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Abstract.
Modeling and monitoring plankton functional types

(PFTs) is challenged by the insufficient amount of field mea-
surements of ground truths in both plankton models and bio-
optical algorithms. In this study, we combine remote sens-
ing data and a dynamic plankton model to simulate an eco-
logically sound spatial and temporal distribution of phyto-
PFTs. We apply an innovative ecological indicator approach
to modeling PFTs and focus on resolving the question of
diatom–coccolithophore coexistence in the subpolar high-
nitrate and low-chlorophyll regions. We choose an artificial
neural network as our modeling framework because it has the
potential to interpret complex nonlinear interactions govern-
ing complex adaptive systems, of which marine ecosystems
are a prime example. Using ecological indicators that ful-
fill the criteria of measurability, sensitivity and specificity,
we demonstrate that our diagnostic model correctly inter-
prets some basic ecological rules similar to ones emerging
from dynamic models. Our time series highlight a dynamic
phyto-PFT community composition in all high-latitude ar-
eas and indicate seasonal coexistence of diatoms and coccol-
ithophores. This observation, though consistent with in situ
and remote sensing measurements, has so far not been cap-
tured by state-of-the-art dynamic models, which struggle to
resolve this “paradox of the plankton”. We conclude that an
ecological indicator approach is useful for ecological mod-
eling of phytoplankton and potentially higher trophic lev-
els. Finally, we speculate that it could serve as a powerful

tool in advancing ecosystem-based management of marine
resources.

1 Introduction

We are yet to obtain a consistent and complete view of the
global biogeography of plankton functional types (PFTs),
groups of organisms composed of many different species
identified by a common biogeochemical function rather than
a common phylogeny. We deal with the large uncertainty due
to the insufficient amount of field measurements of ground
truths in both plankton models (Anderson, 2005) and bio-
optical phytoplankton PFT algorithms (Brewin et al., 2011).
Knowing how PFT distributions are changing is key to pro-
jecting biological responses to global climate change, in the
geological past (Wells et al., 1999), present and future (Beau-
grand et al., 2012; Bopp et al., 2005; Boyd and Doney, 2002).
A requirement is to investigate regions such as the Southern
Ocean, the subarctic North Pacific and the equatorial Pacific,
the so-called high-nitrate, low-chlorophyll (HNLC) regions
(Minas and Minas, 1992) where the ocean acts as a source of
CO2 to the atmosphere (Takahashi et al., 2002) despite being
sufficiently productive. According to modeling studies, these
regions may also constitute PFT diversity hotspots (Prowe
et al., 2012) or, to the contrary, PFT diversity deserts (Barton
et al., 2010).
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A variety of recently developed phytoplankton size
class (phyto-PSC) and phytoplankton PFT (phyto-PFT) bio-
optical algorithms may be used to monitor regional and
global phytoplankton distributions at an intraseasonal res-
olution (Alvain et al., 2008; Bracher et al., 2009; Brewin
et al., 2010; Hirata et al., 2011). Among the key phyto-PFTs
are silicifiers (diatoms), whose biomass can be estimated
from satellites (Sathyendranath et al., 2004; Alvain et al.,
2008; Hirata et al., 2013), and calcifiers (coccolithophores),
whose biomass estimates up until very recently (Sadeghi
et al., 2012) were limited to bloom occurrence and area cal-
culation (Alvain et al., 2008; Moore et al., 2012) and infer-
ence from particulate inorganic carbon (PIC) measurements
(Balch et al., 2011). However, field measurements of biolog-
ical processes, on the level of PFTs in particular, are not suf-
ficiently resolved compared to chemical and physical prop-
erties of the ocean (Claustre et al., 2010). Thus, synoptic re-
lationships between PFT biomass (derived from in situ phy-
toplankton cell and pigment abundance/biomass) and optical
properties of the surface ocean (derived from remote sens-
ing) cannot be constrained and evaluated consistently over
all biogeochemical provinces. Borders between biogeochem-
ical provinces shift dramatically on annual and longer scales
(Boyd and Doney, 2002; Devred et al., 2007), challenging
the integration of regional algorithms into global models (Ce-
tinić et al., 2012).

Dynamic plankton models coupled to ocean circulation
models take changing environmental conditions into account.
Moreover, they derive PFT estimates from knowledge of the
underlying mechanistic processes. However, whereas they
can discern between several to tens of different groups (Fol-
lows et al., 2007), they struggle with the long-debated para-
dox of the plankton (Hutchinson, 1961). To our knowledge,
none of the models operating on the PFT level can simu-
late the observed coexistence of more than one dominant
group under limiting resources when their biogeochemical
functions are similar yet need to be parameterized sepa-
rately. For instance, fast-growing diatoms in the subarctic
North Pacific and the Southern Ocean outcompete coccol-
ithophores, preventing their biomass from building up (e.g.,
Gregg and Casey, 2007; Le Quéré et al., 2005; Sinha et al.,
2010), in contrast to what remote sensing observations sug-
gest (e.g.,Alvain et al., 2008; Balch et al., 2011; Sadeghi
et al., 2012). A PFT biogeochemical model is sensitive to the
type of PFT classification, the choice of zooplankton graz-
ing formulation (Hashioka et al., 2012) and, especially for
diatoms and coccolithophores, the mixing formulation in the
chosen physical model coupled to the plankton model (Sinha
et al., 2010). The MARine Ecosystem Model Intercompar-
ison Project (MAREMIP) (Hashioka et al., 2012) is cur-
rently examining the ability of these models to identify key
processes and evaluate the role of functional groups in the
whole ecosystem. Complementary to MAREMIP, the Satel-
lite phyto-PFT Intercomparison Project (Hirata et al., 2012)

is investigating the performance of satellite phyto-PFT mod-
els in the global ocean.

In a two-dimensional phytoplankton niche space de-
fined by turbulence and nutrient concentration (“Margalef’s
mandala”), coccolithophores traditionally fall between di-
atoms, which thrive in well-mixed, high-nutrient regimes,
and dinoflagellates, which dominate the stratified, low-
nutrient regimes (Margalef, 1978). Today we know that pico-
eukaryotic and prokaryotic autotrophs (e.g.,Prochlorococ-
cus, Synechococcus) successfully compete with dinoflagel-
lates for their niche. Light is another important niche descrip-
tor. Balch(2004) suggested that day length is as important as
light intensity for the onset of coccolithophore (and likely
other phyto-PFT) blooms, and should form the third dimen-
sion of phytoplankton mandala. The ability to locate phyto-
PFTs in their ecological niches allows us to derive ecological
rules that can verify both plankton models and bio-optical al-
gorithms. However, ecological rules can serve another pur-
pose: they help identify key ecological indicators of change
of PFTs – a task imposed by the rapidly changing climate.

Having acknowledged the challenges in monitoring and
modeling biological processes explicitly, an ecological in-
dicator approach is an alternative means of describing and
managing marine ecosystems (e.g.,Dale and Beyeler, 2001;
Blanchard et al., 2010). In this study, we explore the possi-
bility of applying an ecological indicator approach to simu-
late an ecologically consistent global distribution of phyto-
PFTs, with particular focus on diatoms and coccolithophores
in the HNLC regions. We choose an artificial neural network
(ANN) as our modeling framework because this artificial in-
telligence tool has the potential to interpret complex nonlin-
ear interactions governing complex adaptive systems (Hol-
land, 1995), of which marine ecosystems are a prime exam-
ple (Levin, 1998). In order to enable projection of past and
future phyto-PFT states, as well as their potential applica-
tion in ecosystem management of marine resources (Palacz,
2012), we select ecological indicators that fulfill the criteria
of indicators of good environmental status (GES) (Commis-
sion, 2008). These criteria, described byLink et al. (2010),
include (i) measurability – the availability of data to estimate
the indicator, (ii) sensitivity – the ability to detect change in
an ecosystem, and (iii) specificity – the ability to link the said
change in an indicator as a response to a known intervention
or pressure.

The idea of using an ecological indicator approach to
phyto-PFT modeling is not a new one. For instance,Rait-
sos et al.(2006) attempted to explain variability in North At-
lantic blooms of coccolithophores by identifying their eco-
logical indicators of change obtained from a combination of
in situ, satellite and model data. Application of ANNs in the
ecological approach to phyto-PFT modeling was pioneered
by Raitsos et al.(2008), who estimated the probability of di-
atom occurrence in the North Atlantic from ecological (e.g.,
sea surface temperature, photosynthetically available radia-
tion, surface chlorophylla concentration) and geographical
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(e.g., latitude, longitude) indicators. ANNs based on ecolog-
ical indicators have also been used to simulate the distribu-
tion of pCO2 in the North Atlantic (Telszewski et al., 2009)
and to compare patterns of biological production in eastern
boundary upwelling regions (Lachkar and Gruber, 2012).

In contrast to these earlier studies, we attempt to use
only ecological indicators to simultaneously model biomass
distribution of four phyto-PFTs in key biogeochemical
provinces, including the open-ocean HNLC regions. We hy-
pothesize that our phyto-PFT ecological indicator model
(hereafter PhytoANN) will

– interpret the complex nonlinear interactions between
four phyto-PFTs and their ecological indicators in
a variety of distinct biogeochemical conditions, and

– improve the existing model estimates of monthly cli-
matology and time series distribution of diatoms and
coccolithophores in the HNLC regions.

2 Methods

2.1 Source of indicators

We selected the following ecological indicators as principal
inputs into the PhytoANN model: (i) sea surface tempera-
ture (SST), (ii) wind speed (Wspd), (iii) photosynthetically
available radiation (PAR), (iv) surface chlorophylla concen-
tration (Chl) and (v) mixed layer depth (MLD). Although we
considered two additional indicators, modeled surface nitrate
(NO3) and surface iron (Fe) concentration, we did not in-
clude them in the final PhytoANN because they displayed
significant bias with respect to observations in several bio-
geographic provinces, and they did not add significantly to-
wards explaining patterns of phyto-PFT variability. We as-
sume that changes in NO3 distribution can largely be ex-
plained by associated changes in SST and Chl. This assump-
tion has been used to derive a NO3 index (Nelson et al., 2004)
and NO3 maps from satellite data alone (Silió-Calzada et al.,
2008).

We opted to purposefully omit geographical and time in-
dicators in this study because of two main reasons. Firstly,
these indicators do not meet the specificity and sensitivity
criteria ofLink et al.(2010) and go against the philosophy of
our ecological indicator model. Including geographical in-
formation and time, which had a strong weight in the model
used byRaitsos et al.(2008), could prevent the model from
capturing any geographical or phenological shifts, as instead
of the PFTs reacting mainly to changes in the environmental
conditions at a specific location, the model would just pre-
dict the phyto-PFTs based on the typical (climatological) cy-
cles at that specific location, estimated from latitude, longi-
tude and time. Secondly, using these inputs would prevent us
from applying the model outside of the latitude and longitude
range included in the training domain.

SST data came from NOAA’s optimum interpola-
tion version 2 product (NOAA-OI-SST-V2) provided
by the NOAA/OAR/ESRL PSD in Boulder, Col-
orado, USA (http://www.esrl.noaa.gov/psd/). Wspd
data were downloaded from NOAA Ocean Winds
(http://www.ncdc.noaa.gov/oa/rsad/air-sea/seawinds.html).
The wind speeds were generated by blending observations
from multiple satellites.Zhang et al. (2006) describe
the details of the Wspd algorithm. PAR and Chl data
came from the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS). We downloaded the processed and gridded
(monthly, 9km× 9km) data from National Aeronautics and
Space Administration (NASA) Ocean Productivity project
(http://orca.science.oregonstate.edu/1080.by.2160.monthly.
hdf.par.seawifs.phpand http://orca.science.oregonstate.edu/
1080.by.2160.monthly.hdf.chl.seawifs.php). Information
about MLD came from the multiyear Simple Ocean Data
Assimilation (SODA) model (Carton and Giese, 2008),
which attempts to reconstruct the changing physical climate
of the global ocean based on a sequential data assimila-
tion approach. A forecast of MLD was derived from the
forecast density fields based on a 0.125 potential density
criterion (following e.g.,Kara et al., 2003). We obtained
the processed and gridded data (monthly, 9 km× 9km)
also from NASA Ocean Productivity (http://orca.science.
oregonstate.edu/1080.by.2160.monthly.hdf.mld.soda.php).
We used monthly, 1◦ × 1◦ data from 1997–2004 time series.
Details are included in the appendix Table A1.

2.2 Source of phyto-PFTs

We chose to model four phyto-PFTs: (i) diatoms, (ii)
coccolithophores, (iii) cyanobacteria and (iv) chlorophytes.
In order to train the PhytoANN model to associate
phyto-PFT biomass with environmental conditions, we ob-
tained biomass estimates from NASA Ocean Biogeochem-
ical Model (NOBM) (Gregg et al., 2003). Processed and
gridded (monthly, 1◦ × 1◦ ) data were downloaded from
NASA’s Giovanni (http://gdata1.sci.gsfc.nasa.gov/daac-bin/
G3/gui.cgi?instance_id=ocean_model). NOBM is a coupled
three-dimensional general circulation, biogeochemical and
radiative model of the global oceans that assimilates SeaW-
iFS chlorophylla. It was validated using data from in situ
(Joint Global Ocean Flux Study (JGOFS)) and satellite data
sources (SeaWiFS and MODIS Ocean Color instruments).
Biogeochemical processes in the model were controlled by
factors such as circulation and turbulence dynamics, irradi-
ance availability and the interactions among four phytoplank-
ton functional groups (diatoms, chlorophytes, cyanobacteria
and coccolithophores), four nutrients (nitrate, ammonium,
silica and dissolved iron) and one herbivore group (Gregg
et al., 2003). The model architecture is fully described in
Gregg(2000) andGregg(2002). In this model, chlorophytes
were intended to represent prasinophytes, pelagophytes and
other flagellates. Cyanobacteria were meant to encompass
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Fig. 1. Location of the areas used for both confirmatory and exploratory analysis (black) and only exploratory analysis (red). Black boxes
correspond to the NorwSea, NEAtl, WCAtl and EqAtl when looking from north to south. Red boxes correspond to the NEPac, CPac, EEP
and AntAtl when looking from north to south.

all pico-prokaryotes. NOBM phyto-PFT results have been
thoroughly evaluated against in situ and satellite estimates
in Gregg and Casey(2007).

The choice of NOBM model data used for training the
PhytoANN was dictated by two factors. First, there are not
enough in situ data at a sufficient spatial and temporal res-
olution that is sampled from the necessary range of biogeo-
chemical provinces. This is despite of the fact that a global
atlas of PFT biomass measurements has now been assem-
bled by the MAREDAT project (Smith and Pesant, 2012).
Unfortunately, its coverage of diatom (Leblanc et al., 2012)
and coccolithophore (O’Brien et al., 2012) measurements is
not enough to produce complete monthly climatology maps
beyond the northeast Atlantic. Second, only by training the
PhytoANN on other model phyto-PFT results can we later di-
rectly compare two model outputs to independent phyto-PFT
estimates within and outside of the training domain. We can
verify the second hypothesis of our study because the Phy-
toANN is not trained on any NOBM results that have a strong
bias in phyto-PFT biomass. Therefore, PhytoANN’s diatom
biomass projection in HNLC regions for example is not at
all influenced by NOBM’s overestimated diatom biomass in
these regions.

Additional independent phyto-PFT estimates come from
in situ and remote sensing observations. We used the same set
of JGOFS in situ data asGregg and Casey(2007), assuming
that differences in borders of their biogeographic provinces
and our regions of interest are small enough to allow for such
comparison. Where available, we referred to new data, for
example from the Equatorial Biocomplexity cruises in the
eastern equatorial Pacific (Taylor et al., 2011).

Remote sensing phyto-PFT biomass estimates came from
a bio-optical algorithm (Hirata et al., 2011, 2013). This
algorithm established error-quantified, synoptic-scale rela-
tionships between SeaWiFS Chl and 10 phytoplankton pig-

ment groups at the sea surface to determine phyto-PSC
and phyto-PFT estimates. Phyto-PFTs include diatoms, di-
noflagellates, green algae, prymnesiophytes (haptophytes),
pico-eukaryotes, prokaryotes andProchlorococcussp., while
phyto-PSCs include micro-, nano- and picoplankton. An ear-
lier version of the PSC component (Hirata et al., 2008) was
recently evaluated through a global intercomparison of such
algorithms (Brewin et al., 2011).

Remote sensing estimates of PIC concentration may be
used to discern regional patterns of seasonal to interan-
nual variability in coccolithophore biomass. PIC data were
derived using a two-band algorithm based on normalized
water-leaving radiance at 440 and 550 nm (Balch, 2005).
Though not directly correlated to living coccolithophore
biomass, PIC was established as a good proxy for monitor-
ing changes in the distribution of this PFT (e.g.,Balch et al.,
2011; Moore et al., 2012). Data were downloaded from the
NASA Giovanni portal.

2.3 Spatial and temporal domains

Figure 1 shows the geographical extent of the areas used
for training and evaluation (confirmatory analysis) and pro-
jection of new states (exploratory analysis). Four Atlantic
regions, corresponding to the northeast Atlantic Ocean
(NEAtl), the Norwegian Sea (NorwSea), the western central
Atlantic Ocean (WCAtl) and the equatorial Atlantic Ocean
(EqAtl), were included in both the confirmatory and ex-
ploratory part of the analysis. These areas were selected for
training because (i) together they provided a very wide geo-
graphical and seasonal range of input and target values suffi-
cient to make the PhytoANN sensitive to most biogeochem-
ical conditions, and (ii) their NOBM PFT biomass estimates
were in general in very good agreement with observations
available from the Atlantic Basin (Gregg and Casey, 2007).
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Fig. 2.A conceptual model illustrating how the ANN interprets the relationship between 5 (green circles), input variables, as well as between
input and 4 target variables (yellow circles). Each hidden neuron in layer 1 computes the sum of input values multiplied by connection
weights (w) and a bias term (b), and calculates the activation value of each neuron (being a nonlinear sum of all inputs). Each output neuron
in layer 2 is a linear sum of the activation values from all layer 1 neurons multiplied by respective connection weights and a bias term.

We used a total of 87 000 data points from the selected train-
ing regions. Regions used exclusively for exploratory analy-
sis included the eastern equatorial Pacific Ocean (EEP), the
central subtropical Pacific Ocean (CPac), the subarctic north-
east Pacific Ocean (NEPac) and the Antarctic Atlantic Ocean
(AntAtl). From the Appendix Table A2 we can see that none
of the input values used for exploratory analysis exceeds the
range used during training. This means that chosen training
regions are ecologically representative also of the conditions
observed in HNLC regions. Details of spatial and temporal
resolution of data are included in the Appendix Table A1.

2.4 PhytoANN training and evaluation

In this study we use a basic feedforward ANN that contains
inputs, outputs and one hidden and one output layer fully
connected via ANN’s free parameters (weights and biases)
as illustrated in Fig.2. The feedforward structure means that
there is a unidirectional flow of information without feed-
back from the output back to the input layer. We use super-
vised learning to train the ANN to interpret complex and non-
linear relationships between ecological indicators (inputs)
and phyto-PFT biomass (targets) by iteratively introducing
a number of input–output example sets. We carry out the
training using a common back-propagation (BP) algorithm
that involves the forward and backward phase. During the
first phase, free parameters of the network are fixed, and the
input signal is propagated through the network layer by layer
(Fig. 2). The activation value of each processing unit, called
a neuron, is determined by the sum of inputs multiplied by
the connection weight. The forward phase finishes with the
computation of an error term being the difference between
the generated output and the known target. During the back-
ward phase, the error term is propagated through the ANN
in the backward direction. It is during this phase that adjust-

ments are applied to weights and biases of the network so
as to minimize the error term according to the mean-squared
error (MSE) criterion. The adjustment of these free parame-
ters is performed according to the gradient descent rule. The
described procedure is common for many ecological appli-
cations of ANNs (Lek and Guegan, 1999). We use the Math-
works MATLAB ANN toolbox to perform all calculations.

Model training and evaluation is described in great detail
in Appendix A. Here, we describe the entire procedure with
consecutive steps from data selection and processing to Phy-
toANN model development and its application:

1. Select ecological indicators that fulfill the criteria of
Link et al. (2010).

2. Assemble a matrix of input and target data and place
them on a unified spatial and temporal grid.

3. Divide all available data between confirmatory and ex-
ploratory data sets.

4. Inspect histograms of individual input and target data,
and transform them onto a log-10 scale if their distri-
bution is non-normal.

5. Normalize all processed input and target data onto
a common minimum–maximum range (e.g.,−1 to
1) in order to avoid bias towards high-value in-
puts/outputs.

6. Divide the confirmatory data set into training (70 %),
testing (15 %) and evaluation (15 %) subsets, either
randomly or systematically.

7. Set up a feedforward ANN with one input, one hidden
layer and one output layer.
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Fig. 3. Scatter plots showing the emerging relationship between
PhytoANN diatom (left column) and coccolithophore (right col-
umn) biomass [mgChlm−3] (a–h) or % of total Chl(i, j) vs. in-
dividual ecological indicators color coded according to domain of
origin. On thex axis from top to bottom: SST, PAR, Wspd, MLD
and Chl. All data points come from exploratory analysis only, and
thus they are box-average and monthly average estimates from Oc-
tober 1997 to December 2004.

8. Select the type of transfer, performance and training
function, and initial ANN parameters. Initialize con-
nection weights and biases randomly within the net-
work.

9. Train the network with early stopping.

10. Evaluate ANN performance within confirmatory re-
gions by calculating error statistics.

11. Perform sensitivity analysis on key parameters listed
above and retrain the ANN to maximize performance.

12. Apply a total of 10 trained nets to time series from
exploratory regions to obtain ensemble mean results.

13. Normalize phyto-PFT biomass with respect to total
Chl to assure conservation of Chl biomass.

14. Compare the ensemble mean output with target as well
as independent data.
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Fig. 4. Scatter plots showing the emerging relationship between
PhytoANN cyanobacteria (left column) and chlorophyte (right col-
umn) biomass [mgChlm−3] (a–h) or % of total Chl(i, j) vs. in-
dividual ecological indicators color coded according to domain of
origin. On thex axis from top to bottom: SST, PAR, Wspd, MLD
and Chl. All data points come from exploratory analysis only, and
thus they are box average and monthly average estimates from Oc-
tober 1997 to December 2004.

3 Results and discussion

3.1 Ecological niches of PFTs

The first aim is to investigate how the PhytoANN interprets
the interactions between PFTs and their environmental indi-
cators. We break down the problem into four questions here.
Which interactions are linear and which nonlinear? How do
the interpretations vary across PFTs? Does the model capture
the same relationships that are described mathematically by
the NOBM that was used to train it? How are the weights
distributed among the interactions?

We answer the first three questions using information pre-
sented in Figs.3 and4. By plotting PhytoANN estimates of
phyto-PFT biomass against an observed range of one input at
a time, we detect very nonlinear relationships in all cases, and
for all phyto-PFTs. However, some linear patterns emerge af-
ter we separate the results according to the spatial domain of
origin. Consequently, we notice two distinct physical and/or
biogeochemical regimes that can be separated into high- and
low-latitude regions. All four phyto-PFTs exhibit similar re-
sponses to conditions in the NEAtl, NorwSea, NEPac and
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AntAtl (hereafter HighLat regime), but very different types
of responses to conditions in the EqAtl, EEP, WCAtl and
CPac (hereafter LowLat regime). In general, HighLat regime
is characterized by relatively lower SST and lower PAR but
higher Wspd and Chl compared to the LowLat regime.

Within a single regime, phyto-PFT biomass shows
stronger relationships to individual inputs. For example, coc-
colithopore biomass is positively correlated with PAR in
the HighLat regime (Fig.3d), and cyanobacteria biomass is
highly correlated with PAR in the LowLat regime (Fig.4c).
Compared to coccolithopores and cyanobacteria, diatoms
and chlorophytes exhibit little if any visible relationship with
individual indicators, except with Chl. We observe character-
istic relationships between Chl and all phyto-PFTs contribu-
tion to total Chl [%], which are in agreement with patterns of
covariability between Chl and phyto-PFT contribution [%]
derived for bio-optical algorithms (Hirata et al., 2011). Hi-
rata et al.(2011) concluded that Chl is not only an index of
phytoplankton biomass but also an index of phytoplankton
community structure at the synoptic scale. In the case of di-
atoms, we note a mean exponential increase in percentage of
total Chl as a function of log 10 of Chl. Our spectrum differs
fromHirata et al.(2011) in that there is a larger scatter around
the main trend towards the high-Chl concentration end. This
scatter is associated with lower diatom contributions found in
the NEAtl, NorwSea and partially also the NEPac (Fig.3i).
Comparing the contribution of PhytoANN coccolithophores
with haptophytes from the bio-optical model, the relationship
differs at the higher end of the Chl range. The PhytoANN es-
timates that coccolithophores make up a greater proportion
of total Chl under bloom conditions observed in the subarc-
tic regions (Fig.3j). This comparison should be viewed with
caution because coccolithopores constitute only a fraction of
the larger haptophyte phyto-PFT group considered byHirata
et al.(2011).

When comparing percentage of total Chl in cyanobacte-
ria in the PhytoANN (Fig.4i) with Prochlorococcusin the
bio-optical model (Hirata et al., 2011, their Fig. 2i), we see
that maximum percentage contribution is associated with low
total Chl in both models. Although the shapes of the two
distributions along the Chl gradient are very similar, there
are some differences in the magnitude of fractional contri-
bution at lowest Chl values. However, this difference would
be minimal if we assumed that in the NOBM (and thus in
the PhytoANN) the broad cyanobacteria group overlaps not
only with Prochlorococcusbut partially also with prokary-
otes classified separately in the bio-optical model (Hirata
et al., 2011, their Fig. 2g).

Chlorophytes are perhaps most difficult to evaluate be-
cause they should to some extent functionally resemble more
than one group in the bio-optical algorithm. In the Phy-
toANN, chlorophytes contribute the most to total Chl under
moderate Chl levels (Fig.4j). Such a pattern is in general
close to that of green algae in the bio-optical algorithm (Hi-
rata et al., 2011, their Fig. 2h). The only clear discrepancy

occurs for the NorwSea region, where the PhytoANN pre-
dicts very high percentage contribution of chlorophytes even
for the highest Chl values. The comparisons with the bio-
optical model therefore suggest that the PhytoANN overesti-
mates the contribution to total Chl of both coccolithophores
and chlorophytes in the North Atlantic Basin.

It is interesting to compare PhytoANN relationships with
those in the NOBM (Figs. B1 and B2). In general, we see that
the PhytoANN was able to capture the same general relation-
ships described mechanistically by the NOBM. Considering
that NOBM’s physical model is partially forced with simi-
lar sources of data as used for indicators of change in the
PhytoANN (e.g., SST, wind stress), this result need not be
surprising and may suggest that our derived relationships are
artifacts of the empirical or mechanistic relationships in the
NOBM. Nevertheless, we observe important differences in
how phyto-PFTs are distributed along environmental gradi-
ents in the two models, especially in areas modeled only dur-
ing exploratory analysis. The most striking difference is that
in the NOBM, NEPac and AntAtl coccolithophores seem to
fall into a separate environmental regime, unlike in the Phy-
toANN. In the NOBM, coccolithophores are poorly corre-
lated with SST, PAR, Wspd and MLD in those regions. Con-
sequently, their large percentage contribution to total Chl is
also not associated with high Chl concentration there. This
analysis confirms what was previously described byGregg
and Casey(2007), namely that the NOBM does not pre-
dict coccolithophore blooms coincident with high diatom
biomass concentrations anywhere outside of the nutrient-
replete North Atlantic Basin.

The results of this analysis also describe the ecological
niches of individual phyto-PFTs that can be compared to
the traditional phytoplankton mandala. In the PhytoANN, di-
atom blooms occur under SST between 5 and 15◦C, PAR
between 20 and 45 Wm−2, Wspd between 5 and 10 ms−1,
and Chl above 0.25 mgm−3. Coccolithophores are in general
more abundant under low mixing (shallower MLD) regimes
– consistent with what we know of their ecology (Balch,
2004). Still, they occupy a similar niche to diatoms. Their
biogeographical extent is thus considerably greater than in
the NOBM (Gregg and Casey, 2007) or another global dy-
namic PFT model – PlankTOM (Sinha et al., 2010). High-
latitude blooms predicted by PhytoANN both in the Atlantic
and the Pacific are in agreement with in situ and remote sens-
ing coccolithophore estimates in surface waters, as well as
with geological records of coccoliths in bottom sediments
(Balch, 2004, and references therein). Cyanobacteria and
chlorophytes dominate the LowLat regime, which in gen-
eral can be described by high SST, high PAR, low Wspd and
shallow MLD conditions. Their ecological niche is consis-
tent with Margalef’s mandala and numerous field studies that
concluded that the intensity of surface blooms of cyanobac-
teria is regulated by a combination of climatic factors, such
as water temperature, solar radiation, and wind speed (Stal
et al., 2003; Whitton and Potts, 2000).
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Fig. 5. Hinton-weight diagram depicting relative weights assigned
to all connections within 1 of 10 PhytoANNs used to create the en-
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correlation. The area of the square is proportional to the strength
of correlation. The left-hand side illustrates the connection weights
between the input and the hidden layer. The right-hand side illus-
trates the connection weights between the hidden layer and the out-
put layer.

Results from Figs.3 and4 also indicate the role of inter-
actions between two or more indicators. For example, under
the same levels of PAR, there is large buildup of cyanobacte-
ria biomass in the LowLat regime but no such buildup in the
HighLat. This is clearly because of coinciding differences
in SST but likely also variable Wspd and MLD conditions
(Fig. 4). Of course these interactions are well known and
appear also in the NOBM (Figs. B1 and B2). Yet it is im-
portant to note that the PhytoANN is capable of interpret-
ing these complex and often nonlinear interactions between
phyto-PFTs and their ecological indicators because it enables
us to verify the first hypothesis of this study.

In order to now say what is the distribution of weights as-
signed to these interactions, we use a Hinton diagram from
1 of 10 PhytoANNs used to form the ensemble. In Fig.5
we see that Chl, SST, PAR and Wspd are strongly correlated
within a single neuron. MLD appears to be the least signifi-
cant indicator on its own (but could be significant in combi-
nation with others). While it may often be closely associated
with Wspd, it can also have an opposite sign assigned, as in
the fifth and seventh neuron. We note that in this net, only the
sixth and eighth neurons store very similar information about
the interactions between inputs. In most other nets included
in the ensemble, all eight neurons provide unique informa-
tion. With respect to connections from the hidden layer to
the output later, sign and strength of correlations differ from
one neuron to another. Note that any one neuron may store
important information about one or two PFTs but at the same
time provide insignificant information about the remaining
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Fig. 6. Approximate box or basin-average comparison between
the 1997–2004 annual mean percentage contribution to total Chl
biomass of(a) diatoms,(b) coccolithophores,(c) cyanobacteria and
(d) chlorophytes according to NOBM (blue), PhytoANN (red) and
in situ (green) estimates. In situ estimates were derived from both
C- and Chl-based measurements. Here, estimates were derived from
a combination of data collected byGregg et al.(2003) (http://gmao.
gsfc.nasa.gov/research/oceanbiology/data.php) and EEP data from
Taylor et al.(2011, their Table 3).

phyto-PFTs. This indicates a rather unique phyto-PFT re-
sponse to various combinations of environmental conditions
interpreted by the PhytoANN.

3.2 Annual average phytoplankton community
composition

The relationship between phyto-PFTs and ecological indi-
cators also reveals important regional differences in phy-
toplankton community composition. In Fig.6 we compare
NOBM and PhytoANN annual mean relative contribution to
total Chl biomass and relate it to some available field esti-
mates. In diatoms, we note that PhytoANN’s estimates are in
line with those of NOBM in areas where NOBM was used
for training. However, significant differences are noted else-
where. In the NEPac and the AntAtl, PhytoANN predicts less
than 20 % annual contribution of diatoms, which is much
closer to observations compared to NOBM (Fig.6). In the
EEP, although PhytoANN estimates a much smaller diatom
contribution relative to NOBM (18 vs. 65 %), it is still twice
as high as the less than 10 % observed contribution.
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Fig. 7. 1997–2004 monthly climatology of NOBM (dashed lines
with open circles) and PhytoANN (solid lines) phyto-PFT biomass
estimates from confirmatory (a NEAtl, b NorwSea,c EqAtl, d
WCAtl) and exploratory areas (e EEP, f CPac,g NEPac,h An-
tAtl). Each plot includes four PFTs: diatoms (red), coccolithophores
(blue), chlorophytes (green) and cyanobacteria (cyan). All phyto-
PFT biomass in units of mgChlm−3.

In NOBM, high diatom contribution is almost always at
the expense of severely underestimating coccolithophores.
This is in contrast to PhytoANN, which in the NEPac and
AntAtl predicts their 60 % contribution compared to almost
0 % in the NOBM (Fig.6). It should be noted that NOBM ap-
pears to overestimate coccolithophore contribution in two out
of four regions used to train the PhytoANN (with two others
not evaluated against observations). Hence, it is expected that
the PhytoANN overestimates coccolithophores in those and
other regions as well (e.g., EEP, NEPac and AntAtl). Never-
theless, the fact that PhytoANN predicts a significant contri-
bution of coccolithophores suggests the existence of suitable
ecological niches for coccolithophores in the NEPac and An-
tAtl, as well as in the EEP.

Similarity of ecological niches of the NEAtl, NEPac and
AntAtl are evident both in PhytoANN and NOBM. For ex-
ample, both models rely on a similar total Chl, which is not
surprising considering that NOBM assimilates SeaWiFS Chl
during its simulation. Therefore, the main difference between
the model phyto-PFT distributions in these regions origi-
nates primarily from distinct partitioning of Chl between the
phyto-PFTs. In NOBM it depends on nutrient uptake and
light availability in a dynamical context, while in PhytoANN
it depends on the sum of favorabilities of these and other en-
vironmental conditions.

As for cyanobacteria, the largest difference between the
two models is observed in the EEP (Fig.6). Here, higher
biomass estimates from PhytoANN are closer but still signif-
icantly lower than observed. On the other hand, though simi-
lar to NOBM, PhytoANN biomass estimate is much too low
in the EqAtl relative to observations. This is likely the cause
of its underestimate in the ecologically similar EEP. In the
WCAtl box, both models predict a proportion of cyanobac-
teria biomass that is higher than reported from the Bermuda
Atlantic Time Series (BATS) (Lomas and Bates, 2004).

In general, both NOBM and PhytoANN struggle to re-
flect the observed contribution of chlorophytes to total phy-
toplankton biomass (Fig.6). We note that NOBM underes-
timates their contribution in the NEAtl and the WCAtl – re-
gions used to train PhytoANN. We had no available data to
compare chlorophytes specifically in the NorwSea and the
EqAtl. As for the exploratory regions, PhytoANN projects
chlorophyte biomass levels in better agreement with obser-
vations. Nevertheless, it underestimates their contribution in
the EEP, the AntAtl and the NEPac. In the CPac, contrary to
NOBM, it is actually not capable of simulating any chloro-
phytes. This is likely related to the fact that PhytoANN’s
training fit is lowest in the WCAtl, which is also ecologically
most similar to the CPac.

3.3 Seasonal succession of phyto-PFTs

How do these ecologically driven predictions of phyto-PFT
distributions affect what we know about seasonal succession
of phytoplankton in these selected regions? In Fig.7a–d we
see that our model can reproduce the monthly climatologies
of NOBM phyto-PFTs very well in regions used for train-
ing. In the two adjacent boxes of NEAtl and NorwSea, coc-
colithophores increase substantially in biomass during the
spring bloom and become by far the most dominant group by
summer time. The spring phytoplankton bloom also shows
a large increase in diatom biomass, both in the NOBM and
PhytoANN. Chlorophytes make up the most of the smaller
fall bloom, while cyanobacteria constitute an insignificant
part of the community. Coccolithophores reach their peak
in June, which is in agreement with field measurements of
Emiliania huxleyiblooms (Fernandez et al., 1993; Raitsos
et al., 2006) and remote sensing PIC estimates (Balch, 2004)
(Fig. 8a). The timing of the peak of the large spring (April)
and smaller fall diatom bloom (October) match well with
field studies (Edwards and Richardson, 2004; Barton et al.,
2013) but also with estimates from the bio-optical model of
Hirata et al.(2011) (Fig. 8a). As expected, the fall bloom,
centered around August and September, is mostly made up
of chlorophytes. This is also in agreement with long-term ob-
servations at these latitudes (Edwards and Richardson, 2004;
Barton et al., 2013). The seasonally changing ratio of diatoms
to dinoflagellates is thus well represented in the PhytoANN,
and is similar to NOBM results (Fig.8a) and in situ data
(Leterme et al., 2005).
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PhytoANN predicts that coccolithophore biomass is
higher than that of diatoms, even at the peak of the spring
phytoplankton bloom. Even though coccolithophore blooms
are very abundant in the North Atlantic, especially southwest
of Iceland and in the Norwegian Sea, the model is likely to
overestimate their contribution here, especially in the spring.
In the NorwSea, the bio-optical model ofHirata et al.(2011)
shows haptophyte biomass lower than that of diatoms dur-
ing the March–June period (Fig.8a). On the other hand,
the most recently improved PhytoDOAS bio-optical algo-
rithm predicts spring and summer coccolithophore biomass
as high as in NOBM and PhytoANN (Sadeghi et al., 2012,
their Fig. 7). The summer peak in coccolithophore biomass
is also seen in the PIC time series (Fig.8a). However, the
distribution is much narrower around the June peak com-
pared to NOBM and PhytoANN. It also shows a more pro-
nounced decline in biomass in late summer and early fall.Al-
vain et al.(2008) analyzed monthly climatology results from
their bio-optical PHYSAT diagnostic model in the North At-
lantic box (40–70◦ N, 60–20◦ W) which has a similar lati-
tudinal extent to our NEAtl box. They concluded that di-
atoms contribute only at most 20 % of total Chl during the
spring phytoplankton bloom (their Fig. 8). This does not
mean, however, that the remaining 80 % from nanoeukary-
otes explains the really high proportion of coccolithophores
in the PhytoANN. One reason for coccolithophore overes-
timation in the NEAtl and NorwSea might be the fact that
both NOBM (Fig. B1j) and PhytoANN (Fig.3j) associated
coccolithophore outbursts with highest Chl values. This is in
contrast to the findings ofFernandez et al.(1993), who re-
ported a huge coccolithophore bloom characterized by high
PIC levels but relatively low Chl (less than 1 mgm−3) and
particulate organic carbon concentrations. It is possible that
modeling calcifier biomass in general should not be based on
units of Chl.

It is noteworthy that the distribution of coccolithophores
and diatoms even in a 3-month average satellite image is ex-
tremely patchy (Sadeghi et al., 2012). Patchiness in phyto-
PFT distributions suggests some spatial variability in eco-
logical niches within the North Atlantic biogeochemical do-
main. Probability of diatom occurrence modeled byRaitsos
et al.(2008) also varied greatly across the basin even during
a 1-week snapshot image. The recent North Atlantic Bloom
Experiment (NABE) in 2008 confirmed the extreme patch-
iness in patterns of biological productivity, phytoplankton
species composition and associated carbon fluxes in this re-
gion (Alkire et al., 2012; Mahadevan et al., 2012). The rel-
atively coarse resolution of NOBM data used in this study
does not resolve the effects of this patchiness. We are cur-
rently testing the hypothesis that, given a higher spatial and
temporal resolution of inputs, PhytoANN might generate
a more complex image of phyto-PFT biogeography in re-
sponse to a dynamic physical and biogeochemical environ-
ment. The purpose of this study, however, is to evaluate the
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Fig. 8.1997–2004 monthly climatology of diatom (red) and coccol-
ithopore (blue) biomass from PhytoANN compared with diatoms
and haptophytes (magenta) from the bio-optical algorithm as well
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NEPac and(d) AntAtl. PhytoANN and PIC results are marked with
a solid line, while the bio-optical algorithm with a dashed line. PIC
values in molCm−3 were multiplied by an arbitrary factor of 300
to match scales.

performance of our novel approach only in terms of domain-
averaged monthly climatologies of four phyto-PFTs.

In the absence of strong seasonality in the EqAtl, the most
pronounced feature is the summer to early fall increase in di-
atoms and chlorophytes (Fig.7c). Coccolithophores show lit-
tle annual variability, and cyanobacteria remain at an almost
constant biomass level. Here, PhytoANN results match those
of NOBM very well. Minimum discrepancies in the timing
of the maximum phyto-PFT biomass are insignificant con-
sidering the low (less than 0.15 mgm−3) total Chl biomass
levels.

In Fig. 7d PhytoANN exhibits a very different commu-
nity composition pattern characteristic of the WCAtl. Here,
cyanobacteria dominate from summer to winter, while coc-
colithophores temporarily dominate the community from
March until May. Diatoms reach a peak in their relative con-
tribution in March. These results, similar to NOBM, are con-
sistent with observations at BATS, where haptophytes make
up between 25 and 46 % of total phytoplankton biomass (Lo-
mas and Bates, 2004). At the BATS site, haptophytes are
mostly composed of coccolithoporids such asEmiliania hux-
leyi (Haidar and Thierstein, 2001). PhytoANN and NOBM
predict very little chlorophyte activity under these environ-
mental conditions. However, according toLomas and Bates
(2004), pelagophytes and prasinophytes (but not dinoflagel-
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lates) can make up a substantial proportion of the winter–
spring bloom population, on average around 15 %. We note
that PhytoANN and NOBM do not capture the observed sig-
nificant interannual variability in the ratio of chlorophytes to
cyanobacteria during the bloom season (Lomas and Bates,
2004).

Very low phyto-PFT biomass levels are also estimated
for the CPac region (Fig.7f). PhytoANN captures patterns
simulated by NOBM very well, namely that cyanobacte-
ria are most abundant year-round. Coccolithophores increase
slightly in concentration during summer months. Diatoms
and chlorophytes have extremely low biomass levels. Com-
pared to the WCAtl box, they show no increase during the
winter–spring bloom period.

We find large differences between PhytoANN and NOBM
results in all HNLC regions. In the EEP, both models show
a similar weak seasonal variability with only a slight in-
crease in early fall (Fig.7e). The peak can be attributed to
a coincident maximum tropical instability wave activity that
enhances upwelling of cold, nutrient-rich waters and thus
promotes higher new production (e.g.,Evans et al., 2009;
Strutton et al., 2001; Vichi et al., 2008). PhytoANN predicts
chlorophytes to dominate the phytoplankton community and
diatoms and coccolithiphores to be much lower in biomass.
This is in marked contrast to the climatology picture from
NOBM, where diatoms are by far the most dominant func-
tional group, indicating a very different interpretation of their
role in the EEP ecosystem. According to the PHYSAT diag-
nostic and PISCES dynamic models (Gorgues et al., 2010)
diatoms rarely dominate in this region. In fact, their contribu-
tion to total phytoplankton biomass does not exceed 10 % on
average. This long-term low diatom biomass level has also
been confirmed by several field estimates conducted at dis-
tinct locations and at different times of the year (Blanchot
et al., 2001; Dandonneau et al., 2004; Taylor et al., 2011).
Average diatom biomass estimated by the bio-optical algo-
rithm is even lower than in PhytoANN (Fig.8b), and is thus
closest to field observations. Our PhytoANN model predicts
no marked differences in the seasonal distribution of coccol-
ithophores, which are more abundant than diatoms on an an-
nual average. This is consistent with bio-optical estimates of
haptophytes (Fig.8b). PIC climatology also indicates little
seasonal variability and concentration levels much lower than
in the NEAtl (Fig.8b compared to Fig.8a).

The NEPac region reveals the largest inconsistencies
between models and observations in diatom and coccol-
ithophore monthly climatologies. According to NOBM, di-
atoms reach highest absolute biomass in NEPac, higher even
than in the North Atlantic. They reach their spring peak in
May and their fall peak in September (Fig.7g). Chloro-
phytes maintain low biomass but flourish in the fall. Max-
imum chlorophyte biomass level is approximately half that
of diatoms during their peak in September. Coccolithophores
and cyanobacteria do not appear affected by strong season-
ality in the environmental forcing and contribute little, if at

all, to total phytoplankton biomass. PhytoANN, on the other
hand, predicts a very different phyto-PFT distribution in re-
sponse to changing environmental conditions. Here, coccol-
ithophores remain the dominant group throughout the year.
Their biomass is highest in May but does not decline much
until October. Diatoms peak in May but have drastically
lower biomass levels from July to March. In contrast to
NOBM, PhytoANN diatoms do not bloom in the fall. In Phy-
toANN, this late peak is attributed to coccolithophores and
chlorophytes.

How does this correspond to what we know about cli-
matology of these phyto-PFTs? Analyzing the seasonality
of coccolithophore blooms in the Bering Sea,Iida et al.
(2002) found significant interannual variability in the peak
areal coverage between 1998 and 2001. The general pat-
tern, however, suggested a spring peak between April and
May and a fall peak between August and September. Up
to two-month shifts were recorded for exceptionally warm
years (1998) and cold years (1999) caused by anomalous El
Niño–Southern Oscillation (ENSO) activity in the equatorial
Pacific. According to the bio-optical model, haptophytes fol-
low the diatom distribution closely. They exhibit a strong but
smaller than diatom increase in biomass in May and a weaker
but greater than diatom increase in biomass in November
(Fig. 8c). This picture is thus most similar to NOBM. PIC
estimates suggest that coccolithophores are very abundant
from March to October and reach a maximum in September.
It appears that both NOBM and the bio-optical algorithm at-
tribute much of the summer and fall Chl to diatoms rather
than coccolithophores, in contrast to in situ (Iida et al., 2002)
and remote sensing observations (Fig.8c). We know that the
PhytoANN overestimates the proportion of coccolithophores
on the annual basis (Fig.6c), yet its monthly climatology
is closer to the one revealed by PIC and in situ data com-
pared to NOBM and the bio-optical model. It is puzzling,
however, that PIC does not reveal a maximum spring coccol-
ithophore peak seen inIida et al. (2002) and simulated by
all the models. Regardless of the discrepancies between tim-
ing and magnitude of diatom and coccolithophore blooms in
the NEPac, it is clear that PhytoANN correctly predicts that
coccolithophores are at least as dominant as diatoms in the
region. Therefore, it provides an improvement over its train-
ing model, NOBM, which does not allow coccolithophores
for to utilize a very favorable ecological niche. We consider
this result the most important evaluation of our PhytoANN
ecological indicator model.

In the AntAtl, NOBM predicts an absolute dominance of
diatoms that reaches its maximum levels between November
and January (Fig.7h). There is a small chlorophyte increase
following the winter diatom bloom, but no seasonal response
of coccolithophores. This is in marked contrast to both the
bio-optical model and PIC estimates. The bio-optical model
shows that haptophytes follow the seasonal distribution of
diatoms and that their biomass is higher than diatoms in all
seasons except for November–January, when they are more
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or less equal. PIC climatology is similarly characterized by
a winter maximum and a summer minimum. We also ob-
serve that the AntAtl PIC maximum is lower than the boreal
summer and early fall maximum in NEPac, and at the same
time higher than the boreal winter PIC minimum in NEPac.
This observation is consistent with the monthly global cli-
matology analysis ofMoore et al.(2012), whose coccol-
ithophore bloom classifier describes eight optical water types
from multiple satellite sensors.

PhytoANN’s monthly coccolithophore climatology
matches well with bio-optical algorithm results, also in
relation to other basins. Furthermore, PhytoANN suggests
that chlorophytes constitute a substantial portion of total
Chl from April to September (close to 50 %). This is in
close agreement with another bio-optical model result of
Alvain et al.(2008, their Fig. 10), who, based on 1998–2006
monthly climatology, predicted that diatoms contribute
at most 52 % to total Chl and that nanoflagellates (most
equivalent to our chlorophytes) contribute over 80 % from
April to September in the Southern Ocean (40–70◦ S, 180–
180◦ E). We conclude that PhytoANN is able to improve
the phyto-PFT monthly climatology picture from NOBM in
the AntAtl using the knowledge of ecological rules inferred
during training from the NOBM itself.

Quantifying coccolithophore biomass has been extremely
difficult both in dynamic and diagnostic models. Except for
the recently improved PhytoDOAS algorithm (Sadeghi et al.,
2012), most bio-optical models show the spatial extent of
bloom areas (Alvain et al., 2008; Moore et al., 2012). When
analyzing the results of the Dynamic Green Ocean Model,
Le Quéré et al.(2005) noted that model calcifiers grow be-
tween 40◦ N and 40◦ S but they are almost absent poleward of
these latitudes. Satellite observations following the method
of Brown and Yoder(1994) reveal highest coccolithophore
bloom frequencies in the 40–70◦ latitude band of both hemi-
spheres (Le Quéré et al., 2005, their Fig. 10).Le Quéré et al.
(2005) suggested that this is because the traits defined for
calcifiers and the zooplankton that graze on them do not give
calcifiers a competitive advantage at high latitudes. Com-
pared to other PFTs, they have a lower maximum growth
rate, higher light affinity and lower resistance to darkness. In
the NOBM, coccolithophores are very abundant beyond 40◦

of latitude but only in the North Atlantic. In high latitudes
of other basins they are severely outcompeted by diatoms
(Gregg and Casey, 2007). Current dynamic model results in-
dicate that we have an insufficient knowledge of either traits
of calcifiers (e.g., vital rates) or their protective defenses
against zooplankton grazing (Strom, 2002). Even though our
PhytoANN considers neither nutrient competition nor zoo-
plankton grazing responses, it provides a more realistic and
ecologically consistent picture of coccolithophore distribu-
tion in the high-latitude regions.
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Fig. 9.October 1997–December 2004 time series of the percentage
contribution to total Chl of four phyto-PFTs in the EEP from(a)
NOBM and (b) PhytoANN, as well as that(c) of six phyto-PFTs
from the bio-optical algorithm (Hirata et al., 2013). Additionally,
time series of total Chl (normalized to units of percentage contribu-
tion) measured by SeaWiFS is included in panel(a). Variability in
total Chl corresponds equally to total Chl in the PhytoANN (which
normalizes total phyto-PFT biomass to total SeaWiFS Chl), the bio-
optical model Chl and the NOBM (which assimilates satellite Chl).

3.4 Dramatic shifts in phyto-PFT distribution

We also wanted to check how our diagnostic model per-
forms when it comes to projecting changes under extreme
input conditions. Here, we choose to focus on the EEP where
ENSO contributes the most to temporal variability (Wang
and Fiedler, 2006, and references therein). ENSO cycles not
only shift total biomass by almost two orders of magnitude
but also alter the phytoplankton community composition sig-
nificantly. In order to really test the PhytoANN response to
the extreme 1997–1999 El Niño and La Niña events, we
did not only exclude the EEP but also the October 1997–
December 1999 period from all data used for confirmatory
analysis.

In Fig.9a we first note that the NOBM captures a sharp de-
crease in diatoms percentage contribution to total Chl during
El Niño. The coincident decrease in chlorophytes contribu-
tion is not distinct from the monthly climatological pattern
(Fig. 7e). Coccolithophores and cyanobacteria respond pos-
itively to the warmer but nutrient-poor El Niño conditions.
In the PhytoANN, both diatoms and chlorophytes contribute
much less to total Chl from October 1997 to summer 1998
than on a long-term average (Fig.9b). Also, contrary to the
NOBM, coccolithophores do not increase their contribution
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to total Chl in response to El Niño. In turn, cyanobacteria
dominate the phytoplankton population as they constitute up
to 80 % of total Chl biomass around the peak of El Niño con-
ditions.

In response to the subsequent increase in total Chl dur-
ing La Niña event, diatoms in the NOBM restore their high
contribution, achieving more than 80 % of total Chl by fall
1998. In contrast, coccolithophores and cyanobacteria in the
NOBM reach their minimum contribution to total Chl by the
beginning of 1999. We also note that the 1997–2005 mean
diatom percentage contribution is grossly overestimated in
the NOBM. In the PhytoANN, we see a different response of
the phytoplankton community. All phyto-PFTs return to their
average contribution levels but do not reveal the expected
equally dramatic changes in phytoplankton community com-
position associated with La Niña high Chl blooms. The sub-
stantial increase in Chl is mostly attributed to chlorophytes
and only secondly to diatoms. Compared to the NOBM re-
sults, the PhytoANN suggests more coexistence of phyto-
PFTs even under the extreme La Niña conditions. We also
note that along the entire time series we see evidence of coc-
colithophores becoming the dominant group at times (fall
1999 and 2000) in PhytoANN (Fig.9b). NOBM simulates in-
terannual variability in coccolithophore biomass as well but
in different years (fall 2002 and 2003) and never beyond the
diatom levels (Fig.9a). This suggests that the two models
also predict different ecological responses of phyto-PFTs to
interannual changes in the ecology of the EEP.

In the bio-optical model (Fig.9c), haptophytes, which in-
clude but are not limited to coccolithophores, dominate the
biomass spectrum consistently throughout the entire time se-
ries. The sum ofProchlorococcusand prokaryotes are on
a similar level to cyanobacteria modeled by the PhytoANN,
but markedly higher than in the NOBM. Diatoms remain
on a very low (less than 10 %) level of contribution to to-
tal Chl, in close agreement with in situ observations (e.g.,
Taylor et al., 2011). The bio-optical model reveals a moder-
ate increase inProchlorococcusand prokaryotes contribution
to total Chl during El Niño, and it also captures the large
increase in diatom contribution during the subsequent La
Niña event. During this time diatoms far exceed their long-
term average levels. Such a response was also indicated by
in situ (Chavez et al., 1999), dynamic (Gorgues et al., 2010)
and some remote sensing (Masotti et al., 2011) modeling
studies, which report that diatoms first decreased and later
increased significantly in response to El Niño and La Niña,
respectively.

Based on these results, we can conclude that our diagnos-
tic model appears to be moderately sensitive to extreme envi-
ronmental perturbations and can detect only some significant
temporal shifts in phytoplankton community composition.
These shifts are suggested to occur even when total Chl levels
do not fluctuate much. Neither the NOBM nor the PhytoANN
fully capture the observed strong changes in diatom contri-
bution during an extreme ENSO cycle. Both models perform

better when simulating changes in response to El Niño rather
than La Niña conditions. Higher spatial and temporal resolu-
tion of model estimates would allow for testing for whether
our model is also sensitive to high-frequency submesoscale
shifts in phyto-PFT distribution attributed to passing tropical
instability waves (Palacz and Chai, 2012; Parker et al., 2011).

3.5 Assessment of model limitations

First, the ecological indicators used by PhytoANN do not
include nutrients concentration and zooplankton grazing
explicitly. Effects of changing nutrient concentrations are
largely inferred from changes in SST, as SST and nitrate are
often closely correlated, e.g., at the BATS site (Nelson et al.,
2004). Including field measurements of Si and Fe as separate
indicators should potentially improve our model predictive
skill. However, using NOBM nutrient fields as inputs did not
improve PhytoANN performance in either confirmatory or
exploratory analysis in any significant manner.

We realize that HNLC regions are primarily Fe limited,
while the northern hemispheric Atlantic is not. Therefore,
we would expect physiological mechanisms of some phyto-
PFTs in the exploratory regions to be different from those
in the training regions. There are two main possible expla-
nations as to why PhytoANN results in HNLC regions are
closer to the observed in comparison to the NOBM (which
uses Fe as a state variable). On the one hand, the PhytoANN
could implicitly take the role of Fe in HNLC waters into ac-
count by assuming that Fe-limiting conditions coincide with
some combination of other indicators considered. Knowing
that Chl is a strong indicator in the PhytoANN, implicit ef-
fects of Fe could be expected. On the other hand, it is possible
that the PhytoANN only weakly, if at all, accounts for Fe-
limited conditions but nevertheless projects more reasonable
HNLC phytoplankton composition compared to NOBM. In
such case, our PhytoANN results do not suggest that Fe is not
an important physiological regulator but rather indicate that
Fe is not necessarily a key indicator of phytoplankton com-
munity composition, or that Fe may not be adequately rep-
resented in current models. Scarce Fe measurements and the
lack of their time series still limit the accuracy of Fe param-
eterizations, which in turn lead to potential errors in global
biogeochemical models.

We speculate that some grazing effects are only implic-
itly included in our model through considering total Chl
as an indicator. However, this does not resolve phyto-PFT-
specific grazing pressures. Consequently, PhytoANN’s inter-
pretation of ecological rules distinguishing between phyto-
PFTs is strongly biased towards bottom-up control processes.
We are currently developing a prototype of a similar model
that includes feedback from key zooplankton PFTs. It is to be
implemented in the North Atlantic Basin, where basin-wide
long-term coverage of Continuous Plankton Recorder data
enables such an experiment (Raitsos et al., 2008).
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Second, the source of several ecological indicators is com-
mon to the NOBM and the PhytoANN. This means that Phy-
toANN’s interpretation of some the relationships between
phyto-PFTs and the environment is not necessarily indepen-
dent of NOBM’s. However, this does not hinder the verifica-
tion of our hypotheses, especially considering the large dif-
ferences in phyto-PFT distributions in regions used only for
exploratory analysis.

Third, we assume that the NOBM phyto-PFT distribution
used in training most closely represents the in situ conditions
in the Atlantic Basin. This assumption is based on the fact
that NOBM assimilates SeaWiFS Chl data to correct for to-
tal PFT biomass levels and that it was generally positively
evaluated against observations in the North Atlantic (Gregg
and Casey, 2007), among other regions. Although in situ
data would provide the ideal input, currently available in situ
phyto-PFT biomass data, with strong seasonal and geograph-
ical bias, are insufficient to represent most of biogeochemical
conditions in the open ocean.

Fourth, PhytoANN shows only a surface picture of phyto-
PFT biogeography. This limitation will be difficult to over-
come considering that all remote sensing indicators provide
a surface view themselves; however there are approaches that
try to account for vertical changes in bio-optical algorithms
(e.g.,Uitz et al., 2006; Brewin et al., 2010).

4 Implications

The results of this study highlight the benefits of using ad-
vance statistical techniques to unravel complex and highly
nonlinear ecological interactions, with implications for bio-
geosciences and marine ecosystem management alike. We
demonstrate that, through an artificial neural network, we
can combine remote sensing and dynamic model results to
generate new, ecologically consistent estimates of phyto-PFT
distribution in a wide range of biogeographic conditions. If
ecological rules can be extracted from weights assigned to
connections within PhytoANN, then we can provide biogeo-
chemically specific parameterizations of phyto-PFT growth
functions, which are currently too rigid to capture the global
variability in phytoplankton vital rates. This approach should
help model the global distribution of silicifiers and calcifiers
correctly so that we can reduce the uncertainty on how much
atmospheric carbon is being fixed into biomass and how
much is being exported into the deep ocean (Francois et al.,
2002; Rost and Riebesell, 2004; Sarmiento et al., 2002). In
turn, this will improve our future projections of global carbon
fluxes and climate mitigation plans.

Unlike other diagnostic PFT models, PhytoANN can be
used to make future projections under scenarios of climate-
induced changes to key environmental indicators. This is be-
cause it takes inputs that are also modeled by most coupled
NPZD models running in forecast mode. In this study, we
verify the hypothesis that PhytoANN is able to interpret the

complex and nonlinear interactions between phyto-PFTs and
the environment, at least to the same extent as the original
training model, yet in a fraction of time required to per-
form a dynamic simulation. We speculate that our PhytoANN
could be used to interpret similar relationships in an ensem-
ble of coupled models and later applied to future time series
of indicators of change. This would provide a novel frame-
work for constructing such ensemble model projections to
examine the differences and similarities between them, and
eventually lead to better constrained future projections of
PFT states.

Furthermore, PhytoANN-type models can further be de-
veloped to look at phytoplankton size classes and their de-
pendency on changing environmental conditions, such as
temperature. Shifts in community size spectrum in response
to rising temperatures are suggested by some studies (e.g.,
Hilligsøe et al., 2011), yet in others they are shown to depend
primarily on total biomass and productivity (e.g.,Maranón
et al., 2012). Hence, ANNs could prove useful in examining
these interactions in the context of variability among biogeo-
chemical provinces rather than global average trends.

Similarly, this approach can be potentially expanded to
include higher trophic levels, from zooplankton functional
groups to fish species. Depending on data availability among
other things, this could first be tested within a single ecosys-
tem. If successful, such a model could provide an alternative
framework to the newly proposed general ecosystem models
(GEMs) that aim at resolving complex and adaptive proper-
ties of ecosystems (Purves et al., 2013). ANNs are already
heavily relied upon in system control and management ap-
plications in other disciplines such as electrical engineer-
ing, medical science or business and economics (Anandara-
jan et al., 2001; Jaeger and Haas, 2004; Khan et al., 2001).
Here, we demonstrate that only very few measurable, spe-
cific and sensitive indicators of change of phyto-PFTs are
sufficient to capture key seasonal to interannual patterns of
their distribution. While it is far more difficult to include in-
dicators of change of key zooplankton and fish species in an
ANN framework, such efforts are being currently undertaken
under the auspices of the European Union 7th Framework
EURO-BASIN (EuropeanBasin-scaleAnalysis, Synthesis
andIn tegration) project (http://www.euro-basin.eu/).
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Appendix A

PhytoANN training and evaluation

Table A1. Spatial and temporal characteristics of the input and tar-
get data used in confirmatory and exploratory analysis.

confirmatory analysis exploratory analysis

spatial resolution 1◦ box average
temporal resolution monthly monthly
time series length Jan 2000–Dec 2004 Oct 1997–Dec 2004

Table A2. Range of input values (min–max) of all ecological indi-
cators used during training and exploration.

SST PAR MLD Wspd Chl
[◦C] [Wm−2] [m] [ms−1] [mgm−3]

training 2.01–29.9 2.03–60.6 2.72–16.4 10.9–400 0.03–5.25
exploration 3.12–29.0 6.97–55.4 4.18–12.5 14.2–192 0.06–1.20

In order to avoid overfitting and to assure the generality
of our model, we use the early stopping procedure. In this
technique, the available data are divided into three subsets:
training, validation and testing. The training set (70 % of con-
firmatory analysis data) is used for computing the gradient
and updating the network weights and biases. The validation
set (15 % of confirmatory analysis data) is used to monitor
the error during the training process because it initially de-
creases but later typically increases as the network begins to
overfit the data. Hence, when the validation error increases
for a specified number of iterations (six in this study), the
training is stopped, and the weights and biases at the min-
imum of the validation error are returned. The error calcu-
lated from the testing set (15 % of confirmatory analysis data)
is not used during training explicitly. However, it is plotted
during the training process to monitor whether the error in
the testing set reaches a minimum at a significantly different
iteration number than the validation set error. In such cases,
it would indicate a poor division of the data set and a need
for re-training.

It is not required to select only linearly independent in-
dicators as inputs to the ANN because it performs dimen-
sionality reduction on its own. Similarly, we do not remove
any outliers because we assume the ANN is capable of dis-
tinguishing between signal and noise after analyzing a suf-
ficient number of training examples. We do, however, need
to normalize the input data onto a common min–max scale
to prevent indicators with highest absolute values from over-
powering the neurons. Moreover, if the indicators or targets
have a non-normal distribution, then the ANN will produce
results biased towards the more populated end of their range.
In this study, we thus log-normalize MLD and Chl in the
input layer and all four phyto-PFTs in the output layer. All

Table A3. Default PhytoANN parameters chosen for this study.

Parameter Value

ANN type Feedforward
#hidden layers 1
#neurons in hidden layer 8
#inputs 5
#outputs 4
1st layer transfer function tangential sigmoidal
2nd layer transfer function linear
Learning rate parameter dynamic
Training algorithm Levenberg–Marquardt
Data division mode random, every sample
training: validation: testing [%] 70: 15: 15
Generalization scheme early stopping
Performance function mean-squared error

values are then back-transformed to linear scales only after
training and simulation are completed.

We also note that climatology and time series results pre-
sented in this study are in fact ensemble mean results from
10 PhytoANNs. No two ANNs are exactly the same because
they are trained using random weight and bias vector initial-
ization as well as a random distribution of data point indices
assigned to training, evaluation or testing. Though individ-
ual simulations reveal variable absolute values of phyto-PFT
biomass, their time series distribution patterns are very ro-
bust. Therefore, we consider ensemble means as optimal rep-
resentations of PhytoANN results.

In Table A3 we provide the details of the PhytoANN ar-
chitecture common to all ensemble members, chosen as op-
timal for this study. Results in Table A4 show how increas-
ing the number of neurons in the hidden layer (ANN com-
plexity) increases the fit to the entire confirmatory data (both
log-transformed and linear). In theory, the optimum number
of neurons depends on the degree of linear independence of
the patterns in hidden layer space (Teoh et al., 2006). We
note that a good fit is obtained even when using the simplest
architecture. However, an inspection of time series distribu-
tions reveals that not all expected patterns are well captured
by a five-neuron ANN. On the other hand, the 10- and 15-
neuron nets are likely overfitted to the training data because
they do not increase the fit substantially (Table A4). We con-
cluded that the eight-neuron ANN was well fitted yet general
enough to simulate phyto-PFTs, also in a relatively short time
(average of 228 s per training).

In Table A5 we provide more detailed information about
the performance of the algorithm when applied to all points
from within the training regions. The fit between PhytoANN
and NOBM biomass is very good in most cases (above 70 %),
but visibly lower for cyanobacteria and for all phyto-PFTs in
the WCAtl. Differences between correlation coefficient (R-
coeff) performance in training, testing and evaluation subsets
are negligible, on the order of 0.01, which confirms a good
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Table A4.Results of the sensitivity analysis on PhytoANN’s number of neurons in the hidden layer. Metrics are number of training iterations
(epochs), training time, correlation coefficient and normalized mean-squared error on log-transformed and normal data. Presented statistics
are ensemble means from five runs under the same configuration but different sample division and weight and bias initialization. Values in
parentheses represent statistics for diatoms, coccolithophores, cyanobacteria and chlorophytes, respectively.

# N epochs time [s] Rlog10 Rlin NMSElog10 [%] NMSElin [%]

5 144 182 0.88 (0.82-0.84-0.84-0.93) 0.51 (0.45-0.64-0.65-0.52) 28 (50-41-40-15) 96 (96-96-99-210)
8 125 227 0.89 (0.83-0.88-0.85-0.94) 0.54 (0.61-0.83-0.54-0.45) 26 (46-29-38-13) 81(84-58-74-110)
10 150 312 0.90 (0.83-0.89-0.86-0.94) 0.79 (0.61-0.87-0.57-0.73) 25 (45-25-36-13) 47 (110-34-72-76)
15 179 489 0.90 (0.84-0.90-0.87-0.95) 0.81 (0.68-0.88-0.62-0.66) 23 (41-24-33-12) 45 (78-31-65-82)

Table A5. PhytoANN’s performance with respect to the NOBM for regions and times used for training. Goodness of fit is represented by the
correlation coefficient (R-coeff) on log-transformed phyto-PFT biomass values. Results are ensemble means and 1 standard deviation from
all 10 ANNs.

NEAtl NorwSea WCAtl EqAtl

diatoms 0.68 ± 0.02 0.72 ± 0.08 0.65 ± 0.01 0.76 ± 0.03
coccolithophores 0.63 ± 0.04 0.70 ± 0.07 0.45 ± 0.04 0.78 ± 0.07
cyanobacteria 0.73 ± 0.03 0.28 ± 0.04 0.56 ± 0.04 0.47 ± 0.08
chlorophytes 0.72 ± 0.02 0.83 ± 0.03 0.42 ± 0.08 0.87 ± 0.01

Table A6. Results of the sensitivity analysis on PhytoANN’s type of training algorithm. Metrics are correlation coefficient and normalized
mean-squared error on log-transformed data, number of training iterations (epochs) and training time. Presented statistics are ensemble means
from five runs under same configuration but different sample division and weight and bias initialization. Values in parentheses represent
statistics for diatoms, coccolithophores, cyanobacteria and chlorophytes, respectively.

Training algorithm Training fit (R-coeff) NMSE [%] epochs time [s]

Levenberg–Marquardt 0.89 (0.83-0.88-0.85-0.94) 26 (46-29-38-13) 125 227
Variable learning rate 0.75 (0.47-0.44-0.81-0.44) 76 (290-209-54-454) 98 21
Bayesian regularization 0.89 (0.83-0.89-0.85-0.94) 25 (46-25-38-13) 362 644
BFGS quasi-Newton 0.89 (0.83-0.87-0.85-0.93) 27 (46-31-40-15) 218 90

partitioning of available data between the three subsets. It
is important to note that the algorithm training procedure is
in fact optimized on the basis of an aggregate training data
set (all PFTs from all four regions), which explains the dif-
ference in performance measures listed in Table A5 and Ta-
ble A6.

Table A6 also reveals that the Levenberg–Marquardt and
the BFGS quasi-Newton training algorithms provide equally
good fits to the data and take little time to perform. Except
for the fact that the Levenberg–Marquardt algorithm is more
common in feedforward-type ANNs, its choice here is arbi-
trary. We relied on vast literature accounts of the usage of
transfer and performance functions and did not test the sen-
sitivity to the choice of these functions here.
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Appendix B

Ecological niches of phyto-PFTs in NOBM
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Fig. B1. Scatter plots showing the emerging relationship between NOBM diatom (left column) and coccolithophore (right column) biomass
[mgChlm−3] (a–h) or % of total Chl(i, j) vs. individual ecological indicators color coded according to domain of origin. On thex axis
from top to bottom: SST, PAR, Wspd, MLD and Chl. All data points come from exploratory analysis only, and thus they are box average and
monthly average estimates from October 1997 to December 2004.
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Fig. B2. Scatter plots showing the emerging relationship between NOBM cyanobacteria (left column) and chlorophyte (right column)
biomass [mgChlm−3] (a–h) or % of total Chl(i, j) vs. individual ecological indicators color coded according to domain of origin. On
thex axis from top to bottom: SST, PAR, Wspd, MLD and Chl. All data points come from exploratory analysis only, and thus they are box
average and monthly average estimates from October 1997 to December 2004.

Biogeosciences, 10, 7553–7574, 2013 www.biogeosciences.net/10/7553/2013/



A. P. Palacz et al.: Ecological indicators of PFTs in HNLC waters 7571

Acknowledgements.The authors would like to thank the many
collaborators from the EURO-BASIN project for valuable sugges-
tions and criticism at the early stages of this work. We also thank
Patrizio Mariani, Thomas Kiorbøe, Ken Andersen, Fi Prowe and
Ivo Grigorov from DTU-Aqua for comments and suggestions.
The research was (co-)funded by European Union Seventh Frame-
work Programme project EURO-BASIN, European Basin-scale
Analysis, Synthesis and Integration in the North Atlantic (grant
agreement no. 264933).

Edited by: M. Grégoire

References

Alkire, M. B., D’Asaro, E., Lee, C., Jane Perry, M., Gray, A.,
Cetiníc, I., Briggs, N., Rehm, E., Kallin, E., Kaiser, J., and
Gonzalez-Posada, A.: Estimates of net community production
and export using high-resolution, Lagrangian measurements of
O2, NO−

3 , and POC through the evolution of a spring diatom
bloom in the North Atlantic, Deep-Sea Res. Pt. I, 64, 157,
doi:10.1016/j.dsr.2012.01.012, 2012.

Alvain, S., Moulin, C., Dandonneau, Y., and Loisel, H.: Seasonal
distribution and succession of dominant phytoplankton groups in
the global ocean: a satellite view, Global Biogeochem. Cy., 22,
1–15, doi:10.1029/2007GB003154, 2008.

Anandarajan, M., Lee, P., and Anandarajan, A.: Bankruptcy pre-
diction of financially stressed firms: an examination of the pre-
dictive accuracy of artificial neural networks, Intelligent Sys-
tems in Accounting, Finance and Management, 10, 69–81,
doi:10.1002/isaf.199, 2001.

Anderson, T. R.: Plankton functional type modelling: running
before we can walk?, J. Plankton Res., 27, 1073–1081,
doi:10.1093/plankt/fbi076, 2005.

Balch, W., Drapeau, D., Bowler, B., Lyczkowski, E., Booth, E.,
and Alley, D.: The contribution of coccolithophores to the op-
tical and inorganic carbon budgets during the Southern Ocean
Gas Exchange Experiment: new evidence in support of the
Great Calcite Belt hypothesis, J. Geophys. Res., 116, C00F06,
doi:10.1029/2011JC006941, 2011.

Balch, W. M.: Re-evaluation of the physiological ecology of coc-
colithophores, in: Coccolithophores. From Molecular Processes
to Global Impact, edited by: Thierstein, H. R. and Young, J. R.,
Springer, Berlin, 165–190, 2004.

Balch, W. M.: Calcium carbonate measurements in the sur-
face global ocean based on Moderate-Resolution Imaging
Spectroradiometer data, J. Geophys. Res., 110, C07001,
doi:10.1029/2004JC002560, 2005.

Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J., and Fol-
lows, M. J.: Patterns of diversity in marine phytoplankton, Sci-
ence, 327, 1509–1511, doi:10.1126/science.1184961, 2010.

Barton, A., Finkel, Z., Ward, B., Johns, D., and Follows, M.: On the
roles of cell size and trophic strategy in North Atlantic diatom
and dinoflagellate communities, Limnol. Oceanogr, 58, 254–266,
doi:10.4319/lo.2013.58.1.0254, 2013.

Beaugrand, G., McQuatters-Gollop, A., Edwards, M., and Gob-
erville, E.: Long-term responses of North Atlantic calcifying
plankton to climate change, Nat. Clim. Change, 3, 263–267,
doi:10.1038/NCLIMATE1753, 2012.

Blanchot, J., André, J.-M., Navarette, C., Neveux, J., and
Radenac, M.-H.: Picophytoplankton in the equatorial Pacific:
vertical distributions in the warm pool and in the high nutrient
low chlorophyll conditions, Deep-Sea Res. Pt. I, 48, 297–314,
doi:10.1016/S0967-0637(00)00063-7, 2001.

Blanchard, J. L., Coll, M., Trenkel, V. M., Vergnon, R., Yemane, D.,
Jouffre, D., Link, J. S., and Shin, Y.-J.: Trend analysis of indi-
cators: a comparison of recent changes in the status of marine
ecosystems around the world, ICES J. Mar. Sci., 67, 732–744,
doi:10.1093/icesjms/fsp282, 2010.

Bopp, L., Aumont, O., Cadule, P., Alvain, S., and Gehlen, M.:
Response of diatoms distribution to global warming and poten-
tial implications: a global model study, Geophys. Res. Lett., 32,
L19606, doi:10.1029/2005GL023653, 2005.

Boyd, P. W. and Doney, S. C.: Modelling regional responses by ma-
rine pelagic ecosystems to global climate change, Geophys. Res.
Lett., 29, 1–4, doi:10.1029/2001GL014130, 2002.

Bracher, A., Vountas, M., Dinter, T., Burrows, J. P., Röttgers, R.,
and Peeken, I.: Quantitative observation of cyanobacteria and
diatoms from space using PhytoDOAS on SCIAMACHY data,
Biogeosciences, 6, 751–764, doi:10.5194/bg-6-751-2009, 2009.

Brewin, R. J. W., Sathyendranath, S., Hirata, T., Laven-
der, S. J., Barciela, R. M., and Hardman-Mountford, N. J.:
A three-component model of phytoplankton size class
for the Atlantic Ocean, Ecol. Model., 221, 1472–1483,
doi:10.1016/j.ecolmodel.2010.02.014, 2010.

Brewin, R. J. W., Hardman-Mountford, N. J., Lavender, S. J.,
Raitsos, D. E., Hirata, T., Uitz, J., Devred, E., Bricaud, A.,
Ciotti, A., and Gentili, B.: An intercomparison of bio-optical
techniques for detecting dominant phytoplankton size class from
satellite remote sensing, Remote Sens. Environ., 115, 325–339,
doi:10.1016/j.rse.2010.09.004, 2011.

Brown, C. and Yoder, J.: Coccolithophorid blooms in
the global ocean, J. Geophys. Res., 99, 7467–7482,
doi:10.1029/93JC02156, 1994.

Carton, J. and Giese, B.: A reanalysis of ocean climate using Sim-
ple Ocean Data Assimilation (SODA), Mon. Weather Rev., 136,
2999–3017, doi:10.1175/2007MWR1978.1, 2008.

Cetiníc, I., Perry, M., Briggs, N., Kallin, E., D’Asaro, E., and
Lee, C.: Particulate organic carbon and inherent optical proper-
ties during 2008 North Atlantic Bloom Experiment, J. Geophys.
Res., 117, C06028, doi:10.1029/2011JC007771, 2012.

Chavez, F., Strutton, P., Friederich, G., Feely, R., Feldman, G.,
Foley, D., and McPhaden, M.: Response of the equatorial Pa-
cific Ocean to the 1997–1998 El Nino, Science, 286, 2126–2131,
1999.

Claustre, H., Bishop, J., Boss, E., Bernard, S., Berthon, J.-F.,
Coatanoan, C., Johnson, K., Lotiker, A., Ulloa, O., Perry, M. J.,
D’Ortenzio, F., Fanton D’andon, O. H., and Uitz, J.: Bio-
optical profiling floats as new observational tools for biogeo-
chemical and ecosystem studies: potential synergies with ocean
color remote sensing, in: Proceedings of OceanObs’09: Sus-
tained Ocean Observations and Information for Society, vol. 2,
edited by: Hall, J., Harrison, D. E., and Stammer, D., Euro-
pean Space Agency, Rome, ESA Publ. WPP-306, Venice, Italy,
doi:10.5270/OceanObs09.cwp.17, 7 pp., 2010.

Commission, E.: Directive 2008/56/EC of the European Parliament
and of the Council establishing a framework for community ac-
tion in the field of marine environmental policy (Marine Strategy

www.biogeosciences.net/10/7553/2013/ Biogeosciences, 10, 7553–7574, 2013

http://dx.doi.org/10.1016/j.dsr.2012.01.012
http://dx.doi.org/10.1029/2007GB003154
http://dx.doi.org/10.1002/isaf.199
http://dx.doi.org/10.1093/plankt/fbi076
http://dx.doi.org/10.1029/2011JC006941
http://dx.doi.org/10.1029/2004JC002560
http://dx.doi.org/10.1126/science.1184961
http://dx.doi.org/10.4319/lo.2013.58.1.0254
http://dx.doi.org/10.1038/NCLIMATE1753
http://dx.doi.org/10.1016/S0967-0637(00)00063-7
http://dx.doi.org/10.1093/icesjms/fsp282
http://dx.doi.org/10.1029/2005GL023653
http://dx.doi.org/10.1029/2001GL014130
http://dx.doi.org/10.5194/bg-6-751-2009
http://dx.doi.org/10.1016/j.ecolmodel.2010.02.014
http://dx.doi.org/10.1016/j.rse.2010.09.004
http://dx.doi.org/10.1029/93JC02156
http://dx.doi.org/10.1175/2007MWR1978.1
http://dx.doi.org/10.1029/2011JC007771
http://dx.doi.org/10.5270/OceanObs09.cwp.17


7572 A. P. Palacz et al.: Ecological indicators of PFTs in HNLC waters

Framework Directive), Official Journal of the European Union,
L164, 19–40, 2008.

Dale, V. H. and Beyeler, S. C.: Challenges in the develop-
ment and use of ecological indicators, Ecol. Indic., 1, 3–10,
doi:10.1016/S1470-160X(01)00003-6, 2001.

Dandonneau, Y., Deschamps, P.-Y., Nicolas, J.-M., Loisel, H., Blan-
chot, J., Montel, Y., Thieuleux, F., and Bécu, G.: Seasonal and
interannual variability of ocean color and composition of phy-
toplankton communities in the North Atlantic, equatorial Pa-
cific and South Pacific, Deep-Sea Res. Pt. II, 51, 303–318,
doi:10.1016/j.dsr2.2003.07.018, 2004.

Devred, E., Sathyendranath, S., and Platt, T.: Delineation of ecolog-
ical provinces using ocean colour radiometry, Mar. Ecol.-Prog.
Ser., 346, 1–13, doi:10.3354/meps07149, 2007.

Edwards, M. and Richardson, A. J.: Impact of climate change on
marine pelagic phenology and trophic mismatch, Nature, 430,
881–884, doi:10.1038/nature02808, 2004.

Evans, W., Strutton, P. G., and Chavez, F. P.: Impact of tropical in-
stability waves on nutrient and chlorophyll distributions in the
equatorial Pacific, Deep-Sea Res. Pt. I, 56, 178–188, 2009.

Fernandez, E., Boyd, P., Holligan, P., and Harbour, D.: Produc-
tion of organic and inorganic carbon within a large-scale coc-
colithophore bloom in the northeast Atlantic Ocean, Mar. Ecol.-
Prog. Ser., 97, 271–285, 1993.

Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.:
Emergent biogeography of microbial communities in a model
ocean, Science, 315, 1843–1846, doi:10.1126/science.1138544,
2007.

Francois, R., Honjo, S., Krishfield, R., and Manganini, S.: Fac-
tors controlling the flux of organic carbon to the bathy-
pelagic zone of the ocean, Global Biogeochem. Cy., 16, 1087,
doi:10.1029/2001GB001722, 2002.

Gorgues, T., Menkes, C., Slemons, L., Aumont, O., Dandon-
neau, Y., Radenac, M. H., Alvain, S., and Moulin, C.: Revisiting
the La Niña 1998 phytoplankton blooms in the equatorial Pacific,
Deep-Sea Res. Pt. I, 57, 567–576, 2010.

Gregg, W.: A coupled ocean general circulation, biogeochemical,
and radiative model of the global oceans: seasonal distributions
of ocean chlorophyll and nutrients, NASA Technical Memoran-
dum 2000-209965, 33 pp., 2000.

Gregg, W. W.: Tracking the SeaWiFS record with a coupled physi-
cal/biogeochemical/radiative model of the global oceans, Deep-
Sea Res. Pt. II, 49, 81–105, doi:10.1016/S0967-0645(01)00095-
9, 2002.

Gregg, W. and Casey, N.: Modeling coccolithophores in
the global oceans, Deep-Sea Res. Pt. II, 54, 447–477,
doi:10.1016/j.dsr2.2006.12.007, 2007.

Gregg, W. W., Ginoux, P., Schopf, P. S., and Casey, N. W.: Phyto-
plankton and iron: validation of a global three-dimensional ocean
biogeochemical model, Deep-Sea Res. Pt. II, 50, 3143–3169,
doi:10.1016/j.dsr2.2003.07.013, 2003.

Haidar, A. T. and Thierstein, H. R.: Coccolithophore dynamics off
Bermuda (N. Atlantic), Deep-Sea Res. Pt. II, 48, 1925–1956,
doi:10.1016/S0967-0645(00)00169-7, 2001.

Hashioka, T., Vogt, M., Yamanaka, Y., Le Quéré, C., Buiten-
huis, E. T., Aita, M. N., Alvain, S., Bopp, L., Hirata, T., Lima, I.,
Sailley, S., and Doney, S. C.: Phytoplankton competition dur-
ing the spring bloom in four Plankton Functional Type Mod-

els, Biogeosciences Discuss., 9, 18083–18129, doi:10.5194/bgd-
9-18083-2012, 2012.

Hilligsøe, K. M., Richardson, K., Bendtsen, J., Sørensen, L.-L.,
Nielsen, T. G., and Lyngsgaard, M. M.: Linking phytoplankton
community size composition with temperature, plankton food
web structure and sea–air CO2 flux, Deep-Sea Res. Pt. I, 58,
826–838, doi:10.1016/j.dsr.2011.06.004, 2011.

Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T., and Bar-
low, R.: An absorption model to determine phytoplankton size
classes from satellite ocean colour, Remote Sens. Environ., 112,
3153–3159, doi:10.1016/j.rse.2008.03.011, 2008.

Hirata, T., Hardman-Mountford, N. J., Brewin, R. J. W., Aiken, J.,
Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T.,
Noguchi-Aita, M., and Yamanaka, Y.: Synoptic relationships be-
tween surface Chlorophyll-a and diagnostic pigments specific
to phytoplankton functional types, Biogeosciences, 8, 311–327,
doi:10.5194/bg-8-311-2011, 2011.

Hirata, T., Hardman-Mountford, N., and Brewin, R. J. W.: Com-
paring satellite-based phytoplankton classification methods, Eos
Trans. AGU, 93, 59–60, doi:10.1029/2012EO060008, 2012.

Hirata, T., Saux-Picart, S., Hashioka, T., Aita-Noguchi, M.,
Sumata, H., Shigemitsu, M., Allen, J. I., and Yamanaka, Y.:
A comparison between phytoplankton community struc-
tures derived from a global 3D ecosystem model and
satellite observation, J. Marine Syst., 109–110, 129–137,
doi:10.1016/j.jmarsys.2012.01.009, 2013.

Holland, J. H.: Hidden Order: How Adaptation Builds Complexity,
Helix Books, Addison-Wesley Publishing Company, 1995.

Hutchinson, G. E.: The Paradox of the Plankton, Am. Nat., 95, 137–
145, 1961.

Iida, T., Saitoh, S., Miyamura, T., Toratani, M., Fukushima, H., and
Shiga, N.: Temporal and spatial variability of coccolithophore
blooms in the eastern Bering Sea, 1998–2001, Prog. Oceanogr.,
55, 165–175, doi:10.1016/S0079-6611(02)00076-9, 2002.

Jaeger, H. and Haas, H.: Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication, Science,
304, 78–80, doi:10.1126/science.1091277, 2004.

Kara, A., Rochford, P., and Hurlburt, H.: Mixed layer depth vari-
ability over the global ocean, J. Geophys. Res., 108, 3079,
doi:10.1029/2000JC000736, 2003.

Khan, J., Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M., West-
ermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peter-
son, C., and Meltzer, P. S.: Classification and diagnostic predic-
tion of cancers using gene expression profiling and artificial neu-
ral networks, Nat. Med., 7, 673–679, doi:10.1038/89044, 2001.

Lachkar, Z. and Gruber, N.: A comparative study of biological pro-
duction in eastern boundary upwelling systems using an artificial
neural network, Biogeosciences, 9, 293–308, doi:10.5194/bg-9-
293-2012, 2012.

Leblanc, K., Arístegui, J., Armand, L., Assmy, P., Beker, B.,
Bode, A., Breton, E., Cornet, V., Gibson, J., Gosselin, M.-P.,
Kopczynska, E., Marshall, H., Peloquin, J., Piontkovski, S., Poul-
ton, A. J., Quéguiner, B., Schiebel, R., Shipe, R., Stefels, J.,
van Leeuwe, M. A., Varela, M., Widdicombe, C., and Yal-
lop, M.: A global diatom database – abundance, biovolume and
biomass in the world ocean, Earth Syst. Sci. Data, 4, 149–165,
doi:10.5194/essd-4-149-2012, 2012.

Biogeosciences, 10, 7553–7574, 2013 www.biogeosciences.net/10/7553/2013/

http://dx.doi.org/10.1016/S1470-160X(01)00003-6
http://dx.doi.org/10.1016/j.dsr2.2003.07.018
http://dx.doi.org/10.3354/meps07149
http://dx.doi.org/10.1038/nature02808
http://dx.doi.org/10.1126/science.1138544
http://dx.doi.org/10.1029/2001GB001722
http://dx.doi.org/10.1016/S0967-0645(01)00095-9
http://dx.doi.org/10.1016/S0967-0645(01)00095-9
http://dx.doi.org/10.1016/j.dsr2.2006.12.007
http://dx.doi.org/10.1016/j.dsr2.2003.07.013
http://dx.doi.org/10.1016/S0967-0645(00)00169-7
http://dx.doi.org/10.5194/bgd-9-18083-2012
http://dx.doi.org/10.5194/bgd-9-18083-2012
http://dx.doi.org/10.1016/j.dsr.2011.06.004
http://dx.doi.org/10.1016/j.rse.2008.03.011
http://dx.doi.org/10.5194/bg-8-311-2011
http://dx.doi.org/10.1029/2012EO060008
http://dx.doi.org/10.1016/j.jmarsys.2012.01.009
http://dx.doi.org/10.1016/S0079-6611(02)00076-9
http://dx.doi.org/10.1126/science.1091277
http://dx.doi.org/10.1029/2000JC000736
http://dx.doi.org/10.1038/89044
http://dx.doi.org/10.5194/bg-9-293-2012
http://dx.doi.org/10.5194/bg-9-293-2012
http://dx.doi.org/10.5194/essd-4-149-2012


A. P. Palacz et al.: Ecological indicators of PFTs in HNLC waters 7573

Lek, S. and Guegan, J.-F.: Artificial neural networks as a tool in
ecological modelling, an introduction, Ecol. Model., 120, 65–73,
1999.

Le Quéré, C., Harrison, S., Colin Prentice, I., Buitenhuis, E., Au-
mont, O., Bopp, L., Claustre, H., Cotrim Da Cunha, L., Gei-
der, R., Giraud, X., Klaas, C., Kohfeld, K. E., Legendre, L., Man-
izza, M., Platt, T., Rivkin, R. B., Sathyendranath, S., Uitz, J.,
Watson, A. J., and Wolf-Gladrow, D.: Ecosystem dynamics based
on plankton functional types for global ocean biogeochemistry
models, Glob. Change Biol., 11, 2016–2040, 2005.

Leterme, S. C., Edwards, M., Seuront, L., Attrill, M. J.,
Reid, P. C., and John, A. W. G.: Decadal basin-scale
changes in diatoms, dinoflagellates, and phytoplankton color
across the North Atlantic, Limnol. Oceanogr., 50, 1244–1253,
doi:10.4319/lo.2005.50.4.1244, 2005.

Levin, S. A.: Ecosystems and the biosphere as complex adaptive
systems, Ecosystems, 1, 431–436, 1998.

Link, J. S., Yemane, D., Shannon, L. J., Coll, M., Shin, Y.-
J., Hill, L., and Borges, M. D. F.: Relating marine ecosys-
tem indicators to fishing and environmental drivers: an elucida-
tion of contrasting responses, ICES J. Mar. Sci., 67, 787–795,
doi:10.1093/icesjms/fsp258, 2010.

Lomas, M. and Bates, N.: Potential controls on interan-
nual partitioning of organic carbon during the winter/spring
phytoplankton bloom at the Bermuda Atlantic time-series
study (BATS) site, Deep-Sea Res. Pt. I, 51, 1619–1636,
doi:10.1016/j.dsr.2004.06.007, 2004.

Mahadevan, A., D’Asaro, E., Lee, C., and Perry, M. J.: Eddy-
driven stratification initiates North Atlantic spring phytoplank-
ton blooms, Science, 337, 54–58, doi:10.1126/science.1218740,
2012.

Maranón, E., Cermeno, P., Latasa, M., and Tadonléké, R.:
Temperature, resources, and phytoplankton size struc-
ture in the ocean, Limnol. Oceanogr., 57, 1266–1278,
doi:10.4319/lo.2012.57.5.1266, 2012.

Margalef, R.: Life-forms of phytoplankton as survival alternatives
in an unstable environment, Oceanol. Acta, 1, 493–509, 1978.

Masotti, I., Moulin, C., Alvain, S., Bopp, L., Tagliabue, A., and An-
toine, D.: Large-scale shifts in phytoplankton groups in the Equa-
torial Pacific during ENSO cycles, Biogeosciences, 8, 539–550,
doi:10.5194/bg-8-539-2011, 2011.

Minas, H. J. and Minas, M.: Net community production in high
nutrient-low chlorophyll waters of the tropical and antarctic
oceans – grazing vs. iron hypothesis, Oceanol. Acta, 15, 145–
162, 1992.

Moore, T. S., Dowell, M. D., and Franz, B. A.: Detection of coccol-
ithophore blooms in ocean color satellite imagery: a generalized
approach for use with multiple sensors, Remote Sens. Environ.,
117, 249–263, doi:10.1016/j.rse.2011.10.001, 2012.

Nelson, N., Siegel, D., and Yoder, J.: The spring bloom in
the northwestern Sargasso Sea: spatial extent and relation-
ship with winter mixing, Deep-Sea Res. Pt. II, 51, 987–1000,
doi:10.1016/j.dsr2.2004.02.001, 2004.

O’Brien, C. J., Peloquin, J. A., Vogt, M., Heinle, M., Gruber, N.,
Ajani, P., Andruleit, H., Arístegui, J., Beaufort, L., Estrada, M.,
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