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Abstract. We demonstrate that substrate uptake kinetics in
any consumer–substrate network subject to the total quasi-
steady-state assumption can be formulated as an equilib-
rium chemistry (EC) problem. If the consumer-substrate
complexes equilibrate much faster than other metabolic
processes, then the relationships between consumers, sub-
strates, and consumer-substrate complexes are in quasi-
equilibrium and the change of a given total substrate (free
plus consumer-bounded) is determined by the degradation
of all its consumer-substrate complexes. In this EC formu-
lation, the corresponding equilibrium reaction constants are
the conventional Michaelis–Menten (MM) substrate affinity
constants. When all of the elements in a given network are ei-
ther consumer or substrate (but not both), we derived a first-
order accurate EC approximation (ECA). The ECA kinetics
is compatible with almost every existing extension of MM
kinetics. In particular, for microbial organic matter decom-
position modeling, ECA kinetics explicitly predicts a specific
microbe’s uptake for a specific substrate as a function of the
microbe’s affinity for the substrate, other microbes’ affinity
for the substrate, and the shielding effect on substrate uptake
by environmental factors, such as mineral surface adsorption.

By taking the EC solution as a reference, we evaluated
MM and ECA kinetics for their abilities to represent several
differently configured enzyme-substrate reaction networks.
In applying the ECA and MM kinetics to microbial models
of different complexities, we found (i) both the ECA and MM
kinetics accurately reproduced the EC solution when multi-
ple microbes are competing for a single substrate; (ii) ECA
outperformed MM kinetics in reproducing the EC solution
when a single microbe is feeding on multiple substrates; (iii)

the MM kinetics failed, while the ECA kinetics succeeded, in
reproducing the EC solution when multiple consumers (i.e.,
microbes and mineral surfaces) were competing for multi-
ple substrates. We then applied the EC and ECA kinetics to a
guild based C-only microbial litter decomposition model and
found that both approaches successfully simulated the com-
monly observed (i) two-phase temporal evolution of the de-
composition dynamics; (ii) final asymptotic convergence of
the lignocellulose index to a constant that depends on initial
litter chemistry and microbial community structure; and (iii)
microbial biomass proportion of total organic biomass (litter
plus microbes). In contrast, the MM kinetics failed to realis-
tically predict these metrics. We therefore conclude that the
ECA kinetics are more robust than the MM kinetics in repre-
senting complex microbial, C substrate, and mineral surface
interactions. Finally, we discuss how these concepts can be
applied to other consumer–substrate networks.

1 Introduction

Many natural systems involve processes that can be modeled
as consumer–substrate (or consumer–resource in a broader
context) interactions. These interactions include, but are
not limited to (i) multicomponent adsorption in aqueous
chemistry (e.g., Jennings et al., 1982; Choy et al., 2000);
(ii) aerosol and cloud droplet interactions in atmospheric
chemistry (e.g., Pilinis et al., 1987; Jacobson et al., 1996);
(iii) protein interaction networks in molecular biology (e.g.,
Childs and Bardsley, 1974; Ciliberto et al., 2007); and (iv)
many more in natural ecosystems, such as plant–microbe
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competition for inorganic nitrogen and phosphorus (e.g.,
Reynolds and Pacala, 1993; Lambers et al., 2009), plant
competition for light (e.g., Dybzinski et al., 2011), mi-
crobial competition for carbon substrates and mineral nu-
trients (e.g., Caperon, 1967; Moorhead and Sinsabaugh,
2006; Allison, 2012; Bouskill et al., 2012), algae compe-
tition for mineral nutrients (e.g., Tilman, 1977; Follows et
al., 2007), and predator competition for prey (e.g., Holling,
1959a; Arditi and Ginzburg, 1989; Ginzburg and Akcakaya,
1992; Vayenas and Pavlou, 1999; Abrams and Ginzburg,
2000; Koen-Alonso, 2007). Because of this prevalence of
consumer–substrate interactions in natural systems, particu-
larly in ecosystem dynamics, many mathematical develop-
ments have been proposed to interpret and predict ecosystem
behavior under a wide range of environmental and biolog-
ical conditions (e.g., Lotka, 1923; Volterra, 1926; Holling,
1959b; Campbell, 1961; Murdoch, 1973; Williams, 1973;
Tilman, 1977; Pasciak and Gavis, 1974; Persson et al., 1998;
Maggi et al., 2008; Bonachela et al., 2011; Bouskill et al.,
2012). In this study, we present developments focusing on
the consumer–substrate network that regulates organic matter
decomposition. However, our results should be applicable to
any problem that can be similarly formulated as a consumer–
substrate network.

In general, the growth of any biological organism mini-
mally involves two steps: (i) substrate uptake and (ii) sub-
strate assimilation. Once a substrate is captured, it is as-
similated to produce energy and biomass for a series of
metabolic processes, including, but not limited to, cell main-
tenance, enzyme production, cell division, and reproduc-
tion. Therefore, explicit modeling of the interactions be-
tween many consumers, substrates, and their habitats re-
quires a consistent mathematical representation of substrate
uptake under a wide range of biotic and abiotic conditions.
Among the many existing substrate uptake kinetics (Hill,
1910; Michaelis and Menten, 1913; Burnett, 1954; Holling,
1959b; Cleland, 1963), the Michaelis–Menten (MM) kinetics
(or equivalently Monod (Monod, 1949) or Holling’s type II
(Holling, 1959b) kinetics) is the most widely applied because
of its simple form, solid theoretical foundation (e.g., Liu,
2007), and successes under a wide range of conditions (e.g.,
Holling, 1959b; Tilman, 1977; Reynolds and Pacala, 1993;
Legovic and Cruzado, 1997; Hall, 2004; Kou, 2005; Riley
and Matson 2000; Maggi et al., 2008; Allison, 2012).

In their seminal paper, Michaelis and Menten (1913) as-
sumed that enzymes and substrates adsorb to each other
to form enzyme-substrate complexes. By assuming the
enzyme-substrate complex is of a much lower concentration
than that of the substrate, they obtained, by law of mass ac-
tions, the so-called MM kinetics, which states

v =
VmaxS

KS+ S
(1)

wherev (mol s−1) is the substrate uptake rate,Vmax (mol s−1)

is the maximum substrate uptake rate,KS (mol m−3) is

the half saturation (or substrate affinity) constant, andS
(mol m−3) is the free substrate concentration (a full list of
symbols is given at the end of the text). Later, Briggs and
Haldane (1925) derived Eq. (1) from the enzyme-catalyzed
reaction:

S+E
k+1
↔
k−1

C
k+2
→P +E (2)

where E (mol m−3) is (free) enzyme,C (mol m−3) is
enzyme-substrate complex from binding (free) substrateS

to enzymeE, P is the product (mol m−3) resulting from the
irreversible part of reaction (2),k+

1 (m3 mol−1 s−1) andk+

2
(s−1) are forward reaction coefficients,k−

1 (s−1) is the back-
ward reaction coefficient, andKS =

(
k−

1 + k+

2

)/
k+

1 . Later
studies (e.g., Segel and Slemrod, 1989; Schnell and Maini,
2000) indicated that Eq. (1) was obtained with the stan-
dard quasi-steady-state assumption (sQSSA), which states
that dC

dt ≈ 0 and dS
dt = −k+

1 SE+ k−

1 C (note that dS
dt is the

changing rate of the free substrate, which is different from
the total substrate being used in the total quasi-steady-state
assumption (tQSSA) to be introduced later). Equation (1) is
valid only whenS+KS � ET, whereET is the total enzyme
concentration including both free and substrate-bound.

The MM kinetics has been successful in many applica-
tions, but there are also many studies demonstrating that
modifications must be made to account for discrepancies be-
tween predictions from applying Eq. (1) and observations
(e.g., Cha and Cha, 1965; Williams, 1973; Suzuki et al.,
1989; Maggi and Riley, 2009; Druhan et al., 2012). For in-
stance, Cha and Cha (1965), in studying cyclic enzyme sys-
tems, noticed that the substrate uptake kinetics, when approx-
imated with first order accuracy, should be

v =
VmaxST

KS+ET + ST
. (3)

Others have obtained Eq. (3), or a similar form, for var-
ious problems (e.g., Reiner, 1969; Segel, 1975; Schulz,
1994; Borghans and De Boer, 1995; Borghans et al., 1996;
Schnell and Maini, 2000; Wang and Post, 2013). In particu-
lar, Borghans et al. (1996), using the total quasi-steady-state
approximation (tQSSA; which also assumesdC

dt ≈ 0, but de-

fines a total substrateST = S+C and usesdST
dt = −k+

2 C),
showed Eq. (3) is valid ifk+

2 ET << k
+

1 (KS+ET + ST)
2.

Equation (3) is of good accuracy for a much wider range of
substrate and enzyme concentrations than Eq. (1). It also alle-
viates the problem thatv → ∞ asET → ∞ if Eq. (1) is used
(note Vmax ∝ ET). In addition, when applied to predator–
prey systems (i.e., predator =E, prey =S), Eq. (3) predicts
predation depends on both (i) the ratio between predator and
prey density and (ii) prey density. While we have not found
an example in the literature of Eq. (3) being evaluated with
predation data, a few studies (e.g., Vucetich et al., 2002;
Schenk et al., 2005) indicated the predation rate is not only
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ratio dependent, as proposed in Arditi and Ginzburg (1989),
nor only density dependent, as implied by MM kinetics.

Extension of the MM kinetics to more general cases such
as (i) one enzyme (henceforth, without loss of generality,
we use enzymes as the consumers) competing for multiple
substrates (Schnell and Mendoza, 2000; Koen-Alonso, 2007;
Maggi and Riley, 2009), (ii) multiple enzymes competing for
one substrate (Suzuki et al., 1989; De Boer and Perelson,
1995; Grant et al., 1993), and (iii) many enzymes interacting
with many substrates (De Boer and Perelson, 1994; Cilib-
erto et al., 2007). Though the most general case (iii) has been
attempted in various contexts, we are not aware of any ana-
lytical representation presented in the literature.

An analytically and computationally tractable formulation
for case (iii) mentioned above is practically important to
solve many problems, such as trait-based modeling of micro-
bial ecosystems (Follows et al., 2007; Allison, 2012; Bouskill
et al. 2012) and complicated trophic networks (Lindeman,
1942). Since, in a trophic network, a predator’s predation on
a prey can be practically considered as a random pairing pro-
cess between the predator and prey, and the feeding process
is just the conversion of a prey into internal biomass of the
predator (e.g., Caperon, 1967), the uptake and assimilation
of a substrate in a predator–prey system can thus be analog-
ically described by Eq. (2), with the predator’s rates of prey
foraging, prey escape, and prey handling (i.e., activities like
killing and eating) described, respectively, by parametersk+

1 ,
k−

1 , andk+

2 .
Trait-based modeling of a general microbial ecosystem is

different than that of a trophic network due to the unavoid-
able interactions between substrates and the aqueous chem-
ical environment. Particularly, the soil microbial ecosystem
is further complicated by substrate interactions with vari-
ous adsorption surfaces (e.g., mineral surfaces and biochar).
Existing approaches often model the interactions between
microbial substrate uptake and aqueous chemistry and min-
eral surface interactions in separate steps, while ignoring the
mathematical similarities between microbial substrate up-
take, aqueous chemistry, and mineral surface interactions
(e.g., Maggi et al., 2008; Gu et al., 2009). Interestingly,
Michaelis and Menten (1913) recognized that Eq. (1) could
be derived from the law of mass action by assuming equilib-
rium between the formation and degradation of the enzyme-
substrate complexes (though a formal mathematical treat-
ment was done by Briggs and Haldane, 1925). In their study,
Michaelis and Menten also considered a single enzyme that
could bind with three different substrates and obtained a
modified substrate uptake function under the assumption
of negligible enzyme-substrate complex concentration com-
pared to substrates. Therefore, the apparent mathematical
equivalence between the enzyme–substrate binding process
and that of the chemical interaction between mineral (or or-
ganic) surfaces and aqueous chemical species, where the lat-
ter can usually be described as being in equilibrium (e.g.,

Jennings, 1982; Wang et al., 2013), should provide a frame-
work to model the biotic substrate uptake kinetics and abiotic
chemistry simultaneously. If such a framework can be iden-
tified, it will consistently describe the substrate uptake by a
microbe (or a consumer in a broader definition) as a func-
tion of the microbe’s traits, traits of other microbes, and the
impacts from different abiotic environmental factors. Such a
framework will fit well with the idea of game theory (that
is often used to describe biological evolutionary systems),
which states “the fitness of an individual is simultaneously
influenced by its own strategy, the strategies of others, and
other features of the abiotic and biotic environment” (McGill
and Brown, 2007).

In this study, we propose a general approach to model-
ing a consumer–substrate network that has an arbitrary but
finite number of consumers and substrates, and present its
analytical approximations under some simplified conditions.
We organize the paper as follows: Sect. 2 presents the theo-
retical aspects of our approach and the design of illustrative
numerical experiments to evaluate our approach and an ap-
plication to the modeling of microbial litter decomposition;
Sect. 3 presents relevant results and discusses the limitations
and potential applications of our developments; and finally,
Sect. 4 summarizes the major findings of this study.

2 Methods

In this section, we first derive the full equilibrium chem-
istry (EC) formulation of the consumer–substrate network
and its analytical approximation (ECA) that is at best first or-
der accurate. We then describe illustrative numerical experi-
ments that are used to evaluate the classical MM kinetics and
the ECA kinetics in modeling complex transient consumer–
substrate networks, including a simple model exercise of the
microbial litter decomposition problem.

2.1 An equilibrium chemistry based formulation of
consumer–substrate networks

We consider here enzymes as the consumers in our
consumer–substrate network, so that our derivation is based
on enzyme kinetics. However, the substrate uptake kinetics
in other systems can be represented analogously as long as
the following assumptions hold: (i) consumers and substrates
are well mixed in their environment; (ii) consumers and sub-
strates only exist in free and complexed states (which could
broadly include organic and inorganic chemical adsorption,
and even engagement in social activities for predator–prey
systems); and (iii) the equilibration between formation and
degradation of consumer-substrate complexes is much faster
than the change of total substrates (free plus complexed) and
total enzymes (free plus complexed) due to all possible biotic
and abiotic sinks and sources. Assumption (i) is commonly
made in environmental biogeochemistry, although it can be
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violated at small scales (e.g., Molins et al., 2012) or under
water-stressed conditions where substrates can become dis-
connected from consumers (e.g., Schimel et al., 2011). All
consumer–substrate networks typically satisfy assumption
(ii). A rigorous proof is still lacking for assumption (iii), but
Kumar and Josie (2011) showed with mathematical rigor that
it holds well for some special consumer–substrate networks,
Ciliberto et al. (2007) showed it worked well for protein–
protein interactive networks, and the MM kinetics (which
also applies assumption; iii) has demonstrated its success in
numerous cases (but MM kinetics fails for some cases such
as isotopic fractionation; Maggi and Riley, 2009; Druhan et
al., 2012). However, Maggi and Riley (2009) concluded that
if assumption (iii) was paired with the sQSSA, the resultant
substrate kinetics failed to describe the isotopic fractionation
at high enzyme concentrations.

With these three assumptions, we consider an enzyme
(Ej ,j = 1, · · · ,J ) catalyzed reaction that converts a sub-
strate (Si, i = 1, . . . , I ) into a final productPij :

Si +Ej
k+ij,1
↔
k−ij,1

Cij
k+ij,2
→ Ej +Pij , (4)

wherek+

ij,1 (m3 mol−1 s−1) andk+

ij,2 (s−1) are reaction co-

efficients for the forward reactions,k−

ij,1 (s−1) is the reaction

coefficient for the reverse reactions, andCij (mol m−3) is the
enzyme-substrate complex formed by bindingSi with Ej .

Under the sQSSA (also the tQSSA),Cij is constant dur-
ing a modeling (or measurement) time step (Michaelis and
Menten, 1913), which leads to

SiEjk
+

ij,1 =

(
k−

ij,1 + k+

ij,2

)
Cij (5)

and can be rewritten as

KS,ij =
k−

ij,1 + k+

ij,2

k+

ij,1

=
SiEj

Cij .
(6)

Therefore, Eq. (5) describes the following chemical equilib-
rium:

Si +Ej
KS,ij
↔ Cij . (7)

By taking the remaining procedures to obtain the MM kinet-
ics, it can be shown thatKS,ij (mol m−3) is just the substrate
affinity (or half saturation) constant (see Eq. 1 in Michaelis
and Menten, 1913). Note, asKS,ij → ∞, the complexation
between substrateSi and enzymeEj becomes increasingly
difficult.

For a reaction network that involves many substrates and
enzymes, one can write a chemical equilibrium for each re-
action in the form of Eq. (7). Therefore, the reaction network
can be viewed as an equilibrium chemistry (EC) problem,
which have been intensively studied in atmospheric aerosol

chemistry (Pilinis et al., 1987; Jacobson et al., 1996; Ja-
cobson, 1999) and reactive transport modeling (e.g., Jen-
nings et al., 1982). This EC formulation enables one to use
existing software, such as MINTEQ (Felmy et al., 1984),
SOILCHEM (Sposito and Coves, 1988), and EQUISOLV
(Jacobson, 1999), to solve for all the substrate-enzyme com-
plexes and then apply the equation

dPij
dt

= k+

ij,2Cij (8)

to compute the production rate ofPij from processing of sub-
strateSi by enzymeEj .

Under the sQSSA, the change of a free substrateSi due
to the degradation of all its relevant enzyme-substrate com-
plexes is:

dSi
dt

= −

k=J∑
k=1

(
k+

ik,1SiEk − k−

ik,1Cik

)
. (9)

Under the tQSSA (Borghans et al., 1996), one defines

Si,T = Si +

k=J∑
k=1

Cik, (10)

and then, by combing Eqs. (6), (9) and (10), one obtains

dSi,T
dt

= −

k=J∑
k=1

k+

ik,2Cik. (11)

We then obtain the full EC formulation by combining
Eqs. (6), (11), and the enzyme mass balance:

Ej,T = Ej +

k=I∑
k=1

Ckj . (12)

We note that ifk+

ij,2 = 0, then the complex formed with en-
zymeEj effectively becomes a shelter for any substrate it
can bind to. This constraint allows us to quantify the im-
pact of different adsorption surfaces (e.g., mineral surfaces
and biochar) on microbial substrate uptake in a consumer–
substrate network. Further, with the great flexibility pro-
vided by the EC formulation (Jennings et al., 1982; Jacobson,
1999), one could simultaneously simulate biotic and abiotic
interactions for arbitrarily complex networks, subjected to
computational resource constraints. In addition, we note that
the development by Cleland (1963) and the binding strategy
in the synthesizing unit approach by Kooijman (1998) are
just special cases of the EC formulation.

2.2 An at-best first-order accurate analytical
approximation to the equilibrium chemistry based
formulation for some special consumer–substrate
networks

If a consumer–substrate network satisfies two conditions – (i)
binding does not occur between substrates or between con-
sumers; and (ii) a consumer-substrate complex, once formed,
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does not bind with another substrate or consumer to form
new complexes – we find an at-best first-order accurate equi-
librium chemistry approximation (ECA) (see Appendix A for
derivation details):

Cij =
Si,TEj,T

KS,ij

(
1+

k=I∑
k=1

Sk,T
KS,kj

+

k=J∑
k=1

Ek,T
KS,ik

) , (13)

where we have assumed the reaction network includesI sub-
strates andJ enzymes (a visualizing way to write Eq. 13
is shown in Fig. 1). By combining Eq. (11) with Eq. (13),
this ECA kinetics states that the uptake of substrateSi by
consumerEj depends on (i) the characteristics of the con-
sumer and substrate of interest (throughKS,ij ) and (ii) the
characteristics of abiotic and biotic interactions with other
substrates and consumers (throughKS,kj andKS,ik). In par-
ticular, when applied to predator–prey systems, the ECA ki-
netics indicates that predation rate is neither ratio nor density
dependent, a problem that is yet still under debate (Arditi
and Ginzburg, 1989; Abrams, 2000; Vucetich et al., 2002;
Schenk et al., 2005; Kratina et al., 2009). Next, we derive a
few interesting results from Eq. (13).

First, for a reaction that has only one enzyme interacting
with one substrate, we have

C11 =
S1,TE1,T

KS,11+ S1,T +E1,T
, (14)

which is equivalent to Eq. (3). When the substrate concentra-
tion is much higher than the enzyme concentration, such that
the microbial process barely changes the total substrate con-
centration in the temporal window of interest,KS,11+ S1,T
is almost constant, and Eq. (14) becomes the reverse MM ki-
netics (Schimel and Wintraub, 2003). When the substrate is
changing significantly while the overall enzyme concentra-
tion is much lower than the substrate, so thatKS,11+E1,T
is almost constant, Eq. (14) is reduced to the classical MM
kinetics (Michaelis and Menten, 1913).

Second, when enzyme concentrations are very high, more
inactive enzymes (e.g., transporters of dead cells) will com-
pete with the active enzymes for substrate adsorption, conse-
quently introducing an inhibition. By treating the active and
inactive fractions of an enzyme as two different enzymes,
Eq. (14) can be reformulated as

C11 =
S1,TE1,T

S1,T +KS,11

(
1+

E1,T
KS,11

+
E2,T
KS,12

) , (15)

whereE1,T (mol m−3) andE2,T (mol m−3) are the total con-
centrations of the active and inactive enzymes, respectively.
By takingα1 as the transient partitioning coefficient between
active and inactive enzyme concentrations (i.e.,E1,T = α1ET
andE2,T = (1−α1)ET, with ET = E1,T +E2,T), Eq. (14)
can be rewritten as

	
   E1 	
   ! 	
   Ej!1 	
   Ej 	
   Ej+1 	
   ! 	
   EJ 	
  

S1 	
   KS,11 	
   ! 	
   KS,1, j!1 	
   KS,1 j 	
   KS,1, j+1 	
   ! 	
   KS,1J 	
  

! 	
   ! 	
   ! 	
   ! 	
   ! 	
   ! 	
   ! 	
   ! 	
  

Si!1 	
   KS,i!1,1 	
   ! 	
   KS,i!1, j!1 	
   KS,i!1, j 	
   KS,i!1, j+1 	
   ! 	
   KS,i!1,J 	
  

Si 	
   KS,i1 	
   ! 	
   KS,i, j!1 	
   KS,ij 	
   KS,i, j+1 	
   ! 	
   KS,iJ 	
  

Si+1 	
   KS,i+1,1 	
   ! 	
   KS,i+1, j!1 	
   KS,i+1, j 	
   KS,i+1, j+1 	
   ! 	
   KS,i+1,J 	
  

! 	
   ! 	
   ! 	
   ! 	
   ! 	
   ! 	
   ! 	
   ! 	
  

SI 	
   KS,I1 	
   ! 	
   KS,I , j!1 	
   KS,Ij 	
   KS,I , j+1 	
   ! 	
   KS,IJ 	
  

	
  

Fig. 1. A matrix-based representation of the parameter configura-
tion for the ECA substrate kinetics (Eq. 13).

C11 =
α1S1,TET

S1,T +KS,11

[
1+

(
α1
KS,11

+
1−α1
KS,12

)
ET

] (16)

=
α1S1,TET

S1,T +KS,11

(
1+

ET
KI

) ,
whereKI =

(
α1
KS,11

+
1−α1
KS,12

)−1
and the term after the sec-

ond equal sign is equivalent to Eq. (2) derived in Suzuki et
al. (1989), where they used it to explain the inhibition effect
from ineffective binding between substrate and inactive cells.
We point out that Eq. (16) could be used to represent the inhi-
bition effect from soil minerals, which can compete for sub-
strates analogously as an ineffective enzyme (that does not
result in a new chemical product but may protect the sub-
strates from microbial attack).

Third, for the case of many enzymes competing for a sin-
gle substrate, Eq. (13) can be reduced to

C1j =
S1,TEj,T

KS,1j

(
1+

k=J∑
k=1

Ek,T
KS,1k

)
+ S1,T

. (17)

Grant et al. (1993) used a variant of Eq. (17) to represent the
competitive uptake of a substrate in the presence of many mi-
crobes (see their Eqs. 3 and 4). However, Grant et al. (1993)
directly generalized the results by Suzuki et al. (1989) (with-
out explicit derivation) and also implicitly assumed that there
are ineffective enzymes competing for substrates. With this
latter assumption, Eq. (17) can rewritten as

C1j =
αjS1,TEj,T

KS,1j

(
1+

k=J∑
k=1

Ek,T
KI,1k

)
+ S1,T

, (18)
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whereαj is the transient active fraction of enzymeEj and
the inhibition constants are

KI,1k =

(
αk

KS,1k
+

1−αk

KS,1k,d

)−1

, (19)

whereKS,1k andKS,1k,d are affinity constants of the active
and inactive enzymeEk, respectively. Note that the value of
J in Eq. (18) is half of that in Eq. (17) since Eq. (18) groups
the active and inactive fractions of an enzyme into one.

Fourth, in the case of a single enzyme interacting with
many substrates, Eq. (13) is reduced to

Ci1 =
Si,TE1,T

KS,i1

(
1+

k=I∑
k=1

Sk,T
KS,k1

)
+E1,T

. (20)

WhenE1,T is constant, Eq. (20) can be equivalently rewritten
as

Ci1 =
Si,TE1,T

K̂S,i1

(
1+

KS,i1

K̂S,i1

k=I∑
k=1

Sk,T
KS,k1

) , (21)

where K̂S,i1 =KS,i1 +E1,T. If further assumingK̂S,i1 �

E1,T, such thatK̂S,i1 =KS,i1, then Eq. (21) is just the multi-
component Langmuir isotherm for multicomponent adsorp-
tion in aqueous chemistry (e.g., Choy et al., 2000) and has
been used for multi-prey predation in predator–prey mod-
els (e.g., Murdoch, 1973). We also note the multicomponent
Langmuir isotherm is based on sQSSA.

If there are only two substrates (i.e.,I = 2), Eq. (20) can
be rewritten as

C11 =
S1,TE1,T/KS,11

1+
S1,T
KS,11

+
S2,T
KS,21

+
E1,T
KS,11

(22a)

C21 =
S2,TE1,T/KS,21

1+
S1,T
KS,11

+
S2,T
KS,21

+
E1,T
KS,21

. (22b)

Then by further assumingE1,T/KS,11 andE1,T/KS,21 are
much smaller than the other terms, one obtains the Eq. (20)
in Maggi and Riley (2009). Druhan et al. (2012) have used
Eq. (20) by Maggi and Riley (2009) to explain sulfur isotope
fractionation in a field subsurface acetate amendment exper-
iment. Our Eq. (22) is based on the tQSSA, which makes
it valid for a wider range of substrate and enzyme concen-
trations. This contrasts our Eq. (22) with Maggi and Riley’s
Eq. (20), which is based on the sQSSA, and was found to
incorrectly predict isotopic fractionations when enzyme con-
centrations were comparable or higher than substrate concen-
trations.

2.3 Extension to other inhibitory mechanisms

The EC and ECA kinetics inherently account for competi-
tive inhibition (inhibition mechanism (i)), including product

competitive inhibition. For enzyme kinetics or, more broadly,
microbe–substrate networks, there are three additional main
inhibitory mechanisms often considered (Cornish-Bowden,
1995): (ii) uncompetitive inhibition (inhibitor binds to the
enzyme-substrate complex to make the binding ineffective);
(iii) noncompetitive inhibition (inhibitor binds equally well
to both free enzyme and enzyme-substrate complexes and
reduces the number of effective bindings but does not af-
fect the enzyme’s substrate affinity); and (iv) mixed inhibi-
tion (a mixture of competitive and noncompetitive inhibition,
but the inhibitor has different affinity for free enzyme and the
enzyme-substrate complex).

The EC kinetics is compatible with all these four in-
hibitory mechanisms, as long as the reaction coefficients can
be properly defined for all the inhibitor binding equations.
However, the simplified ECA kinetics is only able to repre-
sent competitive and noncompetitive inhibition (with some
modifications discussed below). Including mixed and non-
competitive inhibition is only possible when many substrates
are competing for a single enzyme or vice versa (and the
relevant mathematics is much more complicated than we
have presented for competitive and noncompetitive inhibi-
tions here). In addition, as will be demonstrated later (see the
numerical experiments), even the ECA kinetics without in-
hibitory mechanisms (ii), (iii), and (iv) are not always highly
accurate (compared to EC kinetics), nor can they be cali-
brated robustly due to parameterization equifinality (i.e., dif-
ferent combinations of parameters can result in very simi-
lar model predictions (e.g., Beven, 2006; Tang and Zhuang,
2008)). Since including these other inhibitory mechanisms
(beside competitive inhibition) will generally introduce more
parameters, making the simulations more uncertain, the gain
in mechanistic representation is thus smaller than the loss of
predictive capability.

Nevertheless, a first order approximation for the noncom-
petitive inhibition can be achieved by, first, modifying the
substrate affinity coefficients (used in Eq. 13) that are subject
to the inhibitorsIk,k = 1, · · · ,L as

K̃S,ij =
KS,ij

k=L∑
k=1

Ik,T
KI,ijk

+ 1

, (23)

whereKI,ijk,k = 1, . . . ,L are the inhibition coefficients of
each inhibitor on enzyme-substrate complexCij . In deriving
Eq. (24) we assume that any two inhibitors cannot bind si-
multaneously to an enzyme-substrate complex.

Second, substituting the modified substrate affinity coeffi-
cientsK̃S,ij into Eq. (13), one obtains the enzyme-substrate
complex concentration (under the influence of noncompeti-
tive inhibition):

C̃ij =
Si,TEj,T

KS,ij

(
1+

k=I∑
k=1

Sk,T

K̃S,kj
+

k=J∑
k=1

Ek,T

K̃S,ik

) . (24)
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2.4 Linking with microbial traits

An appealing application of the EC and ECA kinetics is
to trait-based modeling of marine and soil microorganisms
(Follows et al., 2007; Litchman et al., 2007; Allison, 2012;
Bouskill et al., 2012). In the trait-based modeling approach,
parameters of the substrate uptake kinetics are determined
by the microorganisms’ traits, such as cell size and trans-
porter density (e.g., Follows et al., 2007; Armstrong, 2008;
Bonachela et al., 2011). Both the EC and ECA kinetics
are compatible with such concepts, and the incorporation of
these traits can be accomplished efficiently through the dy-
namic update of relevant microbial state variables in the nu-
merical model. For instance, to consider the effect of cell size
(which affects substrate diffusion between the environment
and the cell) and transporter density (which affects process-
ing rate and affinity to the substrate) on substrate uptake,
one has the updated substrate uptake (see diagram shown
in Fig. 2). With the stationary flux assumption (Pasciak and
Gavis, 1974, 1975), one obtains the diffusive flux to a spher-

ical cell as8D = 4πDirc,jnj
(
Si − S̃i

)
, whereDi (m2 s−1)

is the diffusivity of the substrateSi in water (when in soil,
this diffusivity depends on soil matric potential, soil struc-
ture, and temperature),rc,j (m) is the average size of cellj
(by assuming a spherical cell shape in the first order approxi-
mation), andnj (number of cells m−3) is the number density
of cell j . The impact of advection on the flux8D can also be
included using the dimensionless Sherwood number (Karp-
Boss et al., 1996), but that will not change our derivation
essentially. Further assuming the internal substrateS̃i con-
centration (that is close to the cell) is also stationary (thus
8D is equal to the net enzyme-substrate complex formation
rate betweeñSi and the cell’s transporter), one obtains (as a
first order approximation)

S̃i =
4πDircnjSi

k+

ij,1Ej + 4πDircnj
≈

4πDircnjSi
k+

ij,1Ej,T + 4πDircnj
, (25)

where we have assumed the reverse dissociation of the
enzyme-substrate complex (k−

ij,1) is negligible,Ej ≈ Ej,T,
and the changing rate of the enzyme (or transporter) abun-
dance due to new growth is much slower than the enzyme-
substrate complex equilibration rate. Therefore, one can rep-
resent the enzyme-substrate complex with Eq. (7) and a mod-
ified equilibrium coefficient:

K̃S,ij =
k−

ij,1 + k+

ij,2

k+

ij,1

(
1+

k+

ij,1Ej,T

4πDirc,jnj

)
(26)

which leads to a new representation of the substrate affinity
parameter for Eq. (13) as

K̃S,ij =KS,ij

(
1+

k+

ij,1Ej,T

4πDirc,jnj

)
. (27)

!Si +Ej!k"ij ,1

k+ij ,1
!SiEj # Pij +Ej

!
Si

!
!E

!D

Fig. 2. Diagram of the updated substrate uptake process, which in-
cludes diffusive substrate flux (between the external environment
and near cell environment) and new enzyme production8E. Here
Si is any environmental substrate abundance,S̃i is the correspond-
ing local (close to the transporter) substrate abundance, andPij is
the assimilated product from the processing ofSi by enzymeEj .

Under the assumption thatk−

ij,1 � k+

ij,2 and defining

Vmax,ij = k+

ij,2Ej,T, one has

K̃S,ij =KS,ij

(
1+

Vmax,ij

4πDirc,jnjKS,ij

)
, (28)

which extends the modified MM kinetics derived for a single
enzyme single substrate system (Bonachela et al., 2011) to
an enzyme–substrate network of arbitrary size.

Equation (29) implies that if a cell increases its volumet-
ric transporter density (Ej,T/nj ; transporters per cell), it de-
creases its substrate affinity. However, consideringEj,T =

njψj4πr2
c,j , if a cell j decreases its volumetric size while

keeping the same area-based transporter densityψj (trans-
porters m−2), it can increase its substrate affinity. Further, by
substitution of Eq. (28) or Eq. (29) into Eq. (13), one obtains
a new representation of the moisture effect on organic matter
decomposition (through diffusivityDj and aqueous substrate
concentrationSi) that is more mechanistic than the usually
applied simple multiplier factors (e.g., Andren and Paustian,
1987; Rodrigo et al., 1997; Bauer et al., 2008; Parton et al.,
1988).

2.5 Evaluation of the ECA kinetics and the classical
MM kinetics

We focus our evaluation on the efficacy of the ECA (Eq. 13)
and the MM kinetics (Appendix C) in approximating predic-
tions by the EC kinetics, and leave the analysis of the impact
of the EC and ECA kinetics on trait-based modeling (Eq. 28)
for future studies. In these comparisons, we used the EC
kinetics as a baseline to predict the enzyme-substrate com-
plexes involved in a reaction network with arbitrary number
of enzymes and substrates. We implemented the EC kinet-
ics with the analytical equilibrium iteration (AEI; Jacobson,
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1999) and then compared its predictions to those from the
classical MM kinetics and the ECA kinetics for different net-
work configurations. We conducted the evaluation with three
groups of experiments: (E1) random sampling; (E2) appli-
cations to simple microbial models of different complexi-
ties; and (E3) simulating litter decomposition with a different
carbon-only model. We remark that in all our evaluations all
the substrate kinetics used the same number of parameters;
therefore, when one formulation is found to perform worse
than others, it is inferior in our evaluation framework.

In the first group of experiments (E1; random sampling),
we tested the hypothesis that our ECA kinetics is more accu-
rate than the MM kinetics for arbitrary consumer–substrate
networks. Specifically, we randomly generated substrate
affinity parameters using an exponential distribution over the
relative range 1–104 (mol m−3), which is sufficiently wide
to represent the range of microorganisms in the natural envi-
ronment (e.g., Wang et al., 2012). The enzymes and substrate
concentrations were then generated from the least informa-
tive uniform distributionU [0,1]. We performed 9 scenarios
using combinations of three substrate : enzyme (SE) ratios
(10, 1, and 0.01) and three network sizes (60 substrates and
one enzyme, 10 substrates and 60 enzymes, and 20 substrates
and 20 enzymes). Each scenario has 10 random replicates, re-
sulting in a total of 9× 10= 90 evaluations. We normalized
the variance of the EC solution for each replicate of the 9 sce-
narios, and summarized the results using the Taylor diagram
(Taylor, 2001), which simultaneously presents the correlation
coefficient and root mean square error between the baseline
EC solution and solutions using MM or ECA kinetics. Since
the equilibrium reaction Eq. (7) is symmetric to represented
substrates and enzymes, the 9 scenarios effectively represent
18 different enzyme–substrate networks (e.g., 10 substrates
and 60 enzymes is equivalent to 60 substrates and 10 en-
zymes). We remark that the high enzyme : substrate ratio may
not be ecologically significant for modeling litter decompo-
sition such as E3, but it is important to be investigated given
our EC and ECA approaches are also applicable for problems
such as predator–prey systems, where moderate to high ratio
of predator to prey (analogously to that between enzyme and
substrate) can easily occur.

In the second group of experiments (E2; simple micro-
bial models of different complexities), we used the following
generic model structure to illustratively evaluate the impact
of different substrate kinetics on microbial system dynamics:

dSi
dt

= −

j=J∑
j=1

k+

ij,2Cij , i = 1, . . . , I (29)

dBj
dt

=

i=I∑
i=1

µijk
+

ij,2Cij − γjBj , j = 1, . . . ,J, (30)

whereµij (unitless) is the biomass yield rate of microbeBj
(mg C dm−3) from feeding on substrateSi , andγj (day−1) is

respiration rate, which is defined accordingly (in the captions
of the relevant parameter tables) for different models. We
computedCij using EC kinetics, MM kinetics (Appendix C),
and ECA kinetics (Eq. 13) and evaluated the ability of the
two analytical approximations to reproduce the temporal dy-
namics simulated by the EC kinetics. We considered four mi-
crobial models of different complexities (Tables 1, 2, and 3;
note the fourth model assigned different units to the variables
compared to the other three models in order to use the param-
eters from Moorhead and Sinsabaugh (2006). We note that
using the parameters from Moorhead and Sinsabaugh (2006)
is simply a choice of convenience, but it is sufficient for a
qualitative assessment of the predicted differences between
our ECA or EC-based models and the MM model): (i) three
substrates and one microbe (S3B1); (ii) three substrates, one
microbe, and one mineral surface (S3B1M1); (iii) one sub-
strate and five microbes (S1B5); and (iv) three microbes and
three substrates (S3B3). For the three models with three sub-
strates (S3B1, S3B1M1, and S3B3), we related the substrates
to water-soluble carbon, cellulose, and lignin, respectively.
Since the results from (E2) are applicable to other similar
problems, we labeled the three substrates asS1, S2, andS3.
For model S1B5, we ran the model with different kinetics
using 20 randomly generated parameter sets, and evaluated
their performance by the relative model error:

err(t)=
3

N

i=N∑
i=1

∣∣∣∣ yi,EC(t)− yi,app(t)

yi,EC(t)+ yi,MM (t)+ yi,ECA (t)

∣∣∣∣, (31)

whereN = 6, the number of model state variables, and app
refers to MM or ECA. The above metric avoids division by
zero as long as the model difference is non-zero.

For all models (including S1B5), we specified the relevant
parameter values randomly, but kept their nominal values in
the ranges documented in the literature (for microbial param-
eters, see Li et al, 1992; Allison et al., 2010; Wang et al.,
2012; for mineral adsorption parameters, see Mayes et al.,
2012). As an extra comparison, we also included the multi-
component Langmuir isotherm (i.e., Eq. 21, which we no-
tate as ECA-ML) to compute the substrate uptake in models
S3B1, S3B1M1, and S3B3. Since ECA-ML can be derived
based on sQSSA and it assumes enzyme concentrations are
much lower than the substrate concentrations, comparing its
performance with that of ECA and EC will reveal the advan-
tage of tQSSA in representing networks with high enzyme
concentrations.

We assumed all microbial transporters are generic (so that
they can capture all substrates that the microbe can process)
and are uniformly distributed over the microbe’s cell surface.
The total transporter abundance of a given microbe is scaled
to the microbial biomass with a constantz, which is set to
0.05, a number that falls in the middle of values applied
in other studies (Berg and Purcell, 1977; Maggi and Riley,
2009). We used these experiments to test two hypotheses:
(i) the ECA kinetics is more robust than the MM kinetics in
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Table 1.Parameter values for microbial models S3B1 and S3B1M1.
The parameter vectors are presented in the form

(
KS,ij ,k

+

ij,2,µij

)
,

whose units are, respectively, mg C dm−3, d−1, and none. The ini-
tial microbial biomass is defined in the parentheses afterB1, whose
unit is mg C dm−3. The mineral surface is characterized with the
Langmuir dissociation parameter (equivalentlyKS,ij ) and the max-
imum adsorption capacity (in the parentheses followingM1), whose
units are, respectively, mg C dm−3 and mg C dm−3. For both mod-
els, we used a microbial respiration rate 0.03 d−1. The microbial
parameters were randomly specified based on prior knowledge from
Wang et al. (2012), and the mineral surface parameters were speci-
fied for Alfisol based on Mayes et al. (2012).

S1 (30) S2 (100) S3 (90)

B1 (0.1) (1, 48, 0.5) (10, 48, 0.3) (50, 48, 0.1)
M1 (1094) (21.2, 0, 0) (21.2, 0, 0) (21.2, 0, 0)

Table 2. Parameter ranges for microbial model S1B5. The param-

eter vectors are presented in the form
(
KS,ij ,k

+

ij,2,µij

)
, whose

units are, respectively, mg C dm−3, d−1, and none. Numbers in the
parentheses following the state variables are their initial values,
whose units are mg C dm−3. All five microbes used a respiration
rate 0.005 d−1. The maximum and minimum parameter values were
specified based on Wang et al. (2012).

S1 (300)

Minimum Maximum
values values

B1 (1) (1, 1, 0.4) (100, 10, 0.4)
B2 (1) (1, 1, 0.4) (100, 10, 0.4)
B3 (1) (1, 1, 0.4) (100, 10, 0.4)
B4 (1) (1, 1, 0.4) (100, 10, 0.4)
B5 (1) (1, 1, 0.4) (100, 10, 0.4)

approximating the EC solution; and (ii) only the ECA kinet-
ics is analytically tractable and sufficiently accurate to model
microbial–mineral surface interactions.

For the third set of experiments (E3; simulating litter de-
composition), we tested whether the S3B3 model with dif-
ferent substrate kinetics can be calibrated to simulate the
77-month red pine litter decomposition data of Melillo et
al. (1989). We first calibrated model S3B3 with both the
ECA and MM kinetics, and analyzed if the calibrated models
can reproduce the (i) two-phase evolution of remaining or-
ganic matter, (ii) increase of lignocellulose index (LCI) dur-
ing decomposition, and (iii) reasonable fraction of microbial
biomass with respect to the remaining organic matter. We
then ran the models with 9 different initial litter chemistries
(Table 4) for a qualitative assessment of the extrapolated pre-
dictability (based on observational data if available) of the
calibration. We were able to obtain some time series data for
the Massachusetts (MA) site (Magill et al., 1998), but failed
to extract any useful time series data for the Wisconsin (WI)

Table 3.Prior parameters for microbial model S3B3. The parameter

vectors are presented in the form
(
KS,ij ,k

+

ij,2,µij

)
, whose units

are, respectively, g C, d−1 and none. All values are adapted from
Moorhead and Sinsabaugh (2006). All three respiratory coefficients
(i.e.,γj ,j = 1,2,3 as defined in Eq. (30) are set to 0.03 d−1. Num-
bers in the parentheses following the state variables are their initial
values, whose units are g C.

S1 (448) S2 (431) S3 (121)

B1 (0.33) (1, 1, 0.5) (100, 1, 0.3) (5000, 1, 0.1)
B2 (0.33) (1.0, 0.8, 0.5) (10, 0.8, 0.3) (1000, 0.8, 0.1)
B3 (0.33) (1.0, 0.4, 0.5) (10, 0.4, 0.3) (100, 0.4, 0.1)

Table 4. Characteristics of initial litter chemistry for the data in
litterbag decomposition field studies in Wisconsin (WI) and Mas-
sachusetts (MA). The table is organized based on Table 3 in Moor-
head and Sinsabaugh (2006), who obtained data from Aber et
al. (1984) and Magill et al. (1998). The final LCI is model predicted
(see Sect. 3.3.2 for details). We have also extracted time series data
from the Magill et al. (1998) study for model assessment (Figs. 15
and S1).

Litter type, Labile Holocellu- Lignin Initial Final
by site (%) lose (%) (%) LCI LCI

Wisconsin (WI)
Sugar maple 44.8 43.1 12.1 0.22 0.55
Aspen 31.1 47.5 21.4 0.31 0.56
White oak 32.4 47.4 20.2 0.30 0.56
White pine 32.8 44.7 22.5 0.33 0.59
Red oak 30.0 45.2 24.8 0.35 0.59

Massachusetts (MA)
Red pine 35.9 38.6 25.5 0.40 0.67
Red maple 47.7 35.4 16.9 0.32 0.68
Black oak 35.0 39.6 25.4 0.39 0.66
Yellow birch 43.4 40.3 16.3 0.29 0.62

site (Aber et al., 1984) from the original literature or by con-
tacting the authors. In addition, we noticed the original data
in Magill et al. (1998) indicated a rise of lignin during the de-
composition for some unexplained reasons (see their Fig. 4).
We corrected this by replacing the unreasonable lignin data
(i.e., those higher than the initial lignin mass) with the initial
lignin mass (see Fig. S1 for details).

We solved all microbial models with the mass positive first
order ordinary differential equation integrator (Broekhuizen
et al. 2008). This numerical solver deals with stiff and dis-
continuous differential equations well and always ensures
mass balance as long as the elemental stoichiometry is prop-
erly formulated in the model. We ran all models half hourly,
a time step that was selected through trial and error by evalu-
ating the differences of the predictions when using different
model time steps. For experiment E2, the total runtime for
model S3B1, S3B1M1, and S1B5 were set to 50 days, while
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Table 5. Best-fit parameters for model S3B3-ECA by optimizing the simulation outputs to the 77-month red pine litter decomposition

experiment data in Melillo et al. (1989). The parameter vectors are presented in the form
(
KS,ij ,k

+

ij,2,µij

)
, whose units are, respectively,

g C, d−1, and none. The respiratory coefficients (i.e.,γj ,j = 1,2,3 as defined in Eq. (31) of the three microbes are, respectively, set to

0.01, 005, and 0.001 d−1. Numbers in the parentheses following the state variables are their initial values, whose units are g C. In doing the
calibration, we assumed (i)KS,1j ,j = 1,2,3 are same for all three microbes; (ii)KS,22 =KS,23; (iii) for microbeBj , k+

ij,2, i = 1,2,3 are
same for all three substrates. By further fixingµij to the values in the parentheses, we effectively had a total 12 parameters in the calibration.

S1 (359) S2 (386) S3 (255)

B1 (4.94) (2.22, 0.6027, 0.5) (96.4, 0.6027, 0.3) (283.8, 0.6027, 0.1)
B2 (4.22) (2.22, 0.3605, 0.5) (185.2, 0.3605, 0.3) (5216.1, 0.3605, 0.1)
B3 (2.42) (2.22, 0.2061, 0.5) (185.2, 0.2061, 0.3) (219.5, 0.2061, 0.1)

that for model S3B3 runtime was 1500 days. All models in
experiment E3 were run for the length of the observations
(80 months).

Bayesian inference based calibrations for experiment E3
were performed to invert the relevant parameters (see cap-
tion of Table 5 for descriptions) of the substrate uptake ki-
netics from fitting the model (e.g., S3B3-ECA) output to
the time series data of the remaining litter mass and ligno-
cellulose index (LCI) from Melillo et al. (1989). We imple-
mented the Bayesian inference using the MCMC algorithm
DREAM (Vrugt et al., 2008). A uniform prior was used for
all the parameters, with the cost function (or the negative log-
likelihood function) defined by

Jcost= (8σLCI)
−1

k=8∑
k=1

∣∣LCIk − LCIECA,k
∣∣ (32)

+ (17σMass)
−1

k=17∑
k=1

∣∣rMass,k − rMass,ECA,k
∣∣ ,

where LCIk is thekth observation of lignocellulose index (of
which there are 8 data points) andrMass,k is thekth observa-
tion of relative remaining organic matter biomass (microbe
plus litter; of which there are 17 data points). BothσLCI and
σMass are set to 0.01. For the posterior parameters, the set
that minimizesJcost is defined as the modal (i.e., best fitting)
parameter.

3 Results and Discussion

3.1 E1: computing enzyme-substrate complexes for
large networks

For the first set of experiments, we found that ECA kinetics
performed better or as well as MM kinetics in approximat-
ing the baseline EC solutions. When the substrate to enzyme
ratio was high (i.e., enzyme availability is limiting decompo-
sition; green symbols in Fig. 3), the ECA solutions agreed
with the EC solutions with correlation coefficients higher
than 0.95 and root mean square errors less than 0.5 standard
deviations (σ ), except for 2 (out of 10) random replicates

for caseS(60)E(1)r(10) (i.e., 60 substrates, 1 enzyme, and
a substrate to enzyme abundance ratio of 10; similar nomen-
clature is used henceforth) and 3 (out of 10) replicates for
caseS(20)E(20)r(10), whose correlation coefficients were
still good (∼ 0.80) and the corresponding root mean square
errors were between 0.5σ and 1.5σ .

MM kinetics also achieved good accuracy in approximat-
ing the EC solution with correlation coefficients between
0.75 and 0.97, but in general higher root mean square er-
rors. For caseS(10)E(60)r(10), MM kinetics only achieved
a correlation coefficient of 0.80 and root mean square er-
rors greater than 0.5σ , whereas ECA kinetics achieved cor-
relation coefficients of∼ 0.99 and root mean square errors
smaller than 0.3σ . However, the worst approximations (in
terms of root mean square error) by the MM kinetics (i.e.,
two replicates, green diamond symbols, forS(60)E(1)r(10))
were better than those from the ECA kinetics (for these two
poorly simulated replicates).

Similarly contrasting results were found for the cases
when the substrate to enzyme ratio was one (purple symbols
in Fig. 3): (i) the best approximation by the ECA kinetics
was better than that using the MM kinetics and (ii) the MM
kinetics resulted in 2 outliers for the caseS(20)E(20)r(1)
with root mean square errors greater than 2σ and correla-
tion coefficients less than 0.90. ECA kinetics also produced
4 random replicates (2 for caseS(10)E(60)r(1) and 2 for
caseS(20)E(20)r(1)) that had correlation coefficients close
to 0.8, but the root mean square error was less than 1.5σ .

When substrate was limiting (blue symbols), both the ECA
and MM kinetics produced poor approximations (with more
outliers) compared to the EC solutions. Both approaches pro-
duced 4 outliers (2 for caseS(10)E(60)r(0.01) and 2 for case
S(20)E(20)r(0.01)) with correlation coefficients between
0.70 and 0.80 and root mean square errors greater than 1σ .
The worst results (the 2 replicates forS(20)E(20)r(0.01)) by
MM kinetics were again worse than those by ECA kinetics.

When all sampling experiments were normalized together
(cyan circles), we found the ECA kinetics better approx-
imated the baseline EC solution (with similar coefficients
of correlation but smaller root mean square errors) than the
MM kinetics did. Therefore, we summarize that the ECA
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Fig. 3.A Taylor diagram based summary of the random sampling experiment (E1) that compared the ability of the ECA and the MM kinetics
to approximate different enzyme–substrate networks simulated by the EC kinetics. Each symbol has 10 random replicates. The values in the
parentheses indicate the number of substrates or enzymes. The nomenclatureS(x)E(y)r(z) indicate a network ofx substrates,y enzymes,
and a substrate to enzyme abundance ratio ofz.

kinetics is superior to the MM kinetics in representing large-
size consumer–substrate networks.

3.2 E2: application to simple microbial models

We found three (EC, ECA, ECA-ML) of the four different
substrate kinetics led to almost identical model predictions
for the S3B1 scenario over the 50-day time period (Figs. 4
and 5). The MM predictions deviated from the others slightly.
However, the good agreement between the MM kinetics and
the other kinetic formulations is serendipitous. The MM ki-
netics is poor in describing enzyme competition in the pres-
ence of multi-substrates, which has been identified in several
studies (e.g., Maggi and Riley, 2009; Druhan et al., 2012).
We also replicated this behavior with an isotope-modeling
example (see Supplement), where it was shown the MM ki-
netics has very poor predictability for multi-isotopic fraction-
ations (Fig. S3), even though it predicted the bulk substrate
and microbial dynamics with acceptable accuracy (Fig. S2).

When mineral surface interactions were further included
(in the S3B1 model) to form the S3B1M1 model, we found
that the ECA kinetics again predicted very similar time se-
ries compared to that from EC kinetics (Figs. 6 and 7) be-
cause both ECA and EC are able to consistently represent
the substrate competition by microbe and mineral surfaces.
However, both the ECA-ML and MM kinetics resulted in
predictions substantially different from the EC solution. The
ECA-ML predicted a much faster turnover rate of all three
substrates because it did not include the inhibitory term
due to the presence of consumers (which can be confirmed
by comparing Eq. 13 to Eq. 21) and thence resulted in a
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Fig. 4. Time series of the relevant state variables simulated from
the applications of the four different substrates uptake kinetics to
microbial model S3B1.

weaker substrate adsorption to the mineral surface. Further-
more, throughout the 50-day period, the microbe grew in
its biomass and consequently increased its quota to capture
substrate, whereas the mineral surface had a fixed quota,
which together with the growing microbe resulted in a faster
turnover of the three substrates. In contrast, MM kinetics
favored more substrate adsorption to the mineral surface
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Fig. 5.Time series of state variable ratios simulated from the appli-
cation of the four different substrates uptake kinetics to microbial
model S3B1.

because (by comparing Eq. C1 to Eq. 13) it did not in-
clude the nonlinear competitive inhibition on substrate up-
take or the inhibition due to the presence of the consumer.
In addition, the mineral adsorption sites (counted as adsorp-
tion capacity by the state variableM1 in Table 1) is much
more abundant than microbial transporters, which resulted in
a strong limitation on microbial substrate uptake. This sub-
strate limitation (due to mineral surface adsorption) led to a
much lower microbial growth, which then led to a greatly
underestimated substrate turnover rate (by the MM kinetics).
Therefore, the reduction in turnover of the three substrates
in presence of mineral surface adsorption leads us to con-
jecture that mineral adsorption (and consequently protection,
which is not considered here but can be incorporated by us-
ing approaches such as in Wang et al., 2013) is an impor-
tant mechanism impacting organic matter degradation with
depth in the soil profile. Implementing the ECA or EC ki-
netics could thus potentially avoid the ad hoc parameteriza-
tion of soil organic matter (SOM) decomposition rate slow-
down with depth, as has been implemented in some verti-
cally resolved SOM models (e.g., Jenkinson and Coleman,
2008; Koven et al., 2013). In accordance with the predicted
substrate dynamics, we note that MM kinetics predicted the
slowest increase in LCI and fractional microbial C (with re-
spect to total organic C including both substrates and mi-
crobial biomass), while the ECA-ML kinetics predicted the
fastest increase (Fig. 7). These findings lead us once again
to state that the MM kinetics is qualitatively not appropriate
when the problem involves multiple substrates and multiple
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Fig. 6. Time series of the relevant state variables simulated from
the applications of the four different substrate uptake kinetics to
microbial model S3B1M1.
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consumers. In addition, as we will show in experiment E3,
such deficiencies cannot be remedied through calibration.

When five microbes are competing for a single substrate
(S1B5), we found the three different substrate kinetics (now
ECA-ML kinetics has the same functional form as MM ki-
netics when there is only one substrate) made equally good
predictions (Fig. 8). For the worst case (according to the
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metrics defined in Eq. 32) among the 20 runs with randomly
generated parameters (see Table 2 for parameters being sam-
pled), the prediction by the MM kinetics fit the EC predic-
tions better than did the ECA kinetics (Fig. 8a–f). When sum-
marized over the 20 runs (Fig. 8g–h), we found that the MM
kinetics is slightly superior for problems that are in the form
of many microbes competing for a single substrate. This re-
sult is consistent with model result such as that in Bouskill
et al. (2012), where the ammonia and nitrite oxidizers have a
very weak overlap in substrates. However, if one tries to use
isotopic data to improve the parameterization of such models,
the MM kinetics should be replaced with the ECA kinetics or
the EC kinetics.

For model S3B3, three of the four substrate kinetics
(ECA-ML, ECA, and EC) made very similar predictions
(see Figs. 9 and 10). The predictions from the MM kinet-
ics were completely different, both qualitatively and quanti-
tatively. The MM kinetics predicted a gradual reduction in
LCI (which stabilized at a constant value smaller than the
initial value; see Fig. 10b), whereas the other kinetic mod-
els predicted a gradual increase in LCI, which stabilized at
a greater (than the initial) value. In addition, the MM ki-
netics predicted a much higher peak fractional total micro-
bial biomass (compared to the total biomass accounting for
both litter and microbes) than did the other substrate kinetics
(Fig. 10c). We note that ECA-ML, ECA, and EC all predicted
similar temporal evolutions of the remaining litter and lit-
ter LCI that qualitatively agreed with findings from litterbag
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Fig. 10.Time series of state variable ratios simulated from the ap-
plication of the four different substrates uptake kinetics to microbial
model S3B3.

experiments (Fig. 10): (i) the litter decomposition has two
distinct phases, where the fist phase is fast and the second
phase is much slower and (ii) the LCI increases along with
the decomposition and finally stabilizes at a higher value
than the initial state (e.g., Melillo et al., 1989; Aber et al.,
1990; Magill et al., 1998). This finding leads us to assert that
the explicit modeling of nonlinear substrate competition (as
formulated in EC, ECA, and ECA-ML) in microbial litter
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decomposition is important to represent measured litter dy-
namics. Once this nonlinear competition is accounted for,
the observed temporal evolution of LCI (and consequently
lignin degradation) emerges from the proposed model (EC
and ECA). On the other hand, MM kinetics is not structured
to account for such nonlinear competition, thus one has to
enforce an otherwise unconstrained lignin shielding effect on
cellulose degradation (though we do not rule out its possible
existence) to make the model well behaved (e.g., Moorhead
and Sinsabaugh, 2006; Allison, 2012).

3.3 E3: simulating litter carbon decomposition

3.3.1 Calibrating model S3B3 with different substrate
kinetics

After calibrating the S3B3-ECA model (model S3B3 imple-
mented with ECA; same nomenclature are used henceforth)
to the 77-month red pine litterbag experiment data, we found
the posterior best-fit parameters led to predictions in good
agreement with the measured time series of remaining lit-
ter and LCI (Fig. 11). The posterior microbial biomass also
seemed qualitatively reasonable, which stayed below 15 %
of total organic carbon (including both litter and microbial
biomass). Observational data indicate the fractional micro-
bial biomass is relatively low, usually within 10 % of the total
organic carbon (Ladd et al., 1994; Dilly and Munch, 1996).
Therefore, considering the parameterization equifinality due
to insufficient observational data to constrain the relevant pa-
rameters (e.g., Tang and Zhuang, 2008) and the qualitatively
good agreement between posterior simulations and the avail-
able data, we conclude that ECA kinetics is a better choice
than MM kinetics in our parsimonious framework to repre-
sent litter decomposition dynamics.

We also ran the S3B3 model with the ECA-ML and EC ki-
netics using the same parameters obtained from S3B3-ECA
model calibration and obtained almost identical predictions
(see red and cyan lines in Fig. 11). As a sensitivity test, we
further introduced the temperature effect on substrate up-
take (labeled as ECA-T in Figs. 11 and 13) by applying
three different Q10 values (whose values are, respectively,
2.7, 1.5, and 1.7 based on Bayesian inversion on top of the
default S3B3-ECA model calibration) to the three biomass
yield rates. We found the predictions (blue lines in Fig. 11)
changed slightly compared to the simulations without ac-
counting for temperature effects. Though the Q10 values are
quite uncertain because of data limitations, the result indi-
cates that temperature was not the single mechanism that led
to the differences between measurement and posterior model
prediction. Other mechanisms such as leaching, nutrient dy-
namics, and moisture effects should be investigated in future
studies to improve the EC and ECA litter decomposition ki-
netics.

Calibrating the model with the Michaelis–Menten kinet-
ics (S3B3-MM) to the 77-month litterbag data failed to ob-
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Fig. 11. Posterior simulations from calibrating model S3B3-ECA
to the red pine litter decomposition experimental data in Melillo et
al. (1989). ECA-Ens indicates the posterior ensemble simulations,
and ECA-T indicates the additional temperature impact on top of
ECA (i.e., the best fitting posterior simulation). The best-fit kinetic
parameters for ECA, EC, ECA-ML, and ECA-T are in Table 5. See
text for further details.

tain reasonable posterior predictions of the litter decomposi-
tion dynamics (Fig. 12). A few parameter combinations led
to qualitatively reasonable predictions of the two-phase evo-
lution of remaining biomass and the increasing, then stabi-
lizing behavior of LCI. Yet the fractional microbial biomass
varied wildly. Many parameter combinations predicted the
total biomass as microbial-C dominated (almost 100 %) dur-
ing the second phase of litter decomposition. We also found
the model S3B3-MM is much more sensitive to the parame-
ters than the models implementing ECA-ML, ECA, and EC
kinetics. Therefore, we conclude that MM kinetics is not suit-
able for modeling microbial litter decomposition and SOM
dynamics in our more parsimonious framework (than other
existing models), since these problems always involve multi-
ple substrates and multiple microbes.

3.3.2 The interaction between litter chemistry and
microbial diversity

Distinct shifts in microbial community structure were ob-
served in the posterior model predictions for the 77-month
litter decomposition experiment (Figs. 13 and S4). While we
had no measurements from this experiment to assess whether
such predictions are realistic, some other studies (e.g., Keeler
et al., 2009; Wickings et al., 2012) indicate such micro-
bial community structure shifts often occur in long-term in-
cubation experiments. For instance, Wickings et al. (2012)
observed significant changes in exoenzyme activities and
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Fig. 12.Posterior S3B3-MM simulations by calibrating the model
to the 77-month red pine litterbag experimental data in Melillo et
al. (1989). MM-Ens indicates the posterior ensemble simulations.
The best-fit posterior simulation is in red, whose corresponding pa-
rameters are in Table S2.

fungal : bacterial ratio in their long-term (730 days) litter de-
composition experiment. Considering that fungi often domi-
nate lignin decomposition (Osono, 2007), our predicted dom-
inance of the fungi-like microbe in the second phase of the
77-month decomposition is qualitatively reasonable. Never-
theless, a comprehensive assessment should use a model that
has a complete representation of the relevant nutrient dy-
namics (e.g., N and phosphorus) and such a model should
be compared to detailed observational characterization of lit-
ter chemistry and microbial community structure. However,
detailed observational characterization of both substrate and
microbial community structure is lacking in long-term exper-
iments that cover temporal scales varying from diurnal cycles
to multiple years. These types of observations are critical to
the development of the types of models discussed here.

Considering each member of the posterior ensemble sim-
ulation as a single red pine litter decomposition exper-
iment with a different microbial community, our results
(Figs. 11 and 13) indicate that the evolution of litter chem-
istry is strongly regulated by microbial community structure.
In addition, parameterization equifinality (see gray lines in
Figs. 11 and 13) indicate different microbial communities
will sometimes lead to similar litter chemistry after a rel-
atively long time. The latter is manifested as a weak con-
vergence of litter chemistry in terms of LCI throughout the
77-month period (Fig. 11b; also see the review about mea-
surements in Melillo et al., 1989). Yet we found that the fi-
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Fig. 13.Simulated time series of microbial abundances from using
the best-fit parameters (calibrated with S3B3-ECA) in Table 5. The
four models ECA, ECA-ML, EC, and ECA-T used the same kinetic
parameters. The ECA-Ens simulations correspond to the ensemble
simulations in Fig. 11.

nal, seemingly constant LCI is not a single value but rather a
range between 0.6 and 0.8 for the red pine litter being mod-
eled here.

When we applied the model S3B3-ECA using the best-fit
parameters (Table 5) from the Bayesian calibration to 9 dif-
ferent litter types (Table 4), the results (Fig. 14) indicated
a clear dependence of litter decomposition on initial litter
chemistry. The predictions indicate all 9 litters were degraded
in two phases, and their LCIs rose asymptotically to different
final constant values. Furthermore, the final constant LCI is a
function of both its initial value and the microbial community
diversity and dynamics. For instance, the red maple started
with a medium initial LCI (0.32) but reached a final value
of 0.68, the highest among the 9 litters (Table 4). While we
failed to obtain sufficient data to evaluate the 9 predictions,
the evaluation of the 4 litter types in the study by Magill et
al. (1998) indicated our model predictions were qualitatively
reasonable (Fig. 15). We also applied the Michaelis–Menten
kinetics model (S3B3-MM) with its best-fit parameter (Ta-
ble S2) to the 9 litter types; its prediction was again poor (see
Fig. S5).

Therefore, we summarize that litter decomposition is
coregulated by both the initial litter chemistry and micro-
bial community structure and dynamics. Our prediction sup-
ports the conclusion drawn in Wickings et al. (2012) and
challenges the assumptions of constant final LCI and con-
stant microbial community structure in many existing bio-
geochemical models, e.g., the GDM model (Moorhead and
Sinsabaugh, 2006), which used a constant final LCI, and
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Fig. 15.Evaluation of model (S3B3-ECA) prediction using Magill
et al. (1998) litterbag experiment data:(a) remaining litter biomass
and(b) litter lignocellulose index (LCI). The original and corrected
lignin data are in Fig. S1.

models such as TEM (McGuire et al., 1997), CENTURY
(Parton et al., 1988), and Roth-C (Jenkinson and Coleman,
2008), which implicitly assumed the relevant microbial com-
munity structures are constant.

3.3.3 The emergent lignin decomposition dynamics

Lignin dynamics play a critical role in litter decomposition
(Berg et al., 1982; Melillo et al. 1982; Machinet et al., 2011).
The physically reasonable prediction by model S3B3-ECA
provided us with some new insights on lignin decomposi-
tion. We found (Fig. 16) that lignin decomposition does not
follow the conceptual model proposed by Berg and Staaf
(1980), which states that no lignin will be degraded until it
reaches a threshold concentration (with respect to the total
litter). Rather, our predictions support the conceptual model
of Klotzbucher et al. (2011), which states that lignin decom-
position depends on the availability of easily degradable la-
bile carbon. However, our results add further insights that,
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Fig. 16. Model (S3B3-ECA) predicted temporal patterns of total
litter and lignin degradation for the 9 different litter types.

besides litter chemistry, degradation is also regulated by mi-
crobial community structure. When different groups of mi-
crobes are degrading the same type of litter, the litter chem-
istry could evolve differently (e.g., Fig. 11). We note that
lignin decomposition is also regulated by nutrient dynamics
such as the nitrogen availability (Herman et al., 2008), which
will be explored in our follow up studies.

3.4 Potential improvements to the EC and ECA
substrate kinetics for modeling microbial systems

Substrate uptake is a process regulated by many biotic and
abiotic factors. For soil microbial systems, relevant abiotic
factors are soil moisture, temperature, mineralogy, aggre-
gation, and redox potentials (e.g., Davidson and Janssens,
2006). As we explained in Sect. 2.1, EC kinetics allow a
direct and consistent description of these abiotic processes
using the existing knowledge of reactive transport modeling
(Jennings et al., 1982; Jin and Bethke, 2007). Incorporating
these factors within the ECA kinetics is more difficult. How-
ever, besides the diffusion limitation (which partly accounts
for the soil moisture effect as we discussed in Sect. 2.1),
accounting for the temperature effect in ECA kinetics is
straightforward by recognizing that all parameters in Eq. (4)
are temperature dependent. For instance, by using Eyring’s
transition state theory (Eyring, 1935a, b), it can be shown
thatKS,ij ∝ exp(−1H/RT ), where1H (J mol−1) is an ac-
tivation energy that should be deducible from measurements
(as was done in Davidson et al. (2012), though there they
assumedKS,ij was a linear function of temperature). Deter-
mining the activation energies ofk+

ij,1, k−

ij,1, andk+

ij,2 could
be challenging, but we note that it has been done for in-
organic chemistry kinetics (e.g., Bonner et al., 1935). By
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combining these ideas with the theory of half reactions (e.g.,
McCarty, 2007) and assuming other abiotic factors such as
soil aggregation and thermal degradation can be represented
by chemical kinetics, one could (and we hope to in future
work) construct a thermodynamically-based model of micro-
bial organic matter decomposition.

Other biological factors, such as exoenzyme abundance
and microbial transporters, affect the substrate uptake pro-
cess indirectly by changing the abundance of consumers
in the consumer–substrate network. Developing mechanistic
representations of these factors is an important area of study
(Allison, 2012; Kooijman and Troost, 2007) that we will also
address in follow-on studies with the EC and ECA kinetics
based model.

3.5 Potential applications to different network systems

Because EC kinetics only relies on the premise that the
equilibration of the consumer-substrate complexes (between
their formation and degradation) is much faster than other
metabolic processes, it can in principle be applied to arbitrary
food web structures (e.g., Lindeman, 1942) and protein–
protein interaction networks (Ciliberto et al., 2007). We note,
however, that a model implemented with the EC kinetics may
become computationally expensive as the problem size in-
creases. For such cases, proper numerical preconditioning
becomes necessary.

Compared to EC kinetics, the approximate ECA kinetics
is applicable to a smaller scope of problems, constrained by
the condition that any element in the network be either a
substrate or consumer, but not both. Still, the ECA kinetics
is much more general than other existing formulations used
for predator–prey systems (Murdoch, 1973; Koen-Alonso,
2007) and is computationally very efficient. For protein–
protein interaction networks, one feasible application exam-
ple is the phosphorylation–dephosphorylation cycle analyzed
by Goldbeter and Koshland (1981), which lends itself to be
solved by ECA kinetics under the tQSSA (compare their
Eqs. 1 and 2 with the form of Eq. 4).

4 Conclusions

In this study, we proposed that an equilibrium chemistry
(EC) formulation could be used to predict the dynamics
of consumer-substrate complexes involved in an arbitrary
consumer–substrate network. When the given consumer–
substrate network satisfies the condition that any element of
the network is either consumer or substrate but not both, we
obtained a first-order accurate approximation to EC (termed
ECA). Both the EC and ECA kinetics allow a simultaneous
and consistent treatment of biotic and abiotic interactions in
microbial systems (though the ECA kinetics is more limited),
which cannot be achieved with the classical MM kinetics or
with other existing MM kinetics based extensions. With a

few examples, we demonstrated that if a network involves
multiple substrates and consumers, direct application of the
classical MM kinetics is inaccurate. We further showed a
carbon-only model implemented with the ECA kinetics pre-
dicted litter decomposition dynamics reasonably. These pre-
dictions indicated that litter decomposition is coregulated by
litter chemistry and microbial community structure and dy-
namics. We hope our results can help develop a benchmark
model for microbially-mediated organic matter decomposi-
tion in terrestrial and other ecosystems and stimulate applica-
tions in other fields involving consumer–substrate networks.

Appendix A

Derivation of Eq. (13)

In this section we present the derivation of Eq. (13). From
the mass balance constraint to substrateSi (Eq. 10), one has

Si =
Si,T

1+

k=J∑
k=1

Ek
KS,ik

(A1)

Similarly (from Eq. 12), one has

Ej =
Ei,T

1+

k=I∑
k=1

Sk
KS,kj

(A2)

Substituting Eqs. (A1) and (A2) into Eq. (6), one obtains

Cij =
Si,TEj,T

KS,ij

(
1+

k=J∑
k=1

Ek
KS,ik

)(
1+

k=I∑
k=1

Sk
KS,kj

) . (A3)

We then apply the perturbation theory (e.g., Bender and
Orzag, 1999; Tang et al., 2007) to Eq. (A3), in which we
assume

Cij = εCij,1 + ε2Cij,2 + . . . (A4a)

Ej = Ej,0 + εEj,1 + ε2Ej,2 + . . . (A4b)

Si = Si,0 + εSi,1 + ε2Si,2 + . . . (A4c)

whereε is a very small number.
Expanding Eq. (5), and keeping the first two orders ofε,

gives

ε : Cij,1

(
1+

k=J∑
k=1

Ek,0

KS,ik
+

k=I∑
k=1

Sk,0

KS,kj

)
=
Si,TEj,T

εKS,ij
(A5a)
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Table A1. Symbols used in paper, their definitions and corresponding units.

Symbol Definition Unit

Bj Biomass of microbej mol C m−3 or g C
C,Cij Enzyme-substrate complex mol C m−3

Cij,1,Cij,2 Scaled first and second order accurate terms of complexCij mol C m−3

Di Diffusivity of substrateSi in water m2 s−1

E,Ej Free enzyme abundance mol m−3

Ej,0,Ej,1,Ej,2 Zero, first, and second order accurate terms of enzymeEj mol m−3

1H Activation energy J mol−1

Ik,T Total abundance of inhibitork mol m−3

Jcost Cost function unitless
k+1 ,k

+

ij,1 Forward reaction coefficients m3 mol−1 s−1

k−1 ,k
−

ij,1 Backward reaction coefficients s−1

k+2 ,k
+

ij,2 Forward reaction coefficients s−1

KS,KS,ij , K̂S,i1, K̃S,ij Substrate affinity coefficients mol C m−3

KI,ij ,KI,ijk Inhibitory coefficients mol C m−3

nj Cell number density of microbej cells m−3

Pij Product from degradation of complexCij mol C m−3 or g C
rc,j Mean cell size of microbej m
R Universal gas constant J K−1 mol−1

S,Si , S̃i Free substrate abundance mol C m−3 or g C
Si,0,Si,1 Zero, first, and second order accurate terms of substrateSi mol m−3

Si,T Total substrate abundance mol m−3

T Temperature K
v Substrate uptake rate mol m−3 s−1

Vmax Maximum substrate uptake rate mol m−3 s−1

αk Active fraction of the enzymek unitless
ε Small number unitless
µij Biomass yield when microbeBj feeds onSi unitless
ψj Area-based transporter density of cellj mol m−2

σLIC Standard deviation of lignocellulose index unitless
σMass Standard deviation of the remaining organic biomass unitless
γj Respiration rate of microbej h−1 or d−1

8D Substrate flux mol m−3 s−1

8E Changing rate of new enzymes (transporters) mol m−3 s−1

ε2
: Cij,2

(
1+

k=J∑
k=1

Ek,0

KS,ik
+

k=I∑
k=1

Sk,0

KS,kj

)
(A5b)

+Cij,1

(
k=J∑
k=1

Ek,1

KS,ik
+

k=I∑
k=1

Sk,1

KS,kj
+

m=I,l=J∑
m=1,l=1

KS,nlCml,1

KS,ilKS,mj

)
= 0

where the third subscript onCij indicates the associated or-
der ofε. Substituting Eq. (A5) into Eq. (A3) gives

Cij,1 ≈
Si,TEj,T

εKS,ij

(
1+

k=J∑
k=1

Ek,0
KS,ik

+

k=I∑
k=1

Sk,0
KS,kj

) (A6a)

Cij,2 =
Cij,1

KS,ij

(
1+

k=J∑
k=1

Ek,0
KS,ik

+

k=I∑
k=1

Sk,0
KS,kj

) (A6b)

n=I,l=J∑
n=1,l=1

Cnl,1KS,ij

(
KS,il +KS,nj −KS,nl

KS,ilKS,nj

)
.

Therefore, by usingEj,T = Ej,0 andSi,T = Si,0 at the zero
order approximation, Eq. (A6a) is equivalent to Eq. (13) in
the main text. The derivation of Eq. (A6b) is given in the
Supplement.

Because of the many unspecified parameters (prior to a
specific application), we were not able to identify a best es-
timate of the condition when Eq. (A6a) is exactly first order
accurate. However, from Eq. (A6b), we obtain a crude con-
dition

Biogeosciences, 10, 8329–8351, 2013 www.biogeosciences.net/10/8329/2013/



J. Y. Tang and W. J. Riley: Total quasi-steady-state formulation of substrate uptake kinetics 8347

(
KS,ij

Si,0
+

k=J∑
k=1

KS,ij

KS,ik

Ek,0

Si,0
+

k=I∑
k=1

KS,ij

KS,kj

Sk,0

Si,0

)
(A7)(

KS,ij

Ej,0
+

k=J∑
k=1

KS,ij

KS,ik

Ek,0

Ej,0
+

k=I∑
k=1

KS,ij

KS,kj

Sk,0

Ej,0

)
� 1

Condition Eq. (A7) holds ifSi,0 � Ej,0 orSi,0 � Ej,0. Even
if Si,0 ≈ Ej,0, Eq. (A7) may still hold because of the many
possible parameter combinations in a complicated reaction
network.

While it is cumbersome to verify Eq. (A6) for all combi-
nations of substrate and consumer, under the single-substrate
and single-consumer condition, we have

C11 = εC11,1 + ε2C11,2 (A8)

=
S1,TE1,T

KS,11+ S1,T +E1,T

[
1+

S1,TE1,T(
KS,11+ S1,T +E1,T

)2
]

which is equivalent to Eq. (3) in Cha and Cha (1965) when
truncated to second order accuracy.

Appendix B

An alternate analytic approximation

Substituting the mass balance relationships Eqs. (A1) and
(A2) into Eq. (6), one has:(
Si,T −

k=J∑
k=1

Cik

)(
Ej,T −

k=I∑
k=1

Ckj

)
=KS,ijCij (B1)

Then by expanding Eq. (B1) and ignoring quadratic terms,
one obtains a set of linear equations:

KS,ijCij + Si,T

k=J∑
k=1

Cik +Ej,T

k=I∑
k=1

Ckj = Si,TEj,T (B2)

where we again used the zero order approximationEj,T =

Ej,0 andSi,T = Si,0.
Since we have not been able to find an analytical solution

to Eq. (B2), we attempted to solve it using existing linear
algebra packages. This effort turned out to be numerically
very difficult, and often resulted in unrealistic and negative
complex concentrations. However, using results derived by
De Boer and Perelson (1995), we developed an approximate
solution:

Cij =
Si,TEj,T

KS,ij +

k=I∑
k=1

Sk,T
Ej,T+KS,ij
Ej,T+KS,kj

+

k=J∑
k=1

Ek,T
Si,T+KS,ij
Si,T+KS,ik

(B3)

which satisfies Eq. (B2) exactly whenI = 1 or J = 1. We
evaluated Eq. (B3) with random sampling tests, and found it
was generally inferior to Eq. (13) (results not shown).

Appendix C

The MM kinetics based approximation to the EC solution

The MM kinetics based representation of the enzyme-
substrate complexCij is

Cij =
Si,TEj,T

KS,ij + Si,T
(C1)

The solution Eq. (C1) is then scaled linearly to satisfy the
mass constraint:

k=I∑
k=1

Ckj ≤ Ej,T (C2a)

k=J∑
k=1

Cik ≤ Si,T. (C2b)

We point out that Eqs. (C2) have been implemented dif-
ferently from other studies, e.g., Moorhead and Sinsabaugh
(2006; GDM), Riley et al. (2011; CLM4Me), and Allison
(2012; DEMENT). Those studies imposed the constraint on
total substrate flux within a single time step rather than on the
overall enzyme-substrate complexes. It is only with Eqs. (C2)
that MM and ECA-ML kinetics were able to model the ad-
sorption surface effect on substrate dynamics, but they were
less accurate than the ECA kinetics, as we have demonstrated
in the main text (see discussions on scenario S3B1M1 in
Sect. 3.2).

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/10/
8329/2013/bg-10-8329-2013-supplement.pdf.
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