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Abstract. We demonstrate that substrate uptake kinetics inthe MM kinetics failed, while the ECA kinetics succeeded, in
any consumer—substrate network subject to the total quasieproducing the EC solution when multiple consumers (i.e.,
steady-state assumption can be formulated as an equilibmicrobes and mineral surfaces) were competing for multi-
rium chemistry (EC) problem. If the consumer-substrateple substrates. We then applied the EC and ECA kinetics to a
complexes equilibrate much faster than other metabolioguild based C-only microbial litter decomposition model and
processes, then the relationships between consumers, sufpund that both approaches successfully simulated the com-
strates, and consumer-substrate complexes are in quasihonly observed (i) two-phase temporal evolution of the de-
equilibrium and the change of a given total substrate (freecomposition dynamics; (ii) final asymptotic convergence of
plus consumer-bounded) is determined by the degradatiothe lignocellulose index to a constant that depends on initial
of all its consumer-substrate complexes. In this EC formu-litter chemistry and microbial community structure; and (iii)
lation, the corresponding equilibrium reaction constants aremicrobial biomass proportion of total organic biomass (litter
the conventional Michaelis—Menten (MM) substrate affinity plus microbes). In contrast, the MM kinetics failed to realis-
constants. When all of the elements in a given network are eitically predict these metrics. We therefore conclude that the
ther consumer or substrate (but not both), we derived a firstECA kinetics are more robust than the MM kinetics in repre-
order accurate EC approximation (ECA). The ECA kinetics senting complex microbial, C substrate, and mineral surface
is compatible with almost every existing extension of MM interactions. Finally, we discuss how these concepts can be
kinetics. In particular, for microbial organic matter decom- applied to other consumer—substrate networks.

position modeling, ECA kinetics explicitly predicts a specific
microbe’s uptake for a specific substrate as a function of the

microbe’s affinity for the substrate, other microbes’ affinity

for the substrate, and the shielding effect on substrate uptaké& Introduction

by environmental factors, such as mineral surface adsorption.

By taking the EC solution as a reference, we evaluatedMany natural systems involve processes that can be modeled
MM and ECA kinetics for their abilities to represent several as consumer—substrate (or consumer—resource in a broader
differently configured enzyme-substrate reaction networkscontext) interactions. These interactions include, but are
In applying the ECA and MM kinetics to microbial models not limited to (i) multicomponent adsorption in agueous
of different complexities, we found (i) both the ECA and MM chemistry (e.g., Jennings et al., 1982; Choy et al., 2000);
kinetics accurately reproduced the EC solution when multi-(ii) aerosol and cloud droplet interactions in atmospheric
ple microbes are competing for a single substrate; (i) ECAchemistry (e.g., Pilinis et al., 1987; Jacobson et al., 1996);
outperformed MM Kkinetics in reproducing the EC solution (iii) protein interaction networks in molecular biology (e.g.,
when a single microbe is feeding on multiple substrates; (iii) Childs and Bardsley, 1974; Ciliberto et al., 2007); and (iv)

many more in natural ecosystems, such as plant-microbe
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competition for inorganic nitrogen and phosphorus (e.g.,the half saturation (or substrate affinity) constant, ahd
Reynolds and Pacala, 1993; Lambers et al., 2009), planfmolm3) is the free substrate concentration (a full list of
competition for light (e.g., Dybzinski et al., 2011), mi- symbols is given at the end of the text). Later, Briggs and
crobial competition for carbon substrates and mineral nu-Haldane (1925) derived Eg. (1) from the enzyme-catalyzed
trients (e.g., Caperon, 1967; Moorhead and Sinsabaugtreaction:

2006; Allison, 2012; Bouskill et al., 2012), algae compe-

tition for mineral nutrients (e.g., Tilman, 1977; Follows et ¢ E’j_ltck_;) P+E )
al., 2007), and predator competition for prey (e.g., Holling, ky

1959a; Arditi and Ginzburg, 1989; Ginzburg and Akcakaya,

1992; Vayenas and Pavlou, 1999; Abrams and Ginzburgwhere E (molm3) is (free) enzyme,C (molm3) is
2000; Koen-Alonso, 2007). Because of this prevalence ofenzyme-substrate complex from binding (free) substsate
consumer—substrate interactions in natural systems, particuo enzymekE, P is the product (mol m3) resulting from the

larly in ecosystem dynamics, many mathematical developirreversible part of reaction (2k;” (m®*mol=ts™1) andk;
ments have been proposed to interpret and predict ecosyste(s—1) are forward reaction coefficient, (s 1) is the back-
behavior under a wide range of environmental and biolog-ward reaction coefficient, and(s = (k; + k) /k;. Later

ical conditions (e.g., Lotka, 1923; Volterra, 1926; Holling, studies (e.g., Segel and Slemrod, 1989; Schnell and Maini,
1959b; Campbell, 1961; Murdoch, 1973; Williams, 1973; 2000) indicated that Eq. (1) was obtained with the stan-
Tilman, 1977; Pasciak and Gavis, 1974; Persson et al., 199&ard quasi-steady-state assumption (SQSSA), which states
Maggi et al., 2008; Bonachela et al., 2011; Bouskill et al., that %_f ~0 and‘é—f = —kaE+k1_C (note that‘é—f is the
2012). In this study, we present developments focusing orthanging rate of the free substrate, which is different from
the consumer—substrate network that regulates organic mattefie total substrate being used in the total quasi-steady-state
decomposition. However, our results should be applicable ttassumption (tQSSA) to be introduced later). Equation (1) is
any problem that can be similarly formulated as a consumer-valid only whens + Ks > ET, whereEq is the total enzyme
substrate network. concentration including both free and substrate-bound.

In general, the growth of any biological organism mini- ~ The MM kinetics has been successful in many applica-
mally involves two steps: (i) substrate uptake and (ii) sub-tjons, but there are also many studies demonstrating that
strate assimilation. Once a substrate is captured, it is asmodifications must be made to account for discrepancies be-
similated to produce energy and biomass for a series ofween predictions from applying Eq. (1) and observations
metabolic processes, including, but not limited to, cell main-(e.g., Cha and Cha, 1965; Williams, 1973; Suzuki et al.,
tenance, enzyme production, cell division, and reproduc-1989; Maggi and Riley, 2009; Druhan et al., 2012). For in-
tion. Therefore, explicit modeling of the interactions be- stance, Cha and Cha (1965), in studying cyclic enzyme sys-

tween many consumers, substrates, and their habitats reems, noticed that the substrate uptake kinetics, when approx-
quires a consistent mathematical representation of substraighated with first order accuracy, should be

uptake under a wide range of biotic and abiotic conditions.

Among the many existing substrate uptake kinetics (Hill, v VimaxST 3)

1910; Michaelis and Menten, 1913; Burnett, 1954; Holling, Ks+ ET+ ST’

1959b; Cleland, 1963), the Michaelis—Menten (MM) kinetics i o

(or equivalently Monod (Monod, 1949) or Holling's type I chers have obtained Eq. (3), or a similar form, for var-

(Holling, 1959b) kinetics) is the most widely applied because'©US Problems (e.g., Reiner, 1969; Segel, 1975; Schulz,

of its simple form, solid theoretical foundation (e.g., Liu, 1994: Borghans and De Boer, 1995; Borghans et al., 1996;

2007), and successes under a wide range of conditions (e.gﬁChne" and Maini, 2000; Wang and Post, 2013). In particu-

Holling, 1959b; Tilman, 1977; Reynolds and Pacala, 1993; ar, Bor_ghans et al. (1996),_usmg the total quasi-steady-state

Legovic and Cruzado, 1997; Hall, 2004; Kou, 2005; Riley @PProximation (tQSSA; which also assunffgs~ 0, but de-

and Matson 2000; Maggi et al., 2008; Allison, 2012). fines a total substratér = S + C and usess™ = —kJC),

In their seminal paper, Michaelis and Menten (1913) as-showed Eq. (3) is valid ik;ET << kf (Ks+ E1+ S7)2.

sumed that enzymes and substrates adsorb to each otherEquation (3) is of good accuracy for a much wider range of

to form enzyme-substrate complexes. By assuming thesubstrate and enzyme concentrations than Eq. (1). It also alle-

enzyme-substrate complex is of a much lower concentratiorviates the problem that— oo asEt — oo if EQ. (1) is used

than that of the substrate, they obtained, by law of mass acfhote Vimax o ET). In addition, when applied to predator—

tions, the so-called MM kinetics, which states prey systems (i.e., predatoz; prey=S), Eqg. (3) predicts
VinaxS predation erends"on both (i) the ratiq between predator and

V= Kot S (1) prey density and (ii) prey density. While we have not found

an example in the literature of Eq. (3) being evaluated with
wherev (mol s1) is the substrate uptake raigyax (mol s—1) predation data, a few studies (e.g., Vucetich et al., 2002;
is the maximum substrate uptake ra#és (molm=23) is Schenk et al., 2005) indicated the predation rate is not only
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ratio dependent, as proposed in Arditi and Ginzburg (1989) Jennings, 1982; Wang et al., 2013), should provide a frame-
nor only density dependent, as implied by MM kinetics. work to model the biotic substrate uptake kinetics and abiotic

Extension of the MM kinetics to more general cases suchchemistry simultaneously. If such a framework can be iden-
as (i) one enzyme (henceforth, without loss of generality,tified, it will consistently describe the substrate uptake by a
we use enzymes as the consumers) competing for multiplenicrobe (or a consumer in a broader definition) as a func-
substrates (Schnell and Mendoza, 2000; Koen-Alonso, 2007jon of the microbe’s traits, traits of other microbes, and the
Maggi and Riley, 2009), (ii) multiple enzymes competing for impacts from different abiotic environmental factors. Such a
one substrate (Suzuki et al., 1989; De Boer and Perelsorframework will fit well with the idea of game theory (that
1995; Grant et al., 1993), and (iii) many enzymes interactingis often used to describe biological evolutionary systems),
with many substrates (De Boer and Perelson, 1994; Cilib-which states “the fitness of an individual is simultaneously
erto et al., 2007). Though the most general case (iii) has beemfluenced by its own strategy, the strategies of others, and
attempted in various contexts, we are not aware of any anaether features of the abiotic and biotic environment” (McGill
lytical representation presented in the literature. and Brown, 2007).

An analytically and computationally tractable formulation  In this study, we propose a general approach to model-
for case (iii) mentioned above is practically important to ing a consumer—substrate network that has an arbitrary but
solve many problems, such as trait-based modeling of microfinite number of consumers and substrates, and present its
bial ecosystems (Follows et al., 2007; Allison, 2012; Bouskill analytical approximations under some simplified conditions.
et al. 2012) and complicated trophic networks (Lindeman,We organize the paper as follows: Sect. 2 presents the theo-
1942). Since, in a trophic network, a predator’s predation onretical aspects of our approach and the design of illustrative
a prey can be practically considered as a random pairing prorumerical experiments to evaluate our approach and an ap-
cess between the predator and prey, and the feeding procepfication to the modeling of microbial litter decomposition;
is just the conversion of a prey into internal biomass of theSect. 3 presents relevant results and discusses the limitations
predator (e.g., Caperon, 1967), the uptake and assimilatioand potential applications of our developments; and finally,
of a substrate in a predator—prey system can thus be analogect. 4 summarizes the major findings of this study.
ically described by Eq. (2), with the predator’s rates of prey
foraging, prey escape, and prey handling (i.e., activities like
killing and eating) described, respectively, by paramekt%rs 2  Methods
ki, andky .

Trait-based modeling of a general microbial ecosystem isln this section, we first derive the full equilibrium chem-
different than that of a trophic network due to the unavoid- istry (EC) formulation of the consumer—substrate network
able interactions between substrates and the aqueous chemd its analytical approximation (ECA) that is at best first or-
ical environment. Particularly, the soil microbial ecosystem der accurate. We then describe illustrative numerical experi-
is further complicated by substrate interactions with vari- ments that are used to evaluate the classical MM kinetics and
ous adsorption surfaces (e.g., mineral surfaces and biocharhe ECA kinetics in modeling complex transient consumer—
Existing approaches often model the interactions betweersubstrate networks, including a simple model exercise of the
microbial substrate uptake and agueous chemistry and minmmicrobial litter decomposition problem.
eral surface interactions in separate steps, while ignoring the
mathematical similarities between microbial substrate up-2.1 An equilibrium chemistry based formulation of
take, aqueous chemistry, and mineral surface interactions  consumer—substrate networks
(e.g., Maggi et al., 2008; Gu et al., 2009). Interestingly,

Michaelis and Menten (1913) recognized that Eq. (1) couldWe consider here enzymes as the consumers in our
be derived from the law of mass action by assuming equilib-consumer—substrate network, so that our derivation is based
rium between the formation and degradation of the enzymeon enzyme kinetics. However, the substrate uptake kinetics
substrate complexes (though a formal mathematical treatih other systems can be represented analogously as long as
ment was done by Briggs and Haldane, 1925). In their studythe following assumptions hold: (i) consumers and substrates
Michaelis and Menten also considered a single enzyme tha@re well mixed in their environment; (ii) consumers and sub-
could bind with three different substrates and obtained astrates only exist in free and complexed states (which could
modified substrate uptake function under the assumptiorbroadly include organic and inorganic chemical adsorption,
of negligible enzyme-substrate complex concentration com-and even engagement in social activities for predator—prey
pared to substrates. Therefore, the apparent mathematicaystems); and (iii) the equilibration between formation and
equivalence between the enzyme—substrate binding proceskegradation of consumer-substrate complexes is much faster
and that of the chemical interaction between mineral (or or-than the change of total substrates (free plus complexed) and
ganic) surfaces and aqueous chemical species, where the |dotal enzymes (free plus complexed) due to all possible biotic
ter can usually be described as being in equilibrium (e.g.,and abiotic sinks and sources. Assumption (i) is commonly
made in environmental biogeochemistry, although it can be
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violated at small scales (e.g., Molins et al., 2012) or underchemistry (Pilinis et al., 1987; Jacobson et al., 1996; Ja-
water-stressed conditions where substrates can become disebson, 1999) and reactive transport modeling (e.g., Jen-
connected from consumers (e.g., Schimel et al., 2011). Allnings et al., 1982). This EC formulation enables one to use
consumer—substrate networks typically satisfy assumptiorexisting software, such as MINTEQ (Felmy et al., 1984),
(ii). A rigorous proof is still lacking for assumption (iii), but SOILCHEM (Sposito and Coves, 1988), and EQUISOLV
Kumar and Josie (2011) showed with mathematical rigor that(Jacobson, 1999), to solve for all the substrate-enzyme com-
it holds well for some special consumer—substrate networksplexes and then apply the equation

Ciliberto et al. (2007) showed it worked well for protein— .

protein interactive networks, and the MM kinetics (which — =k;; 5Cij (8)

also applies assumption; iii) has demonstrated its success indt v

numerous cases (but MM kinetics fails for some cases sucho compute the production rate 8f; from processing of sub-

as isotopic fractionation; Maggi and Riley, 2009; Druhan et Strates; by enzymet;.

al., 2012). However, Maggi and Riley (2009) concluded that Under the sQSSA, the change of a free substsatéue

if assumption (iii) was paired with the SQSSA, the resultantto the degradation of all its relevant enzyme-substrate com-
substrate kinetics failed to describe the isotopic fractionatiorPlexes is:

at high enzyme concentrations.

. k=J
With these three assumptions, we consider an enzymedﬂ = _Z<k;7< 1SiEx—k;, 1Cik>- 9)
(Ej,j=1,---,J) catalyzed reaction that converts a sub- dr = |
strate §;,i = 1,..... 1) into a final product;;: Under the tQSSA (Borghans et al., 1996), one defines
kKGa ko k=J
Si+Ej < Cij = Ej+ Py, @) Sir=S+) Cu: (10)
ij,1 k=1

wherek;jﬁ’l (M2 mol-1s-1) andk;,z (s~1) are reaction co- and then, by combing Egs. (6), (9) and (10), one obtains

efficients for the forward reactionsi,;’1 (s‘l) is the reaction  ds; 1
coefficient for the reverse reactions, afig (mol m=3) is the de
enzyme-substrate complex formed by bindfgvith E ;. ) . o

Under the SQSSA (also the tQSSA;; is constant dur-  We then obtain the full EC formulation by combining
ing a modeling (or measurement) time step (Michaelis andEds- (6), (11), and the enzyme mass balance:

k=J
= ki oCik- (11)
k=1

Menten, 1913), which leads to k=1
Ej,TZEj"‘Zij- (12)
SiE kG = (ki +k5.2) Ci (5) =

We note that ifk;; , = 0, then the complex formed with en-

zyme E; effectively becomes a shelter for any substrate it

can bind to. This constraint allows us to quantify the im-
(6) pact of different adsorption surfaces (e.g., mineral surfaces
and biochar) on microbial substrate uptake in a consumer—
substrate network. Further, with the great flexibility pro-
vided by the EC formulation (Jennings et al., 1982; Jacobson,

and can be rewritten as

+ ..
kija Cij-

Therefore, Eq. (5) describes the following chemical equilib-

num: 1999), one could simultaneously simulate biotic and abiotic
Ksij interactions for arbitrarily complex networks, subjected to
Si+Ej < Cij. (7)  computational resource constraints. In addition, we note that

the development by Cleland (1963) and the binding strategy
in the synthesizing unit approach by Kooijman (1998) are
just special cases of the EC formulation.

By taking the remaining procedures to obtain the MM kinet-
ics, it can be shown thds;; (mol m~3) is just the substrate
affinity (or half saturation) constant (see Eg. 1 in Michaelis
and Menten, 1913). Note, d6és;; — oo, the complexation 2.2 An at-best first-order accurate analytical
between substrat§; and enzymeE; becomes increasingly approximation to the equilibrium chemistry based

difficult. . . formulation for some special consumer—substrate
For a reaction network that involves many substrates and networks

enzymes, one can write a chemical equilibrium for each re-

action in the form of Eq. (7). Therefore, the reaction network If a consumer—substrate network satisfies two conditions — (i)
can be viewed as an equilibrium chemistry (EC) problem,binding does not occur between substrates or between con-
which have been intensively studied in atmospheric aerososumers; and (ii) a consumer-substrate complex, once formed,
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does not bind with another substrate or consumer to form

new complexes — we find an at-best first-order accurate equi- ! ! ™ !
librium chemistry approximation (ECA) (see Appendix A for s © © © © <
derivation details): ‘
SiTE;T
5 J»

Cij = k=I k=J ’ (13)

KS,ij <1+ Z 1‘5’;’; + Z %) S,_l Ks.,_u Kx,:—l,j—l Ks.i—l.j KS.H./H Kx.,_u

k=1 k=1
Si KS,il KS,i./—l KSg KS.i,j+l KSJI

where we have assumed the reaction network incluickes-
strates and/ enzymes (a visualizing way to write Eq. 13 Su | Kgw o Kgun K
is shown in Fig. 1). By combining Eg. (11) with Eq. (13),

this ECA Kkinetics states that the uptake of subst&atey
consumerE; depends on (i) the characteristics of the con-
sumer and substrate of interest (througjg;;) and (ii) the S Kon Ko Ky Ko Ky
characteristics of abiotic and biotic interactions with other
S,UbStrateS and consumers (throughy; andKs ;). In par- _Fig. 1. A matrix-based representation of the parameter configura-
ticular, when applied to predator—prey systems, the ECA Ki-;on for the ECA substrate kinetics (Eq. 13).

netics indicates that predation rate is neither ratio nor density

dependent, a problem that is yet still under debate (Arditi

and Ginzburg, 1989; Abrams, 2000; Vucetich et al., 2002;

K

S+l ji+l o K.S.MJ

Schenk et al., 2005; Kratina et al., 2009). Next, we derive a a1S1.TET
few interesting results from Eq. (13). Cu= L (16)
First, for a reaction that has only one enzyme interacting S1T+Ksa [1+ <Ks,11 + Ks,lz) T]
with one substrate, we have _ a1S1.TET
SiTE SiT+K (1 + ﬁ) ’
Cry— 1.7E1T , (14) 1.7+ Ks1a %
Ks11+S11+ELT

a1 1—-o1)

1
L . where K; = ( and the term after the sec-
which is equivalent to Eq. (3). When the substrate concentra- [=\Ksui 7 Ks1o

tion is much higher than the enzyme concentration, such tha(l)nd equal sign is equivalent to Eq. (2) derived in Suzuki et

the microbial process barely changes the total substrate corfh (1989), where they used it to explain the inhibition effect

centration in the temporal window of interess 11+ S from ineffective binding between substrate and inactive cells.
is almost constant, and Eq. (14) becomes the reverse MM kiy\_/‘,a point out that Eq_. (1(_3) could be _used to represent the inhi-
netics (Schimel and Wintraub, 2003). When the substrate i?'t'on effectl from s|0|I mmergls%fwhl'ch can comper:e f(;r Sub-
changing significantly while the overall enzyme concentra-Strates analogously as an ineffective enzyme (that does not
tion is much lower than the substrate, so thaf1; + Eq 1 result in a new chemical product but may protect the sub-

is almost constant, Eq. (14) is reduced to the classical MMStrat(?S from microbial attack). , )
kinetics (Michaelis and Menten, 1913). Third, for the case of many enzymes competing for a sin-

Second, when enzyme concentrations are very high, mongIe substrate, Eq. (13) can be reduced to

inactive enzymes (e.g., transporters of dead cells) will com- S1TE; T
pete with the active enzymes for substrate adsorption, consé<li = k=J )
guently introducing an inhibition. By treating the active and Ks1j <1~I— > 1?;;) + 81T
inactive fractions of an enzyme as two different enzymes, k=1~
Eqg. (14) can be reformulated as Grant et al. (1993) used a variant of Eq. (17) to represent the
competitive uptake of a substrate in the presence of many mi-
SiTELt (15) crobes (see their Egs. 3 and 4). However, Grant et al. (1993)
ST+ Ks11 <1+ If;l—l + 1155212) ’ directly generalized the results by Suzuki et al. (1989) (with-
‘ ‘ out explicit derivation) and also implicitly assumed that there
whereEy 1 (mol m-3) and Ez1 (mol m-3) are the total con- &€ ineffective enzymes competing for substrates. With this

centrations of the active and inactive enzymes, respectively@ter assumption, Eq. (17) can rewritten as

(17)

Cii=

By takingas as the transient partitioning coefficient between oa;S1TE; T
active and inactive enzyme concentrations (£g.7 = a1 ET C1j = k=J . g (18)
and E> 1 = (1—oay) E1, With Er = E1 7+ E27), Eq. (14) Ks1j (1+ > Kf;) + 8517

k=1""

can be rewritten as

www.biogeosciences.net/10/8329/2013/ Biogeosciences, 10, &351-2013
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whereq; is the transient active fraction of enzynig and competitive inhibition. For enzyme kinetics or, more broadly,

the inhibition constants are microbe—substrate networks, there are three additional main
1 1 inhibitory mechanisms often considered (Cornish-Bowden,
Kru =< LI “’f) , (19)  1995): (ii) uncompetitive inhibition (inhibitor binds to the
Ksix Ksikd

enzyme-substrate complex to make the binding ineffective);
WhereKS’]_k and K5 14,0 are afﬁnity constants of the active (i) noncompetitive inhibition (inhibitor binds equally well
and inactive enzyméy, respectively. Note that the value of to both free enzyme and enzyme-substrate complexes and
J in Eq. (18) is half of that in Eq. (17) since Eq. (18) groups reduces the number of effective bindings but does not af-

the active and inactive fractions of an enzyme into one.  fect the enzyme’s substrate affinity); and (iv) mixed inhibi-
Fourth, in the case of a single enzyme interacting withtion (& mixture of competitive and noncompetitive inhibition,
many substrates, Eq. (13) is reduced to but the inhibitor has different affinity for free enzyme and the
enzyme-substrate complex).
Ci1= SiTErt ) (20) The EC kinetics is compatible with all these four in-
Ko <1+ k=l g o ) CELq hibitory mechanisms, as long as the reaction coefficients can
' =y Ksm ’ be properly defined for all the inhibitor binding equations.

However, the simplified ECA kinetics is only able to repre-

WhenEjyt is constant, Eq. (20) can be equivalently rewritten sent competitive and noncompetitive inhibition (with some

as modifications discussed below). Including mixed and non-
Cir — SiTELT 21) competitive inhibition is only possible when many substrates
= Ksi1 Set ’ are competing for a single enzyme or vice versa (and the
Ksi1 <1+ mk_l Ksjk1> relevant mathematics is much more complicated than we

have presented for competitive and noncompetitive inhibi-
where 133,[1 = Ksi1+ E11. If further assumingks,il > tions here). In addition, as will be demonstrated later (see the
E1T, such thaﬂes,il = Ks,1, then Eq. (21) is just the multi- numerical experiments), even the ECA kinetics without in-
component Langmuir isotherm for multicomponent adsorp-hibitory mechanisms (ii), (iii), and (iv) are not always highly
tion in aqueous chemistry (e.g., Choy et al., 2000) and hagccurate (compared to EC kinetics), nor can they be cali-
been used for multi-prey predation in predator—prey mod-Prated robustly due to parameterization equifinality (i.e., dif-
els (e.g., Murdoch, 1973). We also note the multicomponenfferent combinations of parameters can result in very simi-

Langmuir isotherm is based on sQSSA. lar model predictions (e.g., Beven, 2006; Tang and Zhuang,
If there are 0n|y two substrates (|é; 2), Eq. (20) can 2008)) Since including these other |nh|b|tory mechanisms
be rewritten as (beside competitive inhibition) will generally introduce more
Si1E17/Ksi1 parameter_s, making the sir_nulz_itions more uncertain, the gain
Ciui= e (22a) in mgchanlsuc representation is thus smaller than the loss of
I+ %sn T Kem T Ksn predictive capability.
Nevertheless, a first order approximation for the noncom-
S21E17/Ks 21 petitive inhibition can be achieved by, first, modifying the
Co1= ST S B (22b)  substrate affinity coefficients (used in Eq. 13) that are subject
14+ - + oL + = inhibi
Ks11 ' Ks21 ' Ks21 to the inhibitorsl;,k=1,---,L as
Then by further assuming1 1/Ks 11 and E11/Ks 21 are - Ksij
much smaller than the other terms, one obtains the Eq. (ZOf(S”'/' - k=L , (23)
in Maggi and Riley (2009). Druhan et al. (2012) have used kZl K,k:k +1

Eq. (20) by Maggi and Riley (2009) to explain sulfur isotope

fractionation in a field subsurface acetate amendment expewhere K ;;x,k =1,..., L are the inhibition coefficients of
iment. Our Eqg. (22) is based on the tQSSA, which makeseach inhibitor on enzyme-substrate compigx In deriving

it valid for a wider range of substrate and enzyme concen-Eg. (24) we assume that any two inhibitors cannot bind si-
trations. This contrasts our Eq. (22) with Maggi and Riley’s multaneously to an enzyme-substrate complex.

Eq. (20), which is based on the sQSSA, and was found to Second, substituting the modified substrate affinity coeffi-
incorrectly predict isotopic fractionations when enzyme con-cientsKs;; into Eq. (13), one obtains the enzyme-substrate
centrations were comparable or higher than substrate concelgomplex concentration (under the influence of noncompeti-

trations. tive inhibition):

2.3 Extension to other inhibitory mechanisms Cij = kSiI’TEj’T = . (24)
B — SkT < ExT

The EC and ECA kinetics inherently account for competi- Ksij <1+k§1 Ksij + ,gl ks,ik)

tive inhibition (inhibition mechanism (i)), including product
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2.4 Linking with microbial traits S
I

An appealing application of the EC and ECA Kkinetics is

to trait-based modeling of marine and soil microorganisms

(Follows et al., 2007; Litchman et al., 2007; Allison, 2012; D +

Bouskill et al., 2012). In the trait-based modeling approach, ~ gl ~

parameters of the substrate uptake kinetics are determined S + E <> SE — P + E

by the microorganisms’ traits, such as cell size and trans- ! J kl.‘jl b v J

porter density (e.g., Follows et al., 2007; Armstrong, 2008; '

Bonachela et al., 2011). Both the EC and ECA kinetics

are compatible with such concepts, and the incorporation of

these traits can be accomplished efficiently through the dy- (I)

namic update of relevant microbial state variables in the nu- E

mer_'cal model. For mStanC?' to_cons'der the effect Of cell SlzeFig. 2. Diagram of the updated substrate uptake process, which in-

(which affects substrate diffusion between the environmeniydes diffusive substrate flux (between the external environment

and the cell) and transporter density (which affects processand near cell environment) and new enzyme productien Here

ing rate and affinity to the substrate) on substrate uptakes; is any environmental substrate abundarids the correspond-

one has the updated substrate uptake (see diagram shoviny local (close to the transporter) substrate abundancepPgnid

in Fig. 2). With the stationary flux assumption (Pasciak andthe assimilated product from the processing,oby enzymek ;.

Gavis, 1974, 1975), one obtains the diffusive flux to a spher-

ical cell as®p = 4r Djr¢ jn, (Si - 5,-), whereD; (m?s~1)
is the diffusivity of the substrat§; in water (when in soll,

this diffusivity depends on soil matric potential, soil struc-
ture, and temperature)s ; (m) is the average size of ceil ( Vinaxij
1+ > 9

Under the assumption thal‘cl.;,1 < k;,z and defining
Vmaxij = k;; ,E .7, one has

(by assuming a spherical cell shape in the first order approxiKs,ij = Ksij (28)
mation), andz; (number of cells m?3) is the number density
of cell j. The impact of advection on the flikp can also be  which extends the modified MM kinetics derived for a single
included using the dimensionless Sherwood number (Karpenzyme single substrate system (Bonachela et al., 2011) to
Boss et al., 1996), but that will not change our derivation an enzyme—substrate network of arbitrary size.

essentially. Further assuming the internal substfateon- Equation (29) implies that if a cell increases its volumet-
centration (that is close to the cell) is also stationary (thusric transporter densityK; 1/n ;; transporters per cell), it de-
®p is equal to the net enzyme-substrate complex formatiorcreases its substrate affinity. However, considedhg =

rate betweers$; and the cell’'s transporter), one obtains (as anjl//j4nréj, if a cell j decreases its volumetric size while

47TDirC,janS,ij

first order approximation) keeping the same area-based transporter detsitftrans-
porters nT2), it can increase its substrate affinity. Further, by
5. — 4nDiren;Si A Diren;S; (25)  substitution of Eq. (28) or Eg. (29) into Eq. (13), one obtains
ki—;’lEj +4m D;ren; ki—;’lEj’T +4n Diren;’ a new representation of the moisture effect on organic matter

decomposition (through diffusivit{ ; and aqueous substrate
where we have assumed the reverse dissociation of theoncentrationS;) that is more mechanistic than the usually
enzyme-substrate compleki;(l) is negligible,E; ~ E; 1, applied simple multiplier factors (e.g., Andren and Paustian,
and the changing rate of the enzyme (or transporter) abuni987; Rodrigo et al., 1997; Bauer et al., 2008; Parton et al.,
dance due to new growth is much slower than the enzyme1988).
substrate complex equilibration rate. Therefore, one can rep-
resent the enzyme-substrate complex with Eq. (7) and amod2.5 Evaluation of the ECA kinetics and the classical

ified equilibrium coefficient: MM kinetics

_ ko ki kt.EiT We focus our evaluation on the efficacy of the ECA (Eq. 13)

Ksij= el T 02 ( SR ) (26) and the MM kinetics (Appendix C) in approximating predic-
kij1 4r Dire,jnj tions by the EC kinetics, and leave the analysis of the impact

_ _ . ofthe EC and ECA kinetics on trait-based modeling (Eg. 28)
which leads to a new representation of the substrate affinity,, f,ture studies. In these comparisons, we used the EC
parameter for Eq. (13) as kinetics as a baseline to predict the enzyme-substrate com-

o E plexes involved in a reaction network with arbitrary number
Ks i = Ks.ij (1+ ij1=%5.T ) 27) of enzymes and substrates. We implemented the EC kinet-
' ' 4m Dire jn ics with the analytical equilibrium iteration (AEI; Jacobson,
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1999) and then compared its predictions to those from theespiration rate, which is defined accordingly (in the captions
classical MM kinetics and the ECA kinetics for different net- of the relevant parameter tables) for different models. We
work configurations. We conducted the evaluation with threecomputedC;; using EC kinetics, MM kinetics (Appendix C),
groups of experiments: (E1) random sampling; (E2) appli-and ECA kinetics (Eq. 13) and evaluated the ability of the
cations to simple microbial models of different complexi- two analytical approximations to reproduce the temporal dy-
ties; and (E3) simulating litter decomposition with a different namics simulated by the EC kinetics. We considered four mi-
carbon-only model. We remark that in all our evaluations all crobial models of different complexities (Tables 1, 2, and 3;
the substrate kinetics used the same number of parametenspte the fourth model assigned different units to the variables
therefore, when one formulation is found to perform worse compared to the other three models in order to use the param-
than others, it is inferior in our evaluation framework. eters from Moorhead and Sinsabaugh (2006). We note that
In the first group of experiments (E1; random sampling), using the parameters from Moorhead and Sinsabaugh (2006)
we tested the hypothesis that our ECA kinetics is more accuis simply a choice of convenience, but it is sufficient for a
rate than the MM kinetics for arbitrary consumer—substratequalitative assessment of the predicted differences between
networks. Specifically, we randomly generated substrateour ECA or EC-based models and the MM model): (i) three
affinity parameters using an exponential distribution over thesubstrates and one microbe (S3B1); (ii) three substrates, one
relative range 1-¥0(molm~3), which is sufficiently wide  microbe, and one mineral surface (S3B1M1); (iii) one sub-
to represent the range of microorganisms in the natural envistrate and five microbes (S1B5); and (iv) three microbes and
ronment (e.g., Wang et al., 2012). The enzymes and substratbree substrates (S3B3). For the three models with three sub-
concentrations were then generated from the least informastrates (S3B1, S3B1M1, and S3B3), we related the substrates
tive uniform distributionU [0, 1]. We performed 9 scenarios to water-soluble carbon, cellulose, and lignin, respectively.
using combinations of three substrate : enzyme (SE) ratio$ince the results from (E2) are applicable to other similar
(10, 1, and 0.01) and three network sizes (60 substrates angroblems, we labeled the three substrate$ias,, and Ss.
one enzyme, 10 substrates and 60 enzymes, and 20 substrates model S1B5, we ran the model with different kinetics
and 20 enzymes). Each scenario has 10 random replicates, rasing 20 randomly generated parameter sets, and evaluated
sulting in a total of 9 10 = 90 evaluations. We normalized their performance by the relative model error:
the variance of the EC solution for each replicate of the 9 sce- A
narios, and summarized the results using the Taylor diagram 3N
(Taylor, 2001), which simultaneously presents the correlationerr(t) -N Z
coefficient and root mean square error between the baseline
EC solution and solutions using MM or ECA kinetics. Since where N = 6, the number of model state variables, and app
the equilibrium reaction Eq. (7) is symmetric to representedrefers to MM or ECA. The above metric avoids division by
substrates and enzymes, the 9 scenarios effectively representro as long as the model difference is non-zero.
18 different enzyme—substrate networks (e.g., 10 substrates For all models (including S1B5), we specified the relevant
and 60 enzymes is equivalent to 60 substrates and 10 erparameter values randomly, but kept their nominal values in
zymes). We remark that the high enzyme : substrate ratio mayhe ranges documented in the literature (for microbial param-
not be ecologically significant for modeling litter decompo- eters, see Li et al, 1992; Allison et al., 2010; Wang et al.,
sition such as E3, but it is important to be investigated given2012; for mineral adsorption parameters, see Mayes et al.,
our EC and ECA approaches are also applicable for problem2012). As an extra comparison, we also included the multi-
such as predator—prey systems, where moderate to high ratmomponent Langmuir isotherm (i.e., Eg. 21, which we no-
of predator to prey (analogously to that between enzyme andlate as ECA-ML) to compute the substrate uptake in models
substrate) can easily occur. S3B1, S3B1M1, and S3B3. Since ECA-ML can be derived
In the second group of experiments (E2; simple micro-based on sQSSA and it assumes enzyme concentrations are
bial models of different complexities), we used the following much lower than the substrate concentrations, comparing its
generic model structure to illustratively evaluate the impactperformance with that of ECA and EC will reveal the advan-
of different substrate kinetics on microbial system dynamics:tage of tQSSA in representing networks with high enzyme

yi,ec(t) — Yiapp(t)
yi,ec () + yimm (1) + yieca(®) |

(31)
i=1

concentrations.
ds; j=J We assumed all microbial transporters are generic (so that
=t klf]“. ,Cijy i=1,...,1 (29) they can capture all substrates that the microbe can process)
dr = and are uniformly distributed over the microbe’s cell surface.
The total transporter abundance of a given microbe is scaled
dB; =4 . . to the microbial biomass With a coqstau)twhich is set to
o X;Mijkij,zcij —vyiBj, j=1....J, (30)  0.05, a number that falls in the middle of values applied
i=

in other studies (Berg and Purcell, 1977; Maggi and Riley,
wherep;; (unitless) is the biomass yield rate of microBe 2009). We used these experiments to test two hypotheses:
(mg C dn13) from feeding on substrats, andy; (day 1y is (i) the ECA kinetics is more robust than the MM kinetics in
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Table 1.Parameter values for microbial models S3B1 and S3B1M1.Table 3.Prior parameters for microbial model S3B3. The parameter
; + . .
The parameter vectors are presented in the ,ij,kij’z,uij ) vectors are presented in the for(mrs,,-j,k;;z,mj), whose units

whose units are, respectively, mg Ctdf d~*, and none. The ini- are, respectively, g C,7d and none. All values are adapted from
tial microbial b|omass is defined in the parentheses #fiewhose  Moorhead and Sinsabaugh (2006). All three respiratory coefficients
unit is mg Cdn3. The mineral surface is characterized with the (i.e..yj.j = 1,2,3 as defined in Eq. (30) are set to 0. 03dNum-
Langmuir dissociation parameter (equivaleritl ;;) and the max-  pers in the parentheses following the state variables are their initial
imum adsorption capacity (in the parentheses following, whose  yajues, whose units are g C.

units are, respectively, mg C dr and mgC drr3. For both mod-
els, we used a microbial respiration rate 0.03dThe microbial

i . S1 (448) S2 (431) S3(121)
parameters were randomly specified based on prior knowledge from
Wang et al. (2012), and the mineral surface parameters were speci- B1 (0.33) (1,1, 0.5) (100, 1,0.3) (5000, 1,0.1)
fied for Alfisol based on Mayes et al. (2012). B> (0.33) (1.0,0.8,0.5) (10,0.8,0.3) (1000,0.8,0.1)

B3(0.33) (1.0,0.4,05) (10,0.4,0.3) (100,0.4,0.1)

S1 (30) S2 (100) S3 (90)

B1(0.1)  (1,48,0.5) (10,48,0.3) (50,48,0.1)
M (1094) (21.2,0,0) (21.2,0,0) (21.2,0,0)

Table 4. Characteristics of initial liter chemistry for the data in
litterbag decomposition field studies in Wisconsin (WI) and Mas-
sachusetts (MA). The table is organized based on Table 3 in Moor-
head and Sinsabaugh (2006), who obtained data from Aber et
al. (1984) and Magill et al. (1998). The final LCI is model predicted
(see Sect. 3.3.2 for details). We have also extracted time series data
units are, respectively, mg C dm, d~1, and none. Numbers in the  from the Magill et al. (1998) study for model assessment (Figs. 15
parentheses following the state variables are their initial values@nd S1).

whose units are mng‘n‘?’. All five microbes used a respiration

Table 2. Parameter ranges for microbial model S1B5. The param-
eter vectors are presented in the fo(ﬂ@[g,,'j,k;;- Z,Mij>, whose

rate 0.005 d1. The maximum and minimum parameter values were Litter type, Labile Holocellu- Lignin Initial  Final
specified based on Wang et al. (2012). by site (%) lose (%) (%) LCI LCI
Wisconsin (WI)
51 (300) Sugarmaple  44.8 43.1 121 022 055
Minimum  Maximum Aspen 31.1 47.5 21.4 0.31 0.56
values values White oak 32.4 47.4 20.2 0.30 0.56
White pine 32.8 44.7 225 0.33 0.59
By (1) (1,1,0.4) (100,10,0.4) Red oak 30.0 452 248 035 0.59
B»(1) (1,1,0.4) (100,10, 0.4)
B3 (1) (1,1,0.4) (100,10,0.4) Massachusetts (MA)
Ba(1) (1,1,0.4) (100,10, 0.4) Red pine 35.9 38.6 255 040 0.67
Bs(1) (1,1,0.4) (100, 10,0.4) Red maple 47.7 35.4 16.9 0.32 0.68
Black oak 35.0 39.6 25.4 0.39 0.66
Yellow birch  43.4 40.3 16.3 0.29 0.62

approximating the EC solution; and (ii) only the ECA kinet-
ics is analytically tractable and sufficiently accurate to model
microbial-mineral surface interactions. site (Aber et al., 1984) from the original literature or by con-
For the third set of experiments (E3; simulating litter de- tacting the authors. In addition, we noticed the original data
composition), we tested whether the S3B3 model with dif-in Magill et al. (1998) indicated a rise of lignin during the de-
ferent substrate kinetics can be calibrated to simulate theomposition for some unexplained reasons (see their Fig. 4).
77-month red pine litter decomposition data of Melillo et We corrected this by replacing the unreasonable lignin data
al. (1989). We first calibrated model S3B3 with both the (i.e., those higher than the initial lignin mass) with the initial
ECA and MM kinetics, and analyzed if the calibrated modelslignin mass (see Fig. S1 for details).
can reproduce the (i) two-phase evolution of remaining or- We solved all microbial models with the mass positive first
ganic matter, (ii) increase of lignocellulose index (LCI) dur- order ordinary differential equation integrator (Broekhuizen
ing decomposition, and (iii) reasonable fraction of microbial et al. 2008). This numerical solver deals with stiff and dis-
biomass with respect to the remaining organic matter. Wecontinuous differential equations well and always ensures
then ran the models with 9 different initial litter chemistries mass balance as long as the elemental stoichiometry is prop-
(Table 4) for a qualitative assessment of the extrapolated preerly formulated in the model. We ran all models half hourly,
dictability (based on observational data if available) of the a time step that was selected through trial and error by evalu-
calibration. We were able to obtain some time series data foating the differences of the predictions when using different
the Massachusetts (MA) site (Magill et al., 1998), but failed model time steps. For experiment E2, the total runtime for
to extract any useful time series data for the Wisconsin (Wl)model S3B1, S3B1M1, and S1B5 were set to 50 days, while
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Table 5. Best-fit parameters for model S3B3-ECA by optimizing the simulation outputs to the 77-month red pine litter decomposition
experiment data in Melillo et al. (1989). The parameter vectors are presented in théK@jm k;; 2 m.,'), whose units are, respectively,

gC, d1, and none. The respiratory coefficients (i, j =1,2,3 as defined in Eq. (31) of the three microbes are, respectively, set to

0.01, 005, and 0.001d. Numbers in the parentheses following the state variables are their initial values, whose units are g C. In doing the
calibration, we assumed (§'s 1,/ = 1,2, 3 are same for all three microbes; (K)s 22 = K's 23; (iii) for microbe B, k;lr. 5 i=123are
same for all three substrates. By further fixjag to the values in the parentheses, we effectively had a total 12 parameters in the calibration.

S (359) S (386) S3 (255)

B1(4.94) (2.22,0.6027,0.5) (96.4,0.6027,0.3) (283.8,0.6027,0.1)
By (4.22) (2.22,0.3605,0.5) (185.2,0.3605,0.3) (5216.1, 0.3605, 0.1)
B3(2.42) (2.22,0.2061,0.5) (185.2,0.2061,0.3) (219.5, 0.2061, 0.1)

that for model S3B3 runtime was 1500 days. All models in for caseS(60)E(1)r(10) (i.e., 60 substrates, 1 enzyme, and
experiment E3 were run for the length of the observationsa substrate to enzyme abundance ratio of 10; similar nomen-
(80 months). clature is used henceforth) and 3 (out of 10) replicates for
Bayesian inference based calibrations for experiment EZaseS(20)E(20)(10), whose correlation coefficients were
were performed to invert the relevant parameters (see caystill good (~ 0.80) and the corresponding root mean square
tion of Table 5 for descriptions) of the substrate uptake ki-errors were between® and 15¢.
netics from fitting the model (e.g., S3B3-ECA) output to MM kinetics also achieved good accuracy in approximat-
the time series data of the remaining litter mass and ligno4ing the EC solution with correlation coefficients between
cellulose index (LCI) from Melillo et al. (1989). We imple- 0.75 and 0.97, but in general higher root mean square er-
mented the Bayesian inference using the MCMC algorithmrors. For case(10)E(60)(10), MM kinetics only achieved
DREAM (Vrugt et al., 2008). A uniform prior was used for a correlation coefficient of 0.80 and root mean square er-
all the parameters, with the cost function (or the negative log+ors greater than 0§ whereas ECA kinetics achieved cor-

likelihood function) defined by

k=8
Jeost= (80LC|)_1Z |LClx — LCleca]
=1
k=17

-1
+ (17oMas9 Z |VMassk — I'MassECA. k
k=1

(32

)

where LC}, is thekth observation of lignocellulose index (of
which there are 8 data points) angassk is thekth observa-

relation coefficients of-0.99 and root mean square errors
smaller than Bo. However, the worst approximations (in
terms of root mean square error) by the MM kinetics (i.e.,
two replicates, green diamond symbols, $§60)E (1)r(10))
were better than those from the ECA kinetics (for these two
poorly simulated replicates).

Similarly contrasting results were found for the cases
when the substrate to enzyme ratio was one (purple symbols
in Fig. 3): (i) the best approximation by the ECA kinetics
was better than that using the MM kinetics and (ii) the MM

tion of relative remaining organic matter biomass (microbe jnetics resulted in 2 outliers for the cas¢20)E(20)-(1)

plus litter; of which there are 17 data points). Betlr and

with root mean square errors greater than ahd correla-

omass are set to 0.01. For the posterior parameters, the Sefion coefficients less than 0.90. ECA kinetics also produced
that minimizes/qostis defined as the modal (i.e., best fitting) 4 random replicates (2 for casg10)E(60)-(1) and 2 for

parameter.

3 Results and Discussion

3.1 EZL: computing enzyme-substrate complexes for
large networks

caseS(20)E(20)(1)) that had correlation coefficients close
to 0.8, but the root mean square error was less thamn. 1

When substrate was limiting (blue symbols), both the ECA
and MM kinetics produced poor approximations (with more
outliers) compared to the EC solutions. Both approaches pro-
duced 4 outliers (2 for casg10)E(60)(0.01) and 2 for case
S(20)E(20)-(0.01)) with correlation coefficients between

For the first set of experiments, we found that ECA kinetics0.70 and 0.80 and root mean square errors greater than 1
performed better or as well as MM kinetics in approximat- The worst results (the 2 replicates §(20)E(20)(0.01)) by

ing the baseline EC solutions. When the substrate to enzym®IM kinetics were again worse than those by ECA kinetics.
ratio was high (i.e., enzyme availability is limiting decompo-  When all sampling experiments were normalized together
sition; green symbols in Fig. 3), the ECA solutions agreed(cyan circles), we found the ECA kinetics better approx-
with the EC solutions with correlation coefficients higher imated the baseline EC solution (with similar coefficients
than 0.95 and root mean square errors less than 0.5 standaedi correlation but smaller root mean square errors) than the
deviations ¢), except for 2 (out of 10) random replicates MM kinetics did. Therefore, we summarize that the ECA
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EC
S(60)E(1)r(10)
S(60)E(1)r(1)
S(60)E(1)r(0.01)
S(10)E(60)r(10)
S(10)E(60)r(1)
S(10)E(60)r(0.01)
S(20)E(20)r(10)
S(20)E(20)r(1)
S(20)E(20)r(0.01)
Overall

OO0 @

NN

Standard devision

Fig. 3. A Taylor diagram based summary of the random sampling experiment (E1) that compared the ability of the ECA and the MM kinetics
to approximate different enzyme—substrate networks simulated by the EC kinetics. Each symbol has 10 random replicates. The values in the
parentheses indicate the number of substrates or enzymes. The nomer{latfig)r(z) indicate a network ok substratesy enzymes,

and a substrate to enzyme abundance ratio of

w
=]

kinetics is superior to the MM kinetics in representing large-

. ()
size consumer—substrate networks. .

S, (mg C dm™®)
N
o

3.2 E2: application to simple microbial models 0

We found three (EC, ECA, ECA-ML) of the four different ©

substrate kinetics led to almost identical model predictions
for the S3B1 scenario over the 50-day time period (Figs. 4 4*
and 5). The MM predictions deviated from the others slightly. — 100

'e
=
[©]
O 50
E

However, the good agreement between the MM kinetics and X ' ' ': | ©
the other kinetic formulations is serendipitous. The MM ki- s _=
netics is poor in describing enzyme competition in the pres- - . . - -~ ECATML]

ence of multi-substrates, which has been identified in several 0

60

studies (e.g., Maggi and Riley, 2009; Druhan et al., 2012). <

We also replicated this behavior with an isotope-modeling 5 *°

example (see Supplement), where it was shown the MM ki- § 20

netics has very poor predictability for multi-isotopic fraction- 0 m = = m -
ations (Fig. S3), even though it predicted the bulk substrate Time (day)

and microbial dynamics with acceptable accuracy (Fig. S2).
When mineral surface interactions were further included
(in the S3B1 model) to form the S3B1M1 model, we found
that the ECA kinetics again predicted very similar time se-
ries compared to that from EC kinetics (Figs. 6 and 7) be-
cause both ECA and EC are able to consistently represent
the substrate competition by microbe and mineral surfacesweaker substrate adsorption to the mineral surface. Further-
However, both the ECA-ML and MM kinetics resulted in more, throughout the 50-day period, the microbe grew in
predictions substantially different from the EC solution. The its biomass and consequently increased its quota to capture
ECA-ML predicted a much faster turnover rate of all three substrate, whereas the mineral surface had a fixed quota,
substrates because it did not include the inhibitory termwhich together with the growing microbe resulted in a faster
due to the presence of consumers (which can be confirmeturnover of the three substrates. In contrast, MM kinetics
by comparing Eq. 13 to Eq. 21) and thence resulted in afavored more substrate adsorption to the mineral surface

Fig. 4. Time series of the relevant state variables simulated from
the applications of the four different substrates uptake kinetics to
microbial model S3B1.
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Fig. 5. Time series of state variable ratios simulated from the appli- Fig. 6. Time series of the relevant state variables simulated from

cation of the four different substrates uptake kinetics to microbial "€ @Pplications of the four different substrate uptake kinetics to
model S3B1. microbial model S3B1M1.

100

80F
60f

because (by comparing Egq. C1 to Eq. 13) it did not in-

clude the nonlinear competitive inhibition on substrate up-
take or the inhibition due to the presence of the consumer.
In addition, the mineral adsorption sites (counted as adsorp-  °
tion capacity by the state variablg, in Table 1) is much '
more abundant than microbial transporters, which resulted in
a strong limitation on microbial substrate uptake. This sub-
strate limitation (due to mineral surface adsorption) led to a
much lower microbial growth, which then led to a greatly

underestimated substrate turnover rate (by the MM kinetics).  **

40F

Remaining litter (%)

20f

Litter LCI

Therefore, the reduction in turnover of the three substrates ¢ ' —w ) ©
in presence of mineral surface adsorption leads us to con-§ o8 = ]
jecture that mineral adsorption (and consequently protection, § er ECA-ML

which is not considered here but can be incorporated by us- § T

ing approaches such as in Wang et al., 2013) is an impor- & **[ //
tant mechanism impacting organic matter degradation with % 10 20 30 40 50

depth in the soil profile. Implementing the ECA or EC ki- Time (ca)

netics could thus potentially avoid the ad hoc parameterizagig 7, Time series of state variable ratios simulated from the appli-
tion of soil organic matter (SOM) decomposition rate sIow- cation of the four different substrates uptake kinetics to microbial
down with depth, as has been implemented in some vertimodel S3B1M1.

cally resolved SOM models (e.g., Jenkinson and Coleman,

2008; Koven et al., 2013). In accordance with the predicted

substrate dynamics, we note that MM kinetics predicted theconsumers. In addition, as we will show in experiment E3,
slowest increase in LCI and fractional microbial C (with re- such deficiencies cannot be remedied through calibration.
spect to total organic C including both substrates and mi- When five microbes are competing for a single substrate
crobial biomass), while the ECA-ML kinetics predicted the (S1B5), we found the three different substrate kinetics (now
fastest increase (Fig. 7). These findings lead us once agailBCA-ML kinetics has the same functional form as MM ki-
to state that the MM kinetics is qualitatively not appropriate netics when there is only one substrate) made equally good
when the problem involves multiple substrates and multiplepredictions (Fig. 8). For the worst case (according to the
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Fig. 8. Comparison of simulations using different substrate kinetics

in scenario S1B5(a—f) are from the simulation that showed the 100
most distinctive differencegg) and(h) are summaries of the model
differences (with respect to the EC results) from the ensemble of 20
random simulations.

80
60

40+

Remaining litter (%)

20r

metrics defined in Eq. 32) among the 20 runs with randomly
generated parameters (see Table 2 for parameters being sam- | )
pled), the prediction by the MM kinetics fit the EC predic- 03f
tions better than did the ECA kinetics (Fig. 8a—f). When sum-
marized over the 20 runs (Fig. 8g—h), we found that the MM
kinetics is slightly superior for problems that are in the form Y|
of many microbes competing for a single substrate. Thisre- o
sult is consistent with model result such as that in Bouskill o5

Litter LCI
o
N

et al. (2012), where the ammonia and nitrite oxidizers have a E 0.4l © — MM i
very weak overlap in substrates. However, if one tries to use § , | o |
isotopic data to improve the parameterization of such models, £ ozl ECA-ML i
the MM kinetics should be replaced with the ECA kineticsor  § | l/\ |
the EC kinetics. e 7 ‘ ‘ ‘

For model S3B3, three of the four substrate kinetics % 200 400 600 800 1000 1200 1400
(ECA-ML, ECA, and EC) made very similar predictions Time (ca)

(see Figs. 9 and 10). The predictions from the MM kinet- Fig. 10. Time series of state variable ratios simulated from the ap-

ics were completely different, both qualitatively and quanti- plication of the four different substrates uptake kinetics to microbial
tatively. The MM kinetics predicted a gradual reduction in model S3B3.

LCI (which stabilized at a constant value smaller than the

initial value; see Fig. 10b), whereas the other kinetic mod-

els predicted a gradual increase in LCI, which stabilized atexperiments (Fig. 10): (i) the litter decomposition has two
a greater (than the initial) value. In addition, the MM ki- distinct phases, where the fist phase is fast and the second
netics predicted a much higher peak fractional total micro-phase is much slower and (ii) the LCI increases along with
bial biomass (compared to the total biomass accounting fothe decomposition and finally stabilizes at a higher value
both litter and microbes) than did the other substrate kineticghan the initial state (e.g., Melillo et al., 1989; Aber et al.,
(Fig. 10c). We note that ECA-ML, ECA, and EC all predicted 1990; Magill et al., 1998). This finding leads us to assert that
similar temporal evolutions of the remaining litter and lit- the explicit modeling of nonlinear substrate competition (as
ter LCI that qualitatively agreed with findings from litterbag formulated in EC, ECA, and ECA-ML) in microbial litter
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decomposition is important to represent measured litter dy- 100
namics. Once this nonlinear competition is accounted for, < sof
the observed temporal evolution of LCI (and consequently
lignin degradation) emerges from the proposed model (EC
and ECA). On the other hand, MM kinetics is not structured
to account for such nonlinear competition, thus one has to
enforce an otherwise unconstrained lignin shielding effecton [ v
cellulose degradation (though we do not rule out its possible _ |
existence) to make the model well behaved (e.g., Moorhead 3
and Sinsabaugh, 2006; Allison, 2012). =

60
40
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3.3 ES: simulating litter carbon decomposition

o
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3.3.1 Calibrating model S3B3 with different substrate
kinetics

°

=}

a
T

Fraction of microbial C
o
[

After calibrating the S3B3-ECA model (model S3B3 imple- : e
mented with ECA; same nomenclature are used henceforth) Time (month)

t(r)] the 77'”.“’”{)“ rec:'plne litterbag ?Xgerlmencti.dgta, W.e founj:ig_ 11. Posterior simulations from calibrating model S3B3-ECA
the posterior best-fit parameters led to predictions in goo o the red pine litter decomposition experimental data in Melillo et

agreement with the measured time series of remaining lit-y (1989). ECA-Ens indicates the posterior ensemble simulations,
ter and LCI (Fig. 11). The posterior microbial biomass also and ECA-T indicates the additional temperature impact on top of
seemed qualitatively reasonable, which stayed below 15 %CA (i.e., the best fitting posterior simulation). The best-fit kinetic
of total organic carbon (including both litter and microbial parameters for ECA, EC, ECA-ML, and ECA-T are in Table 5. See
biomass). Observational data indicate the fractional micro+ext for further details.
bial biomass is relatively low, usually within 10 % of the total
organic carbon (Ladd et al., 1994; Dilly and Munch, 1996).
Therefore, considering the parameterization equifinality duetain reasonable posterior predictions of the litter decomposi-
to insufficient observational data to constrain the relevant pation dynamics (Fig. 12). A few parameter combinations led
rameters (e.g., Tang and Zhuang, 2008) and the qualitativelyo qualitatively reasonable predictions of the two-phase evo-
good agreement between posterior simulations and the availution of remaining biomass and the increasing, then stabi-
able data, we conclude that ECA kinetics is a better choicdizing behavior of LCI. Yet the fractional microbial biomass
than MM kinetics in our parsimonious framework to repre- varied wildly. Many parameter combinations predicted the
sent litter decomposition dynamics. total biomass as microbial-C dominated (almost 100 %) dur-
We also ran the S3B3 model with the ECA-ML and EC ki- ing the second phase of litter decomposition. We also found
netics using the same parameters obtained from S3B3-ECAhe model S3B3-MM is much more sensitive to the parame-
model calibration and obtained almost identical predictionsters than the models implementing ECA-ML, ECA, and EC
(see red and cyan lines in Fig. 11). As a sensitivity test, wekinetics. Therefore, we conclude that MM kinetics is not suit-
further introduced the temperature effect on substrate upable for modeling microbial litter decomposition and SOM
take (labeled as ECA-T in Figs. 11 and 13) by applying dynamics in our more parsimonious framework (than other
three different Q10 values (whose values are, respectivelyexisting models), since these problems always involve multi-
2.7, 1.5, and 1.7 based on Bayesian inversion on top of thgle substrates and multiple microbes.
default S3B3-ECA model calibration) to the three biomass
yield rates. We found the predictions (blue lines in Fig. 11) 3.3.2 The interaction between litter chemistry and
changed slightly compared to the simulations without ac- microbial diversity
counting for temperature effects. Though the Q10 values are
quite uncertain because of data limitations, the result indi-Distinct shifts in microbial community structure were ob-
cates that temperature was not the single mechanism that lezkrved in the posterior model predictions for the 77-month
to the differences between measurement and posterior modétter decomposition experiment (Figs. 13 and S4). While we
prediction. Other mechanisms such as leaching, nutrient dyhad no measurements from this experiment to assess whether
namics, and moisture effects should be investigated in futuresuch predictions are realistic, some other studies (e.g., Keeler
studies to improve the EC and ECA litter decomposition ki- et al., 2009; Wickings et al., 2012) indicate such micro-
netics. bial community structure shifts often occur in long-term in-
Calibrating the model with the Michaelis—Menten kinet- cubation experiments. For instance, Wickings et al. (2012)
ics (S3B3-MM) to the 77-month litterbag data failed to ob- observed significant changes in exoenzyme activities and

o
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the best-fit parameters (calibrated with S3B3-ECA) in Table 5. The
Fig. 12. Posterior S3B3-MM simulations by calibrating the model four models ECA, ECA-ML, EC, and ECA-T used the same kinetic

to the 77-month red pine litterbag experimental data in Melillo et parameters. The ECA-Ens simulations correspond to the ensemble
al. (1989). MM-Ens indicates the posterior ensemble simulations simylations in Fig. 11.

The best-fit posterior simulation is in red, whose corresponding pa-
rameters are in Table S2.

nal, seemingly constant LCI is not a single value but rather a

range between 0.6 and 0.8 for the red pine litter being mod-
fungal : bacterial ratio in their long-term (730 days) litter de- eled here.
composition experiment. Considering that fungi often domi- When we applied the model S3B3-ECA using the best-fit
nate lignin decomposition (Osono, 2007), our predicted dom-parameters (Table 5) from the Bayesian calibration to 9 dif-
inance of the fungi-like microbe in the second phase of theferent litter types (Table 4), the results (Fig. 14) indicated
77-month decomposition is qualitatively reasonable. Never-a clear dependence of litter decomposition on initial litter
theless, a comprehensive assessment should use a model tikhemistry. The predictions indicate all 9 litters were degraded
has a complete representation of the relevant nutrient dyin two phases, and their LCIs rose asymptotically to different
namics (e.g., N and phosphorus) and such a model shoulfinal constant values. Furthermore, the final constant LCl is a
be compared to detailed observational characterization of litfunction of both its initial value and the microbial community
ter chemistry and microbial community structure. However, diversity and dynamics. For instance, the red maple started
detailed observational characterization of both substrate andith a medium initial LCI (0.32) but reached a final value
microbial community structure is lacking in long-term exper- of 0.68, the highest among the 9 litters (Table 4). While we
iments that cover temporal scales varying from diurnal cyclesfailed to obtain sufficient data to evaluate the 9 predictions,
to multiple years. These types of observations are critical tathe evaluation of the 4 litter types in the study by Magill et
the development of the types of models discussed here.  al. (1998) indicated our model predictions were qualitatively

Considering each member of the posterior ensemble simreasonable (Fig. 15). We also applied the Michaelis—Menten

ulation as a single red pine litter decomposition exper-kinetics model (S3B3-MM) with its best-fit parameter (Ta-
iment with a different microbial community, our results ble S2) to the 9 litter types; its prediction was again poor (see
(Figs. 11 and 13) indicate that the evolution of litter chem- Fig. S5).
istry is strongly regulated by microbial community structure.  Therefore, we summarize that litter decomposition is
In addition, parameterization equifinality (see gray lines in coregulated by both the initial litter chemistry and micro-
Figs. 11 and 13) indicate different microbial communities bial community structure and dynamics. Our prediction sup-
will sometimes lead to similar litter chemistry after a rel- ports the conclusion drawn in Wickings et al. (2012) and
atively long time. The latter is manifested as a weak con-challenges the assumptions of constant final LCI and con-
vergence of litter chemistry in terms of LCI throughout the stant microbial community structure in many existing bio-
77-month period (Fig. 11b; also see the review about meageochemical models, e.g., the GDM model (Moorhead and
surements in Melillo et al., 1989). Yet we found that the fi- Sinsabaugh, 2006), which used a constant final LCI, and
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will be explored in our follow up studies.
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3.4 Potential improvements to the EC and ECA

Fig. 15. Evaluation of model (S3B3-ECA) prediction using Magill substrate kinetics for modeling microbial systems

et al. (1998) litterbag experiment data) remaining litter biomass
and(b) litter lignocellulose index (LCI). The original and corrected

lignin data are in Fig. S1. Substrate uptake is a process regulated by many biotic and

abiotic factors. For soil microbial systems, relevant abiotic

factors are soil moisture, temperature, mineralogy, aggre-
models such as TEM (McGuire et al., 1997), CENTURY gation, and redox potentials (e.g., Davidson and Janssens,
(Parton et al., 1988), and Roth-C (Jenkinson and Coleman2006). As we explained in Sect. 2.1, EC kinetics allow a
2008), which implicitly assumed the relevant microbial com- direct and consistent description of these abiotic processes
munity structures are constant. using the existing knowledge of reactive transport modeling
(Jennings et al., 1982; Jin and Bethke, 2007). Incorporating
these factors within the ECA kinetics is more difficult. How-
ever, besides the diffusion limitation (which partly accounts
Lignin dynamics play a critical role in litter decomposition for the soil moisture effect as we discussed in Sect. 2.1),
(Berg et al., 1982; Melillo et al. 1982; Machinet et al., 2011). accounting for the temperature effect in ECA kinetics is
The physically reasonable prediction by model S3B3-ECAstraightforward by recognizing that all parameters in Eq. (4)
provided us with some new insights on lignin decomposi- are temperature dependent. For instance, by using Eyring’s
tion. We found (Fig. 16) that lignin decomposition does not transition state theory (Eyring, 1935a, b), it can be shown
follow the conceptual model proposed by Berg and StaafthatKs;; ocexp(—AH/RT), whereAH (J mot-1) is an ac-
(1980), which states that no lignin will be degraded until it tivation energy that should be deducible from measurements
reaches a threshold concentration (with respect to the totalas was done in Davidson et al. (2012), though there they
litter). Rather, our predictions support the conceptual modelassume's;; was a linear function of temperature). Deter-
of Klotzbucher et al. (2011), which states that lignin decom-mining the activation energies ®f;1, kii1 andk;jf,2 could
position depends on the availability of easily degradable la-be challenging, but we note that it has been done for in-
bile carbon. However, our results add further insights that,organic chemistry kinetics (e.g., Bonner et al., 1935). By

3.3.3 The emergent lignin decomposition dynamics
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combining these ideas with the theory of half reactions (e.g.few examples, we demonstrated that if a network involves
McCarty, 2007) and assuming other abiotic factors such asnultiple substrates and consumers, direct application of the
soil aggregation and thermal degradation can be representedassical MM kinetics is inaccurate. We further showed a
by chemical kinetics, one could (and we hope to in future carbon-only model implemented with the ECA kinetics pre-
work) construct a thermodynamically-based model of micro-dicted litter decomposition dynamics reasonably. These pre-
bial organic matter decomposition. dictions indicated that litter decomposition is coregulated by
Other biological factors, such as exoenzyme abundancétter chemistry and microbial community structure and dy-
and microbial transporters, affect the substrate uptake pronamics. We hope our results can help develop a benchmark
cess indirectly by changing the abundance of consumersnodel for microbially-mediated organic matter decomposi-
in the consumer—substrate network. Developing mechanistition in terrestrial and other ecosystems and stimulate applica-
representations of these factors is an important area of studijons in other fields involving consumer—substrate networks.
(Allison, 2012; Kooijman and Troost, 2007) that we will also
address in follow-on studies with the EC and ECA kinetics )
based model. Appendix A

3.5 Potential applications to different network systems ~ Derivation of Eq. (13)

Because EC kinetics only relies on the premise that them this section we presen_t the derivation of Eq. (13). From
equilibration of the consumer-substrate complexes (betweeH"e mass balance constraint to substsateg. 10), one has

their formation and degradation) is much faster than other Si 1
metabolic processes, it can in principle be applied to arbitrarySi = k:,J (A1)
food web structures (e.g., Lindeman, 1942) and protein— 1+ Y Kb;k_k
protein interaction networks (Ciliberto et al., 2007). We note, k=1"""
however, that a model implemented with the EC kinetics maySimiIarIy (from Eq. 12), one has
become computationally expensive as the problem size in- T
creases. For such cases, proper numerical preconditionin% EiT
becomes necessary. i= T (A2)
Compared to EC kinetics, the approximate ECA kinetics 1+ Kikkj
k=1

is applicable to a smaller scope of problems, constrained by

the condition that any element in the network be either asubstituting Egs. (A1) and (A2) into Eq. (6), one obtains
substrate or consumer, but not both. Still, the ECA kinetics

is much more general than other existing formulations used SiTET

for predator—prey systems (Murdoch, 1973; Koen-Alonso, % — k=J k=1
2007) and is computationally very efficient. For protein— Ksij <1+ > Ki"k> <1+ > Kikkj)
protein interaction networks, one feasible application exam- k=1 k=1
ple is the phosphorylation-dephosphorylation cycle analyzedye then apply the perturbation theory (e.g., Bender and

by Goldbeter and Koshland (1981), which lends itself to beQrzag, 1999; Tang et al., 2007) to Eq. (A3), in which we
solved by ECA kinetics under the tQSSA (compare their gssume

Egs. 1 and 2 with the form of Eq. 4).

(A3)

Cij=¢eCij1+8°Cijo+... (Ada)

4 Conclusions Ej=Ejo+¢E;146%Eja+... (Adb)
In this study, we proposed that an equilibrium chemistry

(EC) formulation could be used tq predict .the dynamlcsSi =S,‘,0+8Si’1+82si,2+... (Adc)
of consumer-substrate complexes involved in an arbitrary

consumer—substrate network. When the given consumeryheres is a very small number.

substrate network satisfies the condition that any element of Expanding Eq. (5), and keeping the first two orders of
the network is either consumer or substrate but not both, wejives

obtained a first-order accurate approximation to EC (termed

ECA). Both the EC and ECA kinetics allow a simultaneous =B LS SiTEjT
and consistent treatment of biotic and abiotic interactions in¢ : Cij.1 1+Z 1% - +Z 1% — | =—==
microbial systems (though the ECA kinetics is more limited), =1 7S k=1 BSK

which cannot be achieved with the classical MM kinetics or

with other existing MM kinetics based extensions. With a

= Aba
A eKsj ( )
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Table Al. Symbols used in paper, their definitions and corresponding units.

Symbol Definition Unit
B; Biomass of microbg molCm3orgC
C,Cjj Enzyme-substrate complex mol Ch
Cij1,Cij2 Scaled first and second order accurate terms of con(glex mol C m-3
D; Diffusivity of substrates; in water nfs1
E,E; Free enzyme abundance motfh
Ejo0.Ej1.Ej2 Zero, first, and second order accurate terms of enzgme  mol m—3
AH Activation energy Jmotl
I T Total abundance of inhibitar mol m—3
Jeoy Cost function unitless
ki ,k;; 1 Forward reaction coefficients $mol~1s1
ki kl_ 1 Backward reaction coefficients -3
k2 ki o Forward reaction coefficients -4
Ks.Ks;j.Ksi1.Ks;; Substrate affinity coefficients mol CTd
Krij Kiijk Inhibitory coefficients mol C m3
nj Cell number density of microbg cells T3
P;j Product from degradation of compl€; mol C m3 or gC
re,j Mean cell size of microbg m
R Universal gas constant J® mol~1
S, 8;,8; Free substrate abundance mol C¥ror gC
Si.0.Si1 Zero, first, and second order accurate terms of subsfrate mol m—3
SiT Total substrate abundance motth
T Temperature K
v Substrate uptake rate molms—1
Vimax Maximum substrate uptake rate motrhs—1
ag Active fraction of the enzymeé unitless
e Small number unitless
Wij Biomass yield when microbB; feeds ons; unitless
v Area-based transporter density of cgll mol m—2
oLIC Standard deviation of lignocellulose index unitless
OMass Standard deviation of the remaining organic biomass unitless
Vi Respiration rate of microbg h~lord?®
®p Substrate flux mol m3 s~1
o Changing rate of new enzymes (transporters) moprsr 1
S Eo & Sio Cij2= Clj S (ABb)
3 C1],2 1+ K + Koo (A5b) 1 Ero = Sk.0
= Ksik = Ksij Ks,ij < + Z rem +1§1 KS.kj)
k=J k=1 m=I1,1=J
+Cij ( % Z I;Yk,l Ilis,nllgml,l) _0 n=1,1=1C | Kes <Ks,il + Ks,j — Ks,nz)
k=1 S,lk k=1 S,kj m:ll 1 S il Smj ”=1J=1 nit, ) KS,il KS,nj

where the third subscript ofi;; indicates the associated or-

Therefore, by usingZ; T = E; o and S; 1 = S; o0 at the zero
der ofe. Substituting Eq. (A5) into Eq. (A3) gives

order approximation, Eq. (A6a) is equivalent to Eq. (13) in

the main text. The derivation of Eq. (A6b) is given in the
SiTE iT

Cija~ p (A6a)  Supplement.
eKsj; (1+ > Exo i Sk.0 ) Because of the many unspecified parameters (prior to a
" Ksik 1 Ksiki specific application), we were not able to identify a best es-

timate of the condition when Eq. (A6a) is exactly first order
accurate. However, from Eq. (A6b), we obtain a crude con-
dition
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Appendix C

Ke:: =Ko E k=l g § L . . .

2Si 3 2Sij ZkO0 3 2Sij Ok0 (A7) The MM kinetics based approximation to the EC solution

Sio = Ksik Sio = Kskj Sio0

ke ket The MM Kkinetics based representation of the enzyme-
Ksij N Ksij Ex0 +Z Ksij Sko >1 substrate compleg;; is
Ejo (= Ksik Ejo (= Kskj Ejo
SiTEjT
- . R 4 4 1

Condition Eq. (A7) holds if§; o 3> E;j g or S; 0 < Ej 0. Even Cij Ksij + Sit (C1)

if S;.0~ E; o, Eq. (A7) may still hold because of the many
possible parameter combinations in a complicated reactiorThe solution Eq. (C1) is then scaled linearly to satisfy the
network. mass constraint:
While it is cumbersome to verify Eq. (A6) for all combi-
: . =1
nations of substrate and consumer, under the smgle-substra%:

. . i <E; C2a
and single-consumer condition, we have k=1Ck] =T (C2a)
C11=eC111+8%Cr12 (A8)

SiTELT SiTELT L=
= 1+ > Y Cu<Sit. (C2b)
KS,11+ Sl,T+El,T (KS,11+ Sl,T+E1,T) =1

which is equivalent to Eq. (3) in Cha and Cha (1965) whenwe point out that Egs. (C2) have been implemented dif-
truncated to second order accuracy. ferently from other studies, e.g., Moorhead and Sinsabaugh
(2006; GDM), Riley et al. (2011; CLM4Me), and Allison
(2012; DEMENT). Those studies imposed the constraint on
total substrate flux within a single time step rather than on the
overall enzyme-substrate complexes. Itis only with Egs. (C2)
that MM and ECA-ML kinetics were able to model the ad-
Substituting the mass balance relationships Egs. (A1) angOrption surface effect on substrate dynamics, but they were
(A2) into Eq. (6), one has: less accurate than the ECA kinetics, as we have demonstrated
in the main text (see discussions on scenario S3B1M1 in

k=J k=1
Sect. 3.2).
(Si,T— ZG‘k) (Ej,T_Zij) = Ks,ijCij (B1)
k=1 k=1

Then by expanding Eq. (B1) and ignoring quadratic terms,Supplementary material related to this article is
one obtains a set of linear equations: available online athttp://www.biogeosciences.net/10/
8329/2013/bg-10-8329-2013-supplement.pdf

Appendix B

An alternate analytic approximation

k=J k=I
KsijCij+SitY Ci+Ej1y _ Cij=STEjT (B2)
k=1 k=1

where we again used the zero order approxima#ion = _ _
EjoandsS;T=Sio. AcknowledgementsThis research was supported by the Director,

Since we have not been able to find an analytical Solutionomce of Science, Office of Biological and Environmental Research

to Eq. (B2), we attempted to solve it using existing linear of the US Department of Energy, under contract no. DE-AC02-

laeb K This effort t d out to b icall 05CH11231, as part of their Regional and Global Climate Modeling
aigebra packages. IS €eflort turned out to beé numerica yProgram; and by the Next-Generation Ecosystem Experiments

very difficult, and often resulted in unrealistic and negative (NGEE Arctic) project, supported by the Office of Biological

complex concentrations. However, using results derived byang Environmental Research in the DOE Office of Science under
De Boer and Perelson (1995), we developed an approximatgontract no. DE-AC02-05CH11231.

solution:
SiTE; T (3) Edited by: G. Herndl

Cis = = ey =4 S T+Ksj
Ksij+ ,Zzl St EjT+Kskj + ,;l Exr SiT+Ks,ik

which satisfies Eq. (B2) exactly wheh=1 or J =1. We

evaluated Eq. (B3) with random sampling tests, and found it
was generally inferior to Eq. (13) (results not shown).

www.biogeosciences.net/10/8329/2013/ Biogeosciences, 10, 83512013


http://www.biogeosciences.net/10/8329/2013/bg-10-8329-2013-supplement.pdf
http://www.biogeosciences.net/10/8329/2013/bg-10-8329-2013-supplement.pdf

8348 J. Y. Tang and W. J. Riley: Total quasi-steady-state formulation of substrate uptake kinetics

References ment, testing, and predicted community composition, Front. Mi-
crobiol., 3, 364, doit0.3389/fmich.2012.00362012.
Broekhuizen, N., Rickard, G. J., Bruggeman, J., and Meis-
Aber, J. D., Melillo, J. M., and Mcclaugherty, C. A.: Predicting ter, A.. An improved and generalized second order, un-
long-term patterns of mass-loss, nitrogen dynamics, and soil conditionally positive, mass conserving integration scheme
organic-matter formation from initial fine litter chemistry in tem- for biochemical systems, Appl. Numer. Math., 58, 319-340,
perate forest ecosystems, Can. J. Bot., 68, 2201-2208, 1990. doi:10.1016/J.Apnum.2006.12.002008.
Abrams, P. A. and Ginzburg, L. R.: The nature of predation: prey Burnett, T.: Influences of natural temperatures and controlled host
dependent, ratio dependent or neither?, Trends Ecol. Evol., 15, densities on oviposition of an insect parasite, Physiol. Zool., 27,

337-341, doit0.1016/S0169-5347(00)01908-X000. 239-258, 1954,

Allison, S. D.: A trait-based approach for modelling microbial litter Campbell, A.: Conditions for existence of bacteriophage, Evolution,
decomposition, Ecol. Lett., 15, 1058-1070, d6i1111/j.1461- 15, 153-165, doi:0.2307/240607,61.961.
0248.2012.01807,2012. Caperon, J.: Population growth in micro-organisms limited by food

Allison, S. D., Wallenstein, M. D., and Bradford, M. A.: Soil-carbon  supply, Ecology, 48, 715-722, d0.2307/19337281967.
response to warming dependent on microbial physiology, Nat.Cha, S. and Cha, C. J. M.: Kinetics of cyclic enzyme systems, Mol.
Geosci., 3, 336—-340, ddi0.1038/Nge08462010. Pharmacol., 1, 178-189, 1965.

Andren, O. and Paustian, K.: Barley straw decomposition inChilds, R. E. and Bardsley, W. G.: Steady-state kinetics of per-
the field — a comparison of models, Ecology, 68, 1190-1200, oxidase with 2,2’-Azino-Di-(3-Ethylbenzthiazoline-6-Sulphonic
doi:10.2307/19392031987. Acid) as chromogen, Biochem. J., 145, 93-103, 1975.

Arditi, R. and Ginzburg, L. R.: Coupling in predator prey dy- Choy, K. K. H., Porter, J. F., and McKay, G.: Langmuir isotherm
namics — ratio-dependence, J. Theor. Biol., 139, 311-326, models applied to the multicomponent sorption of acid dyes from
doi:10.1016/S0022-5193(89)802111989. effluent onto activated carbon, J. Chem. Eng. Data, 45, 575-584,

Armstrong, R. A.: Nutrient uptake rate as a function of cell size and  doi:10.1021/Je9902892000.
surface transporter density: A Michaelis-like approximation to Ciliberto, A., Capuani, F., and Tyson, J. J.: Modeling net-
the model of Pasciak and Gavis, Deep-Sea Res Pt. I, 55, 1311- works of coupled enzymatic reactions using the total quasi-
1317, doi10.1016/J.Dsr.2008.05.002008. steady state approximation, Plos Comput. Biol., 3, 463-472,

Balser, T. C. and Wixon, D. L.: Investigating biological control doi:10.1371/Journal.Pchi.0030042007.
over soil carbon temperature sensitivity, Glob. Change Biol., 15,Cornish-Bowden, A.: Fundamentals of Enzyme Kinetics, rev. ed.,
2935-2949, doi0.1111/J.1365-2486.2009.019462009. Portland Press, London, 1995.

Bauer, J., Herbst, M., Huisman, J. A., Weihermuller, L., and Davidson, E. A. and Janssens, |. A.: Temperature sensitivity of soil
Vereecken, H.: Sensitivity of simulated soil heterotrophic res-  carbon decomposition and feedbacks to climate change, Nature,
piration to temperature and moisture reduction functions, Geo- 440, 165-173, dal:0.1038/Nature045120086.
derma, 145, 17-27, ddi0.1016/J.Geoderma.2008.01.02608. Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K.:

Bender, C. M. and Orzag, S. A.: Advanced Mathematical Methods The dual Arrhenius and Michaelis-Menten kinetics model for
for Scientists and Engineers, Springer-Verlag, New York, 1999.  decomposition of soil organic matter at hourly to seasonal time

Berg, H. C. and Purcell, E. M.: Physics of Chemoreception, Bio- scales, Glob. Change Biol., 18, 371-384, #0i1111/J.1365-
phys. J., 20, 193-219, 1977. 2486.2011.02546.X2012.

Berg, B. and Staaf, H.: Decomposition rate and chemical change®e Boer, R. J. and Perelson, A. S.: T-cell repertoires and
of Scots pine litter. II. Influence of chemical composition, Ecol.  competitive-exclusion, J. Theor. Biol.,, 169, 375-390,
Bull., 32, 373-390, 1980. d0i:10.1006/Jthi.1994.1160.994.

Berg, B., Hannus, K., Popoff, T., and Theander, O.: Changes inDe Boer, R. J. and Perelson, A. S.: Towards a general function
organic-chemical components of needle litter during decompo- describing T-cell proliferation, J. Theor. Biol., 175, 567-576,
sition — long-term decomposition in a scots pine forest .1., Can. doi:10.1006/Jtbi.1995.0163995.

J. Bot., 60, 1310-1319, 1982. Dilly, O. and Munch, J. C.: Microbial biomass content, basal res-
Beven, K.: A manifesto for the equifinality thesis, Journal of Hy- piration and enzyme activities during the course of decomposi-
drology, 320, 18-36, ddi0.1016/J.Jhydrol.2005.07.0@006. tion of leaf litter in a black alder (Alnus glutinosa (L) Gaertn)

Bonachela, J. A., Raghib, M., and Levin, S. A.: Dynamic model of  forest, Soil Biol. Biochem., 28, 1073-1081, dif):1016/0038-
flexible phytoplankton nutrient uptake, P. Natl. Acad. Sci. USA,  0717(96)00075-21996.
108, 20633-20638, ddi0.1073/Pnas.111801210811. Druhan, J. L., Steefel, C. I., Molins, S., Williams, K. H., Conrad,
Bonner, W. D., Gore, W. L., and Yost, D. M.: The thermal reac- M. E., and DePaolo, D. J.: Timing the onset of sulfate reduction
tion between gaseous iodine monochloride and hydrogen, J. Am. over multiple subsurface acetate amendments by measurement
Chem. Soc., 57, 2723-2724, dif.1021/Ja01315a502935. and modeling of sulfur isotope fractionation, Environ. Sci. Tech-
Borghans, J. A. M. and Deboer, R. J.: A minimal model for  nol., 46, 8895-8902, ddi0.1021/Es302016{2012.
T-cell vaccination, P. Roy. Soc. B.-Biol. Sci., 259, 173-178, Dybzinski, R., Farrior, C., Wolf, A., Reich, P. B., and Pacala, S. W.:
doi:10.1098/Rspb.1995.0025995. Evolutionarily stable strategy carbon allocation to foliage, wood,
Borghans, J. A. M., DeBoer, R. J., and Segel, L. A.: Extending and fine roots in trees competing for light and nitrogen: an ana-
the quasi-steady state approximation by changing variables, B. Iytically tractable, individual-based model and quantitative com-

Math. Biol., 58, 43—63, dol:0.1007/Bf024582811996. parisons to data, Am. Nat., 177, 153-166, #18i1086/657992
Bouskill, N. J., Tang, J. Y., Riley, W. J., and Brodie, E. L.: Trait- 2011.

based representation of biological nitrification: model develop-

Biogeosciences, 10, 8328351, 2013 www.biogeosciences.net/10/8329/2013/


http://dx.doi.org/10.1016/S0169-5347(00)01908-X
http://dx.doi.org/10.1111/j.1461-0248.2012.01807.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01807.x
http://dx.doi.org/10.1038/Ngeo846
http://dx.doi.org/10.2307/1939203
http://dx.doi.org/10.1016/S0022-5193(89)80211-5
http://dx.doi.org/10.1016/J.Dsr.2008.05.004
http://dx.doi.org/10.1111/J.1365-2486.2009.01946.X
http://dx.doi.org/10.1016/J.Geoderma.2008.01.026
http://dx.doi.org/10.1016/J.Jhydrol.2005.07.007
http://dx.doi.org/10.1073/Pnas.1118012108
http://dx.doi.org/10.1021/Ja01315a502
http://dx.doi.org/10.1098/Rspb.1995.0025
http://dx.doi.org/10.1007/Bf02458281
http://dx.doi.org/10.3389/fmicb.2012.00364
http://dx.doi.org/10.1016/J.Apnum.2006.12.002
http://dx.doi.org/10.2307/2406076
http://dx.doi.org/10.2307/1933728
http://dx.doi.org/10.1021/Je9902894
http://dx.doi.org/10.1371/Journal.Pcbi.0030045
http://dx.doi.org/10.1038/Nature04514
http://dx.doi.org/10.1111/J.1365-2486.2011.02546.X
http://dx.doi.org/10.1111/J.1365-2486.2011.02546.X
http://dx.doi.org/10.1006/Jtbi.1994.1160
http://dx.doi.org/10.1006/Jtbi.1995.0165
http://dx.doi.org/10.1016/0038-0717(96)00075-2
http://dx.doi.org/10.1016/0038-0717(96)00075-2
http://dx.doi.org/10.1021/Es302016p
http://dx.doi.org/10.1086/657992

J. Y. Tang and W. J. Riley: Total quasi-steady-state formulation of substrate uptake kinetics 8349

Eyring, H.: The activated complex and the absolute rate of chemi-Karp-Boss, L., Boss, E., and Jumars, P. A.: Nutrient fluxes to plank-
cal reactions, Chem. Rev., 17, 65—77, #6i1021/Cr60056a006 tonic osmotrophs in the presence of fluid motion, Oceanogr. Mar.

1935. Biol., 34, 71-107, 1996.
Eyring, H.: The activated complex in chemical reactions, J. Chem.Keeler, B. L., Hobbie, S. E., and Kellogg, L. E.: Effects of long-term
Phys., 3, 107-115, ddi0.1063/1.17496Q4.935. nitrogen addition on microbial enzyme activity in eight forested

Felmy, A. R., Girvin, D. C., and Jenne, E. A.: MINTEQ: A and grassland sites: implications for litter and soil organic matter
computer program for calculating aqueous geochemical equilib- decomposition, Ecosystems, 12, 1-15, 8#0i1007/S10021-008-
ria, EPA-600/3-84-032, Office Res. Dev., USEPA, Athens, GA, 9199-Z 2009.

1984. Klotzbucher, T., Kaiser, K., Guggenberger, G., Gatzek, C., and

Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W.:  Kalbitz, K.: A new conceptual model for the fate of lignin in
Emergent biogeography of microbial communities in a model decomposing plant litter, Ecology, 92, 1052-1062, 2011.
ocean, Science, 315, 1843-1846, #10i1126/Science.1138544 Koen-Alonso, M.: A process-oriented approach to the multispecies
2007. functional response, in: From Energetics to Ecosystems: The Dy-

Ginzburg, L. R. and Akcakaya, H. R.: Consequences of ratio- namics and Structure of Ecological Systems, edited by: Rooney,
dependent predation for steady-state properties of ecosystems, N., McCann, M. S., and Noakes, D. L. G., Springer, Dordrecht,
Ecology, 73, 1536—-1543, d4i0.2307/19400061992. The Netherlands, 1-36, 2007.

Goldbeter, A. and Koshland, D. E.: An amplified sensitivity arising Kooijman, S. A. L. M.: The Synthesizing Unit as model for the
from covalent modification in biological-systems, P. Natl. Acad.  stoichiometric fusion and branching of metabolic fluxes, Bio-
Sci.-Biol., 78, 6840—6844, ddi0.1073/Pnas.78.11.6841081. phys. Chem., 73, 179-188, db.1016/S0301-4622(98)00162-

Grant, R. F., Juma, N. G., and Mcgill, W. B.: Simulation of carbon 8, 1998.
and nitrogen transformations in soil — mineralization, Soil Biol. Kooijman, S. A. L. M. and Troost, T. A.: Quantitative steps
Biochem., 25, 1317-1329, d&D.1016/0038-0717(93)90046-E in the evolution of metabolic organisation as specified by
1993. the Dynamic Energy Budget theory, Biol. Rev., 82, 113-142,

Gu, C. H., Maggi, F., Riley, W. J., Hornberger, G. M., Xu, T., Old- doi:10.1111/3.1469-185x%.2006.00006 2007 .
enburg, C. M., Spycher, N., Miller, N. L., Venterea, R. T., and Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S.,
Steefel, C.: Aqueous and gaseous nitrogen losses induced by Collins, W. D., Bonan, G. B., Lawrence, D. M., and Swenson,
fertilizer application, J. Geophys. Res.-Biogeo., 114, G01006, S. C.: The effect of vertically resolved soil biogeochemistry and
doi:10.1029/2008jg000782009. alternate soil C and N models on C dynamics of CLM4, Biogeo-

Hall, S. R.: Stoichiometrically explicit competition between graz-  sciences, 10, 7109-7131, dd:5194/bg-10-7109-2013013.
ers: Species replacement, coexistence, and priority effectKratina, P., Vos, M., Bateman, A., and Anholt, B. R.: Functional
along resource supply gradients, Am. Nat., 164, 157-172, responses modified by predator density, Oecologia, 159, 425—
doi:10.1086/4222012004. 433, d0i10.1007/S00442-008-1225-8009.

Herman, J., Moorhead, D., and Berg, B.: The relationship Kumar, A. and Josic, K.: Reduced models of networks of
between rates of lignin and cellulose decay in above- coupled enzymatic reactions, J. Theor. Biol.,, 278, 87-106,
ground forest litter, Soil Biol. Biochem., 40, 2620-2626, d0i:10.1016/J.Jtbi.2011.02.028011.
doi:10.1016/J.Soilbio.2008.07.002008. Ladd, J. N., Amato, M., Zhou, L. K., and Schultz, J. E.: Differential-

Holling, C. S.: The components of predation as revealed by a study effects of rotation, plant residue and nitrogen-fertilizer on mi-
of small-mammal predation of the european pine sawfly, Can. crobial biomass and organic-matter in an Australian Alfisol, Soil
Entomol., 91, 293-320, ddi0.4039/Ent9129-71959. Biol. Biochem., 26, 821-831, ddi0.1016/0038-0717(94)90298-

Jacobson, M. Z.: Studying the effects of calcium and magne- 4, 1994.
sium on size-distributed nitrate and ammonium with EQUI- Lambers, H., Mougel, C., Jaillard, B., and Hinsinger, P.: Plant-
SOLV II, Atmos. Environ., 33, 3635-3649, dbd.1016/S1352- microbe-soil interactions in the rhizosphere: an evolutionary
2310(99)00105-31999. perspective, Plant Soil, 321, 83-115, d6i:1007/S11104-009-

Jacobson, M. Z., Tabazadeh, A., and Turco, R. P.. Simulat- 0042-X 2009.
ing equilibrium within aerosols and nonequilibrium between Legovic, T. and Cruzado, A.: A model of phytoplankton growth
gases and aerosols, J. Geophys. Res.-Atmos., 101, 9079-9091, on multiple nutrients based on the Michaelis-Menten-Monod up-
doi:10.1029/96jd003481996. take, Droop’s growth and Liebig’s law, Ecol. Model., 99, 19-31,

Jenkinson, D. S. and Coleman, K.: The turnover of organic carbon doi:10.1016/S0304-3800(96)019191997.
in subsoils. Part 2. Modelling carbon turnover, Eur. J. Soil Sci., Li, C. S., Frolking, S., and Frolking, T. A.: A model of nitrous-oxide
59, 400-413, dot0.1111/J.1365-2389.2008.010262008. evolution from soil driven by rainfall events .1. model structure

Jennings, A. A., Kirkner, D. J., and Theis, T. L.: Multicomponent  and sensitivity, J. Geophys. Res.-Atmos., 97, 9759-9776, 1992.
equilibrium chemistry in groundwater quality models, Water Lindeman, R. L.: The trophic-dynamic aspect of ecology, Ecology,
Resour. Res., 18, 1089-1096, d6i:1029/Wr018i004p01089 23, 399-418, doi:0.2307/19301261942.

1982. Litchman, E., Klausmeier, C. A., Schofield, O. M., and Falkowski,

Jin, Q. and Bethke, C. M.: The thermodynamics and kinet- P. G.. The role of functional traits and trade-offs in struc-
ics of microbial metabolism, Am. J. Sci., 307, 643-677, turing phytoplankton communities: scaling from cellular to
doi:10.2475/04.2007.Q2007. ecosystem level, Ecol. Lett., 10,1170-1181, 8©i1111/3.1461-

0248.2007.01117.X007.

www.biogeosciences.net/10/8329/2013/ Biogeosciences, 10, &353-2013


http://dx.doi.org/10.1021/Cr60056a006
http://dx.doi.org/10.1063/1.1749604
http://dx.doi.org/10.1126/Science.1138544
http://dx.doi.org/10.2307/1940006
http://dx.doi.org/10.1073/Pnas.78.11.6840
http://dx.doi.org/10.1016/0038-0717(93)90046-E
http://dx.doi.org/10.1029/2008jg000788
http://dx.doi.org/10.1086/422201
http://dx.doi.org/10.1016/J.Soilbio.2008.07.003
http://dx.doi.org/10.4039/Ent9129-7
http://dx.doi.org/10.1016/S1352-2310(99)00105-3
http://dx.doi.org/10.1016/S1352-2310(99)00105-3
http://dx.doi.org/10.1029/96jd00348
http://dx.doi.org/10.1111/J.1365-2389.2008.01026.X
http://dx.doi.org/10.1029/Wr018i004p01089
http://dx.doi.org/10.2475/04.2007.01
http://dx.doi.org/10.1007/S10021-008-9199-Z
http://dx.doi.org/10.1007/S10021-008-9199-Z
http://dx.doi.org/10.1016/S0301-4622(98)00162-8
http://dx.doi.org/10.1016/S0301-4622(98)00162-8
http://dx.doi.org/10.1111/J.1469-185x.2006.00006.X
http://dx.doi.org/10.5194/bg-10-7109-2013
http://dx.doi.org/10.1007/S00442-008-1225-5
http://dx.doi.org/10.1016/J.Jtbi.2011.02.025
http://dx.doi.org/10.1016/0038-0717(94)90298-4
http://dx.doi.org/10.1016/0038-0717(94)90298-4
http://dx.doi.org/10.1007/S11104-009-0042-X
http://dx.doi.org/10.1007/S11104-009-0042-X
http://dx.doi.org/10.1016/S0304-3800(96)01919-9
http://dx.doi.org/10.2307/1930126
http://dx.doi.org/10.1111/J.1461-0248.2007.01117.X
http://dx.doi.org/10.1111/J.1461-0248.2007.01117.X

8350 J. Y. Tang and W. J. Riley: Total quasi-steady-state formulation of substrate uptake kinetics

Liu, Y.: Overview of some theoretical approaches for derivation of  reaction rates using direct numerical simulation, Water Resour.
the Monod equation, Appl. Microbiol. Biotech., 73, 1241-1250, Res., 48, W03527, ddi0.1029/2011wr01140£012.

2007. Moorhead, D. L. and Sinsabaugh, R. L.: A theoretical model of lit-
Lotka, A. J.: Contribution to quantitative parasitology, J. Wash. ter decay and microbial interaction, Ecol. Monogr., 76, 151-174,
Acad. Sci. 13, 152-158, 1923. doi:10.1890/0012-9615(2006)076[0151:Atmold]2.0.C&Q06.

Machinet, G. E., Bertrand, |., and Chabbert, B.: Assessment ofMurdoch, W. W.: Functional Response of Predators, J. Appl. Ecol.,
Lignin-Related Compounds in Soils and Maize Roots by Alka- 10, 335-342, 1973.
line Oxidations and Thioacidolysis, Soil Sci. Soc. Am. J., 75, Osono, T.: Ecology of ligninolytic fungi associated with leaf litter
542-552, doit0.2136/Sssaj2010.0222011. decomposition, Ecol. Res., 22, 955-974, #0i1007/S11284-

Maggi, F. and Riley, W. J.: Transient competitive complexa- 007-0390-Z2007.
tion in biological kinetic isotope fractionation explains non- Parton, W. J., Stewart, J. W. B., and Cole, C. V.: Dynamics of C, N,
steady isotopic effects: Theory and application to denitri- P and S in grassland soils — a model, Biogeochemistry, 5, 109—
fication in soils, J. Geophys. Res.-Biogeo., 114, G04012, 131, doi10.1007/Bf021803201988.
doi:10.1029/2008jg000872009. Pasciak, W. J. and Gavis, J.: Transport limitation of nutrient uptake

Maggi, F., Gu, C., Riley, W. J., Hornberger, G. M., Venterea, in phytoplankton, Limnol. Oceanogr., 19, 881-898, 1974.

R. T., Xu, T., Spycher, N., Steefel, C., Miller, N. L., and Pasciak, W. J. and Gavis, J.: Transport limited nutrient uptake rates
Oldenburg, C. M.: A mechanistic treatment of the domi- in Ditylum-Brightwellii, Limnol. Oceanogr., 20, 604-617, 1975.

nant soil nitrogen cycling processes: Model development, test-Persson, L., Leonardsson, K., de Roos, A. M., Gyllenberg, M., and
ing, and application, J. Geophys. Res.-Biogeo., 113, G02016, Christensen, B.: Ontogenetic scaling of foraging rates and the
doi:10.1029/2007jg000572008. dynamics of a size-structured consumer-resource model, Theor.

Magill, A. H. and Aber, J. D.: Long-term effects of experi- Popul. Biol., 54, 270-293, ddi0.1006/Tpbi.1998.1380998.
mental nitrogen additions on foliar litter decay and humus Pilinis, C., Seinfeld, J. H., and Seigneur, C.: Mathematical modeling
formation in forest ecosystems, Plant Soil, 203, 301-311, of the dynamics of multicomponent atmospheric aerosols, At-
doi:10.1023/A:1004367000041998. mos. Environ., 21, 943-955, dbD.1016/0004-6981(87)90090-

Mayes, M. A., Heal, K. R., Brandt, C. C., Phillips, J. R., and Jar- 4, 1987.
dine, P. M.: Relation between soil order and sorption of dissolvedReynolds, H. L. and Pacala, S. W.: An analytical treatment of root-
organic carbon in temperate subsoils, Soil Sci. Soc. Am. J., 76, to-shoot ratio and plant competition for soil nutrient and light,
1027-1037, dof:0.2136/Sssaj2011.0342012. Am. Nat., 141, 51-70, ddi0.1086/2854601993.

McCarty, P. L.: Thermodynamic electron equivalents model for bac-Riley, W. J. and Matson, P. A.: NLOSS: A mechanistic model of
terial yield prediction: Modifications and comparative evalua-  denitrified N20O and N-2 evolution from soil, Soil Sci., 165, 237—
tions, Biotechnol. Bioeng., 97, 377—-388, ddl:1002/Bit.21250 249, doi10.1097/00010694-200003000-000@600.

2007. Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn,

McGill, B. J. and Brown, J. S.: Evolutionary game theory and adap- M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to pre-
tive dynamics of continuous traits, Annu. Rev. Ecol. Evol. S., dicting changes in global terrestrial methane fluxes: analyses us-
38, 403-435, doi0.1146/Annurev.Ecolsys.36.091704.175517  ing CLM4Me, a methane biogeochemistry model integrated in
2007. CESM, Biogeosciences, 8, 1925-1953, #10i5194/bg-8-1925-

McGuire, A. D., Melillo, J. M., Kicklighter, D. W., Pan, Y. D., Xiao, 2011, 2011.

X. M., Helfrich, J., Moore, B., Vorosmarty, C. J., and Schloss, Rodrigo, A., Recous, S., Neel, C., and Mary, B.: Modelling
A. L.: Equilibrium responses of global net primary production  temperature and moisture effects on C-N transformations in
and carbon storage to doubled atmospheric carbon dioxide: Sen- soils: comparison of nine models, Ecol. Model., 102, 325-339,
sitivity to changes in vegetation nitrogen concentration, Global doi:10.1016/S0304-3800(97)000674097.

Biogeochem. Cy., 11, 173-189, dbi.1029/97gb00059.997. Saggar, S., Parshotam, A., Sparling, G. P., Feltham, C. W., and
Melillo, J. M., Aber, J. D., and Muratore, J. F.: Nitrogen and lignin ~ Hart, P. B. S.: C-14-labelled ryegrass turnover and residence
control of hardwood leaf litter decomposition dynamics, Ecol-  times in soils varying in clay content and mineralogy, Soil Biol.
ogy, 63, 621-626, ddi0.2307/1936780L982. Biochem., 28, 1677-1686, diD.1016/S0038-0717(96)00250-

Melillo, J. M., Aber, J. D., Linkins, A. E., Ricca, A., Fry, B., and 7, 1996.

Nadelhoffer, K. J.: Carbon and nitrogen dynamics along the de-Schenk, D., Bersier, L. F., and Bacher, S.. An experimen-

cay continuum — plant litter to soil organic-matter, Plant Soil, tal test of the nature of predation: neither prey- nor ratio-

115, 189-198, dal:0.1007/Bf022025871989. dependent, J. Anim. Ecol., 74, 86-91, d6i:1111/J.1365-
Michaelis, L. and Menten, M. L.: The kenetics of the inversion ef-  2656.2004.00900.X2005.

fect, Biochem. Z., 49, 333—-369, 1913. Schimel, J. P., Wetterstedt, J. A. M., Holden, P. A., and Trumbore, S.

Machinet, G. E., Bertrand, I., Barriere, Y., Chabbert, B., and Re- E.: Drying/rewetting cycles mobilize old C from deep soils from
cous, S.: Impact of plant cell wall network on biodegradation a California annual grassland, Soil Biol. Biochem., 43, 1101
in soil: Role of lignin composition and phenolic acids in roots 1103, doi10.1016/J.Soilbio.2011.01.008011.
from 16 maize genotypes, Soil Biol. Biochem., 43, 1544-1552,Schnell, S. and Maini, P. K.. Enzyme kinetics at high
doi:10.1016/J.Soilbio.2011.04.002011. enzyme concentration, B Math. Biol., 62, 483-499,

Molins, S., Trebotich, D., Steefel, C. ., and Shen, C. P.: An inves- do0i:10.1006/Bulm.1999.0162000.
tigation of the effect of pore scale flow on average geochemical

Biogeosciences, 10, 8328351, 2013 www.biogeosciences.net/10/8329/2013/


http://dx.doi.org/10.2136/Sssaj2010.0222
http://dx.doi.org/10.1029/2008jg000878
http://dx.doi.org/10.1029/2007jg000578
http://dx.doi.org/10.1023/A:1004367000041
http://dx.doi.org/10.2136/Sssaj2011.0340
http://dx.doi.org/10.1002/Bit.21250
http://dx.doi.org/10.1146/Annurev.Ecolsys.36.091704.175517
http://dx.doi.org/10.1029/97gb00059
http://dx.doi.org/10.2307/1936780
http://dx.doi.org/10.1007/Bf02202587
http://dx.doi.org/10.1016/J.Soilbio.2011.04.002
http://dx.doi.org/10.1029/2011wr011404
http://dx.doi.org/10.1890/0012-9615(2006)076[0151:Atmold]2.0.Co;2
http://dx.doi.org/10.1007/S11284-007-0390-Z
http://dx.doi.org/10.1007/S11284-007-0390-Z
http://dx.doi.org/10.1007/Bf02180320
http://dx.doi.org/10.1006/Tpbi.1998.1380
http://dx.doi.org/10.1016/0004-6981(87)90090-4
http://dx.doi.org/10.1016/0004-6981(87)90090-4
http://dx.doi.org/10.1086/285460
http://dx.doi.org/10.1097/00010694-200003000-00006
http://dx.doi.org/10.5194/bg-8-1925-2011
http://dx.doi.org/10.5194/bg-8-1925-2011
http://dx.doi.org/10.1016/S0304-3800(97)00067-7
http://dx.doi.org/10.1016/S0038-0717(96)00250-7
http://dx.doi.org/10.1016/S0038-0717(96)00250-7
http://dx.doi.org/10.1111/J.1365-2656.2004.00900.X
http://dx.doi.org/10.1111/J.1365-2656.2004.00900.X
http://dx.doi.org/10.1016/J.Soilbio.2011.01.008
http://dx.doi.org/10.1006/Bulm.1999.0163

J. Y. Tang and W. J. Riley: Total quasi-steady-state formulation of substrate uptake kinetics 8351

Schnell, S. and Mendoza, C.: Enzyme kinetics of multi- Vayenas, D. V. and Pavlou, S.: Chaotic dynamics of a food web
ple alternative substrates, J. Math. Chem., 27, 155-170, in a chemostat, Math. Biosci., 162, 69-84, d6i1016/S0025-
doi:10.1023/A:1019139423812000. 5564(99)00044-91999.

Segel, L. A. and Slemrod, M.: The quasi-steady-state assumpVolterra, V.: Variazioni e fluttuazioni del numero d’individui in
tion - a case-study in perturbation, Siam. Rev., 31, 446-477, specie animali conviventi, Mew. Acad. Lincei., 6, 31-113, 1926.
doi:10.1137/10310911989. Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M,

Sposito, G. and Coves, J.: SOILCHEM: A computer program for and Robinson, B. A.: Treatment of input uncertainty in hy-
the calculation of chemical spcciation in soils, Keamey Found. drologic modeling: Doing hydrology backward with Markov
Soil Sci., Univ. California, Riverside, 1988. chain Monte Carlo simulation, Water Resour. Res., 44, W00b09,

Suzuki, 1., Lizama, H. M., and Tackaberry, P. D.: Competitive-  doi:10.1029/2007wr00672@008.
inhibition of ferrous iron oxidation by thiobacillus-ferrooxidans Vucetich, J. A., Peterson, R. O., and Schaefer, C. L.: The effect
by increasing concentrations of cells, Appl. Environ. Microbiol.,  of prey and predator densities on wolf predation, Ecology, 83,
55, 1117-1121, 1989. 3003-3013, doi0.2307/30718372002.

Taylor, K. E.: Summarizing multiple aspects of model performanceWang, G. S. and Post, W. M.;; A note on the reverse
in a single diagram., J. Geophys. Res.-Atmos, 106, 7183-7192, Michaelis—Menten kinetics, Soil Biol. Biochem., 57, 946-949,
doi:10.1029/2000jd900712001. d0i:10.1016/j.s0ilbio.2012.08.028013.

Tang, J. Y. and Zhuang, Q. L.: Equifinality in parameter- Wang, G. S., Post, W. M., Mayes, M. A., Frerichs, J. T., and
ization of process-based biogeochemistry models: A sig- Sindhu, J.: Parameter estimation for models of ligninolytic and
nificant uncertainty source to the estimation of regional cellulolytic enzyme kinetics, Soil Biol. Biochem., 48, 28-38,
carbon dynamics, J. Geophys. Res.-Biogeo., 113, G04010, doi:10.1016/J.Soilbio.2012.01.012012.
doi:10.1029/2008jg000752008. Wang, G. S., Post, W. M., and Mayes, M. A.: Development

Tang, J. Y., Tang, J., and Wang, Y.: Analytical investigation of microbial-enzyme-mediated decomposition model parameters
on 3D non-Boussinesq mountain wave drag for wind profiles through steady-state and dynamic analyses, Ecol. Appl., 23, 255—
with vertical variations, Appl. Math. Mech.-Engl., 28, 317-325, 272, 2013.
doi:10.1007/S10483-007-0305-2007. Wickings, K., Grandy, A. S., Reed, S. C., and Cleveland, C. C.: The

Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A., and origin of litter chemical complexity during decomposition, Ecol.
Mahowald, N. M.: Influence of carbon-nitrogen cycle cou- Lett., 15, 1180-1188, ddi0.1111/J.1461-0248.2012.01837.X

pling on land model response to GOfertilization and 2012.

climate variability, Global Biogeochem. Cy., 21, Gb4018, Williams, P. J.: Validity of Application of Simple Kinetic Analysis

doi:10.1029/2006gb002862007. to Heterogeneous Microbial Populations, Limnol. Oceanogr., 18,
Tilman, D.: Resource competition between planktonic algae — 159-164, 1973.

experimental and theoretical approach, Ecology, 58, 338-348,
doi:10.2307/1935608L977.

www.biogeosciences.net/10/8329/2013/ Biogeosciences, 10, &351-2013


http://dx.doi.org/10.1023/A:1019139423811
http://dx.doi.org/10.1137/1031091
http://dx.doi.org/10.1029/2000jd900719
http://dx.doi.org/10.1029/2008jg000757
http://dx.doi.org/10.1007/S10483-007-0305-Z
http://dx.doi.org/10.1029/2006gb002868
http://dx.doi.org/10.2307/1935608
http://dx.doi.org/10.1016/S0025-5564(99)00044-9
http://dx.doi.org/10.1016/S0025-5564(99)00044-9
http://dx.doi.org/10.1029/2007wr006720
http://dx.doi.org/10.2307/3071837
http://dx.doi.org/10.1016/j.soilbio.2012.08.028
http://dx.doi.org/10.1016/J.Soilbio.2012.01.011
http://dx.doi.org/10.1111/J.1461-0248.2012.01837.X

