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Abstract. The California Current Large Marine Ecosystem
(CCLME), a temperate marine region dominated by episodic
upwelling, is predicted to experience rapid environmental
change in the future due to ocean acidification. The arago-
nite saturation state within the California Current System is
predicted to decrease in the future with near-permanent un-
dersaturation conditions expected by the year 2050. Thus,
the CCLME is a critical region to study due to the rapid
rate of environmental change that resident organisms will
experience and because of the economic and societal value
of this coastal region. Recent efforts by a research consor-
tium – the Ocean Margin Ecosystems Group for Acidifica-
tion Studies (OMEGAS) – has begun to characterize a por-
tion of the CCLME; both describing the spatial mosaic of
pH in coastal waters and examining the responses of key
calcification-dependent benthic marine organisms to natu-
ral variation in pH and to changes in carbonate chemistry
that are expected in the coming decades. In this review, we
present the OMEGAS strategy of co-locating sensors and
oceanographic observations with biological studies on ben-

thic marine invertebrates, specifically measurements of func-
tional traits such as calcification-related processes and ge-
netic variation in populations that are locally adapted to con-
ditions in a particular region of the coast. Highlighted in
this contribution are (1) the OMEGAS sensor network that
spans the west coast of the US from central Oregon to south-
ern California, (2) initial findings of the carbonate chem-
istry amongst the OMEGAS study sites, and (3) an overview
of the biological data that describes the acclimatization and
the adaptation capacity of key benthic marine invertebrates
within the CCLME.

1 Introduction

A leading imperative in global change biology is forecast-
ing the impact of environmental change on key species and
ecosystems (Buckley and Kingsolver, 2012; Hoffmann and
Sgrò, 2011; Williams et al., 2008; Dawson et al., 2011), and
on critical natural resources (Gillson et al., 2013; Ibáñez et
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al., 2013; Pettorelli, 2012). As exemplified by the study of
ocean acidification (OA) (Boyd, 2011; Hofmann et al., 2011;
Kroeker et al., 2013), the issues in this scientific endeavor are
complex. In addition to the natural complexity in ecosystems
emanating from biotic interactions and variability in biologi-
cal responses to the environment, physical environmental pa-
rameters can also vary dramatically, as is evident when com-
paring disparate ecosystems such as tropical reefs and polar
seas. From a biological perspective, one way to better pre-
dict the consequences of ocean change is to examine ways in
which populations could potentially respond to environmen-
tal change. One mechanism is inherent physiological plastic-
ity that confers tolerance to a changing environment (Chown,
2012; Chown and Gaston, 2008; Helmuth, 2009; Huey et al.,
2012); a second is outright evolutionary adaptation to rapidly
changing conditions (Hoffmann and Sgrò, 2011; Kelly and
Hofmann, 2012; Visser, 2008; Sunday et al., 2013). Of the
two responses, evolutionary adaptation may be the most dif-
ficult to study. The absence of extensive long-term data sets
and the existence of complexity of biological processes com-
bined with vast spatial expanses to cover have made studying
evolution in the ocean a significant challenge.

In the oceans, major changes in temperature and carbonate
chemistry are predicted in the coming decades (Feely et al.,
2009; Gruber et al., 2012; Hauri et al., 2013; Orr et al., 2005)
and in some ecosystems the rate of change will be rapid.
For example, Australia is experiencing warming and extreme
heat events (Wernberg et al., 2013) and the western Antarctic
Peninsula has warmed significantly in the last two decades
with significant decreases in sea ice that have already altered
this polar marine ecosystem (Steinberg et al., 2012). In the
California Current system, the focus of this article, arago-
nite saturation state in the upwelling zone is expected to de-
crease rapidly in the future (Gruber et al., 2012; Hauri et al.,
2013). Here, within the next 30 yr, summer-long undersatu-
ration conditions are expected in nearshore regions in the top
60 m. Thus, the California Current Large Marine Ecosystem
(CCLME) is a critical region to study, both in terms of the
pace at which associated biota might experience rapid envi-
ronmental change and because of the economic and societal
value of this coastal region (Costanza et al., 1997). From a
biological perspective, we have limited information on how
critical species might respond to this predicted shift in ocean
chemistry. Major questions remain regarding whether marine
species currently possess functional traits that would allow
the tolerance of a changing environment, or whether they will
be able to adapt to rapidly changing ocean conditions into the
future.

Recently, a collaborative group of investigators, who have
been studying biological, ecological and oceanographic con-
ditions along the US west coast for decades, has begun to
tackle these questions in the CCLME using a strategy that
involves co-locating oceanographic sensors with biological
observations. This group, called OMEGAS (Ocean Margin
Ecosystems Group for Acidification Studies), has worked

as a collaborative body since 2010 studying an area span-
ning from central Oregon (OR) to southern California (CA;
Fig. 1). Research activities include gathering oceanographic
observations (e.g., pH,pCO2, alkalinity, temperature, salin-
ity, currents) that are matched with biological data (physio-
logical measurements, organismal-level responses to low pH
conditions such as growth rates and calcification, and ge-
netic data) for key species of calcifying benthic marine in-
vertebrates. The central goal of the OMEGAS project is to
consider physiological and ecological performance of organ-
isms, and genetic variation within and between populations,
within the broad spatial mosaic of pH and saturation states
found across the CCLME. Ocean acidification is driven by
absorption of anthropogenic CO2 into surface waters and the
commensurate change in ocean chemistry, both the reduction
in pH and the decline in the concentration of carbonate ions,
are physiologically challenging to calcifying marine organ-
isms (Doney et al., 2009). Further, because pH and saturation
state regimes vary widely across the CCLME, our research
allows a “substitution of space for time” (Pickett, 1989) ap-
proach in an exploration of local adaptation of benthic ma-
rine invertebrates to carbonate chemistry (Sanford and Kelly,
2011). The combination of simultaneous oceanographic and
biological research across a large latitudinal range will help
identify areas on the coast that express a range of acidifi-
cation conditions. This information may indicate areas that
might be refuges from acidification in the future, and could
reveal regions that are adaptation “hot spots”; i.e., places
where selection for undersaturation-tolerant genotypes has
been underway for long periods of time (Jacobs et al., 2004).
Finally, discovery of tolerant populations within the envi-
ronmental mosaic of the CCLME can provide an opportu-
nity to identify mechanisms that underlie tolerance (Evans et
al., 2013a; Evans and Hofmann, 2012). We also hope to ad-
dress whether some species possess sufficient physiological
and genetic variation to adapt to future change. Species that
lack physiological plasticity may quickly become excluded
from an environment when change occurs. Alternatively, or-
ganisms with the capacity to adapt should do so, and explor-
ing the degree of standing genetic variation for pH tolerance
may help us to forecast responses to environmental change
(De Wit and Palumbi, 2012; Kelly et al., 2013; Pespeni et al.,
2013a).

Thus, from a broad perspective, the OMEGAS strategy
of co-locating sensors with biology allows one to explore
the balance of physiological plasticity vs. capacity for adap-
tation in the light of present-day environmental conditions
(Kelly and Hofmann, 2012). Such an assessment is criti-
cally important in allowing prediction of outcomes that rely
on both species- and community-level responses (Kroeker
et al., 2013; Wootton et al., 2008; Hall-Spencer et al.,
2008). The goal of this article is to overview recent ef-
forts of the OMEGAS consortium (http://omegas.science.
oregonstate.edu) in the study of physiological plasticity and
the capacity for adaptation in populations of benthic marine
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Fig. 1. Map of the OMEGAS study sites in the California Current
Large Marine Ecosystem. The OMEGAS primary study sites are
from north to south: Fogarty Creek (FC), Strawberry Hill (SH); Van
Damme (VD); Bodega Marine Reserve (BMR); Terrace Point (TP)
and Lompoc Landing (LOL). Note: colors in the image represent
sea surface temperature (◦C) from the NOAA CoastWatch database.

invertebrates across the CCLME. Here, we outline three lines
of investigation that are integrated across the group and that
frame our studies: (1) an overview of a spatially distributed
sensor network for quantifying pH dynamics, (2) data on
functional traits that may vary in populations and support
physiological plasticity, and (3) data on genetic structure of
the study populations that link to local adaptation in natural
populations and the capacity to adapt to future environmental
change in the CCLME.

2 The OMEGAS sensor network: identifying a pH
mosaic in the CCLME

A central goal of researchers within the OMEGAS consor-
tium is to link biological performance with environmental
variability in ocean carbonate chemistry along what we hy-
pothesized would be a mosaic or gradient of conditions that
might foster local adaptation. Long-term observations have
been invaluable in defining the rate of OA progression in low-
latitude, open ocean biomes and records from sub-tropical
gyre time-series stations (e.g., Bermuda Atlantic Time Series
“BATS”, http://www.bios.edu/research/bats.html; Hawaiian
Ocean Times Series “HOT”,http://hahana.soest.hawaii.edu/
hot/hot_jgofs.html; European Station for Time Series in the
Ocean “ESTOC”http://www.eurosites.info/estoc.php) show
a decline of ocean pH from−0.02 to−0.04 pH units over
a 20 yr period against low-frequency seasonal oscillations
of similar magnitude (Bates et al., 2012; Dore et al., 2009;
Santana-Casiano et al. 2007). For coastal regions, the scien-
tific community is just now assessing the longer-term vari-
ability in pH. Recent analyses of long-term data sets indicate
that pH is changing rapidly in coastal Washington (Woot-
ton and Pfister, 2012), in coastal upwelling zones along the
US Pacific coast (Harris et al., 2013; Chan et al., 2014), at
a coastal region in the Netherlands (Provoost et al., 2010),
and in the Monterey Bay area where low pH water is asso-
ciated with low oxygen water masses that reach the shallow,
nearshore regions (Booth et al., 2012). Cruise data have pro-
vided snapshots of carbonate chemistry along the coast of the
CCLME (Feely et al., 2008), and suggested that at some loca-
tions in northern California, undersaturated waters shoaled in
the inner shelf. Prior to OMEGAS, however, no coordinated
inner-shelf time series were available that would allow eval-
uation of the frequency, intensity and spatial expanse with
which coastal ecosystems experience rapid acidification.

The recent development of autonomously recording pH
sensors (Martz et al., 2010) has helped to bridge this data gap.
Easily deployed on either moorings or benthic (e.g., rocky
intertidal) locations, these sensors facilitate the collection of
environmental pH data in a variety of habitats and support the
collection of long-term data sets that more comprehensively
characterize the OA seascape (Hofmann et al., 2013). Recent
deployments of these sensors has highlighted that different
ocean ecosystems display a great deal of natural variability
in pH (Frieder et al., 2012; Hofmann et al., 2011; Kroeker
et al., 2011; Price et al., 2012). Importantly, these sensors
have created an affordable option for marine scientists to
describe spatial patterns in ocean chemistry across dynamic
coastal systems. In these environments, characterization of
local-scale differences can be ecologically and economically
critical, but require discrete sampling efforts that are often
logistically and cost-prohibitive. Additionally, this strategy
facilitates identification of refuges from future ocean acidifi-
cation, information that would provide information to man-
agers of coastal ecosystems and resources. It also allows the
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exploration of patterns of local adaptation to carbonate chem-
istry across large marine ecosystems such as the CCLME,
where previous studies have demonstrated possible genetic
differences among populations (De Wit and Palumbi, 2012;
Kelly et al., 2013; Pespeni et al., 2012, 2013a, b, c).

In summer 2011, OMEGAS scientists deployed a network
of environmental sensors on the US west coast at locations
that span∼ 1300 km of the CCLME. The sensor network in-
cluded intertidally deployed instruments paired with instru-
ments mounted on inner-shelf moorings (depth = 15–25 m),
initially at eight sites ranging from central Oregon to Santa
Barbara, CA (Fig. 1). Descriptions of intertidal sensors and
sites and mooring configurations can be found elsewhere
(Washburn et al., 2011; Evans et al., 2013; Pespeni et al.,
2013c; Adams et al., 2013), but briefly, pH records shown
in Fig. 2 are from custom-designed Durafet®-based sensors
deployed in open coast, intertidal rocky habitats to record
at 10 min intervals. Sensors were calibrated directly against
certified reference materials (CRM) or indirectly against
CRM-calibrated spectrophometric pH samples. Periodic (2–
4 weeks) discrete samples were collected for checks on sen-
sor performance in situ and for characterization of carbonate
system chemistry via paired total alkalinity and total CO2 or
total alkalinity and spectrophotometric pH samples. Informa-
tion on the range of alkalinity in conjunction with the tight
covariation between pH andpCO2 served to constrain the
range of possiblepCO2 values for the system and to inform
treatment selection for laboratory studies. This region is well
known for patterns of episodic upwelling that vary from rel-
atively intermittent to the north and relatively persistent to
the south (Checkley Jr and Barth, 2009; Menge and Menge,
2013). Recent efforts to characterize the nearshore carbonate
chemistry of the California Current system (Fassbender et
al., 2011; Feely et al., 2008; Hauri et al., 2009) suggest that
biota of this region experience natural variation in pH due
to latitudinally and temporally variable upwelling. Results
from the OMEGAS sensor network indicate that acidification
of coastal waters extends into the nearshore environments
of the CCLME with low pH, undersaturated water reach-
ing the rocky intertidal zone (Evans et al., 2013; Pespeni et
al., 2013c; Chan et al., 2014). Importantly, these data indi-
cate that biota in the plankton and benthic marine organisms
on shore face an exposure regime to low pH and undersatu-
rated waters that is tremendously dynamic in time and space
(Evans et al., 2013; Chan et al., 2014). Across the OMEGAS
network, the frequency of low pH events encountered in in-
tertidal sensors ranged widely (Fig. 2). In central Oregon, as
much as 20 % of pH values fell below 7.8. In contrast, sites
in central and southern California experienced exposure to
pH values below 7.8 less than 2 % of the time. This pattern
of spatial separation is even more pronounced when we con-
sider pH exposure at even lower-thresholds. For example, the
frequency of exposure to low pH conditions of 7.7 or less at
Bodega Marine Reserve (BMR) – a site in the geographic
center of the network – is most similar to a station 700 km

Fig. 2. Cumulative frequencies of exposure to pH (total scale) less
than 7.7(A) and 7.8(B) as recorded at 10 min intervals by in situ
Durafet®-based pH sensors deployed in intertidal environment be-
tween April and September (maximum record length). Exposure
frequencies at a given pH threshold are normalized to expanding
windows of maximum to minimum in situ water temperature to il-
lustrate the response of pH to the progressive strengthening of sea-
sonal upwelling at each site.

to the north in central Oregon at Strawberry Hill (SH), than
adjacent stations within 150 km to the north at Van Damme
(VD) and the southern site Terrace Point (TP). At 14◦C, this
pH corresponds to apCO2 value of 1200 µatm in our system.
Such values were used to inform experiments described be-
low (Fig. 3). Our emerging understanding from this first year
of operational deployment of the OMEGAS network thus
suggests a mosaic-like coastal pH seascape where organism’s
exposure to OA is both geographically defined and variable
over spatial scales of dispersal of marine larvae (Gouhier et
al., 2010; Navarrete et al., 2008).

Further, analysis of the time series data show that there is
a mosaic of OA where sites in the northern portion of the
study region (in central Oregon) have a greater intensity of
exposure to low pH than sites in the southern portion of the
study region (Fig. 2). Specifically, when parsing the data as
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Fig. 3. Fertilization success ofStrongylocentrotus purpuratusga-
metes across populations andpCO2 treatments. Adult urchins were
collected from two locations that spanned the CCLME and the
OMEGAS study sites: Fogarty Creek (FC), OR, and Bodega Marine
Reserve (BMR), CA. Adult pairs from the same site were spawned
in the laboratory (FCN = 12 pairs; BMRN = 8 pairs). Eggs were
fertilized at 14◦C under control (400 µatm) and elevated (800 µatm,
1200 µatm)pCO2 conditions at an ecologically relevant sperm con-
centration of 7× 103 sperm mL−1. Gametes were allowed a 30 min
contact time and at least 200 eggs were scored per pair after the sec-
ond cleavage. There was no significant effect ofpCO2 by popula-
tion (two-way ANOVA; pCO2 × site effectp = 0.8577;pCO2 ef-
fect p = 0.3168; site effectp = 0.7147). A similar pattern was ob-
served at higher and lower sperm concentrations (data not shown).

a function of measurements below pH 7.7, Fogarty Creek
(FC) in Oregon has a much greater number of measurements
below pH 7.7 whereas sites in California, Lompoc Landing
(LOL), have the lowest frequency (Fig. 2a). If that filter is
changed to pH 7.8, Fogarty Creek continues to maintain its
position as the site with the greatest frequency of low pH
exposure, other sites in central California begin to show ele-
vated frequency of low pH but LOL in the south persists in
being a low OA site (Fig. 2b).

3 The biology: assessing physiological plasticity and
functional traits

Having demonstrated the mosaic of pH experienced by or-
ganisms at study sites across the CCLME, OMEGAS inves-
tigators began to explore whether there are functional traits
and physiological performance profiles in key calcification-
dependent organisms that are acclimatized to this pattern of
carbonate chemistry conditions. Although it is difficult to pin
any one phenotypic element on a single selection factor in
the environment (e.g., temperature or pH alone), the impor-
tance of the phenotype and tolerance traits has been increas-
ingly recognized as a key mechanism by which a species
might respond to environmental change in a number of sys-
tems (Buckley and Kingsolver, 2012; Chown, 2012; Chown
and Gaston, 2008; Helmuth, 2009). Recently within the

OMEGAS research community, functional traits and phys-
iological tolerances have been measured in an environmen-
tally relevant context (Evans et al., 2013; Kelly et al., 2013;
Padilla-Gamiño et al., 2013; Pespeni et al., 2013a; Yu et al.,
2011). The OMEGAS group hypothesized that such pheno-
typic traits would show variation across space if benthic in-
vertebrates are acclimatized to the local conditions (Chown,
2012) such that they might also contribute to how species
respond to environmental change.

Studies initiated by the OMEGAS research teams first fo-
cused on populations of ecologically important calcification-
dependent benthic marine invertebrates, the purple sea
urchin, Strongylocentrotus purpuratus, and the mussel,
Mytilus californianus, across the OMEGAS study sites. Ex-
periments conducted by the group included field experiments
at different OMEGAS sites and laboratory mesocosms that
tested the response of organisms from various populations to
variation in pH. The overall results of the laboratory com-
ponent demonstrated that the two study organisms displayed
different degrees of sensitivity to shifts in ocean chemistry
with sea urchins appearing to be more resilient to variation
in partial pressure of carbon dioxide (pCO2) than mussels.
Specifically, larval culturing of purple sea urchins in CO2
mesocosms showed sea urchin larvae were tolerant ofpCO2
levels that are representative of present-daypCO2 levels doc-
umented by OMEGAS field sensors. That is, growth, mor-
phology, early development to echinopluteus and develop-
ment to metamorphosis were rarely affected (Kelly et al.,
2013; Padilla-Gamiño et al., 2013; Pespeni et al., 2013a),
although minor decreases in the size of the larval skeleton
were seen at elevatedpCO2s of around 1000 µatm (Padilla-
Gamiño et al., 2013). The mechanistic underpinning of this
tolerance and physiological plasticity is currently being ex-
amined in greater detail. However, in the analyses of urchin
larvae from the CO2 mesocosm experiments, the transcrip-
tome displayed variable gene expression during development
that likely compensates for carbonate under-saturation and
challenges to calcification and pHi homeostasis (Evans et
al., 2013a). In contrast, laboratory studies on mussel larvae
(M. californianus) showed that low pH conditions reduced
growth and shell strength (Gaylord et al., 2011). In light of
the pH mosaic data from the sensors, these results suggest
that mussel recruits will vary across the CCLME in terms
of their susceptibility to drilling and crushing predators, and
that susceptibility will increase through time.

When functional traits were compared from animals in
populations across the OMEGAS study sites, we found a
more complicated story. However, for the most part, results
thus far highlight a resilience of function in the study’s ma-
rine invertebrate organisms. First, in line with the robustness
of the early-life embryonic stages of sea urchins in meso-
cosm studies, analysis of fertilization kinetics using adult,
purple sea urchins collected from OMEGAS sites showed
that fertilization success was not affected by elevatedpCO2
(Fig. 3), with populations from both FC and further south
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at BMR showing the same insensitivity to elevatedpCO2.
Similarly, larval culturing of sea urchins demonstrated that
larvae from northern and southern populations have similar
and more resilient metabolic responses topCO2 (Kelly et
al., 2013). Specifically, oxygen consumption rates in early
pluteus did not change between larvae reared under differ-
ent pCO2 conditions (Fig. 4a), and this response was con-
sistent between populations exposed to different upwelling
regimes (Kelly et al., 2013). Examining a feature of juvenile
and adult sea urchins – the mineralogy of the calcium car-
bonate skeleton– LaVigne et al. (2013) found that for the
most part the composition of the skeleton was not differ-
ent in urchins collected across the latitudinal gradient of the
OMEGAS study sites. Adult spine composition (Mg / Ca and
Sr / Ca ratios) was not different between populations from
Fogarty Creek, Oregon, in the north to others near Lom-
poc Landing in southern California (LaVigne et al., 2013)
(Fig. 4b).

Finally, field experiments examined mussel growth at all
the OMEGAS sites and, surprisingly, evidence to date sug-
gests that adult mussel growth wasnot reduced at low pH
sites across the OMEGAS regions (Fig. 4c). The results are
more strongly correlated to other characteristics of the sites
and growth may be driven by other factors such as food avail-
ability (Thomsen et al., 2013) and temperature (Blanchette et
al., 2007; Menge et al., 2008). These results that highlight
different responses in life history stages of mussels (adult
vs. larval forms) are intriguing, and our emphasis in future
research will be to investigate the changes in physiology and
ecology that underlie this apparent ontogenetic shift in sen-
sitivity in M. californianus.

Taken together, studies initiated by the OMEGAS research
teams have made two critical observations: species display a
range of sensitivities to OA in the laboratory, and patterns of
functional traits in natural populations show unexpected di-
vergences from expectations (e.g., faster growth at sites with
more extreme exposure to pH). Additional insights and res-
olution of these patterns await further study in the coming
field seasons for OMEGAS research. Finally, it should be
noted that only a very few species from the rich biota of
the CCLME have been studied in an OA context (Table 1)
and determining the OA tolerance across a larger number of
species occupying similar pH environments in the CCLME
is a critical research need.

4 Local adaptation and benthic marine invertebrates of
the CCLME

In addition to studying functional traits of study organisms,
several lines of investigation within the OMEGAS group
have been designed to address local adaptation. Local adap-
tation occurs when there is genetic variation among popula-
tions that matches some aspect of the environment, so that on
average “local” genotypes outperform “foreign” genotypes

when they compete against one another in the home environ-
ment (Kawecki and Ebert, 2004). An understanding of local
adaptation is relevant to forecasting a species’ capacity to
adapt to global change for two reasons. First, adaptation de-
pends on genetic variation. Local adaptation to a particular
gradient (temperature, pH) implies the existence of variation
that will allow for adaptation to changes in that gradient in
the future. In addition, the capacity to adapt to an environ-
mental variable inspace, suggests the capacity to adapt to
changes in that variable throughtime. And conversely, limits
to adaptation in space (for example failure to adapt to max-
imum temperatures above 20◦C at a southern range limit)
suggest possible limits to adaptation in the face of future
changes.

There are several approaches to describing local adapta-
tion. The gold standard for demonstrating local adaptation
is a set of reciprocal transplants among sites, followed by
a comparison of some aspect of performance for “local” vs.
“foreign” genotypes in each environment. However, when lo-
cal genotypes can be shown to have the highest performance
in a particular environment it will not always be clear to
which aspect of the environment they are responding to, as
aspects of the environment (e.g., temperature, pH, biotic in-
teractions) often co-vary. To test for adaptation to a specific
environmental variable of interest, it will often be necessary
to bring organisms from different populations into the labora-
tory, and examine variation in performance along a particular
axis of environmental variation.

This type of laboratory experiment was done by OMEGAS
investigators with sea urchins. Kelly et al. (2013) per-
formed quantitative genetic crosses among purple sea urchins
(Strongylocentrotus purpuratus) from two different sites with
different upwelling regimes, and then reared the offspring of
these crosses under high and lowpCO2. They found abun-
dant genetic variation for the response to highpCO2, but
only minor differences between the offspring of males from
the two sites. However these small differences were consis-
tent with local adaptation to pH, with offspring from the site
with more exposure to extreme pH levels showing a lesser
sensitivity to low pH (Fig. 5). The lack of large differences
among populations is also consistent with the biology of pur-
ple urchins, which have long-lived planktonic larvae, and
therefore relatively homogenized populations (Edmands et
al., 1996).

Another way to demonstrate genetic differences among
populations is to identify differences in actual gene se-
quences. Pespeni et al. (2012) performed a genome-wide
scan of polymorphisms for two distant populations of the
purple urchinS. purpuratus. They found many polymor-
phisms whose frequencies differed strongly among popula-
tions, indicating that they were targets of selective forces
that differed among these populations. Similarly, De Wit
and Palumbi (2013) used transcriptome sequencing of three
populations of the red abalone (Haliotis rufescens) to iden-
tify single nucleotide polymorphisms (SNPS) in genes that
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Table 1.Ocean acidification studies on functional traits of organisms in the California Current Large Marine Ecosystem.

Taxonomic Species Name Life Variable Response Source
Group Stage Measured

Invertebrate Strongylocentrotus
franciscanus

Larvae Transcription of
hsp70

Larvae that were raised under enhanced
CO2 displayed compromised expression of
the thermally induced molecular chaperone
hsp70.

O’Donnell et al. (2009)

Invertebrate Lytechinus pictus Larvae Morphometrics
transcriptomics

Larvae cultured under high CO2 were
smaller and had a more triangular body.
Downregulation of genes related to
metabolism and biomineralization. Up-
regulation of a few genes related to ion
regulation and acid-base pathways.

O’Donnell et al. (2010)

Invertebrate Mytilus californianus Larvae Shell strength
and size

Larvae raised under high CO2 developed
thinner, weaker and smaller shells as com-
pared to controls.

Gaylord et al. (2011)

Invertebrate Mytilus trossulusand
Strongylocentrotus
franciscanus

Larvae Developmental rate Decrease in larval body size in both the sea
urchin and the mussel.

Sunday et al. (2011)

Invertebrate Haliotis
kamtschatkana

Larvae Development, size
and survivorship

Exposure to high CO2 during development
resulted in lower survival, abnormal devel-
opment and smaller size in the northern
abalone.

Crim et al. (2011)

Invertebrate Strongylocentrotus
purpuratus

Larvae Development size No differences in development between low
and high CO2 treatments. Smaller larvae in
the high CO2 treatment.

Yu et al. (2011)

Microbes Nitrifiers n/a Ammonia oxidation
rates

Microbial nitrification rates decreased when
pH was experimentally reduced.

Beman et al. (2011)

Invertebrate Ostreola conchaphila Larvae
Juvenile

Shell growth rate,
shell area

Carryover effects of water chemistry ex-
perienced at early stage (larvae) to the
later post-larval juvenile stage. Juveniles
exposed to acidified conditions in their lar-
val stages failed to attain the same size as
juveniles derived from larvae exposed to
less acidic conditions.

Hettinger et al. (2012)

Algae Pseudo-nitzschia
fraudulenta

n/a Domoic acid pro-
duction, cellular
Si : C ratios

Strong synergism between high CO2 levels
and silicate-limited growth, which greatly
increases cellular toxicity relative to growth
under lower CO2 conditions.

Tatters et al. (2012)

Invertebrate Strongylocentrotus
purpuratus

Juvenile
Adults

Mg / Ca, Sr / Ca Composition of skeleton precipitated dur-
ing early and adult life history stages ap-
pears relatively robust to spatial gradients
and predicted changes in seawater chem-
istry.

LaVigne et al. (2012)

Invertebrate Strongylocentrotus
purpuratus

Larvae Morphometrics and
biochemical
responses

Lipid utilization rates and protein content
did not vary withpCO2, larval growth was
reduced at elevatedpCO2 despite similar
rates of energy utilization, and relationships
between egg phospholipid content and lar-
val length were found under control but not
highpCO2 conditions.

Matson et al. (2012)

Invertebrate Strongylocentrotus
purpuratus

Larvae Transcriptomics Upregulation of several calcium trans-
porters and binding proteins in a population
of urchins from an intertidal site character-
ized by low and fluctuating pH.

Evans et al. (2013a)

Invertebrate Strongylocentrotus
purpuratus

Larvae Development, size,
respiration,
transcriptomics

Additive effects of high temperature and
high CO2 conditions induce metabolic de-
pression and a major downregulation of hi-
stone encoding genes. No differences in de-
velopment between CO2 treatments were
found.

Padilla-Gamiño et al. (2013)

Invertebrate Strongylocentrotus
purpuratus

Larvae Heritability,
genetic variation,
size

Genetic variation in the response to ocean
acidification, indicating potential for adap-
tation. Smaller larvae under high CO2 con-
ditions.

Kelly et al. (2013)

Invertebrate Mytilus trossulus Adults Strength of byssal
threads

Threads grown under highpCO2 condi-
tions exhibited compromised mechanical
characteristics.

O’Donnell et al. (2013)
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Fig. 4. Responses of marine calcifiers at the OMEGAS sites.(A) Respiration rates in larval sea urchins ofStrongylocentrotus purpuratus;
Sea urchin larvae from the Santa Barbara area and Van Damme were raised at 13◦C under high (1100 µatm) and low (400 µatm)pCO2
using a flow-through CO2 mixing system. Rates of oxygen consumption were obtained 92 h after fertilization in early pluteus larvae. Larval
respiratory rates did not differ among sites orpCO2 treatments.(B) Biomineral composition of the spines of adultS. purpuratus; data shown
are mean Mg / Ca (upper panel) and Sr / Ca (lower panel) ratios for spines collected from adult urchins at OMEGAS study sites: Purisma
Point (PP), CA, near Lompoc Landing, Terrace Point (TPT), CA, Van Damme State Park (VD) and Fogarty Creek (FC), OR;(C) Growth
of intertidal mussels,Mytilus californianus, during the 2011 summer upwelling season. Mussels∼ 40 mm in length were collected in April
2011 from the OMEGAS sites, notched at the posterior lip of the shell, and outplanted back to each site. Mussels were retrieved in October
2011, and growth was measured as the increase in shell length. Growth rate is expressed as millimeters per day, standardized by initial length;
results shown here are scaled by the number of days for the study duration at each site and the individual mussel length at study initiation.
Site abbreviations as in Fig. 1 and the text.

appeared to be under spatially varying selection. A limita-
tion of the approach used in both of these studies is that
variation in gene sequences often cannot be directly tied to
variation in organismal performance. Furthermore, because
of co-variation in environmental variables it is often diffi-
cult to know which aspect of the environment is selecting for
differences in allele frequencies among populations. How-
ever studies like these provide a rich foundation for ongoing
work attempting to identify the genetic basis of local adap-
tation. Notably, in a mesocosm experiment where urchin lar-
vae from OMEGAS study sites were cultured under ecolog-
ically relevantpCO2 conditions for the CCLME, Pespeni et
al. (2013a) found significant allelic change in 40 classes of
functional proteins in gene classes for ion homeostasis and
biomineralization, suggesting that standing genetic variation
does exist within these study populations at the OMEGAS
sites.

We are currently testing for local adaptation to carbonate
chemistry in another species from the CCLME with a very
different life history and dispersal mode from purple urchins.
Coralline algae are an ecologically important group of ma-
rine calcifiers that live in almost every habitat in the world’s

oceans, from the tropics to the polar regions (Johansen,
1981). Coralline algae are very abundant along the CCLME
(Abbott and Hollenberg, 1976) providing substrata and set-
tlement cues to invertebrate larvae and serving as habitat for
many marine species (Johansen, 1981). Coralline algae are
highly vulnerable to ocean acidification (Koch et al., 2013)
and, to date, it is unclear how more acidified waters will af-
fect algal physiological mechanisms dependent on HCO3-
and CO2−

3 availability such as photosynthesis and calcifi-
cation. Coralline algae reproduce by releasing spores (Jo-
hansen, 1981) that can fully attach to the bottom within hours
of release (Miklasz, 2012) and recruit near the parental alga.
This feature of coralline algae life history could limit disper-
sal distance and increase the potential for local adaptation in
this group. We are currently examining how ocean acidifi-
cation can affect the growth of spores from the articulated
coralline algaeCorallina vancouveriensis, which is an abun-
dant species in the intertidal zone within the CCLME (Abbott
and Hollenberg, 1976). Using populations exposed to dif-
ferent oceanographic conditions we are examining whether
there is genetic variation among individuals and how this ge-
netic variation is distributed among populations. Differences
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Fig. 5. Breeding experiment conducted using purple urchin adults
collected from two OMEGAS study sites.(A) Cross design: we
crossed adult urchins from two sites in California, US (inset),
known to differ in their carbonate chemistry regimes (OMEGAS
sites: northern CA, Van Damme; southern CA, Santa Barbara). In
the lab, we crossed each male with two females from his own site,
and two females from the opposite site, and split embryos from
each cross into low and highpCO2 rearing conditions.(B) To-
tal larval length (±SD) of S. purpuratusraised for five days un-
der low pCO2 and highpCO2 conditions. Offspring of northern
CA sires are larger than the offspring of southern CA sires un-
der highpCO2 (pMCMC = 0.012) but not under lowpCO2 (pM-
CMC = 0.27). Modified from Kelly et al 2013.

in the potential for adaptation could have important implica-
tions for the distribution ofC. vancouveriensisand the or-
ganisms in the CCLME that depend on them.

5 Summary and future directions

The OMEGAS consortium has used a strategy of co-locating
sensors and biological observations to begin to describe pat-
terns of acclimatization and local adaptation in the CCLME.
Ultimately, the goal of this research consortium is to use
this information to forecast the impacts of future acidifica-
tion in coastal regions around the globe. Co-locating sensors
with measures of physiological performance makes sense,
but should be more deeply appreciated in a biological con-
text. Since it is the physical environment that makes a large
contribution to genetic variation in populations, we would
predict that regions characterized by large variation in pH

and changes in saturation state may have organisms with dif-
ferent physiological tolerances and with different genetics in
terms of OA tolerance (Kelly and Hofmann, 2012; Kelly et
al., 2013; Pespeni et al., 2013a). Thus, from a global change
biology perspective, this strategy also allows us to explore
the extent to which physiological plasticity vs. the capacity
for adaptation might play a role in species response to envi-
ronmental change.

Our emerging understanding of a spatial mosaic of coastal
pH has facilitated studies of biological responses to system-
relevant, mean-state changes in carbonate chemistry. As we
gain insights from this first-order coupling between field ob-
servations and laboratory studies, we anticipate that a deep-
ening understanding of the temporal variability of OA stress,
its scope for future changes and covariation with other global
change stressors will similarly enable a new generation of
physiological, ecological and evolutionary studies. For ex-
ample, organisms in the CCLME will face changes in ex-
posures to both the severity and frequency of low pH and
saturation state conditions (Hauri et al., 2013), with impacts
that can interact with exposures to declining oxygen concen-
trations (Rykaczewski and Dunne 2010, Cocco et al., 2012).
While capacity for resolving mean state vs. variability im-
pacts and interactions between multiple stressors remains a
limiting factor in the field, development of new experimen-
tal systems (Bockmon et al., 2013) can enable experimental
treatments that mimic exposure regimes that organisms are
observed and forecasted to face in situ. Such advances will
be crucial to making more robust forecasts regarding the eco-
logical consequences of future ocean change (Boyd, 2011;
Harvey et al., 2013). Finally, as the complexity of this issue
unfolds it will require that scientists engage more actively
with policy makers, conservation biologists, and managers
of critical marine ecosystems (Dawson et al., 2011; Ibáñez et
al., 2013; Kelly et al., 2011).
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