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A short description of the different inversions is provided below, and a list of stations for 24 

each inversion can be found in the section “Observational constraints used by the 25 

participating inversion systems”, or under: https://transcom.lsce.ipsl.fr.  26 

LSCE_analytical (LSCEa):  27 

LSCEa corresponds to the results described in Piao et al. (2009), the sensitivity test 28 

without Siberian vertical profiles. It is based on a “matrix” formulation (see Peylin et al., 29 

2005). Fluxes: solved at the spatial resolution of the transport model and monthly 30 

resolution; prior land fluxes taken as the climatology over 1996-2004 from the 31 

ORCHIDEE model (Krinner et al., 2005); prior ocean fluxes from Takahashi et al., 32 

(2002). Prior land/ocean errors set to 6.0/2.5 Pg C yr-1 globally and spatially distributed 33 

according to the Gross Primary Production of ORCHIDEE / the surface area of ocean 34 

grid cells; flux error correlations between land/ocean grid-points, following an e-folding 35 

length of 1000/2000 km. Observations: 73 sites from GLOBALVIEW-CO2 and 36 

CARBOEUROPE EU-project (9 sites); Errors (measurements + model) range between 37 

0.4 ppm for remote stations (South Pole) and 3 ppm for continental sites (Hungaria). 38 

Prescribed fluxes: fossil fuel with spatial distribution from Oliver and Berdowski (2001) 39 

and annual totals rescaled each year for each country using CDIAC statistics; Biomass 40 

burning from van der Werf et al. (2006). 41 

MACC-II version 11.2 from MACC-II project (MACC-II): 42 

MACC-II corresponds to version 11.2 of the CO2 inversion product from the Monitoring 43 

Atmospheric Composition and Climate - Interim Implementation (MACC-II) service 44 

(http://www.gmes-atmosphere.eu/). It covers years 1979-2011. An earlier version of this 45 

product was described by Chevallier et al., 2010. It is based on a variational formulation 46 

with posterior errors provided by a robust Monte Carlo approach. Fluxes: solved at the 47 

spatial resolution of the transport model (Hourdin et al. 2006) and at 8-day 48 

daytime/nighttime resolution; the prior fluxes combine estimates of (i) annual 49 

anthropogenic emissions (EC-JRC/PBL, EDGAR version 4.2, 50 

http://edgar.jrc.ec.europa.eu/, 2011, http://cdiac.ornl.gov/ftp/ndp030/global.1751 51 

2008.ems, accessed 6 July 2011, and http://cdiac.ornl.gov/trends/emis/meth reg.html, 52 

accessed 8 January 2013), climatological monthly ocean fluxes (Takahashi et al., 2009), 53 
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climatological monthly biomass burning emissions (taken as the 1997–2010 mean of the 54 

database of van der Werf et al., 2010) and climatological 3-hourly biosphere-atmosphere 55 

fluxes taken as the 1989–2010 mean of a simulation of the ORCHIDEE model (Krinner 56 

et al., 2005), version 1.9.5.2. These gridded prior fluxes exhibit 3-hourly variations but 57 

their inter-annual variations are caused by anthropogenic emissions only. Prior 58 

land/ocean errors are set to 2.8/0.75 PgC y-1 globally and spatially distributed according 59 

to the heterotrophic respiration of ORCHIDEE / the surface area of ocean grid cells; flux 60 

error correlations between land/ocean grid-points, following an e-folding length of 61 

500/1000 km. Observations: 134 sites from a series of global databases; Errors 62 

(measurements + model) range between a few tenths of a ppm for marine stations and up 63 

to 6 ppm for continental sites (CBW). 64 

CarbonTracker US (CT2011_oi):  65 

CarbonTracker is an ongoing program of the United States National Oceanic and 66 

Atmospheric Administration (NOAA) to publish approximately-annual estimates of CO2 67 

surface exchange over the globe. The 2011 update of CarbonTracker (CT2011_oi) used 68 

here is a revised version of the system described in Peters et al. (2007) and is fully 69 

documented online at http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2011_oi/.  70 

CarbonTracker uses an ensemble Kalman filter scheme to estimate weekly scaling factors 71 

multiplying prior-model net carbon exchange over 126 land and 30 ocean regions 72 

covering the globe. Flask and quasi-continuous observations from 94 sites of the CO2 73 

observing networks operated by NOAA, Environment Canada, the Australian 74 

Commonwealth Scientific and Industrial Research Organization (CSIRO), the National 75 

Center for Atmospheric Research (NCAR), the Brazilian Instituto de Pesquisas 76 

Energéticas e Nucleares (IPEN), and Lawrence Berkeley National Laboratory are 77 

assimilated to produce optimal surface flux estimates.  A relatively short assimilation 78 

window of five weeks is used to determine adjustments to surface fluxes.  Model-data 79 

mismatch errors assigned to observations range from 0.75 to 7.5 ppm. Atmospheric 80 

transport is simulated with the nested-grid TM5 model described in Krol et al. (2005), 81 

using winds from the operational forecast model of the European Centre for Medium-82 

Range Weather Forecasts.    83 
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CarbonTracker simulates four types of CO2 exchange with the atmosphere.  Fossil-fuel 84 

and biomass burning estimates are imposed without modification, and air-sea exchange 85 

and non-wildfire land exchange are subject to optimization.  86 

In an attempt to estimate uncertainties stemming from the use of biased flux prior 87 

models, CT2011_oi uses two fossil fuel emissions estimates (“Miller” and ODIAC) and 88 

two land biosphere (GFEDv2 and GFEDv3) emissions estimates (natural exchange plus 89 

biomass burning). A 2x2 factorial expansion yields four independent inversions, each 90 

using a unique combination of these priors. The 1˘x1˘ monthly fluxes used in this 91 

manuscript are the across-model mean of these four inversion flux estimates:  92 

• Fossil Fuel emissions: i) based on annual totals for each country from Carbon 93 

Dioxide Information and Analysis Center (CDIAC) estimates from 2000 to 2008 94 

and the BP Statistical Review of World Energy; and ii) based on Open-source 95 

Data Inventory for Anthropogenic CO2 (ODIAC, Oda and Maksyutov, 2011), 96 

updated for use in CarbonTracker. 97 

• Land biosphere priors are supplied by two versions of the Carnegie-Ames-98 

Stanford Approach (CASA) biogeochemical model used to create the Global Fire 99 

Emissions Database (GFED; van der Werf et al., 2006).   100 

Details of the flux modules are available at http://carbontracker.noaa.gov. Compared to 101 

the CT2007 release described in Peters et al. (2007), the following significant changes 102 

have been made in CT2011_oi: i) observations from 29 new datasets have been used as 103 

assimilation constraints; ii) seasonality of fossil fuel emissions has been extended to the 104 

entire Northern Hemisphere north of 30˘N; iii) the air-sea CO2 flux prior is now time-105 

varying and comes from the ocean inversions reported in Jacobson et al. (2007), and iv) a 106 

suite of four independent inversions using different combinations of prior flux models is 107 

now used to produce the CarbonTracker estimates.  The number of ocean regions has 108 

been increased to 30 from its original 11. The resolution of atmospheric transport in the 109 

global domain has been increased to 3˘x2˘ (N. American transport remains at 1˘x1˘). 110 

CarbonTracker Europe (CTE2013): 111 

CarbonTracker Europe is based on a similar inversion framework as CarbonTracker US 112 

described above. It differs in a number of important choices for the inputs, specifically: 113 
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• CTE2013 uses a more extensive set of European CO2 mole fraction observations 114 

not assimilated in CT2011_oi. These are derived from obspack_co2_1_-115 

PROTOTYPE_v1.0.3_2013-01-29, 116 

• Fire fluxes and the associated monthly mean biosphere fluxes come from a 117 

climatological extension of GFED2 (2000-2007) to the years 2008, 2009, and 118 

2010, 119 

• CTE2013 uses a TM5 two-way nested transport on a 3x2 degrees grid with 120 

highest 1x1 degree resolution over Europe as well as over North America. The 121 

European zoom domain uses interpolated meteorological fields from the 3x2 122 

degrees parent grid, 123 

• CTE2013 uses only one inversion flux estimate and not a mean of several 124 

estimates based on different priors. 125 

Details of CTE2013 are available at http://www.carbontracker.eu/. 126 

CCAM and MATCH:  127 

The CCAM and MATCH inversions use a Bayesian synthesis method and are described 128 

in Rayner et al. (2008), except that the time period of the inversions has been extended to 129 

2008 and a slightly different set of observing sites has been used. The CCAM and 130 

MATCH inversions set up is identical except for the transport model used (CCAM or 131 

MATCH) and the number of regions solved for (CCAM: 94 land, 52 ocean, MATCH: 67 132 

land, 49 ocean). Neither transport model used interannual-varying winds. Fluxes: Land 133 

fluxes are solved relative to a CASA climatology (Randerson et al., 1997). Most land 134 

priors are zero relative to CASA with some non-zero priors representing land-use change. 135 

Ocean fluxes are solved relative to the climatology of Takahashi et al. (1999) with prior 136 

fluxes of zero. Prior land uncertainties are scaled by NPP while ocean uncertainties are 137 

scaled by region area with total uncertainty similar to Baker et al. (2006).  Prescribed 138 

fluxes: fossil emissions follow a spatial distribution which is a linear combination of 139 

Andres et al. (1996) representing 1990 and Brenkert (1998) representing 1995, scaled to 140 

annual totals from CDIAC. Observations: 73 CO2 records from GLOBALVIEW-CO2 141 

(2009), used as monthly means, 7 δ13CO2 records from CSIRO (Francey et al., 1996). 142 
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Data uncertainties range from 0.3-9.2 ppm and vary in time. Larger uncertainties are used 143 

for periods with extrapolated data from GLOBALVIEW. 144 

JENA s96-v3.5 (JENA): 145 

The Jena inversion has been designed with the focus to estimate interannual variations of 146 

land and ocean CO2 fluxes. Data records are selected to span the whole inversion period 147 

(1996-2011), to avoid spurious variations from network changes. In order to make the 148 

estimated interannual variations directly traceable to the atmospheric signals, interannual 149 

variations in land/ocean prior fluxes are avoided. Observations: CO2 mixing ratio data 150 

from 50 sites. Flask pair values or hourly values, respectively, are used directly at their 151 

time of measurement. Hourly data are selected for day-time or night-time values at 152 

certain sites (see Table at the end of the Supplementary material). Fluxes: Estimated at 153 

the spatial resolution of the transport model and daily time steps, but with a-priori spatial 154 

and temporal correlations (decaying with distance). Land fluxes are adjusted in the mean 155 

and at roughly weekly to interannual time scales, with extra degrees of freedom for large-156 

scale seasonality. Land flux adjustments are spatially weighted with a productivity proxy 157 

(long-term mean NPP from the LPJ model). Ocean fluxes are only adjusted at weekly to 158 

interannual time scales, while the mean spatial pattern is taken from the prior based on 159 

oceanic data. Prior fluxes: Fossil fuel emissions: EDGAR 4.0 (linearly extrapolated after 160 

2005 using BP global totals). Land: Time-mean spatial pattern of NEE from LPJ model. 161 

Ocean: Sum of the ocean uptake flux induced by the anthropogenic perturbation as 162 

compiled by Mikaloff-Fletcher et al. (2006), the preindustrial air-sea fluxes from 163 

Mikaloff-Fletcher et al. (2007), and the river fluxes of Jacobson et al. (2007); seasonality 164 

from Takahashi et al. (2002).  Solution method: Conjugate Gradients minimization with 165 

re-orthonormalization after each iteration. 166 

Jena inversion runs are also available for longer time periods (starting 1981 using 14 167 

long-record sites), or using more sites (up to 79, for shorter periods over which all sites 168 

provide data). All results, including regular updates, can be downloaded from 169 

“http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2/”. 170 

TRANSCOM_mean (TrC):  171 
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The TransCom mean results are based on the TransCom 3 Level 2 analysis found in 172 

Gurney et al. (2008) and Baker et al., 2006, but the observational time series have been 173 

extended to 2008 (inclusive). The individual posterior flux results (from 11 transport 174 

models) are averaged to generate the multi-model mean. The observational time series 175 

spans the 1990 to 2008 time period with a total of 103 observing sites from the 176 

GLOBALVIEW-CO2 database. The inversion approach used in the TransCom 3 Level 2 177 

results follows the Bayesian synthesis method (Enting 2002). There are 11 land and 11 178 

ocean basis functions that are roughly sub-continental in size. The four background 179 

carbon fluxes consisted of 1990 and 1995 fossil fuel emission fields (Andres et al., 1996; 180 

Brenkert, 1998), an annually-balanced, seasonal biosphere exchange (Randerson et al., 181 

1997), and air-sea gas exchange (Takahashi et al., 1999). These fluxes are included in the 182 

inversion with a small prior uncertainty so that their magnitude is effectively fixed. 183 

RIGC TDI-64 (RIGC):  184 

This Bayesian time-dependent inversion with 64-regions (TDI-64) is developed based on 185 

the TransCom level 3 inverse model in order to increase the degrees of freedom for flux 186 

estimation (or reduce regional aggregation error). The 11 land and 11 ocean regions are 187 

divided into 42 and 22 regions, respectively (detailed sensitivity tests for prior flux and 188 

data uncertainties/network are discussed in Patra et al. (2005). By this division, we are 189 

able to draw distinction between the east and west or north and south of 10 TransCom 190 

land regions, and north and south of the Tropical Asia and all ocean regions. 191 

Atmospheric CO2 time series from 74 GLOBALVIEW-CO2 sites are used with their 192 

corresponding uncertainty derived from climatology of the monthly mean residuals plus 193 

0.3 ppm as a measure of the model representation error. The data uncertainty varies from 194 

0.31 ppm at South Pole (SPO) to 4.6 ppm at the Hungarian tower (HUN) and 5.1 ppm at 195 

BSC. The NIES/FRCGC transport model (Maksyutov et al., 2008) is driven by 196 

interannually-varying NCEP reanalysis meteorology. The pre-subtracted fluxes are 197 

taken from CASA terrestrial ecosystem model (Randerson et al., 1997) (i.e., monthly 198 

biosphere fluxes with no net annual sink are imposed to the inversion system like fossil 199 

fuel emissions to account for the seasonal carbon fluxes from the vegetation) and 200 

Takahashi et al. (2009) climatology for oceanic exchange at monthly time intervals. 201 

Fossil fuel emission distributions are taken from EDGAR4.0 and global totals are scaled 202 
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to CDIAC estimated annual emissions. Prior flux uncertainties are assigned in range of 203 

~0.37 PgCy-1 to ~2.12 PgCy-1 for both land and ocean regions. 204 

JMA 2010 (JMA):  205 

JMA inversion method corresponds to the method described in Maki et al. 2010 which is 206 

based upon TransCom 3 IAV inversion set up (Baker et al. 2006) with raw observation 207 

data (WDCGG) and interannually-varying wind (JRA25 and JCDAS). The analysis 208 

period is extended to 2009 and a vertical mixing problem in our transport model (JMA-209 

CDTM) is fixed. Fluxes: solved at the spatial resolution of 22 regions and on monthly 210 

basis; prior land fluxes taken as the climatology from CASA model; prior ocean fluxes 211 

from Takahashi et al., (2002). Prior land/ocean errors set to TransCom 3 IAV 212 

uncertainties; flux error correlations are set to zero. Observations: 146 sites from 213 

WDCGG monthly mean CO2 concentrations after site selection by mismatch between 214 

observation and inversion; Errors (measurements + model) range between 0.3 ppm for 215 

remote stations (SPO) and 5 ppm for continental sites. Prescribed fluxes: fossil fuel 216 

emissions with spatial distribution from Andres et al. (1996) and Brenkert (1998) annual 217 

totals rescaled each year for each country using CDIAC statistics. 218 

NICAM-TM (NICAM):  219 

NICAM-TM inversion system is described by Niwa et al. (2012). While Niwa et al. 220 

(2012) extensively used aircraft measurements from CONTRAIL (observations from 221 

Airliners, http://www.cger.nies.go.jp/contrail/contrail.html) the NICAM inversion shown 222 

in this study used only surface measurements and few aircraft measurements. The 223 

inversion method and setup are similar to those of TransCom. Fluxes: the spatial number 224 

of fluxes solved by the inversion is 29 and 11 respectively for land and ocean. The 29 225 

land regions were obtained by dividing the 11 regions of TransCom (slightly different 226 

from 31 regions of Niwa et al. (2012)). The ocean flux region definition is the same as 227 

TransCom. The prior land flux is taken from the climatology flux of CASA (Randerson 228 

et al. 1997); the prior ocean flux is from Takahashi et al., (2009). Prior land flux errors 229 

are given by redistributing those for the 11 regions of TransCom into the 29 regions 230 

according to NPP distributions, whereas prior ocean flux errors are the same as those of 231 

TransCom. There is no error correlation for the prior fluxes. Observations: 71 sites from 232 
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GLOBALVIEW-CO2, which consist of the same 59 surface sites as those used by Niwa 233 

et al. (2012) and 12 aircraft measurement points of CONTRAIL between Japan and 234 

Australia; Errors (measurements + model) range between 0.3 ppm for remote stations and 235 

6.6 ppm for continental sites (LEF) (monthly mean). Prescribed fluxes: fossil fuel with 236 

spatial distribution from EDGAR version 4.1 and annual totals rescaled each year for 237 

each country using CDIAC statistics. 238 

239 
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Additional figures 240 

This appendix provides additional figures showing the estimated and prior aggregated 241 

carbon fluxes (Figures S1 to S6) as well as the region boundaries used to aggregate the 242 

fluxes (Figure S7) and the spatial flux distribution (Figure S8). 243 

244 

 245 

 246 

 247 

 248 

Figure S1: Annual mean posterior flux of the individual participating inversions for 249 

natural global total carbon exchange without fossil correction. 250 

 251 
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 252 

Figure S2: Annual mean posterior natural land flux estimate of the individual 253 

participating inversions. Shown here are a) North (>25N) b) Tropics (25S<<25N), c) 254 

South (<25S) d) North America, e) Europe, f) North Asia, g) South America, h) Africa, i) 255 

South Asia. 256 

 257 
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 258 
Figure S3: Same as Fig. S2 but for the Prior land fluxes. 259 

 260 
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 261 

Figure S4: Annual mean posterior natural ocean flux estimate of the individual 262 

participating inversion. Shown here are a) North (>25N) b) Tropics (25S<<25N), c) 263 

South (<25S) d) North Pacific, e) North Atlantic, f) Tropical Indian ocean, g) Tropical 264 

Pacific, h) Tropical Atlantic, i) Sub tropical ocean. 265 

 266 
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 267 

Figure S5: Same as Fig. S4 but for the Prior ocean fluxes. 268 

 269 

 270 

 271 
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Figure S6: Mean seasonal cycle for the prior fluxes from most participating models for 

selected regions  

 

 
Figure S7: Region boundaries used for the aggregated fluxes: a) latitudinal breakdown 

(north, tropics, south) for land and ocean; b) continental breakdown used for north 

America, Europe, north Asia, south America, Africa, tropical Asia, Australia, north 

Pacific, north Atlantic, tropical pacific, tropical Atlantic, Indian ocean, sub-tropical 

ocean. 

 

a) b) 
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Figure S8: Spatial distribution of the annual natural fluxes (without fossil correction) for 

2003 for the participating inversions. 
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Observational constraints used by the participating inversion systems  

Sites are listed alphabetically, in general using the site codes of GLOBALVIEW 

(www.esrl.noaa.gov/gmd/ccgg/globalview/co2/co2_observations.html). Many site 

locations are listed more than once, since multiple CO2 records are available for many 

sites (either collected by different labs, or representing separate flask and in-situ records). 

Some inversions chose only to use the most complete record at a given location while 

others include all available records.  It is unlikely that one choice is better than the other.  

There are differences in calibration etc between laboratories.  These are not accounted for 

in inversions, but their impact is unlikely to be significant compared to other transport 

and representation uncertainties in modelling any given site (Rödenbeck et al., 2006). 

Type of observed CO2 used for each site: There are a variety of ways the CO2 data from 

any given site has been used, depending in part on whether flask or in-situ data are 

available; some inversions use monthly mean data while others use the data at the 

appropriate sampling time.  Various degrees of selection have been applied to the data.  

An indication of how the data have been used is given in the table through a series of 

codes. 
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Table 1: Codes describing the way observations are used. 

Code Explanation 

Temporal resolution 

M Monthly mean data used 

D Daily mean data used 

H4 Four hour mean data used 

H4 (hrs) Four hour mean data used only for the hours indicated (UT) 

H Hourly data used 

H (hrs) Hourly data used only for the hours indicated (UT) 

F4 Flask samples are used as a 4 hour average around sampling time 

F Flasks samples are used at the sampling time 

Data selection 

GV Globalview CO2 used.  Globalview CO2 is derived from a fitted curve to CO2 observations 

and is intended to represent baseline conditions; used as monthly mean data 

GV E The use of Globalview CO2 data includes extrapolated data.  This fills in missing data by 

applying a mean seasonal offset for the site from marine boundary layer CO2 

concentration.  Many inversions give periods of extrapolated data less weight than periods 

with observations. 

* Consecutive hours that differ by greater than 1 ppm are removed 

o Outliers (mismatch between observations and model > 3 sigma) are removed 

JMA Data are removed when inconsistent with the inversion through an iterative procedure 

(Maki et al., 2010) 

Site locations may be represented by model output interpolated to the site location or by 
the nearest model grid-cell.  For coastal sites, the nearest ocean grid-cell if often chosen 
as being more representative of the baseline air that is usually sampled by flask records at 
coastal sites.  
Some inversions include ship data.  This may be used at the actual location and time of 
sampling (as in the CarbonTracker inversions) or it may be binned into latitude and/or 
longitude bins as in the GLOBALVIEW POC* records and the JMA use of JMA ship 
data. 
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Table S2: List and description of the sites used by each inversion system.  
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Old inversion results used by other RECCAP synthesis: system differences 1 

and figures  2 

This appendix provides additional figures showing the results that were obtained with the 3 

inversion submissions initially provided to the other RECCAP papers. The flux estimates 4 

were different for 5 inversions: 5 

• JENA: Compared to the present version s96_v3.5 shown in this paper, some other 6 

RECCAP publications used version s96_v3.3 that also allowed adjustments to the 7 

time-mean ocean fluxes [and had extra degrees of freedom for large-scale ocean 8 

seasonality]. It also used an older ocean inversion as prior (Gloor et al., 2003). 9 

Version s96_v3.3 thus had substantially different long-term mean ocean fluxes: 10 

around 0.5 PgC/yr versus -1.8 PgC/yr in the current version s96_v3.5 for the 11 

period 2001-2004. However, the interannual variability is nearly identical to the 12 

present version over the common period [small changes originate from minor 13 

alterations in the list of sites due to data availability: the sites WPO, JBN, BME, 14 

and STM have been removed, while DDR has been added]. 15 

• MACC-II: An earlier version of this product was referenced as “LSCEv” in other 16 

RECCAP publications (corresponding to Chevallier et al., 2010). The differences 17 

with MACC-II v11.2 mainly result from (i) an update of the prior natural fluxes 18 

with a more recent land surface model version 19 

(http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/ORCHIDEE_DOC, 20 

accessed 17 July 2013), (ii) an update of the prior error statistics to fit this new 21 

version, based on an extended flux measurement database (Chevallier et al. 2012), 22 

(iii) the suppression of the interannual variability of the prior natural fluxes, (iv) 23 

the extension of the inversion backward to 1979 and forward to 2011 with a novel 24 

parallelization approach (Chevallier 2013). The new estimated fluxes have a 25 

larger ocean uptake (mainly in the south) and a smaller tropical land uptake and 26 

show few small changes in the IAV. The long-term trends also slightly changed 27 

with and increased tropical land carbon uptake in the 2000s in MACC-II.   28 

• CT2011_oi: The CT2011_oi updates the time period of the original inversion 29 

(CT2009), to 2001-2010. It corresponds to a revision of CT2011 in response to a 30 



 30 

bug discovered in the atmospheric transport model (TM5). CT2011_oi is derived 31 

from a suite of four different inversions, each using a different set of prior fluxes 32 

(see 33 

http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/documentation_assim.html#ct_34 

doc for more information). The new product “CT2011_oi” thus replaces the 35 

previous product “CT2009” with similar long-term mean fluxes (only a slight 36 

increase of the northern land uptake) and with slightly larger amplitude of the flux 37 

IAV. 38 

• CTE2013: The CTE2013 updates the time period of the original inversion 39 

(CTE2008) to 2001-2010 rather than ending in 2007. Also, the specific focus on 40 

Europe from CTE2008 has been removed: CTE2013 has no extra ecoregions and 41 

no extra European time series) in favor of a more globally oriented setup. This 42 

means that an ObsPack was used in the assimilation with a set of sites more 43 

typical for the CarbonTracker systems. Finally, the transport model TM5 had a 44 

higher resolution in the CTE2013 release with global 3x2, and zoom regions of 45 

1x1 over Europe and North America. The CTE2013 provides similar long-term 46 

mean fluxes and a slightly larger amplitude of the flux IAV. 47 

• NICAM: The site list of the new version used in this paper is different from that 48 

of the older version. Although the older version used 103 site measurements, the 49 

number of sites has reduced to 71 in the present version. The principal difference 50 

is that Siberian aircraft data were not used in the present version. Other sites were 51 

also taken off to reduce redundancy (some sites were located nearby to each other 52 

in the older version). The new version lead to smaller land uptake in North 53 

America compensated by a larger land uptake in the tropics. Similar interannual 54 

flux variations (IAV) are found with slightly smaller amplitude in the Tropics and 55 

the North, especially in North America and North Asia. The new results are more 56 

coherent with the other inversions for North America. 57 

We present below a few similar figures to those in the core paper but with the old flux 58 

estimates for these 5 inversions.   59 

 60 
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 61 

Figure S9 (Same as figure 2 but with the old submissions): Annual mean posterior flux of 62 

the individual participating inversions for a) fossil fuel emission, b) natural “fossil 63 

corrected” global total carbon exchange, c) natural “fossil corrected” total land and d) 64 

natural “fossil corrected” total ocean fluxes. 65 

 66 



 32 

 67 

Figure S10 (Same as figure 4 but with the old submissions): Mean natural fluxes for the 68 

period 2001-2004. Shown here are total (first column), natural “fossil corrected” land 69 

(second column) and natural ocean (third column) carbon exchange aggregated over the 70 

Globe (top row), the North (2nd row), the Tropics (3rd row) and the South (bottom row), 71 

with the three regions divided by approximately 25°N and 25°S (but modified over land 72 

areas to keep regional estimates (e.g. northern Africa) in one region; see figure S7). 73 

Numbers in parentheses represent the mean flux and the standard deviation across all 74 

inversions. 75 
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 76 

Figure S11 (Same as figure 5 but with the old submissions): Breakdown of the Northern 77 

hemisphere fluxes into a) North America, b) Europe, c) North Asia, d) N. Atlantic, and e) N. 78 

pacific. Numbers in parenthesis represent the mean flux and the standard deviation across all 79 

inversions. 80 

 81 



 34 

 82 

Figure S12 (Same as figure 6 but with the old submissions):  Annual mean anomalies of the 83 

individual participating inversion posterior flux estimates. Shown here are the fossil corrected 84 

natural land (first column) and natural ocean (second column) carbon exchange for the same 85 

regions as Figure 4: the Globe, north (> 25N), tropics (25S-25N) and south (< 25S). 86 

 87 

 88 
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