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Abstract. Since the advancement in Glgas analyser tech- proach which we show to be appropriate for £Hixes is a
nology and its applicability to eddy covariance flux mea- step towards standardising G gap-filling protocols.
surements, monitoring of GHemissions is becoming more
widespread. In order to accurately determine the greenhouse

gas balance, high quality gap-free data is required. Currently

there is still no consensus on Gldap-filing methods, and 1 Introduction

methods applied are still study-dependent and often carried ) ) .
out on low resolution, daily data. Methane is one of the most important long-lived greenhouse

In the current study, we applied artificial neural networks 9ases, second only to GQIPCC, 2007), with natural wet-
to six distinctively different CH time series from high lati- |ands thought to be the biggest individual source (IPCC,
tudes, explain the method and test its functionality. We dis-2007; EPA, 2010). Since the advancement iy @ds anal-
cuss the applicability of neural networks in GHux studies, ~ YSer technology and its applicability to eddy covariance flux
the advantages and disadvantages of this method, and whEteéasurements (Hendriks et al., 2008; Eugster and Pluss,
information we were able to extract from such models. 2010; Dengel et al., 2011; McDermitt et al., 2011; Peltola et

Three different approaches were tested by including@l-» 2013), monitoring of Chiemissions is becoming more
drivers such as air and soil temperature, barometric air presidespread in northern regions (Mastepanov et al., 2008;
sure, solar radiation, wind direction (indicator of source lo- Sachs etal., 2008; Zona et al., 2009; Sturtevant et al., 2012).
cation) and in addition the lagged effect of water table depthThese measurements contribute to a better understanding of
and precipitation. In keeping with the principle of parsi- the greenhouse gas balance of the Arctic and subarctic. In
mony, we included up to five of these variables tradition- Order to accurately estimate annual greenhouse gas budgets,
ally measured at CHflux measurement sites. Fuzzy sets time series of high quality gap-free data are required (Falge
were included representing the seasonal change and time 6t al., 2001; Rinne et al., 2007).
day. High Pearson correlation coefficierits of up to 0.97 Currently there is no consensus on £gap-filling meth-
achieved in the final analysis are indicative for the high per-0ds. Several studies (Zona et al., 2009; Gazevial., 2010;
formance of neural networks and their applicability as a gap-Sturtevant et al., 2012) did not apply any gap-filling to their

filing method for CH, flux data time series. This novel ap- CHa flux data. Studies where gap-filing was applied were
site dependent and often applied to low resolution, daily
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mean values (Hargreaves et al., 2001; Rinne et al., 2007; Ri
utta et al., 2007; Jackowicz-Korcagki et al., 2010; Long
etal., 2010; Tagesson et al., 2012), while Wille et al. (2008),
Parmentier et al. (2011a) and Forbrich et al. (2012) employec
a model in order to recover missing data in their daily, 3h and
30 min mean data, respectively.

Hargreaves et al. (2001), Rinne et al. (2007), Long et
al. (2010) and Tagesson et al. (2012) identified a non-linea
relationship between CHlux and peat temperature at depths
of 0-10cm, 35cm, and 50 cm in subarctic ecosystems, re
spectively. During extended periods where no dependency o
peattemperature was found, Rinne et al. (2007) and Tagessc
et al. (2012) applied a simple interpolation to gap-fill these
data sets. In addition, Tagesson et al. (2012) applied an expc
nential regression between half-hourly £fuxes and fric-
tion velocity measured after the soil was completely frozen.
No d_ependenpy on water table-po.smon \.Nas found by the tWOFig. 1. Map of the Arctic and subarctic region, with Stordalen
studies mentioned above. A similarly simple peat tempera- A N ;

. L o (Sweden), Lompolojankka (Finland), both Siberian sites Lena River
ture relationship with Clzde.mISSIOI’],S W'as also found by Zona Delta and Kytalyk in Russia, and Barrow (Alaska) marked with an
et al. (2009) and Jackowicz-Korazgki et al. (2010). Wille  ,qterisk (*) at their respective location.
et al. (2008) and Sachs et al. (2008) found strong relation-
ships between CHflux, friction velocity and soil tempera-
ture at a depth of 20 and 10cm, respectively. Some of th@ude ecosystems (wet sedge tundra, sedge fen and polygonal
above mentioned studies considered non-linear relationshipgindra), some driver dynamics, the advantages and disadvan-
to gap-fill their daily averaged CHluxes, while Parmentier  tages of this method, and what information can be extracted
et al. (2011a) provide a method for gap-filling of higher res- from such models.
olution (3 h) data. This method applied a gap-filling model  Since CH is the second most potent, long-lived green-
that includes the attenuating effect of atmospheric stabilityhouse gas in the atmosphere (IPCC, 2007), it is becoming in-
on flux measurements, where methane production was reereasingly important to introduce a method which is capable
lated to soil temperature and water table level. Recently Forof dealing with such high resolution data combined with aux-
brich et al. (2011) tested various models where peat temperatiary measurements, and which is easy to implement across
tures at various depths, water table level, barometric pressurg variety of ecosystems. Regarding Arctic and subarctic re-
and friction velocity were integrated in order to gap-fill their gions, it is very important to work with time series where data
time series. Furthermore, large uncertainties in applied methgaps have been filled using reliable methods in order to ac-
ods do still exist with no common protocol on missing data curately determine CiHemissions, potential annual budgets,
recovery of CH eddy covariance flux data. and prediction of future emissions under a changing climate

The application of neural networks (Jain et al., 1996; (Anisimov, 2007; IPCC, 2007). The data sets introduced in
Svozil et al., 1997; Elizondo and Gongora, 2005; Saxén andhe current study were chosen, as they show distinctive dif-
Pettersson, 2006) for data recovery and gap-filling (Aubinetferences in their emission patterns and originate from high
et al., 2000; Gorban et al., 2002; Papale and Valentini, 2003Jatitude ecosystems (Fig. 1), to assure the broad applicability
Ooba et al., 2006; Moffat et al., 2007 and Schmidt et al., of the introduced methods and results.

2008) has proven to be a very reliable tool in several scien- The aim of the current study is to test and compare three
tific disciplines (Gardner and Dorling, 1998, 1999; Lek and different neural network approaches as a gap-filling method
Guegan, 1999; Lee and Jeng, 2002; Toptygin et al., 2005)for high resolution, 30 min and 1 h methane (§tddy co-

In atmospheric sciences (Gardner and Dorling, 1998; Topvariance flux data from Arctic and subarctic ecosystems. In-
tygin et al., 2005; Chattopadhyay G. and Chattopadhyay S.cluded are a limited number of standard meteorological vari-
2008), applying neural networks in forecasting has becomeables that are measured at all sites that act as drivers for
a standard application. Neural networks have the reputatiomethane emissions in such dynamic ecosystems. This novel
of being a “black box” where transparency is limited in most approach in Cl studies is a first step towards standardis-
cases (Elizondo and Géngora, 2005). This partly results froming CH, gap-filling and a contribution to standardising £H

a neural network’s high capacity in training itself where co- measurement protocols.

efficients are distributed through fitted weights and spread

across several layers to accurately reproduce a given data set.

In the current study, we discuss the applicability of neural

networks to gap-fill CH flux data from northern high lati-
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2 Materials and methods were filtered for occurrences of high atmospheric stability,
prior to including it in the current study. Wille et al. (2008)
2.1 Methane flux and meteorological data have shown that™* itself can enhance methane fluxes and

it is therefore useful to obtain also data points at oty as

The CH, eddy covariance flux data used in the current studylong as storage effects are not an issue. Storage did not rep-
originates from five distinctively different northern ecosys- resent an issue at the Kytalyk site, and after filtering for high
tems (Fig. 1): the subarctic sites of Stordalen°@&8N, stability no significant effect af* was seen. The reader is ad-
19°03 E, northern Sweden), a mixed mire (Johansson et al.yised to consult Parmentier et al. (2011a, b) for more back-
2006) and Lompolojankka a nutrient-rich sedge fen locatedground information on the processing of these fluxes. Data
in the aapa mire region of north-western Finland°@¥ N, introduced in the current study was not previously gap-filled
24°12 E) (Aurela et al., 2009), and the tundra sites underlainat 30 min and 1 h (Lena River Delta) resolution. In order to
by permanent permafrost: Samoylov Island in the southerrintegrate the lagged effect of the water table depth (WTD)
central Lena River Delta (P22 N, 126°30 E) (Sachs et al., and that of precipitation as a potential input variable, we in-
2008, 2010), Kytalyk (749 N, 14729 E) (Parmentier et cluded both variables as they were, and in addition lagged
al., 2011a, b) and Barrow, a wet sedge tundra in the northerprecipitation by one and WTD by 12 days, as has been iden-
part of the Arctic Coastal plain (717 N, 15636 W) (Zona tified by Kettunen et al. (1996) and Suyker et al. (1996).
etal., 2009, 2012). To give an overview of the data coverage and availability

The CH;, fluxes were measured by the eddy covariancefor the current study, and the representation of day and night
(EC) method (Baldocchi, 2003). Instrumentation used in(07:00-18:30 and 19:00-06:30) respectively, required for the
these six studies were the three-dimensional sonic anemomeurrent application (efficient network training) relevant infor-
ter R3-50 (Gill Instruments Ltd., Lymington, Hampshire, mation has been listed in Table 1.
England) coupled with a closed path Fast Greenhouse Gas
Analyser (FGGA, Los Gatos Research, Mountain View, Cal-2.2 Artificial neural networks
ifornia, USA) in Stordalen; the USA-1 (METEK, Elmshorn,
Germany) three-axis sonic anemometer/thermometer an@he topology of a simple multi-layer, feed-forward neural
the closed-path DLT-100 fast response LC4hs analyser network includes non-linear elements (neurons) that are ar-
(Los Gatos Research, Mountain View, California, USA) in ranged in successive layers (Fig. 2). The information flows
Lompolojankka, and the three-dimensional Solent R3 soniaunidirectionally, from the input (covariates) layer to the out-
anemometer (Gill Instruments Ltd., Lymington, Hampshire, put (response) layer, through the hidden layer(s) (Jain et
UK) and the TGA 100 tunable diode laser spectrometeral., 1996; Svozil et al., 1997; Elizondo and Géngora, 2005;
(Campbell Scientific Ltd., USA) in the Lena River Delta. Saxén and Pettersson, 2006).
At the Kytalyk site, a three-dimensional Solent R3-50 sonic In the initial phase, a set of input and target data is used
anemometer (Gill Instruments Ltd., Lymington, Hampshire, for training and presented to the network many times (also
UK) and a closed-path DLT-100 fast response CH4 gasknown as iterations). A training data set should have suffi-
analyser (Los Gatos Research, Mountain View, California,cient data to be representative of the overall data set, mean-
USA) were used in both years, while a WindMasterPro sonicing the whole range of meteorological and flux variability
anemometer (Gill Instruments Ltd., Lymington, Hampshire, should be available for training (including emission events
UK) and the closed-path DLT-100 fast response CH4 gasso that the network can learn such conditions) (Moffat et
analyser (Los Gatos Research, Mountain View, California,al., 2010; Papale, 2012). Furthermore, the cross-correlative
USA) was used in Barrow. The reader is advised to con-(Guan et al. 2007) and cross-dependency nature of climatic
sult Jackowitz-Korczynski et al. (2010), Aurela et al. (2009), variables should be taken into account when choosing the
Sachs et al. (2008), Parmentier et al. (2011a, b) and Zona etppropriate input variables, as some add only little extra in-
al. (2009), for more details about the sites, measurements anfdrmation to the network (Moffat et al., 2010). Training is
further instrumentation. carried out by constantly adjusting the fitted weights so that

All five sites recorded standard meteorological variables,the network output matches the target data. In order to test the
such as air temperature, solar radiation, soil temperature dtained network, a new set of input data is fed into the net-
various depths, wind speed and wind direction (for the cur-work and the desired output compared with those predicted
rent study wind speed has been decomposed into its horizorby the network. The agreement or disagreement of these two
tal (along windu) and perpendicular (across wimd com- data sets is anindication of the performance of the neural net-
ponents). Furthermore, GHeddy covariance flux data from work model. A chosen error function measures the difference
Lompolojénkka were* filtered, using 0.1 ms! as athresh-  between predicted and observed output.
old. Here, fluxes were binned accordinguitband tested on One of the drawbacks of neural networks is the non-
two soil temperature ranges resulting in the threshold valuauniqueness of the global minimum (Hammerstrom, 1993;
mentioned above. At the Barrow site a threshold of 0.Ifns Nguyen and Chan, 2004) which changes as each training run
(Zona et al., 2012) was also applied. The data from Kytalykachieves different weights and results (it is important to find
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Table 1. Overview over the data coverage and availability in the current study. All values are 30 min values apart from Lena River Delta
which has hourly data. All numbers, except percentage values, are given in number of data rows. Daytime and night-time data cover the time

periods between 07:00-18:30 and 19:00-06:30, respectively.

Site Days 100 % Actual Coverage Coverage Daytime Daytime Night Night
(n) coverage coverage (%) (days) n)( (%) (n)
Stordalen 84 4032 1633 41 34.0 901 55 732 45
Lompolojankka 181 8688 3223 37 67.1 1820 56 1258 40
Lena R. delta 94 2256 1508 67 62.8 607 40 763 51
Kytalyk 2008 15 720 540 75 11.3 266 49 274 51
Kytalyk 2009 30 1440 1275 89 26.6 624 49 651 51
Barrow 46 2208 1625 74 33.9 784 48 841 52
ing pattern well but is underperforming during its validation
(poor generalisation) (Jain et al., 1996; Gardner and Dorling,
T —0 1998; Nguyen and Chan, 2004; Wang et al., 2005; Saxén and
i T Pettersson, 2006; Stathakis, 2009). To prevent this from hap-
=0 pening, one can remove redundant input data (Gunaratnam
Wind U et al., 2003; Saxén and Pettersson, 2006), reduce or increase
-0 the number of neurons in the network and use the appropri-
Wind V ~ ate generalisation such as early stopping (Hansen and Sala-
mon, 1990; Amari et al., 1997; Svozil et al., 1997; Wang et
Sol Rad O oulput | 18868 i al., 2005) or another stopping criteria (Gunther and Fritsch,
2010; Fritsch and Gunther, 2012).
BN
2.3 Pre-processing of data
Spring O
Recently, several studies (Zhang and Qi, 2005; Klevecka and
Summer (%) Lelis, 2009) pointed out an ongoing debate on whether data
ratomn should be de-seasonalised prior to applying neural networks.
sm——(

Nelson et al. (1999) showed better results for de-seasonalised
] ] time series, while others (Sharda and Patil, 1992; Franses and
Fig. 2. The architecture of the “seasonal” neural network topology iy pisma  1997) found that neural networks are able to model
used 'n.the current StUdy'. Input Va”a.bles (left side of the netwo.rk)seasonality directly and prior de-seasonalisation is not nec-
are fed into the network with weights fitted (along grey arrows) with . . .

information flowing unidirectionally to the nodes (marked as cir- essary.“Regardlng gap-filling of a.tmospherlc trace gas fluxes

cles) within the hidden layer, where a bias (offset) (marked as 1)(van Wik and Bouten, 1999; Aubinet et al., 2000; Carrara et

is added (along black arrows). Here a sigmoid function (activation@l-, 2003; Papale and Valentini, 2003; Ryan et al., 2004; Ooba

function) is applied to the weighted sum, leading further to the next€t al., 2006 and Schmidt et al., 2008), no de-seasonalisation

layer, the “output” layer where a new set of weights is distributed, of data was carried out prior to applying neural networks. As
together with a bias and the sigmoid activation function before mak-artificial neural networks have the ability to deal with com-
ing an estimate for the output value. As the output still has a rangeplex data sets and as no de-seasonalisation of data was car-
of 0—1, it is rescaled prior to replacing missing data values. Actualried out in previous gap-filling studies (see above references)
fitted weights and biases are removed from the .graph for clarity.ye decided to proceed in the same manner.

Please see Table 1 for a definition of the input variables. Table 1 gives an overview of the data availability and dis-
tribution used in the current study. All sites are located within
the Arctic Circle and are experiencing the polar day3(

a set of weights that processes data accurately enough fanonths of no darkness over the summer period)uAdgil-

the application). Another issue with neural networks is thetering has been applied to two sites only (very good night-

possibility of under- or over-fitting of networks (Hansen and time data coverage, nonetheless), data were not split into the

Salamon, 1990; Jain et al., 1996; Svozil et al., 1997). Thistwo categories day/night as required for £gap-filling stud-

can happen when data used to train the network is not reprees. Furthermore, by including all available data (see effective

sentative enough for the entire observation span, if the numeata coverage in days in Table 1) we avoided a further reduc-

ber of hidden layers or neurons is not correct, if the globaltion in number of data points and risking working with mod-
minimum is overshot or when the network learns the train-els that lack in power or representativeness. Also, grouping

Biogeosciences, 10, 8188200 2013 www.biogeosciences.net/10/8185/2013/
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data by different meteorological conditions would lead heretwo layers with information flowing unidirectionally (grey
to a subjective choice as not every emission event, or weathearrows) to the 4 nodes (marked as circles) within the hidden
condition has the same effect on methane fluxes. One of théayer, where a bias (offset) (marked as 1) is added.
reasons could be lagged effects of some of the drivers (only In this case, the underlying function is simply written as
the lagged effect of water table depth and precipitation are .
discussed here) that need further investigation. _ .
We are dealing with seasonal and diurnal data that expe9 =7/ (b+le, w”) (1)
rience regular and predictable changes. In order to add this =
seasonal and diurnal effect to their neural network, Papalevheren is the number of hidden neurons (4 in our case),
and Valentini (2003) introduced several fuzzy data sets rex; represents the input variables( ..., xg — in our case),
flecting the diurnal and seasonal variation to reduce the lin-w;; denotes the fitted weightsug, ..., w4 — for each neu-
ear cumulative numerical weight of time in relation to other ron) attached to each input variable andenotes the bias
variables. Adding this type of input to neural networks does(or offset) that is added to the weighted sum prior to apply-
not always increase the neural network performance, and hasg the sigmoid activation functioqf), leading further to
been shown by Schmidt et al. (2008) to have sometimes litthe next layer, where a new set of weights are distributed, to-
tle effect. Our analysis, however, showed an increase in netgether with a bias and the sigmoid activation function before
work performance when including these fuzzy sets. Thereimaking an estimation of the output valu@g. These output
fore, four fuzzy sets representing the diurnal effect and threevalues also have a range of 0-1 which were then rescaled to
(spring, summer and autumn) mirroring seasonal variationgheir appropriate physical unit (nmoltis—1).
were included in the current study. Winter as a fuzzy set has As we are testing and comparing different artificial neural
been excluded as none of the used flux data sets extendetetworks as a gap-filling method for GHddy covariance
into the winter period. Furthermore, these seasonal fuzzy setBux data, we utilised the artificial gap length scenarios in-
were adjusted to correspond to the seasons in northern latiroduced in Moffat et al. (2007, Appendix A). These scenar-
tudes (onset of spring is later than in temperate regions, fofos served in extracting the same data rowslLQ %) from
example). We kept the models simple following the princi- all data sets which were utilised for model performance test-
ple of parsimony (Beck, 1943; Bugmann and Martin, 1995) ing, necessary for reliable model comparison and evaluation.
and the quality assurance standards highlighted in MoffatMoffat et al. (2007) generated secondary data sets by flag-
et al. (2010). The predictive ability of a model initially in- ging 10% of the data as artificial gaps. Ten data sets were
creases with complexity but they do also have the tendencgenerated for each gap scenario, each having a different tem-
to decline once a model becomes too complicated (Bugmanporal shift in gap distribution. We have chosen three scenar-
and Martin, 1995). ios per gap length (Figs. 3-5). These gap lengths represent
The meteorological, soil, and GHlux data as well as the very short gaps (V, 1-3) of random 30 min values; short gaps
fuzzy data sets consist of different magnitudes and units. IS, 1-3) of random 4 h gaps, medium (M, 1-3) of 1.5days,
order to generalise the data, we have scaled all data fronong (L, 1-3) of 12 full days and a mixed scenario (X, 1-3),
0 to 1 as has been previously applied by van Wijk andrepresenting a mix of the above mentioned gap lengths, re-
Bouten (1999), Papale and Valentini (2003), Nguyen andsulting in 15 scenarios per data set. These scenario labels 1-3
Chan (2004) and Moffat et al. (2010). Furthermore, the rangedo not correspond to the consecutive scenario numbering in-
between 0 and 1 is also necessary as we are applying a sigroduced in Moffat et al. (2007), but are chosen for simplic-
moid activation function (Cybenko, 1989), which has a rangeity. Scenarios were chosen in such a way that the maximal
of 0—1. By scaling the data that we are feeding into the net-existent data coverage is achieved, together with an appro-
work, all data is being treated equally and weights can bepriate gap length. There were cases where artificial gap data
distributed evenly. A sigmoid function was also used in the points coincided with already existing gaps, resulting in a
output layer (Fig. 2), as has been previously applied by Pahon-uniform length of data pairs used as test data sets. Never-
pale and Valentini (2003). theless, each scenario extended the already existing gaps by
Three approaches were tested here: two including meteaoa further 8-14 %. The atrtificial gap scenarios introduced in
rological variables recorded at all five sites (“seasonal” andMoffat et al. (2007) are for 30 min resolution files which were
“diurnal”) and a third, a more thermo-hydrological approach adjusted for the Lena River Delta data set, where a 30 min ar-
(“lagged”), where the lag effects of water table depth (WTD) tificial gap was applied to the respective hour value. The re-
and precipitation were incorporated at some of the sites.  maining available data were used for training, avoiding any
further reduction of the number of data rows out of reasons
2.4 Applying artificial neural networks to data mentioned in the previous section.
Several learning algorithms are available for neural net-
Introducing the neural network topology (Fig. 2) used in thework training. In the current study we applied the re-
current study, input variables (left side of the network) aresilient backpropagation algorithm (Riedmiller, 1994). It is a
fed into the network with weights fitted and spread across thdirst-order optimisation algorithm that acts on each weight

www.biogeosciences.net/10/8185/2013/ Biogeosciences, 10, 8P8H-2013
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separately. It modifies the weights in order to find a localtreated in the same manner. In order to ensure the reliability
minimum of the error function. The weights are modified of all trained models an additional test across sites has been
going in the opposite direction of the partial derivatives un- carried out. Moffat (2010) showed that model reliability can
til a local minimum is reached (if the partial derivative is also be checked via cross-validation using data from another
negative, the weight is increased,; if the partial derivative issite.
positive, the weight is decreased). This ensures that a lo- A reliable model does require a good generalisation (also
cal minimum is reached, leading to an efficient and trans-to avoid overtraining/over-fitting), which was taken into ac-
parent adaptation process (Riedmiller, 1994; Gunther andount in the current study. Moffat (2010) does list the main
Fritsch, 2010). The resilient backpropagation algorithm haspoints of having the right number of neurons, stopping the
been chosen as it appears to be the fastest in training antaining as soon as the error levels off, pruning the nodes
most consistent learning algorithm in several studies (Schiff(neurons) and penalising large weights by regularisation.
mann et al., 1994; Treadgold and Gedeon, 1996; Kisi andVhen applying the resilient backpropagation learning al-
Uncoujlu, 2005). Furthermore, this learning algorithm does gorithm weights are limited internally in size (Riedmiller,
limit the size of the weights, which are generally also linked 1994). Verifying the reliability of a model not only on its
to over-fitting of a model. test data but also via cross-validation with data from another
In order to test the network’s performance, various errorsite does also contribute to a good generalisation of a model.
functions can be applied. We chose the sum of squared ein order to ensure the reliability of our networks and their
rors (SSE), as previously used by Moffat et al. (2010) andapplicability in CH, studies (also regarding drivers/input pa-
assembled the neural network by implementing the “neural+ameters) site combinations were chosen according to their
net” package (Gunther and Fritsch, 2010; Fritsch and Gunflux range and site properties.
ther, 2012) in R statistical language (R Development Core There is currently no consensus in the scientific commu-
Team, 2013). Here we applied the built-in training func- nity on the number of neurons that should be used (Svozil et
tion and modified it accordingly to suit our purposes (maxi- al., 1997; Saxén and Pettersson, 2006; Stathakis, 2009) when
mum number of iterations and threshold value for the partialapplying neural networks to data series. In order to apply the
derivatives of the error function). Moffat (2010) employed a appropriate number of neurons, 25 repetitions were run for
similar method but used the root mean square error (RMSE# selection of neurons (1-12) to help in choosing the appro-
as an error function. The process stops when this training erpriate number of neurons (Jarvi et al., 2012) to be applied
ror levels off and all partial derivatives of the error function within the hidden layer of our networks. Furthermore, util-
reach the pre-specified threshold value of 0.01 (1 %) that actssing the integrated AIC’s calculation did also support the
as a stopping criteria. choice in applied number of neurons. The AIC value reflects
One of the advantages of applying the “neuralnet” packagehe overall fit of a model and it is used to avoid an over-
is the possibility to choose this integer specifying the threshfitting of the trained model. While by itself the AIC does not
old as a stopping criteria (Gunther and Fritsch, 2010) thatgive much information, it only becomes applicable when it is
should be achieved during the training phase, along with thecompared to the AIC value of a series of models in which the
maximum number of iterations (per repetition) the network same data sets (observations) were used. It does also help to
should carry out in order to fulfil our requirements (conver- determine which model is most parsimonious and an infor-
gence of the network and finding the local minimum). The mation criterion commonly used for model selection (Hur-
trained network is then tested on the extracted0% of  vich and Tsai, 1989; Burnham and Anderson, 2004). Once no
data (artificial gaps) by applying the test function (compute)further improvement could be realised in terms of goodness
within the “neuralnet” package. If the error function is equiv- of fit and the networks were able to predict g£fluxes rel-
alent to the negative log-likelihood function then the Akaike atively accurately (Pearson’s correlation coefficientand
information criterion (AIC) can be used to avoid an over- the RMSE achieved when testing the trained networks (data
fitting of the trained network (F. Giinther, personal commu- not shown)), we decided to proceed further using four neu-
nication, 2013). rons within the hidden layer. All networks (15 scenarios per
The data were not split into the traditional three-way cross-site for all tree approaches) were trained again 50 times and
validation data sets: training, validation and testing subsetshe same error values calculated again (Figs. 3-5).
(where a model is trained on a training data set with a smaller
validation data set that is periodically passed through the net2.5 Statistical analysis
work, before being tested on the independent test data). One
reason is the use of the applied package, but also to keep tHe order to examine all input variables and their effect on
training and testing of the network transparent. Another rea-methane fluxes, we applied a simple stepwise regression
son is the applicability of the method to short time series.(a combination of backward elimination and forward selec-
Would a short time series, such as Kytalyk (2008), be splittion) in R (R Development Core Team, 2013), in order to
into three data sets then the resulting analysis would lack angearch for the best predictors or combinations of predictors
power and representativeness. This way all six data sets werfeom among all available 30 min and 1 h (Lena River Delta)
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resolution data. Following the principle of parsimony, we de- unit of nmol nT2s~1). The resulting- values for the train-
cided on a few meteorological variables and four fuzzy setsng (grey full circles) and test (black full circles) are shown
representing time of day (morning, afternoon, evening andn Figs. 3-5 (lower panel), while the RMSE for the test data
night) and three representing the seasonal variation (springgre shown as box-plots in the upper panel of these figures.
summer and autumn) (Fig. 2, Table 2). This selection helpedAIC values, necessary for model selection and an indicator
to prune the network by avoiding insignificant input data for model performance (the lower the value, the better the
(Gunaratnam et al., 2003; Saxén and Pettersson, 2006) andodel) for all six sites, scenarios and model approaches are
to avoid cross-correlations (to some extent) between inpuvisualised in Fig. 6. The Pearson correlation coefficient was
variables, adding little extra information to the network. also utilised as goodness of fit in the cross-validation analysis
We have tested three approaches by using three differer(Fig. 7).
sets of input data: the most simple approach included so-
lar radiation as a time of day indicator and the three sea-
sonal fuzzy sets (“seasonal”, Table 2), a second approach iB8 Results
which solar radiation has been removed and replaced by the
time of day fuzzy sets (“diurnal”, Table 2), while a third, a We applied artificial neural networks to six different ¢H
more thermo-hydrological approach is tested by integratingflux data sets originating from subarctic and Arctic regions
the lagged effect of precipitation and WTD which was ap- of Fennoscandia, Siberia and Alaska. We have tested three
plied to four out of six data sets (“lagged”, Table 2). approaches by using three different sets of input data. These
For the first two approaches, we chose those variables thahput variables (listed in Table 2) were, amongst others, air
appeared important and available in all data sets. Furthertemperature (Air T), soil temperature at the depth of 10cm
more it did help to standardise the method and make it appli{Soil T), wind direction (decomposed wind speed into along
cable to all six different data sets in the same way. The studyu) and across windv)), barometric air pressure (Air P) and
by Wille et al. (2008) has shown that can enhance CH the fuzzy transformation of the time of day and seasonal vari-
emissions. Therefore, adding as an input variable where ations.
data has previously beer’ filtered, would lead to uncertain- In the first step of the analysis 1-12 neurons were applied
ties, asu™ filtered data do not provide the information nec- to both standardised approaches in order to find the opti-
essary for the network to train and learn such conditions inmal number of neurons, as has been introduced in Jarvi et
order to predict CH fluxes occurring under similar condi- al. (2012) prior to deciding on the final number of neurons in-
tions. cluded in the hidden layer. The training distribution showed
Precipitation and water table depth can also act ag CH an increase in correlation coefficient value with each added
drivers (Whalen and Reeburgh, 1992; Roulet et al., 1992neuron (data not shown here), while some of the test results
Christensen, 1993; van Huissteden et al., 2008), and can adhowed no improvement with increase in neurons added. The
ditionally also have a lagged effect on gkeimissions (Wind-  distribution indicated that from four neurons onwards no real
sor et al., 1993; Bubier et al., 1995; Kettunen et al., 1996;improvement was visible, be it for short, long or mixed gap
Suyker et al., 1996). In order to integrate these two hydro-length scenarios. This is also confirmed by the lack of statisti-
logical variables, data from Kytalyk were tested by using cal significance at the 95 % confidence level (notched Tukey
the current corresponding precipitation values as well as prebox plots) beyond four neurons leading to the assumption
cipitation values lagged by one day, as has been identifiedhat four neurons were ideal within the hidden layer to be in-
in the study conducted by Kettunen et al. (1996). Kettunencluded in this study for all three approaches. The integrated
et al. (1996) and Suyker et al. (1996) identified a distinc- AIC calculations did also support this approach.
tive 12 day lag when investigating the water table fluctua- The output from the first approach (Table 2) (seasonal
tion effect on CH fluxes from boreal wetlands. Stordalen effect) is visualised in Fig. 3, showing the coefficients
and Lompolojankka (both subarctic) were used to test thisachieved during the training (in grey) and test phases (in
approach. Barrow was tested by integrating other thermoblack), by applying four neurons only. In the upper panel the
hydrological variables, such as soil moisture, vapour presRMSE is given in true physical units (nmolths—1) for the
sure deficit (VPD) and soil heat flux as input variables. Lenatest outcome only. Missing values indicate the lack of data or
River Delta data were used to test relative humidity in addi-inappropriate length of data coverage or a distribution out-
tion to barometric air pressure as an indicator for atmosphericide the visualised plot margins.
changes. Figure 4 shows the outcome from the second approach (di-
In order to investigate the performance of all the networksurnal effect) where solar radiation, as an indicator of time of
of the three approaches we estimated the megt 95%  day, was replaced by the four fuzzy sets representing the di-
confidence level), AIC and root mean square error (RMSE)urnal effect of the data. Here again, the performance of the
as a goodness of fit indicator of the measured and predictedetwork at each site and their error values become visible
fluxes. The simple RMSE indicates the range of the errorand comparable. The third approach (thermo-hydrological or
for each scenario and each site (shown in their true physicalgged effects) in which different input variables were chosen
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Table 2.Input variables used in three different neural network gap filling approaches. The input variables listed are: air temperatyre (Air

soil temperature at the depth of 10 cm (SB), wind direction (WindU and WindV (horizontal and perpendicular)), solar radiation (Sol

Rad, substituted with photosynthetic active radiation where not available), barometric air pressurg (&lative humidity (RH), water

table depth (WTD), precipitation, soil heat flux, soil moisture, soil temperature of the polygon rim (Rim temp) and vapour pressure deficit
(VPD). Furthermore, included are the fuzzy transformation of the seasonal variation and time of day represented by spring, summer and
autumn, as well as the four time periods morning, afternoon, evening and night.

All sites All sites Stordalen Lompolojankkd Lena River Delta  Kytalyk Barrow
(approach 1) (approach 2) (approach 3) (approach 3) (approach 3) (approach 3) (approach 3)
“seasonal’ “diurnal” “lagged” “lagged” “lagged” “lagged” “lagged”
Air T Air T Air T Air T Air T Air T Air T
Soil T Soil T Soil T Soill T Soil T Soill T Soil T
Air P Air P Air P Air P Air P Air P Air P
wind U Wwind U Wind U RH Rim temp WindU Soil heat flux
Wind V Wind V Wind vV WTD RH Wind vV Soil moisture
Sol rad - WTD WTD (12days) RH (1day) Precipitation  VPD
- - WTD (12days) - - Prec. (1day) -
Spring Morning Spring Spring Spring Spring Spring
Summer Afternoon Summer Summer Summer Summer Summer
Autumn Evening Autumn Autumn Autumn Autumn Autumn
- Night - - - - -
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Fig. 3. Output from the “seasonal” approach. Summarised are the mean Pearson correlation coefficients (left-side scale) of 25 repetitions and
the respective RMSE in true physical unit (hmotfs~1) as a measure of the network performance at each site (right-side scales

labels represent very short gaps (V, 1-3) of random 30 min values; short gaps (S, 1-3) of random 4 h gaps, medium (M, 1-3) of 1.5days,

long (L, 1-3) of 12 full days and a mixed scenario (X, 1-3), representing a mix of the above mentioned gap lengths, resulting in 15 scenarios

per data set. The scenario labels 1-3 do not correspond to the consecutive scenario numbering introduced in Moffat et al. (2007).

for each site is illustrated in Fig. 5. The error values for study. In order to visualise the model performances (overall
Stordalen, Lompolojankka and Kytalyk (2008) (Figs. 3-5) fit of the model) we included the AIC values as an aid for
appear much higher than those of the remaining three remodel selection (Fig. 6) for each scenario. The “seasonal”
sults; they also have the highest flux ranges (see Fig. 8) in ouand “diurnal” model included the same number of input vari-
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ables and same number of neurons. Their values appeared tde Discussion
lowest across all five sites with the “seasonal” model show-

ing the lowest values for all scenarios in five out of six data )
sets. The AIC values for the “lagged” model for Stordalen Artificial neural networks that have previously been success-

and Kytalyk show the highest values. This information crite- fully implemented as a gap-filling method (Falge etal., 2001,

rion is a measure of the overall fit but does also indicate howMoffat étal., 2007) for carbon dioxide flux time series (Aubi--
parsimonious a model is. The “lagged” models for these two"€t €t al., 2000; Carrara et al., 2003; Papale and Valentini,
sites do include more input variables and they are therefor¢?003 and Schmidt et al., 2008) have been described as a ro-
“penalised” accordingly (part of the AIC principle), (Hurvich bust, reliable and versatile tool. Nevertheless, their applica-

and Tsai, 1989). Therefore, the “seasonal” model was choseHON IS time consuming, particularly in finding the appropri-
to visualise the results from our additional model reliability &€ iNPut variables, the appropriate number of hidden layers,
test carried out for all six trained networks (Fig. 7). None of and neurons/nodes within these layers, as well as the choice
rof training and test data sets (data rows). Furthermore, the
mance or over-fitting of the trained networks. global minimum (Hammerstrom, 1993; Nguyen and Chan,
In order to visualise the performance of the artificial neu- 2004) iS not unique and changes with each training run be-
ral networks applied to the “seasonal” data, we illustrategCause every trammg run/re.petltlon _(a run includes many |.ter-
the goodness of it of the predicted and actually measuredmons) achleves d|fferent_f|tted weights and results (it is im-
CH flux data (test data) for all three mixed scenarios show-Portant to find a set .of vyelghts that processes data accurately
ing their distribution along the ideal 1: 1 regression line in €N0ugh for the application). o
Fig. 8. High Pearson correlation coefficients of up to 0.97 N the current study, we tested the applicability of neu-
were achieved when testing the network performance.The &l nétworks as a gap-filling tool for methane flux data and
values for Kytalyk (2008) show the lowest correlation values 2SO made an attempt to standardise the method by includ-

of 0.61, 0.69 and 0.92. The lowest values do still pass thdnd the same input variables for all data sets and using the
95 % confidence level (54 degrees of freedom). same number of neurons within the hidden layer for each

data scenario. In order to test their applicability, we applied
the method to various ecosystems by including six distinc-
tively different data sets from high latitudes, one showing

these results point to any degradation of the network perfo
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diurnal and seasonal variation, one only seasonal while threengths or the fact that the lagged effect of precipitation was
data sets do not show any diurnal or seasonal variation. Thaot present.
sixth data set (Stordalen) reflected its position on the shores The performance of the mixed scenarios (representation of
of Villasjon Lake in its emission patterns. Three different ap- the most realistic gap scenario in flux data) originally chosen
proaches have been introduced here: two including the samey Moffat et al. (2007) as a crosscheck of the other four dif-
input variables across all sites (in an attempt to standardferent gap scenarios and also included in the current study
ise the method), while a third approach included differentshow the same, in some cases better, results than some of the
input variables at each site and is also taking the laggedndividual scenarios (see Figs. 3-5) themselves. The Lena
effect of water table depth and precipitation into account.River Delta appears to display the lowest mean correlation
Furthermore, we tested the reliability of our models by test-coefficient values. The extreme discrepancy in case of the
ing our trained network with data from another site with sim- Lena River Delta results are due to low gflixes recorded
ilar ranges in fluxes or site properties. at the site with few significant emission events resulting in
The chosen input variables (Table 2; commonly recordedmuch higher fluxes. Furthermore the correlation coefficient
meteorological parameters that act as4@lvers and wind  values for the test (artificial gaps) data sets showed some-
direction) as well as fuzzy sets representing time of daytimes higher values than those achieved in the training phase
and seasonal changes appear to be the right choice. Offrigs. 3-5). This could be due to the fact that Barrow (for ex-
the one hand adding more input variables would not com-ample) experienced a diurnal trend and the data composing
ply with the simple model approach, while, on the other the test data set (artificial gaps) did not include any specific
hand, adding more input variables would introduce the riskevents. In case of the Lena River Delta data set, the artificially
of cross-dependency and to some extent cross-correlatiomixed gaps included two little events that the “seasonal” net-
(Guan et al., 2007) between input variables, as input variawork was capable to predict (Fig. 8). This performance could
ables should remain as independent as possible as describbd credited to the fact that the network has learnt about such
in Moffat et al. (2010). Reducing the number of chosen in- events from similar conditions during the training phase (in-
put variables any further would not comply anymore with the dication of good representativeness of the overall data as part
principle of parsimony, of keeping a model simple but not too of the training data set). The introduced lag effect for this
simple, leading to an underperformance of the network assite (Fig. 5) did slightly reduce the network performance,
predicted fluxes did not reach the full range which means theshowing low correlation values with values still within ac-
networks were underestimating the fluxes. The chosen meeeptable significance level margins, nonetheless. This reduc-
teorological variables included in the current study belongtion in network performance could be credited maybe to the
to the main drivers as shown in previous studies (see Introchoice of relative humidity as an input variable in this study.
duction). Hydrological properties, such as precipitation and Some of the Pearson correlation coefficients achieved in
water table depth, can have a lagged effect on methane emishe current study appear low (Figs. 3—8), compared to those
sions (Windsor et al., 1993; Bubier et al., 1995; Kettunen etachieved for CQ@ fluxes when applying the same method
al., 1996; Suyker et al., 1996). Kettunen et al. (1996) carriedMoffat et al., 2007). Much higher correlation coefficients (
out a cross-correlation study looking at the different lag ef->0.95) were achieved in the current study when comparing
fects for both variables at a boreal mire complex (six sites).trained data versus actual measured data, but resulted fre-
They identified a significant lag of one day for both their bo- quently in no acceptable values when testing the network
real flark and hummock sites, indicating that precipitation in- performance. Outliers were introduced in places where there
creased emissions throughout the summer. Furthermore, Ketwvere no high or low fluxes. Such results could also be due
tunen et al. (1996) also identified a 12 day lag with WTD atto existing and gap scenario data distribution, as artificial
both these sites. Here again, arise in water table was reflecteghps coincided with existing gaps, reducing the number of
in CH4 emissions. Suyker et al. (1996) also identified a dis-testing data points. None of the data sets included an en-
tinctive 12 day lag when investigating the water table fluctu-tire gap free 12 day period that could have been used as a
ation effect on the midday CHiluxes from their boreal fen.  classical “long gap” test data set, as introduced in Moffat et
Water table position is not always recorded, or notal. (2007). Furthermore it is to be expected that predicting
recorded with the same time resolution as the,Gldxes.  CHy emission events is more complex than predictingCO
Nevertheless two of the selected sites (Stordalen and Lomfuxes that undergo a regularity and predictability in respi-
polojankka) do record water table depth continuously andration or photosynthetic uptake, respectively. Integrating the
were included in the current study. Results show that theiradditional test did help in testing the reliability of our trained
network performance remained very high showing these twanetworks beyond the simple testing using test data originat-
lagged variables to be reliable input variables in the cur-ing from the same overall data set. These results do show
rent study. Including the lagged effect of precipitation did that, though methane does behave in a different manner than
slightly decrease the performance of the Kytalyk (2008) net-CO, it is still possible to apply this type of cross-validation
work (Fig. 5). A reason for the decrease could be the data senethod to such fluxes as common drivers do act similarly at
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name on the right side indicate the site name whose data has been used to test the reliability of the model.
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1:1 regression line. All units are in nmolm s, Included is also the range of the achieved meaaefficients.

all sites. These results are also indicative of the robustness aofith Lompolojankka having the highest proportion of gaps
in the CH, fluxes. Regarding sufficiency of available train-
Two other important aspects in the current study are theéng data, we believe that by utilising the method described
length of the time series (Table 1), and thus consequently théere, we kept the method transparent, avoided working with
sufficiency of available training data, and secondly the gapmodels lacking in power, and making this method applicable
length in the existing time series. Time series vary betweerto short and longer time series. Moffat et al. (2010) showed
15 days (Kytalyk, 2008) and 181 days (Lompolojankka), that neural networks are actually also applicable to one day

the models introduced in the current study.
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of incomplete data, when applied to @@ux data. However, steps towards such procedures have already been initiated
none of the time series included in the current study wereduring the international ESF (European Science Foundation)
gap free or included an entire year’s worth of data. There-explanatory (Germany, April 2012) and FLUXNET GH
fore, no bias error to indicate the bias induced on the annuafFinland, September 2012) workshops.

sums/budgets, as referred to by Moffat et al. (2007), was cal-

culated.

Nevertheless, neural networks show excellent perfor-AcknowledgementsThe work presented was supported by the
mance (Figs. 3-8), which proves that this standardisedNordic Centre of Excellence, DEFROST, under the Nordic Top-
method is easy to be implemented and applicable to many-evel Research Initiative. For funding we thank the Academy of
different ecosystems in the northern latitudes (Fig. 1). WeFinland Centre of Excellence program (project no 1118615), the

have reliably reproduced and predicted methane fluxes. Furcademy of Finland ICOS project (271878), the EU ICOS project
thermore, we were able to incorporate successfully the211574), EU InGOS (284274) and the EU GHG-Europe project

lagged effect of hydrological properties such as water tabl (244122), NSF, ARC (1204263). T. Sachs was supported through
d ggh . y d 9 . .p _p ite (Kvtalvk Wethe Helmholtz Association (Helmholtz Young Investigators Group,
epth at two sites and precipitation at one site (Kytalyk). egrant VH-NG-821). Last but not least the authors would like to

find artificial neural networks to be recommendable as a reihgnk A. M. Moffat for her vital support and advice in this study.
liable and robust gap-filling method for high resolution £H

flux data originating from various ecosystems at high lati- Edited by: J. Back

tudes, as estimated annual budgets rely on accurate gap-free

or gap-filled data.
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