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Abstract. Peatlands are a major terrestrial carbon store and a
persistent natural carbon sink during the Holocene, but there
is considerable uncertainty over the fate of peatland carbon in
a changing climate. It is generally assumed that higher tem-
peratures will increase peat decay, causing a positive feed-
back to climate warming and contributing to the global pos-
itive carbon cycle feedback. Here we use a new extensive
database of peat profiles across northern high latitudes to ex-
amine spatial and temporal patterns of carbon accumulation
over the past millennium. Opposite to expectations, our re-
sults indicate a small negative carbon cycle feedback from
past changes in the long-term accumulation rates of northern
peatlands. Total carbon accumulated over the last 1000 yr is
linearly related to contemporary growing season length and
photosynthetically active radiation, suggesting that variabil-
ity in net primary productivity is more important than de-
composition in determining long-term carbon accumulation.
Furthermore, northern peatland carbon sequestration rate de-
clined over the climate transition from the Medieval Climate
Anomaly (MCA) to the Little Ice Age (LIA), probably be-
cause of lower LIA temperatures combined with increased
cloudiness suppressing net primary productivity. Other fac-
tors including changing moisture status, peatland distribu-
tion, fire, nitrogen deposition, permafrost thaw and methane
emissions will also influence future peatland carbon cycle
feedbacks, but our data suggest that the carbon sequestration
rate could increase over many areas of northern peatlands in
a warmer future.

1 Introduction

Peatlands contain around 600 gigatonnes of carbon (Gt C)
that has accumulated since the last glacial maximum in
northern mid–high latitudes, tropical regions and temperate
areas of the Southern Hemisphere, and the steady accumu-
lation of carbon has been a small but persistent sink for at-
mospheric CO2 throughout the Holocene (Yu, 2011). The re-
lationship between climate change and the rate of carbon se-
questration is important for understanding the past and future
global carbon cycle, and it has generally been assumed that

because temperature drives increasing decay (Ise et al., 2008;
Dorrepaal et al., 2009), peatlands could be part of the posi-
tive feedback from the global carbon cycle (Friedlingstein et
al., 2006). A key objective in improving understanding of the
global carbon cycle in climate models is to be able to simu-
late past observed atmospheric CO2 changes.

There is growing interest in the last millennium as a
climate-modelling target, and especially in the assessment of
the sensitivity of the global carbon cycle to climate warm-
ing (Abe-Ouchi and Harrison, 2009; Jungclaus et al., 2010).
In the Northern Hemisphere, the transition from the gener-
ally warmer Medieval Climate Anomaly (MCA) to the cooler
Little Ice Age (LIA) (Mann et al., 2008, 2009; Jansen et al.,
2007) was associated with a ca. 7–10 ppmv decline in atmo-
spheric CO2 concentration (Ahn et al., 2012). This pattern
supports the existence of a positive global climate–carbon
cycle feedback, as suggested by coupled climate–carbon cy-
cle models (Friedlingstein et al., 2006; Denman et al., 2007).
However, estimates of the magnitude of the climate sensi-
tivity of the global carbon cycle based on data from the last
millennium vary from 1.7–21.4 ppm CO2 K−1 (Frank et al.,
2010) to 40–60 ppm CO2 K−1 (Cox and Jones, 2008). Car-
bon cycle models also vary greatly in their assessment of this
feedback (Friedlingstein et al., 2006), although recent esti-
mates (Jungclaus et al., 2010) suggest sensitivity within the
lower end of this range (3.2–12 ppm CO2 K−1). The causes
of the reduction in CO2 concentrations during the MCA
to LIA transition are poorly known, but reduced soil het-
erotrophic respiration is assumed to be important (Jungclaus
et al., 2010; Pongratz et al., 2009). However, the models
do not specifically take into account possible climate-related
variations in the rate of peatland carbon sequestration.

Peatlands have sequestered and exchanged atmospheric
carbon over millennia (MacDonald et al., 2006; Frolking and
Roulet, 2007), with the largest store in northern extratropi-
cal peatlands, an estimated 545 Gt C (Yu et al., 2010). The
annual uptake of CO2 by peatlands, previously estimated
as 0.076 Gt C yr−1(Gorham, 1991) or 0.088 Gt C yr−1 (Yu,
2011), without considering long-term decay (see below), is
a small but temporally persistent component of land carbon
uptake. This is equivalent to 36 ppm atmospheric CO2 over
1000 yr, based on a simple conversion from change in carbon
pool to atmospheric CO2 of 1 Gt C= 2.123 ppm. However,
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Fig. 1.Distribution of sites in geographic and climate space, overlain on soil carbon storage. Points show high-resolution peat records (large
blue circles) used for calculating temporal variation in carbon accumulation rates and low-resolution peat records (small white circles) used
for estimates of total millennial carbon.(a) The soil carbon density in the top 1 m mapped from 10-min IGBP soil data;(b) climate space
(defined by growing degree days and moisture balance) of soil carbon density in the same classes as in panel a, at 0.5× 0.5◦ grid cells for all
land north of 40◦ N. Peatlands generally occur in the areas of> 31 kg C m−2 (brown and black).

over millennial timescales, carbon uptake of this magnitude
would be compensated by ocean outgassing processes as a
result of reduced CO2 in the atmosphere and reduction in
air–sea CO2 partial pressure, so that the actual effect on the
atmosphere is only 20–35 % of this total over periods of 200–
2000 yr (Archer et al., 2009), or 7–12 ppm atmospheric CO2
over a 1000 yr period. Variations in the size of the peat-
land sink could therefore have a significant cumulative ef-
fect on global atmospheric CO2 concentrations over the last
millennium, of the same order of magnitude as the observed
changes.

In this study, we compiled peat core data from northern
peatlands to estimate changes in carbon accumulation over
the last millennium and to explore the spatial relationship
between climate and the total size of the carbon sink ac-
cumulated over this period. Further analysis on a subset of
well-dated cores allowed an analysis of temporal variation in
carbon accumulation in relations to the MCA–LIA climate
changes estimated from palaeoclimate records. We use these
data to help understand the relationships between climate and
peatland carbon accumulation and to assess the direction and
strength of the peatland carbon cycle feedback.

2 Methods

2.1 Site selection and carbon measurement

A list of Northern Hemisphere, extratropical peatland pro-
files with published and unpublished carbon accumulation

data was compiled (Tables 1 and 2) for sites that met the
following criteria:

a. at least 3 evenly spaced dates (including210Pb, tephra,
spheroidal carbonaceous particles, pollen markers or14C
(pre- or postdating the period of nuclear bomb test-
ing), and the uncut peat surface) and spanning the last
ca. 1000 yr. Most of the sites had more than 5 dates (Ta-
ble 2), but we also rejected some sites where a satisfactory
age–depth model could not be produced, because of age
reversals or other problems; and

b. contiguous bulk density measurements at< 5 cm resolu-
tion.

Application of these criteria resulted in the selection of
24 sites that were used in subsequent analyses of the tem-
poral changes in carbon accumulation through the last mil-
lennium (Table 2). A second tier of sites (Table 1) was used
for the millennium carbon inventory analysis against climate
indices. These sites did not meet criteria (a) and (b), but did
meet the following criteria:

c. a basic age–depth model for the last millennium; and

d. contiguous bulk density measurements but not necessarily
at high resolution.

A total of 90 sites met these less stringent criteria and
were used in the climate–carbon inventory analyses (Ta-
bles 1 and 2). The sites in both data sets are widely dis-
tributed geographically and broadly representative of the cli-
mate space occupied by northern peatlands (Fig. 1).

www.biogeosciences.net/10/929/2013/ Biogeosciences, 10, 929–944, 2013
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Table 1.Characteristics of the low-resolution sites used in the analyses.

No. Site name Latitude Longitude Peatland type Contributor Source reference

1 E115 67.8095 75.4346 Ombrotrophic D. Beilman Beilman et al. (2009)
2 E110 66.4698 76.9943 Ombrotrophic D. Beilman Beilman et al. (2009)
3 E113 66.4497 79.3234 Ombrotrophic D. Beilman Beilman et al. (2009)
4 D122 65.5831 73.0058 Ombrotrophic D. Beilman Beilman et al. (2009)
5 E119 65.4998 75.5025 Ombrotrophic D. Beilman Beilman et al. (2009)
6 D127 64.3068 70.2948 Ombrotrophic D. Beilman Beilman et al. (2009)
7 G136 64.1476 75.3611 Ombrotrophic D. Beilman Beilman et al. (2009)
8 G137 63.7504 75.7662 Ombrotrophic D. Beilman Beilman et al. (2009)
9 N015 63.6501 74.2693 Ombrotrophic D. Beilman Beilman et al. (2009)

10 N001 63.1611 74.8233 Ombrotrophic D. Beilman Beilman et al. (2009)
11 S009 62.1229 73.8412 Ombrotrophic D. Beilman Beilman et al. (2009)
12 V034 61.4675 79.4601 Ombrotrophic D. Beilman Beilman et al. (2009)
13 V039 61.0895 79.3806 Ombrotrophic D. Beilman Beilman et al. (2009)
14 SIB02 61.0553 70.0588 Ombrotrophic D. Beilman Beilman et al. (2009)
15 V026 61.0286 76.4686 Ombrotrophic D. Beilman Beilman et al. (2009)
16 S022 60.8401 71.2558 Ombrotrophic D. Beilman Beilman et al. (2009)
17 V038 60.8039 74.5416 Ombrotrophic D. Beilman Beilman et al. (2009)
18 SIB01 59.3601 68.9849 Ombrotrophic D. Beilman Beilman et al. (2009)
19 SIB06 58.4358 83.4343 Ombrotrophic D. Beilman Beilman et al. (2009)
20 SIB05 57.3541 81.1647 Ombrotrophic D. Beilman Beilman et al. (2009)
21 SIB03 56.3552 79.0689 Ombrotrophic D. Beilman Beilman et al. (2009)
22 C site 01 60.167 72.8330 Ombrotrophic Z. C. Yu Yu et al. (2009)
23 C site 02 60.167 72.8330 Ombrotrophic Z. C. Yu Yu et al. (2009)
24 C site 03 56.833 78.4170 Ombrotrophic Z. C. Yu Yu et al. (2009)
25 C site 10 54.15 −130.2500 Ombrotrophic Z. C. Yu Yu et al. (2009)
26 C site 13 55.017 −114.1500 Ombrotrophic Z. C. Yu Yu et al. (2009)
27 C site 17 55.85 −107.6830 Ombrotrophic Z. C. Yu Yu et al. (2009)
28 C site 20 59.883 −104.2000 Ombrotrophic Z. C. Yu Yu et al. (2009)
29 C site 21 45.684 −74.0470 Ombrotrophic Z. C. Yu Yu et al. (2009)
30 C site 23 47.933 −64.5000 Ombrotrophic Z. C. Yu Yu et al. (2009)
31 C site 24 45.2 −60.2670 Ombrotrophic Z. C. Yu Yu et al. (2009)
32 C site 25 57.522 −5.1600 Ombrotrophic Z. C. Yu Yu et al. (2009)
33 C site 26 57.56 −5.3770 Ombrotrophic Z. C. Yu Yu et al. (2009)
34 C site 27 57.687 −5.6870 Ombrotrophic Z. C. Yu Yu et al. (2009)
35 C site 28 68.4 23.5500 Ombrotrophic Z. C. Yu Yu et al. (2009)
36 C site 30 60.817 26.9500 Ombrotrophic Z. C. Yu Yu et al. (2009)
37 Kohlḧutten Moor 47.9269 8.1844 Ombrotrophic G. Le Roux Le Roux et al. (2005)
38 P131 66.1664 73.9889 Minerotrophic D. Beilman Beilman et al. (2009)
39 C site 04 56.333 84.5830 Minerotrophic Z. C. Yu Yu et al. (2009)
40 C site 05 60.446 −151.2470 Minerotrophic Z. C. Yu Yu et al. (2009)
41 C site 06 60.641 −151.0800 Minerotrophic Z. C. Yu Yu et al. (2009)
42 C site 07 60.416 −150.9020 Minerotrophic Z. C. Yu Yu et al. (2009)
43 C site 08 60.784 −150.8190 Minerotrophic Z. C. Yu Yu et al. (2009)
44 C site 09 64.875 −147.7670 Minerotrophic Z. C. Yu Yu et al. (2009)
45 C site 11 53.583 −118.0170 Minerotrophic Z. C. Yu Yu et al. (2009)
46 C site 12 52.45 −116.2000 Minerotrophic Z. C. Yu Yu et al. (2009)
47 C site 14 61.8 −121.4000 Minerotrophic Z. C. Yu Yu et al. (2009)
48 C site 15 68.288 −133.2500 Minerotrophic Z. C. Yu Yu et al. (2009)
49 C site 16 69.493 −132.6720 Minerotrophic Z. C. Yu Yu et al. (2009)
50 C site 18 64.713 −105.5790 Minerotrophic Z. C. Yu Yu et al. (2009)
51 C site 19 66.451 −104.8350 Minerotrophic Z. C. Yu Yu et al. (2009)
52 C site 22 82.333 −68.2500 Minerotrophic Z. C. Yu Yu et al. (2009)
53 C site 29 68.4 23.5500 Minerotrophic Z. C. Yu Yu et al. (2009)
54 C site 31 65.65 27.3170 Minerotrophic Z. C. Yu Yu et al. (2009)
55 C site 32 65.65 27.3170 Minerotrophic Z. C. Yu Yu et al. (2009)
56 C site 33 65.65 27.3170 Minerotrophic Z. C. Yu Yu et al. (2009)

Biogeosciences, 10, 929–944, 2013 www.biogeosciences.net/10/929/2013/
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Table 1 .Continued.

No. Site name Latitude Longitude Peatland type Contributor Source reference

57 Old Black Spruce Fen 53.9983−105.1153 Minerotrophic I. Bauer Bauer et al. (2009)
58 Sandhill Fen 53.8261 −104.6250 Minerotrophic I. Bauer Bauer et al. (2009)
59 Dhakuri 30.0500 79.9333 Minerotrophic N. R. Phadtare Unpublished data
60 Aeroport 4 54.1041 −72.5167 Minerotrophic M. Garneau Unpublished data
61 Aeroport 5 54.1041 −72.5167 Minerotrophic M. Garneau Unpublished data
62 Lac Le Caron Lateral Core4 52.2945 −75.8408 Ombrotrophic S. van Bellen van Bellen et al. (2011)
63 M179 60.5875 −149.5347 Minerotrophic Z. C. Yu Unpublished data
64 ZB08-S4 33.0954 102.6650 Minerotrophic Y. Zhao Unpublished data
65 OURS4 Peatland 54.0597 −72.4602 Minerotrophic M. Garneau Unpublished data
66 LG1 Peatland 54.0597 −78.4602 Minerotrophic M. Garneau Unpublished data

Bulk density was measured on carefully cut fresh or frozen
material using freeze drying or oven drying of samples of
known volume. Sample sizes varied depending on the sam-
pling method and core size, and sample resolution varied
from 0.5 to 5 cm3 (Table 2). In all cases samples were large
enough to accurately measure bulk density and were taken
contiguously to enable reliable estimates of dry mass accu-
mulation over time. Carbon density was derived from bulk
density multiplied by the carbon content for each sample.
Where carbon data were not available, we assumed that
50 % of the organic fraction (measured by standard loss-
on-ignition analysis at 500◦C) was organic carbon. A car-
bon value of approximately 50 % is routinely used for peat
(Gorham, 1991; Vitt et al., 2000) and is reasonable com-
pared to the mean carbon content of the nine sites for which
we have measured values in this study (46.6± 0.33 %), and
other studies in western Canada (51.8 %; Yu et al., 2009) and
West Siberia (50.7–56.3 %; Beilman et al., 2009).

To provide an assessment of hydrological differences
among the peatlands in our analyses, we classified sites as
either bogs or fens. Although differences between these two
peatland types are related to the relative influence of differ-
ent water sources (i.e. groundwater, surface water, precipita-
tion), thresholds used for distinction between the two types
are regionally varied. For our site classification, we used a
relatively conservative approach, including onlySphagnum-
dominated systems that lacked vegetative or morphological
evidence of minerotrophic conditions in our “ombrotrophic”
category. Sites characterised as ombrotrophic included raised
bogs, blanket bogs, and the extensive bog systems of western
Siberia (Kremenetski et al., 2003).

2.2 Chronology and age modelling

All sites were14C dated using selected aboveground plant re-
mains, except for site 68 where bulk peat was14C dated. We
recalibrated all the dates from the original studies. For mod-
ern (post-AD 1950)14C dates, the NH1 postbomb calibration
curve was used (Hua and Barbetti, 2004). Remaining dates
were calibrated using IntCal09 (Reimer et al., 2009). Age

models for the temporal analysis were based on the program
“Bacon”, a flexible Bayesian age–depth modelling approach
that uses prior information on plausible accumulation rates
and their variability and autocorrelation over time (Blaauw
and Christen, 2005, 2011). Peat cores were divided into con-
tiguous 2 cm segments, and linear accumulation rates were
calculated for all individual segments sequentially down the
core. Age models were developed based on several million
iterations, followed by thinning to remove any autocorrela-
tion between individual model runs, yielding ca. 5000–8000
iterations for each site (Fig. 2a).

2.3 Spatial analysis of carbon accumulation

Total carbon accumulation over the 1000 yr was estimated
based on a data set of the 90 radiocarbon-dated peat pro-
files (Tables 1 and 2). The post-1000 yr carbon pool is the
difference between total carbon additions from photosynthe-
sis and cumulative respirative carbon release over this in-
terval, reflecting carbon sequestration at a site. We analysed
the relationship between total carbon accumulation over the
last 1000 yr and climate parameters using a 0.5◦ grid, de-
rived from the CLIMATE 2.2 data (Kaplan et al., 2003).
Climate parameters included growing degree days above
0◦C (GDD0), cumulative photosynthetically active radiation
during the growing season (PAR0), PAR over the growing
season, growing season length (days) and the moisture in-
dex P /Eq, whereP is annual precipitation and Eq is an-
nually integrated equilibrium evapotranspiration calculated
from daily net radiation and temperature (Prentice et al.,
1993). PAR was calculated from latitude and sunshine hours
(Prentice et al., 1993; Harrison et al., 2010).

2.4 Temporal variation in carbon accumulation

A composite carbon accumulation curve was constructed
based on the subset of 24 well-dated, high-resolution sites
with continuous records for the past 1000 yr (Table 2). The
Bayesian age–depth models allowed chronological uncer-
tainty to be included in carbon accumulation curves (Fig. 2b).
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b a 

Fig. 2.Age–depth and carbon accumulation estimates for individual profiles. The example shown here is Misten Bog, Belgium.(a) An age–
depth plot showing the calibrated ages (blue shapes) and age–depth model (grey-scale graph) (Blaauw and Christen, 2005, 2011).(b) Carbon
accumulation derived from age–depth models, and bulk density and C measurements. Curves are fitted to each of 10 000 possible age models
based on Bayesian analysis. Points represent individual samples on different age models, and grey lines are fitted curves for individual
models. Only curves fitted incorporating long-term decay and ecosystem maturity (Yu et al., 2003) are shown here.

All age depth models were converted to carbon accumulation
using bulk density and carbon or LOI measurements.

We derived different estimates of variability in carbon ac-
cumulation rates based on different assumptions about au-
togenic processes of long-term decay (Clymo, 1984) and
ecosystem maturity (Yu et al., 2003). Carbon accumulation
rates calculated from our age–depth models and carbon den-
sity do not take account of autogenic peat accumulation pro-
cesses, most importantly the effect of long-term decay. Dead
plant material decays rapidly in the surface layers, as the
most labile organic matter is broken down quickly by micro-
bial activity. Decomposition rates are much slower (though
not zero) in the permanently saturated zone, which contains
more recalcitrant organic matter (Clymo, 1984; Belyea and
Baird, 2006). If productivity and decay are constant, mea-
sured apparent accumulation rates will be higher for more
recent peat, and the long-term carbon storage will appear to
increase. We accounted for this ecological process by fit-
ting decay curves to each profile (Clymo, 1984). We also
tested the effect of “ecosystem maturity”, that is the slow-
ing of peat growth under stable conditions because of auto-
genic limits on the height of the peat surface (Yu et al., 2003).
We excluded carbon accumulation changes in the uppermost
peat (conservatively approximated here as peat formed af-
ter 1850) where relatively rapid aerobic decay is still taking
place. We used AD 1850 for this because this is likely outside
of the aerobic decay zone for all cores.

The changes in accumulation rates for each site were ex-
pressed as differences between observed accumulation and
those derived from three models: (1) linear decay model
(i.e. no autogenic processes); (2) the Clymo model, which

includes long-term decay only (Clymo, 1984):

M =

(
Pc

ac

)
(1− e−act ), (1)

whereM is the accumulated carbon,Pc is the peat added to
the catotelm each year (g C cm−2), ac is the catotelm decay
constant andt is time; and (3) the extended peat accumula-
tion rate (ExtPAR) model (Yu et al., 2003), which includes
long-term decay and ecosystem maturity:

M =

(
Pc

ac − bc

)
(e−bct − e−act ), (2)

where the parameters are the same as those listed above, with
the addition ofbc, a coefficient that allows the accumulation
rate to be modified. Each curve fitting exercise produces esti-
mated values forPc, ac andbc. There are several other more
complex models that could be applied to account for long-
term decay, but it is often difficult or impossible to determine
the most appropriate one, given the subtle variations in the
carbon accumulation curves (Belyea and Baird, 2006). Our
intention here is to test whether observed variations in the
raw carbon accumulation data could be explained by long-
term decay and ecosystem maturity.

Decay models were fit individually to each carbon accu-
mulation curve derived from the Bacon routine. For the lin-
ear model, the fitting was carried out using ordinary least-
squares. For the Clymo and ExtPAR models, optimization
was carried out using an iterative orthogonal sampling tech-
nique that samples the entire parameter space, then uses a
least squares fit to obtain a subset of the parameter space.
This subset is then sampled in the next iteration to produce
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Fig. 3. Steps involved in deriving a non-autogenic accumulation
curve from a single age profile after fitting of the peat accumula-
tion model with long-term decay and ecosystem maturity (Yu et al.,
2003). See text for details.

an increasingly well defined parameter space. All follow-
ing analyses were applied to results from all three versions
(Fig. 3).

The number of age models varied by over an order of mag-
nitude between sites (from ca. 2300 to ca. 44 000). To avoid
biases towards sites with a higher number of age models,
a single age model was randomly sampled from each site.
The accumulation rates were interpolated onto a regular time
step by taking the median value in a moving window (half-
window of 25 yr) with a step of 10 yr to avoid bias toward
sites with higher sampling resolution. Finally, a time series
of accumulation rates was calculated as the median of the
24 interpolated accumulation rates (one per site). This was
repeated 10 000 times to provide a fair sampling of the avail-
able age models, and gave a matrix of median time series on
a regular time step. Finally, this matrix was used to calculate
the median and percentile values of the accumulation rates
for each time.

The effect of this Monte Carlo resampling of the possi-
ble age models (and associated accumulation rate curves) is
to give greater weight to the sites with the best-constrained
chronologies. In each iteration of the resampling, we took
one age model and set of accumulation rates from each site.
Sites that are well-constrained will provide age models that
are similar in each iteration, and poorly constrained sites will
provide age models that are widely different. The end result
of this is that well-constrained sites will effectively have a
greater weight in the overall composite.

To avoid any bias toward sites with generally very high
accumulation rates, a second composite was made, based
on transformed values. This followed the methodology used
previously for charcoal data (Marlon et al., 2008): (1) min-
imax transformation of the original accumulation rate time
series; (2) Box–Cox transformation to normalise the time
series; and (3) z-score calculation. The composite z-scores
were estimated using the same procedure as for compilation
of the untransformed values described above. The final com-
posite curves are shown in Fig. 4.

3 Results and discussion

3.1 Spatial relationships between carbon accumulation
and climate

Warming would be expected to increase net primary produc-
tivity (NPP) in high-latitude ecosystems because of increased
growing season length. The growing season for northern
peatlands is appropriately defined as the period of the year
with air temperatures above freezing, because bryophytes be-
gin photosynthesis at this threshold, and are the dominant
peat-former in most of our sites. PAR, determined by lati-
tude and cloudiness, is the driver of photosynthetic carbon
fixation and may also be an important control on NPP. How-
ever, higher temperatures could also increase peat decompo-
sition rates through accelerated microbial activity (Ise et al.,
2008; Dorrepaal et al., 2009).

Linear regression of total carbon accumulated over the last
1000 yr (C) against PAR0 yielded the strongest relationship:

C = 0.0055 PAR0− 3.82, (3)

with anR2 of 0.33 (Fig. 5a). In single-predictor regressions,
C showed a weaker relationship with GDD0 (R2

= 0.13,
Fig. 5b) and no significant relationship withP /Eq (P = 0.19,
Fig. 5c). Residuals from Eq. (3) showed no systematic re-
lation to either GDD0 orP /Eq and inclusion of these addi-
tional predictors in a multiple linear regression yielded non-
significant regression coefficients. The correlation between
PAR0 and GDD0 is high (0.83), owing to the growing sea-
son length that is shared by both variables. We checked the
influence of two apparent outliers with higher PAR0 values
on our conclusions. These are the two southernmost sites
from Dhakuri (India) and Pinhook (USA). Removing these
two sites does not affect the significance of the relationship
between PAR0 and 1 ka C (P < 0.0001) but changes theR2

values from 0.33 to 0.24 and slightly changes the slope from
0.0055 to 0.0049. Thus, it still explains more of the varia-
tion than GDD0. The influence of these two sites is not in-
significant, but removing them does not impact our main con-
clusions concerning PAR. Without the two “outliers” total
C still shows a positive significant relationship (P < 0.001)
with GDD0 but with a change inR2 from 0.18 to 0.13 and a
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Fig. 4. Composite carbon accumulation curves for the last millennium based on different assumptions concerning autogenic processes. Left
panels show untransformed data, right panels show z-scores.(a) Linear accumulation without considering autogenic processes,(b) with
long-term decay rates, and(c) including long-term decay and ecosystem maturity (left panel also shown in Fig. 6). The data after AD 1850
are shown only in outline because the apparent upturn in carbon accumulation is due to incomplete decay of recently accumulated organic
materials.
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reduction in slope from 0.0086 to 0.0073. Again, this would
not change our main conclusions.

Our analyses thus show that total carbon accumulation
over the past 1000 yr is linearly related to contemporary PAR
integrated over the growing season (PAR0) (Fig. 5a) and
that this relationship is stronger than that with growing sea-
son warmth expressed as accumulated temperature (GDD0,
growing degree days above zero) (Fig. 5b). The implied ef-
fect of a warmer climate is to increase NPP to a greater extent
than decomposition, suggesting a negative climate feedback
in peatlands. Because no relationship was found between to-
tal carbon accumulation and moisture, we infer that although
an adequate moisture supply is necessary for the presence of
peat, above a threshold of moisture availability the effect on
carbon accumulation is secondary relative to growing sea-
son temperature and light conditions, at least for millennial
averages over large spatial scales. Some of the unexplained
variability in carbon accumulation probably reflects local hy-
drological factors, not captured by the large-scale moisture
index, as well as other local controls. Peatlands do not oc-
cur, for example, in climatically suitable locations with steep
slopes. Local topographic and drainage features, as well as
internal dynamics, create heterogeneity in peat accumulation
that is not represented by our data. Furthermore, our sam-
pling is necessarily biased toward peatlands that exist today,
and we therefore cannot establish the threshold for cessation
of carbon accumulation resulting from a reduction in mois-
ture balance. Despite these caveats, it is clear that the changes
in moisture balance are unlikely to be an important control on
peat accumulation during the recent past because of the com-
plete lack of any relationship with macroclimate. If moisture
does not play a role in determining peat accumulation rates,
this implies that the net balance between NPP and decay is
similar under varying hydrological conditions. In dry sites
high decay rates must be offset by high NPP, and similarly,
wetter sites must have low NPP together with low decay be-
cause of the anaerobic conditions.

The results suggest that spatial variability in peatland car-
bon accumulation over the last 1000 yr is primarily con-
trolled by spatial variation in NPP, which in turn is driven by
growing season length (related to temperature) and growing
season PAR. There is a statistically significant correlation be-
tween large-scale spatial variability inSphagnummoss pro-
ductivity and PAR0 that supports this hypothesized mecha-
nism (Loisel et al., 2012). PAR0 incorporates both a PAR
and temperature effect through growing season length; we
therefore tested the relationship between total carbon and
mean PAR over the unfrozen season. The reducedR2 (0.13,
p < 0.0001) compared with PAR0 (R2

= 0.33), suggests that
PAR has an effect independent of temperature. A much
weaker relationship with growing season length (R2

= 0.08,
p < 0.01) implies growing season length is of subsidiary im-
portance. Taken together, these results support our hypothe-
sis that peatland carbon accumulation is driven by PAR over
the growing season.

3.2 Temporal changes in carbon accumulation

There is an overall downward trend in the composite car-
bon accumulation rates from AD 1000 to 1850 (slope
−0.0026 g C m−2 yr−2, p < 0.0001), implying reduced peat
accumulation during the LIA (Fig. 6a). The decline appears
to be greater in the latter (post AD 1400) period than the
earlier part of the record. The downward trend is present in
the raw data as well as in the curves that include long-term
decay and ecosystem maturity at individual sites, showing
that the direction of change is insensitive to any assump-
tions concerning long-term ecosystem processes (Fig. 4).
The magnitude of this change differs depending on the time
period chosen. Here we compare long-term median values
for the periods 1000–1425 and 1425–1850 AD, broadly cor-
responding to the times used to define the MCA and LIA
(Mann et al., 2008, 2009; Jansen et al., 2007). We also com-
pare the difference at the start (1000) and end (1850) of this
period based on the slope of a regression line through the
data. Using both approaches means that the analyses are ro-
bust to short-term fluctuations in the data. If long-term de-
cay is taken into account, the difference between the mean of
the median accumulation rates between these two periods is
2.43 (± 0.92) g C m−2 yr−1. The estimate for this is smaller
(1.01± 0.89 g C m−2 yr−1) if some of the decay is compen-
sated for by ecosystem maturity at individual sites (Fig. 4).
The difference between the start (1000) and end of the data
(1850) is 6.05± 5.40 and 3.15± 5.08 g C m−2 yr−1, respec-
tively, for a decay only and decay plus ecosystem maturity
model (Fig. 4). Shorter term changes in the carbon accumu-
lation curve may be related to temperature or other climate
variables, but the changes are not sufficiently robust to draw
firm conclusions about changes in carbon accumulation on
(sub)centennial timescales.

3.3 Climate controls on carbon accumulation

One explanation for the reduction in carbon accumulation
between the MCA and LIA is that decreased temperatures
reduced NPP through shorter growing seasons (reduced
GDD0). Shorter growing seasons would also reduce accu-
mulated PAR0 assuming light levels remained unchanged.
We tested this hypothesis by using the spatial relationship
between total 1000-yr carbon accumulation and climate vari-
ables shown in Fig. 5 to calculate the effect of MCA–LIA
cooling from palaeoclimate records (Fig. 6b) on carbon ac-
cumulation and comparing it with the observed changes in
carbon accumulation (Fig. 6a).

We used the IGBP-DIS soil carbon gridded data
set (http://daac.ornl.gov/SOILS/guides/igbp-surfaces.html)
to select all grid cells occupied by northern peatlands, and
summed their carbon accumulation rates as predicted by
PAR0 from Eq. (1) (multiplied by the grid cell areas) to esti-
mate the total carbon sink in northern peatlands. “Peatlands”
were defined as 0.5× 0.5◦ grids north of 40◦ N that contain
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Fig. 6. Carbon accumulation variability, climate and atmospheric
CO2 over the past millennium.(a) Reconstruction of residual vari-
ation in carbon accumulation from long-term average rates taking
into account autogenic processes composited from 24 well-dated
sites from northern peatlands over the period AD 1000 to 1850,
with confidence intervals (shading) based on bootstrap resampling
by site.(b) Reconstruction of Northern Hemisphere temperature ex-
pressed as temperature anomaly from 1961–1990 (from Fig. 6.10c
of Jansen et al., 2007).(c) The individual and composite atmo-
spheric CO2 concentration records based on ice cores from Antarc-
tica as used by Frank et al. (2010). The correlation between the
10-yr smoothed median values of carbon accumulation(a) and the
reconstructed temperature(b) is 0.39 (p = 0.00006) for the period
1000–1850. The shading in the temperature plot(b) represents the
overlap in the uncertainty ranges of 10 different reconstructions
(maximum 100 % where temperatures are within±1 SE of all 10 re-
constructions). The vertical line at AD 1425 marks the division be-
tween the analysis periods used for comparison of carbon accumu-
lation and temperature.

10-min IGBP soil C grids that are all> 31 kg C m−2 (Wania
et al., 2009). This is conservative, designed to focus on the
biggest peatland areas that dominate the global peatland C
cycle. PeatStash (Gallego-Sala et al., 2010) was used to cal-
culate the accumulated PAR0 by summing the daily PAR0
over the growing season (days above freezing) for each peat-

land grid cell. The daily PAR0 is obtained by integrating the
instantaneous PAR between sunrise and sunset (Harrison et
al., 2010). The seasonal accumulated PAR0 depends on lati-
tude and cloudiness, and indirectly on temperature, because
the temperature determines the length of the growing sea-
son, i.e. which days are included in the seasonal accumulated
PAR0 calculation.

We calculated changes in GDD0 and PAR0 that would
result from the change in temperature inferred from the
palaeoclimate reconstructions over the last 1000 yr (Fig. 6b).
The temperature difference in the palaeoclimate records was
based on calculations similar to those made for carbon ac-
cumulation over the same time periods. The median tem-
perature difference between the two periods 1000–1425 and
1425–1850 is 0.116± 0.02◦C. We calculated the influence
of this change in temperature on the duration of the growing
season (Fig. 7a), and applied this to the relationships between
carbon accumulation, GDD0 and PAR0 derived from the spa-
tial analysis (Fig. 5a, b). Changes in PAR0 and GDD0 for
each peatland grid cell were calculated by adding 0.116◦C
to the input climate data set used in PeatStash.

The results suggest that the sensitivity of GDD0 and PAR0
to temperature is too small for either of these to provide
the sole explanation for the observed change in carbon ac-
cumulation rate over the last 1000 yr. Over the peatland ar-
eas, a 0.116◦C increase results in a mean change of+18.5
GDD0 (5–95 % range, 12.3–24.7 GDD0), which is predicted
by the regression equation to result in a mean increase
of 0.16 g C m−2 yr−1 (from 0.11 to 0.21 g C m−2 yr−1).
PAR0 increases by 13.5 mol photons m−2 season−1 (range
0–37.4 mol photons m−2 season−1), which is predicted by
the regression equation to result in an increase of
0.07 g C m−2 yr−1 (from 0 to 0.21 g C m−2 yr−1). If the mag-
nitude of temperature change estimated from the Northern
Hemisphere records is assumed to be correct, it is therefore
unlikely that the observed changes in carbon accumulation of
1.0–2.4 g C m−2 yr−1 are a result of temperature and growing
season changes alone. The conclusion is similar if the mag-
nitude of temperature change over the period 1000–1850 is
used for this calculation. In this case, a temperature change of
−0.266◦C is associated with a reduction in carbon accumu-
lation of 3.2–6.1 g C m−2 yr−1. However, mean changes in
GDD0 would be 43 GDD, and 31 mol photons m−2 season−1

in PAR0, resulting in predicted carbon accumulation reduc-
tions of only 0.37 and 0.17 g C m−2 yr−1, respectively. It
is possible that Northern Hemisphere averages underesti-
mate temperature changes in peatland regions, as estimates
of maximum MCA–LIA difference range from> 0.3 to as
much as 1.8◦C in a few locations (Mann et al., 2009). Re-
peating the analysis with a larger 1◦C change suggests a re-
sponse of 0.4 to 0.9 g C m−2 yr−1 from PAR0, which is closer
to but still less than the 1.0–1.4 g C m−2 yr−1 reduction in
carbon accumulation shown in the data over the MCA–LIA.

If temperature change alone is not the driver of car-
bon accumulation changes, an additional hypothesis is that
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a b 

Fig. 7.Sensitivity of PAR0 to changes in temperature and sunshine hours for 0.5× 0.5◦ peatland grid cells north of 40◦N. (a) Sensitivity of
all peatland cells (soil carbon> 31 kg C m−2) to +0.116◦C change and a 4 % increase and decrease in sunshine hours. Symbol shades show
C storage in each cell as 31–50 (brown) or> 50 (black) kg C m−2 following shading in Fig. 1b.(b) Spatial variability of PAR0 response to
a 0.116◦C temperature increase and 4 % increase in sunshine hours for the peatland grid cells. Growing season length for this scenario only
increases by 0 to 3 days (median of 1 day) across the peatland grid.

reduced PAR from an increase in growing-season cloudi-
ness significantly reduced NPP during the LIA, causing a
fall in peatland carbon accumulation. We therefore also ex-
amined the sensitivity of PAR0 and carbon accumulation to
changes in cloudiness (Fig. 7) by altering, in addition to
0.116◦C warming, the annual sunshine hours by a range
of +/− a percent of the input climate data set. Sensitivity
tests (Fig. 7a) show that a 4 % increase in sunshine hours
on top of the influence of a+0.116◦C change (equivalent
to 199 mol photons m−2 season−1) could result in an aver-
age change of+1.1 g C m−2 yr−1 over the peatland areas.
These are averages; the change in PAR0 has a 5–95 % range
of 137–255 mol photons m−2 season−1 and change in carbon
accumulation between 0.8 and 1.4 g C m−2 yr−1 for this sen-
sitivity analysis. A geographical pattern emerges in these
simulations where greater sensitivity of PAR0 to tempera-
ture and cloudiness occurs in lower latitudes (Fig. 7b). The
existence of a positive relationship between PAR0 and peat
carbon accumulation is further supported by Fig. 7a, which
shows that high soil carbon grid cells in the independent soil
carbon density data are located in areas with higher PAR0.

Our finding that spatial patterns of carbon accumulation
can be explained by spatial variability in climate, specifi-
cally PAR0, implies that the temporal variations in carbon
accumulation over the last millennium may also be explained
by the same climatic variables. The data are consistent with
this space for time substitution argument in that the warmer
MCA has higher rates of carbon accumulation than the cooler
LIA, i.e. longer, warmer growing seasons in the MCA in-
creased carbon accumulation in comparison to the LIA. That
the MCA was warmer than the LIA is not contested (Jansen
et al., 2007), but we also suggest from our sensitivity analy-
sis that temperature alone cannot explain the magnitude of
the change in observed carbon accumulation over the last

millennium. Changes in PAR received by the plants due to
cloudiness or some other influence such as snow cover (in-
creased depth/snow lie afterT > 0 during the LIA) or dif-
fusivity are also required to generate the observed changes,
assuming that temporal sensitivity is the same as that derived
from spatial relationships. We explored the potential reduc-
tion of PAR by late-lying snow cover by calculating the PAR
for days without snow and with temperature> 0◦C. The cor-
relation between snow-free PAR0 and total carbon accumu-
lated over the last 1000 yr was not significant (p = 0.23), so
cloudiness is the more likely cause of change in PAR and
carbon accumulation. The idea that the Northern Hemisphere
LIA was characterised by greater summer cloudiness is con-
sistent with historical documentary data (Grove, 2004), al-
though recent findings fromδ13C in Fennoscandian tree ring
studies suggest that there may have been regional differentia-
tion of this tendency (Young et al., 2010; Gagen et al, 2011).

3.4 Changes in the strength of the peatland carbon sink

An average decrease of 1.01 to 2.43 g C m−2 yr−1 in car-
bon sequestration rates in peatlands between the MCA and
the LIA represents a reduction in the strength of the sink of
0.0035 to 0.0085 Gt C yr−1, assuming a total northern peat-
land area of 350 million ha (Gorham, 1991; Tarnocai et al.,
2009). This should be compared with our estimate of the me-
dian net accumulation rate between 1000 and 1850 of 26.1
(sd. 1.47) g C m−2 yr−1 or 0.091 (sd. 0.005) Gt C yr−1. This
latter figure is similar to the average figure of 0.096 Gt C yr−1

(29 g C m−2 yr−1) estimated for the whole of the Holocene
(Gorham, 1991). Neither of these figures for long-term net
accumulation take into account the very slow long-term de-
cay of the deeper peat layers. Decay of this store might
reduce the actual average net ecosystem carbon balance
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to around 0.042 Gt C yr−1 (Yu, 2011) for the last millen-
nium, depending on how much peat had accumulated be-
fore AD 1000, its permafrost status, and its average age and
long-term decay rate. Thus, a reduction in carbon sink of
0.0035 and 0.0085 Gt C yr−1 represents a decrease of about
8 % and 20 % in net ecosystem carbon balance of northern
peatlands. This is an average figure for the two 425-yr pe-
riods chosen to represent the MCA and LIA here. The ex-
tremes in change are much greater; for example, the differ-
ence between the 25-yr mean at 1250 and 1850 is 5.9± 5.2
to 3.9± 5.1 g C m−2 yr−1, or a 33 to 45 % reduction in the
strength of the CO2 sink.

The main decrease in atmospheric CO2 concentrations
of approximately 6 ppm occurred over the period 1150
to 1750 (using the average curve in Fig. 6c). For this
time period the decline in peatland carbon sink is between
2.79 (± 4.88) and 0.77 (± 4.87) g C m−2 yr−1, equivalent to
0.0027 to 0.0097 Gt C yr−1 if applied to all northern peat-
lands. Assuming a linear decline in strength of the peatland
sink over this period, this would represent a change equiva-
lent to about 0.38 (± 2.41) to 1.38 (± 2.41) ppm in the atmo-
sphere. Although this is a small change, because the observed
decline in atmospheric CO2 is unequivocally attributed to in-
creased land carbon storage by the concomitant increase (El-
sig et al., 2009) in theδ13C of atmospheric CO2, the reduced
carbon sequestration in northern peatlands has to be added
to the amount of CO2 reduction to be explained by carbon
uptake, presumably as a result of suppressed decomposition
of soil organic matter or increased NPP, in other terrestrial
ecosystems.

4 Conclusions and implications

We have shown that there has been a small negative feed-
back to climate from changes in Northern Hemisphere peat
accumulation over the last 1000 yr. The direction of the peat
accumulation–climate feedback is supported by large-scale
spatial patterns of peat accumulation over the past 1000 yr
in relation to modern climate gradients. Northern peatlands
sequestered carbon at a higher rate during the MCA than
during the LIA. Although the magnitude of change is small
(approximately 1 ppm CO2 over the MCA–LIA transition),
this suggests that carbon accumulation in northern peatlands
may also change in response to future anthropogenic cli-
mate warming. Our spatial analyses indicate that the strength
of any feedback effect could depend on changes in cloud
cover as well as changes in temperature and growing season
length. Continued carbon accumulation depends on sustained
adequate moisture availability to maintain peatland growth.
The sites we sampled all have adequate moisture supply at
present and probably also during most of the last 1000 yr,
but this may not continue in the future. Climate model pro-
jections suggest that most of the high latitudes will experi-
ence higher summer temperature and higher precipitation,

with decreases in soil moisture for some regions (Meehl et
al., 2007). Midlatitude peatlands in locations such as western
Europe are most vulnerable, especially as summer precipita-
tion is projected to decrease. If the threshold between pres-
ence and absence of peatlands on the gradient of precipita-
tion/equilibrium evapotranspiration ratio is crossed (Fig. 5c),
some peatland areas (including some of the blanket bogs
characteristic of extremely oceanic climates; Gallego-Sala et
al., 2010; Gallego-Sala and Prentice, 2013) may stop grow-
ing. Changes in peatland extent in response to climate change
occurred in the past, including during the last millennium
(Finkelstein and Cowling, 2011), and will occur in the future
(Gallego-Sala and Prentice, 2013). Our analysis suggests that
a reduction in peatland area in the midlatitudes could be com-
pensated by increased carbon accumulation across the very
large areas of peatland in higher latitude regions, but only
if the majority of these peatlands retain sufficient moisture
and there is no significant increase in cloud cover. Current
projections of cloud cover are highly uncertain for the north-
ern peatland regions; some areas are projected to have less
cloud and others more cloud (Meehl et al., 2007). A further
compensating factor for peatland loss is that peatlands may
increase in extent in high-latitude areas that are currently too
cold and dry for peat formation. Other major uncertainties
concerning feedbacks between peatlands and climate change
still exist, including changes in fire regimes, nitrogen depo-
sition, permafrost thaw and the role of methane emissions.
Our analyses show that only about a third of the variabil-
ity in C accumulation is explained by PAR and other factors
must play a role. We might expect climate changes at some
of the sites used in our analysis to move beyond the climate
envelope explored here, and this could affect their contribu-
tion to the carbon budget. However, based on our analyses of
carbon accumulation over the past millennium, and contrary
to the conclusions from soil decay models (Ise et al., 2008;
Dorrepaal et al., 2009), we suggest that carbon sequestration
may increase in many high-latitude peatlands in response to
future climate warming over the next century.
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