mahecha et al., 2010; Migliavacca et al., 2011).
This might explain why SDPRM is underestimating the am-
plitude of the seasonal cycle ofReco compared to BIOME-

BGCv1, in particular over Europe, North American temper-
ate and boreal, and Eurasian boreal (Fig.9a).

3.2.3 Summary

Though a comprehensive evaluation of SDPRM against in-
dependent data sources is a significant challenge (e.g., due
to the contrast between the point-scale nature of the ground-
based flux measurements (on the order of a few square kilo-
meters or less (Baldocchi, 2003)) and the spatial resolution
of SDPRM (4◦ latitude× 5◦ longitude), we conclude from
the comparison between SDPRM-CfAPAR, BIOME-BGCv1
and the STDinv, which SDPRM-CfAPAR – despite its simple
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(A) Monthly mean seasonal cycle

(B) Interannual Variability (IAV)

Fig. 7. The comparison between the estimated NEE from SDPRM-CfAPAR [Blue], BIOME-BGCv1 [Red] ,and the land flux estimated by
STD-inv [Black] for the monthly mean seasonal cycle(A) and for the interannual variability(B). The time series are integrated over 11 land
regions (for the map of the regions see Fig.3) and de-seasonalized and filtered for interannual variability (as inRödenbeck(2005)). The
fossil fuel emissions have been subtracted from STD-inv line.

www.biogeosciences.net/10/6485/2013/ Biogeosciences, 10, 6485–6508, 2013



6498 B. Badawy et al.: Simple Diagnostic Photosynthesis and Respiration Model

(A) Monthly mean seasonal cycle

(B) Interannual Variability

Fig. 8. The comparison between the estimated GPP from SDPRM-CfAPAR [Blue], and from BIOME-BGCv1 [Red] for the monthly mean
seasonal cycle(A) and for the interannual variability(B). The time series are integrated over 11 land regions (for the map of the regions see
Fig. 3) and de-seasonalized and filtered for interannual variability (as inRödenbeck(2005)).
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(A) Monthly mean seasonal cycle

(B) Interannual Variability

Fig. 9. The comparison between the estimatedReco from SDPRM-CfAPAR [Blue], and from BIOME-BGCv1 [Red] for the monthly mean
seasonal cycle(A) and for the interannual variability(B). The time series are integrated over 11 land regions (for the map of the regions see
Fig. 3) and de-seasonalized and filtered for interannual variability (as inRödenbeck(2005)).
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(A) Temperature contribution to the IAV of GPP

(B) VPD contribution to the IAV of GPP

(C) Radiation contribution to the IAV of GPP

Fig. 10.The global distribution of the relative contribution of each climate variable ((A) temperature: high values indicate LOW temperature
is limiting, (B) vapor pressure deficit (VPD): high value indicate HIGH VPD is limiting , and(C) radiation: high value indicate high LOW
radiation is limiting) to the interannual variability (IAV) of GPP.
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(A) Temperature contribution to the IAV ofReco

(B) Precipitation contribution to the IAV ofReco

Fig. 11.The global distribution of the relative contribution of each climate variable ((A) temperature: high values indicate LOW temperature
is limiting, (B) precipitation: high values indicate LOW precipitation is limiting) to the interannual variability (IAV) ofReco.

structure – is capable of reproducing flux patterns compatible
to the ones inferred from the atmospheric measurements or
inferred based on process understanding. This is important in
light of its intended use.

3.3 Climate limitations

Understanding responses of GPP andReco to climate con-
trols is crucial to understand terrestrial carbon cycle and
climate feedbacks in the future. Many studies have shown
strong relationships between the annual climate (means) and
ecosystem productivity (e.g.,Stephenson(1990); Churkina
and Running(1998); Valentini et al.(2000); Nemani et al.
(2003); Running et al.(2004); Wang et al.(2011) and oth-
ers). They also show that any small variation in the annual
climate can have a significant impact on the plant growth and
biome stability. Thus, it seems reasonable to use the year-to-
year variation (IAV) of climate variables as indicators of the
ecosystem productivity limitation. Fundamentally, a statisti-
cal model such as SDPRM only reflects the statistical influ-

ence of different factors but it does not necessarily reflect
a causal relationship. Nevertheless, SDPRM should still in-
corporate the most important biological factors. Therefore, it
is worthwhile investigating whether SDPRM shows the cli-
mate sensitivity ofRecoand GPP as presented by mechanistic
models.

Here, we present an analysis to assess the importance of
the climatic variables (used to drive SDPRM) in limiting
the interannual variations of GPP andReco. The effects of
the interannual variation in each climate variable are inves-
tigated by removing the IAV of the other climate variables
(using only the mean seasonal cycle for the period 1982
to 2006, applied repeatedly every year) and using constant
vegetation (mean seasonal cycle fAPAR as in run SDPRM-
CfAPAR). In the case of GPP, simulations allow for the iso-
lation of the effects of daily minimum temperature (GT: min-
imum temperature only varying and other climate drivers
constant (mean seasonal cycle)), vapor pressure deficit (GV:
VPD only varying and other climate drivers constant), and
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downward shortwave radiation (GS: radiation only varying
and other climate drivers constant). In the case ofReco, sim-
ulations allow isolation of the effects daily temperature (RT:
daily temperature only varying and other climate drivers con-
stant), and precipitation (RP: precipitation only varying and
other climate drivers constant). Then, the relative contribu-
tion of each independent climate variable on GPP andReco
estimates (1982–2006) is calculated with a logic similar to
the one suggested byIchii et al. (2005) which can be ex-
pressed as

GCi =
σ 2

Gi

σ 2
GT + σ 2

GV + σ 2
GS

(15)

RCi =
σ 2

Ri

σ 2
RT + σ 2

RP

, (16)

where GCi and RCi are the proportional contribution ofσ 2
Gi

andσ 2
Ri

, the variance of the anomalies of the interannual vari-
ability of GPP andReco, respectively, for each of the sensi-
tivity cases (Gi= GT, GV, or GS, whileRi = RT or TP), to the
sum of the variance of all of the sensitivity cases. High/low
GCi or RCi indicates large/small contribution of the climate
driver i on overall variance.

Based on the calculations of the squared correlation co-
efficient (R2), it is found that GPP anomalies in the default
run (SDPRM-CfAPAR – constant vegetation and all climate
variables are varying) were mostly explained by the sum of
all sensitivity runs (one variable is varying and the others
are constants) (R2

= 0.98). The same is found forReco. This
indicates that the main effects are essentially additive and
that extensive non-linear interactions do not exist. Therefore,
non-linear responses of GPP orReco to interactions among
climate variables (e.g., simultaneous changes in temperature
and radiation) are not investigated.

As mentioned, SDPRM equations reflect the statistical in-
fluence of different variables but do not justify the underlying
mechanisms of the influence. The quantitative conclusions
of the climate sensitivity analysis are therefore uncertain and
should be drawn with caution.

3.3.1 Climate Controls on GPP

Based on Eq. (15), Fig. 10 shows the global distribution of
the relative contribution of each climate variable (tempera-
ture, vapor pressure deficit, and radiation) to the interanuual
variability of GPP. The results are also summarized in Ta-
ble3 for different eco-regions. The following features can be
observed:

Temperature: In the high latitudes, temperature is clearly
the primary control on GPP (Fig.10a), in particular over
the North American boreal forest and Eurasian boreal for-
est (77 % and 63 %, respectively) and to a lesser extent over
Europe and the Eurasian temperate forest (27 % and 13 %, re-
spectively, see Table3). On average, temperature limits GPP

over the Northern Hemisphere by almost 43 %. Despite it is
consistent with the governing equations of the model, this
can be explained by the fact that at low temperatures the
enzymes responsible for photosynthesis are inhibited. Thus,
very low mean annual temperatures limit plant productivity
as in the case of tundra and boreal forests in northern lati-
tudes. The tropics and the southern hemispheric areas are not
limited by low temperature (less than 2 %). Similar findings
are presented byNemani et al.(2003), who investigated veg-
etation responses to climatic changes by analyzing 18 years
(1982 to 1999) of both climatic data and satellite observa-
tions of vegetation activity using BIOME-BGC model. Ac-
cording to their study, cold winter temperatures limit high-
latitude Eurasian vegetation, while tropical areas are never
limited by low temperatures.

Vapor pressure deficit: As mentioned earlier, in the
MOD17 algorithm for calculating GPP, VPD is the only vari-
able directly related to environmental water stress. Therefore,
VPD is used as an indicator of environment water stress. It is
clear from Fig.10b that VPD is a dominant control on GPP
over large areas of the globe where water is severely limited,
mainly Australia, North and South American temperate for-
est, southern Africa, southern Europe, and the Sahara desert
(see Table3). This is also consistent with the finding ofNe-
mani et al.(2003) that water availability most strongly lim-
its vegetation growth over 40 % of the earth’s vegetated sur-
face, and vapor pressure deficit (VPD) is a limiting factor of
vegetation growth in water-limited ecosystems of Australia,
Africa, and the Indian subcontinent.

Radiation: Radiation is another important limiting factor
on GPP, as it represents the energy source of photosynthe-
sis. Interannual variations in radiation result from interan-
nual variations in cloud cover. According to that, we can see
in Fig. 10c that radiation limits GPP by almost 56 % over
the area covered most of the year by cloud (tropical regions).
But radiation is also a limiting control on GPP, over some ar-
eas in the Northern Hemisphere, such as Eurasian temperate,
Europe, and North American temperate, though to a lesser
degree.Nemani et al.(2003) also found that radiation is a
limiting factor in western Europe and the equatorial tropics
regions.

3.3.2 Climate Controls onReco

Similarly, based on Eq. (16), Fig. 11 shows the global dis-
tribution of the relative contribution of each climate variable
(temperature, precipitation) to the interannual variability of
Reco. Additionally, the calculated values based on Eq. (16)
for different regions are shown in Table3. The results of the
relative contribution of each climate factor toReco are sum-
marized as follows:

Temperature: Similar to GPP, temperature partially de-
termines the respiration rates of vegetation. Consequently,
plants growing in cold regions are usually less productive.
Thus,Reco of plants from cold regions is primarily limited
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by temperature. Figure11 shows that clearly, where temper-
ature limitsReco by almost 87 % over the Northern Hemi-
sphere and by a lower rate over tropical regions (49 %). The
results are consistent with the regional studies in particular
over the boreal ecosystems (e.g.,Wang et al.(2011)).

Precipitation: Precipitation is a dominant control onReco
over large areas of the globe where water is severely lim-
iting, in particular the tropics and southern hemispheric re-
gions (Fig.11).

4 Discussion and conclusions

In this Technical Note, we presented and evaluated the Sim-
ple Diagnostic Photosynthesis and Respiration Model (SD-
PRM). The model estimates 3-hourly values of GPP and
daily values of ecosystem respiration (Reco). The spatial res-
olution of the model is 4◦ latitude× 5◦ longitude. The model
is driven by climate data from NCEP/NCAR and satellite-
derived fAPAR data.

Given the coarse spatial resolution of SDPRM, ground-
based flux measurements cannot be used to validate the
results directly. Therefore, to test the performance of the
model, we compared the carbon flux components (NEE,
GPP, andReco) with two different approaches for estimat-
ing the land fluxes, (1) the process-understanding approach
presented by the BIOME-BGCv1 model, and (2) the atmo-
spheric CO2 inversion in which the land fluxes are inferred
from the atmospheric information. It is found that, by using
climatological fAPAR and varying climate data, SDPRM-
CfAPAR is capable of reproducing flux patterns (IAV and
the mean seasonal cycle integrated over several land regions)
comparable to the ones inferred from the atmospheric mea-
surements or simulated based on process understanding. This
indicates that in SDPRM a sizable fraction of the interannual
variability of NEE can be represented by variations in climate
(not vegetation changes).

Furthermore, the sensitivities of GPP andReco to the driv-
ing climate variables are investigated by estimating the rela-
tive contribution of individual climate variables to the inter-
annual variability of GPP andReco. Based on the analysis,
low temperature controls the IAV of GPP mainly over high-
latitude Eurasian vegetation. Over the tropics, radiation is the
main limiting factor of the IAV of GPP. VPD controls the
IAV of GPP in water-limited ecosystems. Temperature con-
trols the IAV ofReco over large areas of the globe, in partic-
ular over northern hemispheric regions. Also, precipitation
controls the IAV ofReco over large areas of the globe, in
particular over the tropics and southern hemispheric regions.
The results of this analysis are consistent with previous stud-
ies that use a more sophisticated process-based model (i.e.,
Nemani et al.(2003)). It indicates that the simple SDPRM
formulations still make mechanistic sense.

SDPRM has the advantage that it uses few driving vari-
ables and few adjustable parameters, and thus is flexible to

be optimized in an inversion. However, the simplification of
our model structure can lead to considerable uncertainty in
regional flux estimates. For example, the model uses constant
parameters that are specified globally or for only 7 PFTs.
But in the real world, these parameters are controlled by de-
tails of species composition, site history including changes
in land use, etc., and thus can result in substantial variabil-
ity in regional flux estimates. Also, deficiencies in the spatial
resolution and the accuracy of land cover representation can
lead to considerable uncertainty in the flux estimates. The
current classification may have to be revised based on fu-
ture diagnostics. However, the present choice does not seem
a priori unreasonable to us, because the aggregation of pix-
els into the same class only means that the response of the
local flux to the local climate is forced to be the same. The
deficiency in the satellite-derived fAPAR data is a limitation
as well and can produce large errors in the estimated fluxes
for certain regions/times. As mentioned earlier, the depen-
dency of respiration on GPP might need to be included as an
additional driver ofReco (Mahecha et al., 2010; Migliavacca
et al., 2011). The biases in NCEP/NCAR reanalyses also can
introduce substantial error into GPP andReco estimates. The
other limitation of SDPRM is the missing of important pro-
cesses (e.g., fire, land use changes, etc.).

The model will replace, in a subsequent paper, the simple
statistical flux representation of the inversion algorithm pre-
sented byRödenbeck(2005) to optimize key parameters of
the model in order to fit the observed CO2 concentrations.
Optimizing model parameters instead of the fluxes them-
selves can provide flux estimates that are structurally con-
sistent with the process parametrizations used. Different pa-
rameter configurations can be tested to determine which pa-
rameters are globally valid and which have to be spatially
explicit. Due to the missing processes in SDPRM, we expect
that the model will not be able to fit the observed concentra-
tion completely; however, the residual fluxes corresponding
to the residual between the modeled and the observed con-
centration can then be used to investigate the contribution of
some of the missing processes, as will be discussed in more
detail in the subsequent paper.

Appendix A

fAPAR

fAPAR is calculated following the approach described in
Goward and Huemmrich(1992) and Sellers et al.(1996a)
and further adapted byLos et al.(2000). Two linear equa-
tions between fAPAR and NDVI are described, referred to
as the fAPARNDVI and fAPARSR models. In the fAPARNDVI
model, maximum and minimum NDVI values for each veg-
etation type are related to maximum and minimum fAPAR
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according to

fAPARNDVI =
(NDVI − NDVImin)(fAPARrange)

NDVI range

+ fAPARmin, (A1)

where NDVIrange= NDVImax− NDVImin corresponds
to the difference between the 98th and 2nd percentiles
of the NDVI frequency distribution estimated per PFT
(see Table A1). The parameter fAPARrange equals
fAPARmax− fAPARmin = 0.95− 0.01. In the fAPARSR
model, fAPAR is linearly related to the simple ratio (SR)
which can be expressed as a transformation of NDVI:

SR=
1+ NDVI

1− NDVI
(A2)

fAPARSR =
(SR− SRmin)(fAPARrange)

SRrange
+ fAPARmin, (A3)

where SRrange= SRmax− SRmin corresponds to the differ-
ence between the 98th and 2nd percentiles of the SR fre-
quency distribution. Based on the study ofLos et al.(2000),
in fAPARNDVI relationships, NDVI values was not cor-
rected for the effect of the atmosphere (i.e., water vapor and
aerosols) that causes significant overestimates of fAPAR. In
fAPARSR relationships, atmospheric effects are partially ac-
counted for by the statistical selection of NDVI values, but
still it produces significant underestimates of fAPAR. Ac-
cording toLos et al.(2000), an intermediate model, calcu-
lating the average fAPAR of the fAPARNDVI and fAPARSR
models, performed better by giving the smallest bias in fA-
PAR estimates in comparison to the ground-measured fA-
PAR. Accordingly, fAPAR is calculated using the following
relationship:

fAPAR =
fAPARSR+ fAPARNDVI

2
. (A4)

These calculations are done on a pixel basis with 8 km× 8
km spatial resolution. After that, the fAPAR data have been
aggregated to a spatial resolution of 4◦ latitude× 5◦ longi-
tude. Then, a separate data set, fAPARPFT, is created for each
PFT.

Appendix B

Incident radiation

Incident radiationI (x,y, t) is calculated from the downward
shortwave radiationISW(x,y, t) from NCEP meteorological
reanalysis, which contains both the seasonal and synoptic
variability, while the diurnal variation is only coarsely rep-
resented in the 6-hourly fields. Therefore, incident radiation
is calculated as

I (x,y, t) = j (x,y, t) · I0(x,y, t), (B1)

Table A1. Lower (2nd) and upper (98th) NDVI percentiles esti-
mated per PFT.

PFT(class) NDVImin NDVImax

ENF (1) 0 0.83
EBF (2) 0 0.90
DxF (3) 0 0.85
SHR (4) 0 0.75
SAV (5) 0 0.81
GRS (6) 0 0.74
CRO (7) 0 0.80

whereI0(x,y, t), from the purely geometrical clear-sky radi-
ation, is

I0(x,y, t) = max(0, sin(y) · sin(x1)

+ cos(y) · cos(x1) · cos(xh)) (B2)

with

xh = 360◦rday(t) + x − 180◦ (B3)

x1 = −23.4◦
· cos(360◦ryear(t) + 10◦), (B4)

whererday(t) andryear(t) give the fractions of the day (since
00 UTC) and of the year (since 1 January) at timet , andx

andy are taken to represent longitude and latitude. The cloud
factorj (x,y, t) is obtained by the following equation at the
6-hourly meteorological intervals, and linearly interpolated
in between.

j (x,y, t) =
ISW(x,y, t)

I0(x,y, t)
(B5)

Appendix C

Vapor Pressure deficit (VPD)

VPD (x,y, t) (difference between actual partial pressure
of water vapor and saturation water vapor pressure in Pa)
is calculated as a daytime mean from specific humidityq

(kg kg6−1), sea level pressurep (Pa)≈ 101300Pa, air tem-
perature at 2 m heightT (◦C) , and the ratioκ = 0.62197 of
the molar masses of water vs. air as

VPD = 611 · exp

(
17.26938818· T

237.3+ T

)
−

q · p

κ − q(κ − 1)
(C1)

The daytime average was done usingI0(x,y, t) from
Eq. (B2) as weighting, and applying a triangular filter to de-
diurnalize.
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Appendix D

BIOME-BGCv1

In BIOME-BGCv1, the total ecosystem respiration (Reco)
includes three components: maintenance respiration (MR),
growth respiration (GR), and heterotrophic respiration (HR).
MR of each plant compartment is computed as a function of
compartment nitrogen content and temperature. GR is cal-
culated on the basis of construction costs by plant compart-
ment. Different construction costs are applied to woody and
non-woody plant tissues. HR includes decomposition of both
litter and soil. It is related to their chemical composition (cel-
lulose, lignin, and humus), to their carbon to nitrogen ratios,
to soil mineral nitrogen availability and to soil moisture and
temperature. The gross photosynthetic production (GPP) is
calculated based on absorbed photosynthetically active radi-
ation, atmospheric carbon dioxide concentration, air temper-
ature, vapor pressure deficit, soil water content, atmospheric
nitrogen deposition, the leaf area index, and available nitro-
gen content in soil. For the comparison, the BIOME-BGCv1
results were aggregated from 0.5◦

× 0.5◦ to the spatial res-
olution of 4◦

× 5◦ as in SDPRM and STD-inv. Further de-
tails about the structure of BIOME-BGCv1 are described in
Trusilova et al.(2009).
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