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Abstract. The US South Atlantic Bight (SAB) is a low-
latitude shallow continental shelf bordered landward by
abundant salt marshes and rivers. Based on previously pub-
lished data on sea surface partial pressure of carbon diox-
ide (pCO2) and new dissolved inorganic carbon (DIC)
and dissolved organic carbon (DOC) data, a model analy-
sis is presented to identify and quantify the contributions
of various terrestrial carbon inputs on SAB sea surface
pCO2. After removal of pCO2 variations due to annual
temperature variability and air–sea gas exchange from the
in situ pCO2, the temperature- and gas-exchange-corrected
pCO2 (TG-correctedpCO2) is derived. Contributions from
rivers, salt marshes, and the continental shelf to the TG-
correctedpCO2 are then calculated. Our findings demon-
strate that although additions of CO2 from within shelf
waters (i.e.,1pCO2(shelf)) were the greatest of the three
components and underwent the largest seasonal changes,
1pCO2(shelf) showed smaller onshore–offshore gradients
than rivers and marshes. In contrast, CO2 contributions
from river (1pCO2(river)) and salt marsh (1pCO2(marsh))
components were greatest closest to the coast and de-
creased with distance offshore. In addition, the magni-
tude of 1pCO2(marsh) was about three-fold greater than
1pCO2(river). Our findings also revealed that decomposi-
tion of terrestrial organic carbon was an important factor
regulating the seasonal pattern ofpCO2 on the inner shelf.
Despite large uncertainties, this study demonstrates the im-
portance of terrestrial inputs, in particular those from coastal
wetlands, on coastal ocean CO2 distributions.

1 Introduction

Continental shelves play a key role in the global carbon
cycle by linking terrestrial, marine and atmospheric sys-
tems (Mackenzie, 1991; Smith and Hollibaugh, 1993). De-
spite their relatively small size (∼ 7–8 % of the global ocean
surface area), continental shelves sustain disproportionately
high rates of primary production, remineralization, and or-
ganic carbon burial (Walsh, 1988; Wollast, 1993; Gattuso et
al., 1998; de Hass et al., 2002). Recent studies have further
shown that continental shelves are a globally important sink
of atmospheric carbon dioxide (CO2) (Borges et al., 2005;
Cai et al., 2006; Chen and Borges, 2009).

The majority of continental shelves, in particular those that
are both wide and aligned with a western boundary current,
can be divided into two zones: the proximal (i.e., inner) shelf
that is strongly impacted by land, and the distal (i.e., middle
and outer) shelf that is influenced to a greater extent by open
ocean waters (Rabouille et al., 2001). Relative to the distal
shelf, the proximal shelf generally shows much steeper bio-
geochemical gradients owing to its proximity to inputs from
land, including rivers, estuaries and salt marshes. Therefore,
higher resolution surveys are warranted to understand the
biogeochemical processes on the proximal shelf, although it
has often been neglected in continental shelf CO2 studies.

Continental shelves are strongly impacted by inputs of nu-
trients and organic and inorganic carbon from land (Thomas
et al., 2004). As a result of nutrient inputs, proximal con-
tinental shelves typically sustain a relatively high level
of biological productivity (Walsh, 1988; Wollast, 1993),
which may draw down CO2. However, this effect may be
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counteracted by enhanced heterotrophic activity supported
by organic carbon input from land (Bauer and Bianchi, 2011;
Bianchi and Bauer, 2011). In addition, direct inorganic car-
bon input from river waters plays an important role in en-
hancingpCO2 of shelf waters (Raymond et al., 2000; Borges
et al., 2006; Jiang et al., 2008b). Tidal exchange with inter-
tidal marshes (Wang and Cai, 2004) and mangroves (Borges
et al., 2003) may also raisepCO2 in continental shelf wa-
ters. Understanding the roles of these different processes in
driving carbon and CO2 exchanges in shelf waters is criti-
cal for establishing both the relative contributions of each to
coastal carbon budgets and for predicting future changes due
to changes in climate, hydrology and coastal circulation.

In order to differentiate the various components contribut-
ing to shelf carbon and CO2 sources and fluxes, we inves-
tigated the South Atlantic Bight (SAB) off the southeastern
United States. The SAB is a low-latitude shallow continental
shelf bordered landward by abundant salt marshes and river
discharge and seaward by a major western boundary current,
the Gulf Stream. This unique geographical location offers
well-defined and distinct landward and seaward components.
A recent study has shown that while the distal SAB shelf is
an atmospheric CO2 sink of −1.3 mol m−2 yr−1, the proxi-
mal SAB shelf is a source of 1.2 mol m−2 yr−1 (Jiang et al.,
2008a). The goal of this study is to differentiate and quan-
tify the contributions of the annual temperature cycle, air–
sea gas exchange, and inputs from rivers, salt marshes and
within shelf waters to sea surfacepCO2 in this region. Eval-
uating the roles of these different drivers will contribute to
the understanding of carbon dioxide dynamics in the coastal
ocean. The present study is based on CO2 data previously re-
ported in Jiang et al. (2008a), and new dissolved inorganic
carbon (DIC) and dissolved organic carbon (DOC) data from
the same cruises.

2 Study site and methods

2.1 Site description

The SAB continental shelf has an average depth of only 30 m
and is 50–75 m deep at the shelf break (Menzel, 1993). The
Gulf Stream flows northward along the shelf break (Fig. 1).
The shorelines of Georgia and South Carolina are character-
ized by extensive salt marshes (3000 km2, Alexander et al.,
1986). Tidal currents flood and drain intertidal salt marshes
twice daily and transport materials between the marshes and
the SAB (Hopkinson, 1985). Most rivers in this region are lo-
cated in the central and northern part of the shelf. Discharge
usually peaks in February–April, and a secondary peak may
occur in fall, with a total annual discharge of about 66 km3

(∼ 2.7 % of the SAB volume) (Menzel, 1993). Groundwater
may also represent important additional inputs of water and
other materials to the shelf waters (Moore, 2007 and refer-
ences therein).
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 Fig. 1. Study area in the US South Atlantic Bight between Cape
Lookout, North Carolina, and Cape Canaveral, Florida. Open circles
indicate sampling stations, between the shoreline and extending to
∼ 500 m water depth.

A coastal frontal zone (CFZ), formed by a pressure gra-
dient induced by freshwater discharge, frequently occurs at
10–30 m isobaths, about 10–30 km offshore on the SAB shelf
(Blanton, 1981). For simplicity, we refer to the shelf shore-
ward the CFZ as the proximal SAB (roughly equivalent to
the inner shelf, as defined in Jiang et al., 2008a), and the shelf
seaward the CFZ as the distal SAB (roughly equivalent to the
middle and outer shelf).

The proximal SAB (inner shelf) is turbid as a result of
material transport from rivers and exchange with intertidal
salt marshes (Pomeroy et al., 2000). Primary production here
is mainly driven by nutrients recycled in the water column
(Dunstan and Atkinson, 1976; Hanson et al., 1990) and from
sediments (Jahnke et al., 2005). On the distal SAB shelf
(middle and outer shelf), water clarity increases dramatically,
and the euphotic zone extends to the seafloor (Nelson et
al., 1999). Production here is strongly influenced by intru-
sions induced by Gulf Stream frontal eddies (Atkinson et al.,
1984).

2.2 Sampling

A whole-shelf survey consisting of five onshore–offshore
transects (A-, B-, C-, D-, and E-transects from south
to north, Fig. 1) was carried out in the SAB dur-
ing six cruises: 5–16 January 2005, 19–30 March 2005,
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27 July–5 August 2005, 7–17 October 2005, 16–21 Decem-
ber 2005, and 17–27 May 2006. Surface waterpCO2, tem-
perature, salinity, and atmospheric pressure at sea level were
measured while underway during all cruises (Jiang et al.,
2008a). Dissolved inorganic carbon (DIC) was sampled on
all five transects except for December 2005, when only E-,
C-, and A-transects were covered. Dissolved organic carbon
(DOC) samples were collected on D-, C-, and B-transects
during January, March, and October 2005, and on all 5 tran-
sects during May 2006.

2.3 Sample analysis

DIC concentration was measured using an infrared CO2
detector-based DIC analyzer with a precision of 0.1 % (Wang
and Cai, 2004; Huang et al., 2012). DOC samples collected
during the cruises of March, July, and October 2005 were
measured in the Radiocarbon Laboratory of the Virginia In-
stitute of Marine Science (VIMS) using a Shimadzu TOC-
5000A high-temperature Pt-catalyzed analyzer with a mean
analytical error of 1.4 µmol L−1 (DeAlteris, 2007). DOC
samples from May 2006 were analyzed in W. L. Miller’s lab
(University of Georgia) using a Shimadzu TOC-VCPN ana-
lyzer. Reference standards (deep Sargasso Sea seawater from
D. A. Hansell’s group at the University of Miami) and blanks
(Milli-Q water) were analyzed every five samples to check
accuracy and baseline stability and agreed within measure-
ment error in both labs.

2.4 Calculation of temperature-
and gas-exchange-correctedpCO2

In situpCO2 often does not provide direct information about
underlying biogeochemical processes, due to the fact that it is
strongly impacted by temperature and air–sea gas exchange,
as shown by Jiang et al. (2008a) in shallow coastal waters of
SAB. Here we removepCO2 variations caused by the annual
temperature cycle and air–sea gas exchange from the in situ
pCO2. The remainingpCO2 is then assumed to be controlled
primarily by biological activity and mixing. For simplicity,
this temperature- and gas-exchange-correctedpCO2 will be
called TG-correctedpCO2 hereafter, and can be calculated
as

pCO2(TG-corrected)=pCO2(insitu)−[1pCO2(temp)

+1pCO2(air-sea)], (1)

where pCO2 (TG-corrected) is the temperature- and gas-
exchange-corrected sea surfacepCO2 (in µatm), pCO2
(in situ) is the observed sea surfacepCO2, 1pCO2(temp) is
thepCO2 change caused by temperature deviation from the
annual mean temperature, and1pCO2(air-sea) is thepCO2
change due to air–sea gas exchange (also referenced to the
annual mean sea surface temperature, SST).

Water temperature changespCO2 both by shifting the in-
organic carbon equilibrium and by altering solubility. As-

suming other parameters are constant,pCO2 in water in-
creases with increasing water temperature. The in situpCO2
can be referenced to a constant temperature using the equa-
tion of Takahashi et al. (1993, 2002):

pCO2(SST)=pCO2(insitu) × exp[0.0423× (SST−SST)], (2)

whereSST is the annual mean SST, andpCO2(SST) is the
pCO2 referenced to the annual mean SST. OncepCO2(SST)
is calculated, thepCO2 change due to the temperature devi-
ation from the annual mean SST is then calculated as

1pCO2(temp)=pCO2(insitu)−pCO2(SST). (3)

It should be noted that thepCO2 change due to temper-
ature deviation from the annual mean SST is relative to the
temperature used for the calculation.

Because aqueous CO2 dissociates in water, thepCO2
change due to air–sea gas exchange cannot be estimated
based on linear dilution of CO2 itself. Instead, it is calcu-
lated from changes in DIC and alkalinity (Riebesell et al.,
2010). To that end, first, carbonate alkalinity (CA) is calcu-
lated frompCO2 and DIC at in situ temperature and salinity
and then is held constant during the gas exchange process.
Assuming the surface mixed layer in the SAB extends to the
seafloor in all sampling months (as is the case for most of
the cruises except July 2005), the DIC concentration prior to
air–sea gas exchange (in mmol m−3) can be calculated as

DICprior=
DIC(perarea)insitu−1DIC(air-sea)

Depth
. (4)

Here, DIC(per area)in situ is the integrated DIC in the water
column, and1DIC(air-sea) is the amount of DIC gain or loss
caused by air–sea gas exchange (both in mmol m−2). Positive
1DIC(air-sea) values indicate addition of CO2 to seawater
through air–sea gas exchange. As a first-order approxima-
tion, a 30-day air–sea gas exchange time was used to calcu-
late the1DIC(air-sea), as mean residence time of the entire
SAB is 30–90 days (Atkinson et al., 1978; Moore, 2007).
Additional information about how air–sea CO2 fluxes were
calculated can be found in Jiang et al. (2008a). Once DICprior

is calculated,pCO2(SST)prior (pCO2 before air–sea gas ex-
change at the annual mean temperature) can be calculated
from DICprior and CA at the annual mean temperature and
the in situ salinity.1pCO2(air-sea) can then be calculated as
the difference betweenpCO2(SST) andpCO2(SST)prior.

After both1pCO2(temp) and1pCO2(air-sea) have been
estimated, TG-correctedpCO2 can be calculated from
Eq. (1). As we can see, if1pCO2(temp) in Eq. (1) is sub-
stituted with the right-hand side of Eq. (3), the following is
derived:

pCO2(TG−corrected)=pCO2(SST)−1pCO2(air-sea). (5)

www.biogeosciences.net/10/839/2013/ Biogeosciences, 10, 839–849, 2013



842 L.-Q. Jiang et al.: Terrestrial influences on shelf CO2

Thus, in addition to the definition given in Eq. (1),
pCO2 (TG-corrected) may also be expressed as temperature-
referencedpCO2 corrected by thepCO2 change due to air–
sea gas exchange.

2.5 pCO2 from river, marsh, and within-shelf sources

Contributions ofpCO2 (TG-corrected) can be divided into
three components:1pCO2(river), the pCO2 change due
to river inputs;1pCO2(marsh), thepCO2 change due to
salt marsh inputs; and1pCO2(shelf), the pCO2 change
due to biological activity and other processes on the shelf.
1pCO2(river), 1pCO2(marsh), and1pCO2(shelf) can be
calculated by the following equations (Fig. 2):

1pCO2(river)=pCO2R−pCO2base (6)

1pCO2(marsh)=pCO2R+M −pCO2R (7)

1pCO2(shelf)=pCO2(TG-corrected)−pCO2R+M , (8)

wherepCO2(base) is thepCO2 if the oceanic end-member is
only diluted by freshwater that contains no DIC.pCO2(base)
can be calculated from its corresponding DICbaseand TAbase
that are calculated based on linear mixing of the open ocean
end-members with the zero DIC and TA freshwater end-
members (Fig. 2).pCO2R is the pCO2 if the ocean end-
member is only mixed with the river end-member. Simi-
larly, pCO2R can be calculated from its corresponding DICR
and TAR (Fig. 2). pCO2R+M is thepCO2 if the ocean end-
member is only mixed with the nearshore end-member,
which contains inputs from both the river and marsh. Again,
pCO2R+M can be estimated from its corresponding DICR+M
and TAR+M using the same method (Fig. 2).

Table 1 shows the end-members used for the calculation.
The river end-members were collected from Altamaha River
(JayCee Landing in Jesup, Georgia, 31◦67′ N, 81◦85′ W).
Earlier studies have shown that Altamaha River provides a
good representation of the river end-members in the South
Atlantic Bight (Cai and Wang, 1998; Cai et al., 2010). The
nearshore and open ocean end-members were chosen as the
most nearshore and offshore stations of the central transect,
respectively (Table 1).

The above method has been demonstrated to work well
in estuaries (Jiang et al., 2008b). However, unlike estu-
aries, where mixing occurs between two end-members in
a restricted area, the mixing processes on the continen-
tal shelf are far more complicated (Menzel, 1993). Mix-
ing here occurs in both cross-shelf and along-shelf direc-
tions, and is complicated by the existence of the coastal
frontal zone. These complex mixing processes make it chal-
lenging to choose which specific nearshore end-members to
use. As a result, the selection of nearshore end-members
could cause uncertainties in the estimated1pCO2(marsh)
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Fig. 2. Conceptual diagrams showing DIC and dissolved CO2 con-
centrations during continental shelf mixing.(a) DIC concentration
vs. salinity. On the x-axis,Si andSoceanare the salinities of station
i and the ocean end-member, respectively. On the y-axis, DICocean,
DICriver+marshand DICriver are DIC concentrations of the oceanic
end-member, nearshore end-member (containing DIC from both the
river and marsh), and the river end-member, respectively. On the
right side, DICi is the in situ DIC concentration, and DICR+M ,
DICR, and DICbaseare the DIC concentrations at the salinity ofSi

assuming the ocean end-member is mixed only with the nearshore
end-member (containing DIC from both the river and marsh), the
river end-member, and zero-DIC freshwater end-member, respec-
tively. (b) Dissolved CO2 concentrations vs. salinity. The corre-
spondingpCO2 can be calculated according topCO2 = kH · (CO2),
wherekH is Henry’s constant.

and1pCO2(shelf). In addition, the nearshore end-members
are not temporally stable relative to the residence time of
the shelf, because primary production and respiration in the
nearshore areas are highest and show the largest seasonal
variation of the entire shelf (Griffith et al., 1990; Verity et
al., 1993; Cai, unpublished data). This again will bring about
large uncertainties (Loder and Reichard, 1981).

Biogeosciences, 10, 839–849, 2013 www.biogeosciences.net/10/839/2013/
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Table 1.River, nearshore and open ocean end-members used in calculations described in Sect. 2.5. DIC and TA designate dissolved inorganic
carbon and total alkalinity, respectively, with nits of µmol kg−1.

Month
River end-member Nearshore end-member Open ocean end-member

Salinity DIC TA Salinity DIC TA Salinity DIC TA

Jan 2005 0.0 560.0 479.3 31.8 1943.2 2194.1 36.5 2040.0 2414.2
Mar 2005 0.0 498.0 473.1 30.7 1896.3 2104.4 36.3 2077.3 2407.5
May 2006 0.0 727.6 753.2 33.2 2019.8 2356.4 36.5 2070.3 2495.3
Jul 2005 0.0 527.2 414.3 31.2 1994.6 2235.0 35.9 2016.5 2393.8
Oct 2005 0.0 894.9 842.0 28.7 1908.9 2103.1 36.0 1985.4 2398.0
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shallower than 100 m vs. salinity and grouped by sampling month.
The dotted lines connect the river and ocean end-members.

3 Results

3.1 Dissolved inorganic carbon

DIC concentrations in the SAB (i.e.,< 100 m water depth)
ranged from 1900 to 2100 µmol kg−1 (Fig. 3). In all sam-
pling months, DIC was lowest close to the coast and in-
creased towards the shelf break. Nearshore DIC showed the
largest seasonal variation, and was lowest in March and Oc-
tober 2005 when the shelf received the greatest amount of
freshwater discharge. In comparison, DIC at the ocean end-
member was relatively invariant with season. The nearshore
DIC concentrations were higher than predicted from the con-
servative mixing line up to a salinity of 34 (Fig. 3).
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Fig. 4. Surface water dissolved organic carbon (DOC) vs. salinity
in March, July, and October 2005 in the South Atlantic Bight.

3.2 Dissolved organic carbon

DOC concentrations in the SAB were negatively corre-
lated with salinity (Fig. 4), indicating inputs of organic car-
bon from low salinity rivers and terrestrial sources. Spa-
tially, the highest DOC concentrations occurred in the cen-
ter (alongshore) of the inner shelf (160–170 µmol L−1 in
March 2005 and May 2006, and 230–240 µmol L−1 in July
and October 2005). Surface water DOC beyond the CFZ
was much lower at 70–100 µmol L−1. In July 2005 unusually
high DOC concentrations were observed in the outer SAB
(134 µmol L−1) off South Carolina where low salinity waters
were observed (see Fig. 3, Jiang et al., 2008a).

3.3 Impact of temperature on sea surfacepCO2

The annual temperature cycle throughout the SAB shelf re-
sulted in lowerpCO2 in winter and spring, and higherpCO2
in summer (Fig. 5). Area-averaged in situpCO2 was under-
saturated across the entire shelf during winter and spring, and
increased into the summer months (Fig. 5). From May to Oc-
tober the shelf became super-saturated, with the inner shelf
showing the highestpCO2. The magnitude of1pCO2(temp)

www.biogeosciences.net/10/839/2013/ Biogeosciences, 10, 839–849, 2013
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on the inner shelf was larger than that on the outer shelf,
partly due to the greater seasonal range of SST on the prox-
imal SAB shelf (10–30◦C) compared with the distal SAB
shelf (20–30◦C) (Jiang et al., 2008a).

3.4 Impact of air–sea gas exchange on sea surface
pCO2

Air–sea gas exchange had the net effect of modulating the
seasonal changes ofpCO2 in the SAB. It increasedpCO2
in winter when sea surfacepCO2 was under-saturated and
decreased it in summer whenpCO2 was supersaturated
(Fig. 5). However, while air–sea gas exchange played an im-
portant role in changingpCO2 on inner shelf, greater water
depths and consequently greater integrated DIC inventory in
the mixed layer on the outer shelf made air–sea gas exchange
insignificant in controlling thepCO2 there (Fig. 5).

3.5 TG-correctedpCO2

During warm months (July and October 2005), when sea sur-
face temperature (see Fig. 2 in Jiang et al., 2008a) was homo-
geneous over the entire SAB continental shelf, surface water
TG-correctedpCO2 (Fig. 6) showed similar spatial distri-
butions as in situpCO2 (see Fig. 4 in Jiang et al., 2008a).
Both were highest close to the coast and decreased with dis-
tance offshore. During winter (January, March, and Decem-
ber 2005), while TG-correctedpCO2 was still higher close
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in the South Atlantic Bight in all sampling months except Decem-
ber 2005. Due to a lack of DIC data, spatial distribution of TG-
correctedpCO2 in December 2005 is not presented. The colored
contours are from triangle-based liner interpolation.

to the coast than offshore, the trend was reversed for the in
situpCO2 (see Fig. 4 in Jiang et al., 2008a). The contrasting
spatial variations in winter were due to the large onshore–
offshore temperature gradients at this time of the year (SST
in winter was∼ 10–14◦C close to the coast and increased to
20–25◦C at the shelf break; Jiang et al., 2008a).

The area-averaged TG-correctedpCO2 on the middle and
outer shelf showed similar seasonal variation, i.e., increas-
ing from January to March, leveling off in May, decreasing
in July and October, and then increasing again in December
(Fig. 5). On the inner shelf, the area-averaged TG-corrected
pCO2 was lowest in January, and showed the largest increase
in March and October (Fig. 5) when the shelf experienced the
greatest river discharges.

3.6 1 pCO2(river), 1 pCO2(marsh), and1 pCO2(shelf)

As expected, contributions of CO2 from rivers
(1pCO2(river)) were highest close to the coast and de-
creased with distance offshore (Fig. 7). During January
and March 2005,1pCO2(river) was up to 30 µatm on the
inner shelf but averaged only 0–3 µatm on the outer shelf.
Seasonally,1pCO2(river) was highest in January, March,
and October 2005 (Fig. 8). Contributions of CO2 from
salt marshes (1pCO2(marsh)) showed similar spatial and
seasonal distributions as1pCO2(river), with the magnitude
of 1pCO2(marsh) being about three times as high as that of
1pCO2(river) (Figs. 8 and 9). Contributions of CO2 from
within shelf waters (1pCO2(shelf)) were highest of the three
components (Figs. 8 and 10). Compared with1pCO2(river)
and 1pCO2(marsh),1pCO2(shelf) showed much smaller
onshore–offshore gradients in January and March 2005.
Seasonally,1pCO2(shelf) was highest in May 2006 and
October 2005.
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Fig. 7. Spatial distributions of1pCO2(river), or the portion of sea
surfacepCO2 that is due to inputs from the river (referenced to
23.11◦C). Due to a lack of DIC data,1pCO2(river) in Decem-
ber 2005 is not presented. The colored contours are from triangle-
based liner interpolation.

4 Discussion

4.1 Carbon inputs from terrestrial sources

In addition to nutrients, continental shelves receive large
amounts of organic and inorganic carbon from terrestrial
sources. In the following discussion, “terrestrial” refers to
all sources landward of the land/ocean boundary, including
rivers, estuaries, salt marshes, groundwater, and other land-
derived sources. Inputs of organic carbon can be readily seen
from the seaward decreases of DOC concentrations (Fig. 4).
In contrast to DOC, DIC transport on the shelf is less obvi-
ous. DIC on the continental shelf contains a large oceanic
component that may mask the DIC signal from terrestrial
sources. Therefore, seaward increases in DIC concentrations
do not necessarily indicate that the shelf is transporting DIC
landward (Fig. 3). To examine the DIC inputs from terrestrial
sources (as well as net ecosystem metabolism, or NEM), total
excess DIC (DICT-excess) was calculated according to Jiang et
al. (2008b):

DICT-excess=DICi−
Si

Socean
× DICocean (9)

in µmol kg−1 or mmol m−3, where DICi and DICocean are
DIC concentrations of stationi and the ocean end-member,
respectively, andSi andSoceanare salinities of stationi and
the ocean end-member, respectively. The second term on the
right-hand side of Eq. (9) (Si

Socean
× DICocean) represents the

oceanic DIC component. Total excess DIC defined here rep-
resents all DIC sources or sinks (e.g., all terrestrial inputs as
well as NEM on the shelf) except those from the open ocean.

The calculated total excess DIC was highest on the central
part (alongshore) of the inner shelf (140–180 µmol kg−1) and
lowest on the outer shelf (−10 to 50 µmol kg−1) (Fig. 11).
Like DOC, the total excess DIC shows negative correlation
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Fig. 9. Spatial distributions of1pCO2(marsh) (referenced to
23.11◦C). Due to a lack of DIC data,1pCO2(marsh) in December
2005 is not presented. The colored contours are from triangle-based
liner interpolation.

with salinity in all sampling months, suggesting input of DIC
from terrestrial sources (Fig. 11). Similarly, excess DOC was
also calculated. Not surprisingly, excess DOC was also high-
est on the inner shelf and decreased with distance offshore
(Fig. 12).

4.2 Impact of terrestrial carbon on continental shelf
CO2

Even though the contribution of DIC from terrestrial sources
is usually much smaller when compared with that from the
open ocean, a larger proportion of the terrestrial DIC exists
in the form of aqueous CO2. As a result, the input of ter-
restrial DIC plays a critical role in elevating CO2 concentra-
tions in continental shelf waters. Terrestrial sources increase
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Fig. 10. Spatial distributions of1pCO2(shelf) (referenced to
23.11◦C). Due to a lack of DIC data,1pCO2(shelf) in December
2005 is not presented. The colored contours are from triangle-based
liner interpolation.

nearshorepCO2 directly through input of inorganic carbon
from rivers (Cai and Wang, 1998; Cai et al., 1999; Jiang et
al., 2008b) and salt marshes (Wang and Cai, 2004), and indi-
rectly by input of organic carbon (Moran et al., 1991; Alberts
and Taḱacs, 1999; DeAlteris, 2007) that is later remineralized
to varying extents on the shelf as part of the shelf NEM.

Rivers discharging to the SAB enhancepCO2 in shelf
waters by delivering freshwater with high CO2 concentra-
tions that arise ultimately from microbial decomposition of
organic matter in soils, river waters, and sediments (Jones
and Mulholland, 1998; Neal et al., 1998; Cole and Caraco,
2001). Studies of the Altamaha and Satilla river estuaries
have shown that rivers discharging to the SAB are highly su-
persaturated with respect to atmospheric CO2. During sum-
mer, surface waterpCO2 in these river-dominated estuar-
ies is as high as∼ 4000 µatm compared with only about
∼ 400–600 µatm on the continental shelf (Cai and Wang,
1998; Jiang et al., 2008b).

Salt marshes contribute topCO2 in the SAB by direct re-
lease of inorganic carbon to the shelf. An important feature
of this region is the extensive areas of inter-tidal salt marshes
(Pomeroy and Wiegert, 1981). The dominant primary pro-
ducer in these marshes isSpartina alterniflora, which has
among the highest primary productivity of any ecosystem
(∼ 1100 to 2250 gC m−2 yr−1; Dai and Wiegert, 1996). CO2
that is released to intertidal marsh sediments and waters by
bacterial remineralization ofSpartina-derived organic matter
can be exported to coastal waters (Cai et al., 1999; Wang and
Cai, 2004; Jiang et al., 2008b) via tidal flushing (Neubauer
and Anderson, 2003) and drainage of sediment interstitial
waters (Jahnke et al., 2003).

Rivers and salt marshes also transport significant amounts
of organic carbon to the SAB (Fig. 12), the remineraliza-
tion of which by microbes (Pomeroy et al., 2000; Jahnke et
al., 2005) and photochemistry (Miller and Moran, 1997) in
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shelf waters and sediments will further increase the nearshore
pCO2. Previous studies have shown that most nutrients en-
tering the SAB occur in organic form that must be remineral-
ized before they may be taken up by phytoplankton (Dunstan
and Atkinson, 1976; Hanson et al., 1990; DeAlteris, 2007).
The potential importance of this pathway in enhancingpCO2
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on the proximal SAB is supported by the positive correla-
tion between TG-correctedpCO2 and excess DOC (figure
not shown).

4.3 Seasonal changes of CO2 inputs to the proximal
SAB

Seasonally, CO2 from the SAB rivers and salt marshes is
largely related to river discharge rates, and greater amounts
of CO2 will be transported to the shelf at higher discharge
rates (Borges et al., 2006; Jiang et al., 2008b). This can be
seen from the higher1pCO2(river) and1pCO2(marsh) dur-
ing January and March 2005 (high flow seasons, Jiang, 2009)
than in May 2006 and July 2005 (low flow seasons) (Fig. 8).

Based on the findings from the present study, CO2 produc-
tion from within shelf waters (e.g., NEM), on the other hand,
is predicted to be strongly dependent on temporal changes
in organic matter remineralization and shelf water residence
time. Respiration rates in the inner shelf have been shown
to be nearly an order of magnitude higher in summer and
fall than in winter and spring (Hopkinson, 1985; Griffith et
al., 1990; Jiang et al., 2010). However, the additional CO2
released from heterotrophic processes in summer may be
counterbalanced by greater CO2 uptake due to aquatic pri-
mary production at this time of the year (Verity et al., 2002).
The results of1pCO2(shelf) suggest that the shelf is more
likely to be heterotrophic (i.e., net release of CO2) during
summer and fall (May 2006, July and October 2005), and
relatively more autotrophic (i.e., net uptake of CO2) during
winter and spring (January and March 2005) (Fig. 8). This
is confirmed by theδ13 values of DIC in the proximal SAB,
which became increasingly depleted between spring and fall
(DeAlteris, 2007). The relatively lower CO2 production dur-
ing July 2005 may be further related to a Gulf Stream in-
trusion, which increased biological production and counter-
balanced the DIC production.

5 Conclusions

Analyses of the DIC, DOC, andpCO2 data in the SAB
demonstrate how temperature, air–sea gas exchange, and ter-
restrial inputs control sea surfacepCO2 on the continental
shelf. Terrestrial sources increase the nearshorepCO2 by di-
rect input of inorganic carbon from rivers and salt marshes,
and indirectly by input of organic carbon that is later rem-
ineralized in the SAB (i.e., shelf NEM). This mechanism
is the most likely explanation for findings of the proxi-
mal SAB (inner shelf) being a source of atmospheric CO2
(+1.2 mol m2 yr−1), and the distal SAB (middle and outer
shelf) being a sink of−1.3 mol m2 yr−1 (Jiang et al., 2008a).
In particular, decomposition of marsh- and river-derived or-
ganic carbon is the most important factor in maintaining the
highpCO2 on the inner shelf during the fall.
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