

1 **Technical note: Mesocosm approach to quantification of dissolved inorganic carbon**  
2 **percolation fluxes**

3

4 **E. M. Thayesen<sup>1</sup>, S. Jessen<sup>2</sup>, P. Ambus<sup>1</sup>, C. Beier<sup>3</sup>, D. Postma<sup>4</sup>, I. Jakobsen<sup>1</sup>**

5 [1]{Department of Chemical and Biochemical Engineering, Center for Ecosystems and  
6 Environmental Sustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby,  
7 Denmark}

8 [2]{Department of Geosciences and Natural Resource Management, Copenhagen University, DK-  
9 1350, Copenhagen, Denmark}

10 [3]{Center for Catchments and Urban Water Research, NIVA, Oslo, Norway}

11 [4]{Geological Survey of Denmark and Greenland, DK-1350, Copenhagen, Denmark}

12

13 **Abstract**

14 Carbon dioxide (CO<sub>2</sub>) fluxes in the vadose zone are influenced by a complex interplay of biological,  
15 chemical and physical factors. A novel soil mesocosm system was evaluated as a tool for providing  
16 information on the mechanisms behind dissolved inorganic carbon (DIC) percolation to the  
17 groundwater from unplanted soil. Carbon dioxide partial pressure (*p*CO<sub>2</sub>), alkalinity, soil moisture  
18 and temperature were measured with depth and time, and DIC in the percolate was quantified using  
19 a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms.  
20 The *p*CO<sub>2</sub> varied between 0.2-1.1% and alkalinity was 0.1-0.6 meq L<sup>-1</sup>. The measured cumulative  
21 effluent DIC flux over the 78 days experimental period was 185-196 mg L<sup>-1</sup> m<sup>-2</sup> and in the same  
22 range as estimates derived from *p*CO<sub>2</sub> and alkalinity in samples extracted from the side of the  
23 mesocosm column and the drainage flux. Our results indicate that the mesocosm system is a  
24 promising tool for studying DIC percolation fluxes and other biogeochemical transport processes in  
25 unsaturated environments.

26

27 **1 Introduction**

28 The global flux of carbon dioxide (CO<sub>2</sub>) from the soil to the groundwater as dissolved inorganic  
29 carbon (DIC) is estimated at 0.2 Gt carbon (C) yr<sup>-1</sup> and is much less than the upward flux of CO<sub>2</sub>

1 from the soil to the atmosphere of 59-76.5 Gt C yr<sup>-1</sup> (Kessler and Harvey, 2001; Raich and Potter, 2  
2 1995; Houghton, 2007). However, DIC leached from soils constitutes a significant fraction of the  
3 annual net C loss from croplands and grasslands (Kindler et al., 2011), suggesting a need for wider  
4 quantification of the DIC percolation flux from these systems. Dissolved inorganic carbon in the  
5 soil water derives from the dissolution of biogenically produced CO<sub>2</sub> and carbonate minerals and is  
6 controlled by the partial pressure of CO<sub>2</sub> (*p*CO<sub>2</sub>), pH and temperature (Clark et al., 1997). However,  
7 our understanding of soil water DIC formation is incomplete due to incomplete understanding of  
8 production and transport of CO<sub>2</sub> in the soil (Jassal et al., 2005), which determine the *p*CO<sub>2</sub> at any  
9 given time and space.

10 Increased understanding of the processes controlling DIC formation and transport to aquifers can be  
11 obtained from measurements at field conditions or from studies under controlled conditions. Field  
12 studies have the advantage of being realistic but are also characterized by large uncertainty due to  
13 large spatial and temporal heterogeneity (e.g., Lange et al., 2009). Soil column studies under  
14 controlled conditions in the laboratory may be less realistic, but provide potential for a detailed  
15 study in a homogeneous environment and may thereby offer better process understanding. In the  
16 following, we collectively refer to incubated and non-incubated filled soil columns and -monoliths  
17 as mesocosms. Achieved understanding from mesocosm experiments may be double-checked  
18 through subsequent modeling studies for which homogenous and controlled conditions provide the  
19 ideal study frame.

20 Application of mesocosms for research on CO<sub>2</sub> fluxes in soil has mainly been focused on studies of  
21 gaseous effluxes (e.g., Lin et al., 1999; Cheng et al., 2000; Schnyder et al., 2003) while little  
22 attention has been paid to investigation of the *p*CO<sub>2</sub> with depth in large-scale unplanted mesocosms  
23 (Lawrence and Hendry, 1995; Hendry et al., 2001) and to DIC leaching. Mesocosms provide useful  
24 environments for assessing biogeochemical processes in the root zone and in deeper soil layers  
25 under controlled conditions (Hendry et al., 2001). In this work, a simple and economical soil  
26 mesocosm system consisting of carefully-filled homogenized, sieved soil was evaluated for its  
27 capability for producing reliable DIC percolation fluxes to aquifers beneath unplanted soil. We  
28 compare DIC fluxes obtained from direct measurements with DIC fluxes indirectly determined via  
29 measurements of *p*CO<sub>2</sub>, pore water alkalinity and drainage flux.

30

1    2    **Methodology**

2    **2.1 Design and construction of mesocosms**

3    Two replicate mesocosms were constructed from transparent plexiglas cylinders with an outer  
4    diameter of 200 mm, inner diameter of 190 mm and a length of 850 mm (Fig. 1). The bottom of the  
5    mesocosms constituted of 30 mm thick polyethylene high density (PEHD) plates mounted with  
6    porous sintered PTFE filter discs of 70 mm diameter  $\times$  10 mm thickness (Prenart, DK) (Fig. 2A). A  
7    70 mm diameter hole was drilled into the PEHD plate to create a 5 mm deep cavity beneath the  
8    filter disc. The cavity was connected with the outside of the mesocosm through a 3 mm wide  
9    channel. An o-ring smeared with silicone grease provided a gas- and water-tight seal between  
10   PEHD plate and cylinder wall.

11   Mesocosms were packed with air-dried and sieved (6 mm) A- and C- horizon soil material of coarse  
12   sandy texture (Table 1) from an agricultural field in Voulund, Denmark ( $56^{\circ}2'35.7''N$ ,  
13    $9^{\circ}8'101.1''E$ ) which has been maintained in agricultural rotation for >100 years. Before filling soil  
14   into the mesocosm, a 5 mm layer of an aqueous suspension of quartz flour was applied on top of the  
15   PEHD plate in order to optimize the hydraulic connection between the gravelly C horizon and the  
16   filter disc. Vacuum was applied to the mesocosm bottom outlet (Fig. 1) and the water in the  
17   suspension was sucked through the filter disc. Just before the quartz flour layer became dry, a 30  
18   mm layer of a 0.5:1.0 mixture (w/w) of dry quartz flour and C horizon soil material was added. The  
19   mesocosm C horizon was established in 10 sequential steps of ~30 mm each with a bulk density of  
20    $1.53 \pm 0.06 \text{ g cm}^{-3}$  to a total C horizon height of ~480 mm. Next, a 300 mm A horizon with a bulk  
21   density of  $1.47 \pm 0.05 \text{ g cm}^{-3}$  was established using a similar procedure. This resulted in a diameter-  
22   to-length ratio of the packed soil column of 0.244 which is close to the suggested ratio of 0.25 for  
23   minimization of boundary effects (Lewis and Sjöstrom, 2010). In order to avoid soil compaction  
24   during wetting, each layer was compressed for 10 seconds by means of an adjustable weight  
25   pressure (Fig. 2B). The pressure exerted was slightly above the calculated weight of wet soil above  
26   the respective soil depth. The surface of each layer was scratched slightly to improve hydraulic  
27   contact between layers. The upper two soil layers were not exposed to the compression.

28   The mesocosms were equipped with the following samplers:

29   • Gas samplers were inserted at depths of 120, 210, 330, 430, 525, 645 and 730 mm. Gas  
30   samplers were assembled by mounting a loop of Accurell tubular membrane (Membrana,

1 DE) on a y-piece connected to a Teflon tube. The tube was pushed through a gas tight 1/8  
2 National Pipe Thread fitting in the mesocosm wall and was on the exterior connected to a  
3 three-way Luer-lock valve for syringe sampling outside the mesocosm wall (Fig. 2C and D).  
4 Additional gas sampling units were established at 40 and 60 mm depths by vertical insertion  
5 of Teflon tubes connected to a three-way Luer-lock valve and a syringe.

6 • EC-TM/5-TM sensors (Decagon Devices, USA) for measurement of the volumetric water  
7 content and temperature were installed at 65, 253, 315, 463, 623, 757 mm.  
8 • Rhizon Flex samplers (Rhizosphere Research Products, NL) for water extraction were  
9 placed at depths of 65, 157, 253, 373, 460, 547, 660 and 755 mm.

10 Gas tightness of packed mesocosms was tested through pressure delivery to the column interior via  
11 a gas sampling port and application of leak detector spray to all fittings.

## 12 **2.2 Experimental conditions of mesocosms**

13 The filter disc at the bottom of the mesocosm was connected to a vacuum bottle in which the  
14 pressure was adjusted to prevent water logging in layers above the disc (Fig. 1). The required  
15 pressure varied from -0.1 to -0.75 bar relative to atmospheric pressure. Application of the filter disc  
16 prevented air flow out of the mesocosm as the pore size of the filter disc was sufficiently small to  
17 keep its pores water-filled at all times. The filter disc thus established an artificial, non-fluctuating,  
18 groundwater table required to reliably estimate the water-mediated DIC flux to the groundwater.

19 The mesocosms were incubated in a climate chamber and maintained at mean daily air temperature  
20 of summer field conditions (18 °C) and night temperatures of 13 °C. Light with an intensity of ~500  
21  $\mu\text{E m}^{-2} \text{ s}^{-1}$  was switched on 16 hours day<sup>-1</sup>. During incubation, the mesocosms were shaded from  
22 light with black plastic, leaving only the top uncovered, to avoid growth of algae on the mesocosm  
23 walls.

24 The mesocosms were irrigated using an adjustable peristaltic pump with 6 channels (no. 115, Ole  
25 Dich Instruments, DK). Each channel delivered a stable flow through a 2 mm diameter tube with a  
26 seal at the terminal end where a 25 cm section of the tube had ~10 perforations to allow for  
27 scattered dripping of irrigation water onto the soil (Fig. 2E). Prior to the experiment, the mesocosm  
28 soil was slowly pre-wetted with milli-Q water; the infiltration pattern showed homogeneous flow  
29 (Fig. 2F). During the experiment, irrigation events were set as pulses providing 4.2-12.0 mm m<sup>-2</sup>

1       $\text{hr}^{-1}$ . Generally high irrigation rates were applied to ensure downwards percolation. Seven days into  
2      the experiments, the irrigation water was replaced by a 50% strength Hoagland nutrient solution  
3      with an alkalinity of 0.05 meq  $\text{L}^{-1}$  (Hoagland and Amon, 1950) in order to avoid nutrient depletion  
4      of the soil under the high irrigation regime applied. Frequency and rate of irrigation was varied over  
5      the experimental period (78 days) in order to outline the dependence of the  $p\text{CO}_2$  on the soil water  
6      content.

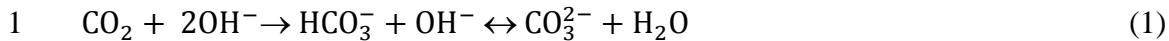
7

## 8      **2.3 Measurements and calculations**

### 9          **2.3.1 Soil air**

10       Samples of soil air were collected weekly in 1 mL aliquots from each port and were transferred to  
11       5.9 mL septum vials (nr. 719W, Labco, UK). The  $p\text{CO}_2$  in the sample was measured on a 7890A  
12       GC System with FID detector in combination with a methanizer (Agilent Technologies, DK). Due  
13       to the importance of soil moisture content on  $p\text{CO}_2$  and the immediate stimulation of microbial  
14       respiration by irrigation events, gas samples were collected more than 12 hours after an irrigation  
15       event.

### 16          **2.3.2 Soil water**


17       Soil water samples for determination of alkalinity were taken weekly, subsequent to  $p\text{CO}_2$  samples,  
18       transferred into closed glass vials and stored at 5 °C prior to analysis. Alkalinity was determined  
19       using the Gran Titration method (Gran, 1952).

### 20          **2.3.3 Soil moisture and temperature**

21       Volumetric water content (VWC) and temperature within the mesocosms were logged at ten minute  
22       intervals using EM 50 loggers (Decagon Devices, USA) and a CR1000 logger (Campbell Scientific,  
23       UK). To increase measurement accuracy, sensors were calibrated to the A and C horizon conditions  
24       according to the guidelines of the manufacturers.

### 25          **2.3.4 Dissolved inorganic carbon percolation**

26       The DIC in the percolating water was collected in 2 L vacuum flasks containing 15 mL 1 M carbon-  
27       free NaOH solution. The reaction that followed was



2 At a concentration of  $\text{OH}^- > 0.1 \text{ M}$  (pH ~13), bicarbonate is transformed instantaneously to  
3 carbonate (Pinsent et al., 1956). The added amount of NaOH ensured a pH >10 in all drainage  
4 samples preventing degassing of  $\text{CO}_2$  into the flask headspace. A carbon-free NaOH solution was  
5 obtained by adding solid NaOH (Merck, no. 106462) to degassed (“carbon-free”) milliQ-water  
6 under a stream of  $\text{N}_2$ . The solution was sealed and stored in a desiccator containing a vial of soda  
7 lime. Prior to addition of the 1 M NaOH solution, vacuum flasks were evacuated and flushed with  
8  $\text{N}_2$ .

9 Dissolved inorganic carbon percolation was determined weekly on triplicates of percolate samples  
10 that were diluted ten times, transferred to sealed glass flasks and analyzed on a TOC\_V CPH  
11 Analyzer (Shimadzu Suzhou Instruments, JP). Dissolved inorganic carbon percolation was also  
12 estimated using the measurements of  $\text{CO}_2$  in the gas and water phase in the mesocosm. Dissolved  
13 inorganic carbon concentrations ([DIC]) were calculated from the  $p\text{CO}_2$ , the alkalinity in soil  
14 solution and the temperature at the bottom of the mesocosms (~60-73 cm) using PHREEQC  
15 software (Parkhurst and Appelo, 2011), and assuming chemical equilibrium. For the calculation,  
16  $p\text{CO}_2$  and temperature measurements were interpolated linearly to match the depths of alkalinity  
17 measurements. When low  $p\text{CO}_2$  was measured at the mesocosm bottom due to high water content  
18 (see Results) the next sampler above was used to obtain the  $p\text{CO}_2$  value. The [DIC] was multiplied  
19 by the water flux to obtain the DIC percolation. One DIC percolation sample from each mesocosm  
20 was missing (day 39 and 74 for mesocosms 1 and 2, respectively). On those days the estimated  
21 values were used.

22 **2.3.5 Statistical analysis**

23 Linear regression analysis was conducted to test for the correlation between cumulative drainage  
24 (cumDrainage) and cumulative DIC percolation (cumDIC), as well as between estimated and  
25 directly measured cumDIC (R version 2.12.0). A t-test was applied to analyze the differences  
26 between the means of cumDrainage and cumDIC for the two replicate mesocosms and between the  
27 slopes of estimated vs. directly measured cumDIC in the combined dataset and the 1:1 line.

1    **3 Results**

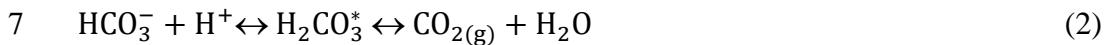
2    The  $p\text{CO}_2$  at 25-67 cm depth followed identical patterns in both mesocosms and varied between 0.4-  
3    1.1%, with an overall declining trend over time (Fig. 3). The  $p\text{CO}_2$  at the top (7 cm) was much  
4    lower than in deeper soil layers due to loss by diffusion and remained relatively stable at ~0.3%.  
5    Also, in brief periods of time, the  $p\text{CO}_2$  was significantly lower at the bottom of mesocosms 1 (at  
6    64 and 71 days) and 2 (at 71 days) than in the soil layers above.

7    The VWC was 20-24% in the A horizon and 7-15% in the upper C horizon (37-56 cm) throughout  
8    the experimental period (Fig. 3). The VWC in the lower C horizon (67-76 cm) was 10-28%, where  
9    high VWC was due to water logging at the mesocosm bottom after intensive irrigation events.  
10   Topsoil VWC decreased slightly during the experimental period, which resulted in decreased soil  
11   temperatures due to the higher heat capacity of water as compared to air. The temperature in the  
12   mesocosms declined with depth due to higher water contents in the A horizon and heat given off by  
13   the lamps in the climate chamber just above the mesocosm top.

14   Alkalinity was in the range 0.1-0.4 and 0.1-0.6 meq  $\text{L}^{-1}$  in mesocosms 1 and 2, respectively (Fig. 3).  
15   Observations of alkalinity from the same depth showed more variation with time than the  $p\text{CO}_2$  and  
16   VWC. Close inspection of Fig. 3 shows that the alkalinity in the upper C horizon was elevated  
17   compared to the A horizon and the lower C horizon, but decreased with depth towards the end of  
18   the experimental period.

19   The directly measured cumDIC during the experimental period was 21.1-24.6 mg C (Fig. 4a) and  
20   corresponds to a cumulative DIC flux of 0.8-0.9  $\text{g m}^{-2}$ . The estimated (i.e., indirectly determined)  
21   cumDIC of 25.9-26.5 mg, calculated from  $p\text{CO}_2$ , pore water alkalinity and water flux, was only  
22   slightly higher than the measured values (Fig. 4a) and was closely correlated with the measured  
23   cumDIC ( $R=0.99$  and  $0.98$  for mesocosms 1 and 2, respectively, and  $p<0.001$  for both mesocosms).  
24   However, the slope of the regression for the estimated vs. the directly measured cumDIC in the  
25   combined dataset was significantly different from the 1:1 line ( $p<0.001$ , Fig. 4c). The cumDrainage  
26   was 149-157 mm and corresponded to 1.3 and 1.1 times the water-filled pore volumes for  
27   mesocosm 1 and 2, respectively. The measured cumDIC and cumDrainage were not significantly  
28   different between mesocosms ( $p=0.68$  and  $0.99$ , respectively). The measured cumDIC was highly  
29   correlated with cumDrainage in both mesocosms ( $R=0.97$ - $0.99$ ) (Fig. 4b). On day 46 a three times  
30   higher drainage from mesocosm 1 caused a steep increase in cumDIC, however the [DIC] remained

1 nearly unchanged. The average [DIC] in the percolate from the mesocosms was 0.44-0.46 mmol  
2 L<sup>-1</sup>.


3

#### 4 **4 Discussion**

5 In general, there was a good agreement between observations from the two replicate mesocosms.  
6 Acknowledging the statistical limitation of having only two and not three or more replicates,  
7 statistical analysis indicated that the measured cumDIC was not significantly different between  
8 mesocosms and was highly correlated with the estimated cumDIC. This suggests that DIC transport  
9 to aquifers, in agreement with theory (Appelo and Postma, 2005), can be described by soil gas  
10  $p\text{CO}_2$ , soil water alkalinity and drainage flux, and underlines the gas tightness and reliability of the  
11 applied mesocosm system. Differences between the estimated and the measured cumDIC could be  
12 related to disequilibrium between gaseous CO<sub>2</sub> and DIC or the fact that the measured  $p\text{CO}_2$  was a  
13 “snap shot” of possible  $p\text{CO}_2$  whilst the measured [DIC] in the percolate was the weekly average, as  
14 suggested by Walmsley et al. (2011). The good agreement between results from the two  
15 mesocosms, may reflect the careful homogenization of the soil and filling of the mesocosms, as  
16 well as generally reliable sampling equipment and procedures. Our results suggest that the  
17 mesocosm system is well suited for investigation of the effect of different agricultural practices  
18 such as liming, fertilization, irrigation or cropping on the DIC percolation flux.

19 Our results are in agreement with a reported  $p\text{CO}_2$  of 0.5-1% at 20 cm depth in a fallow silt loam  
20 field at soil temperatures of 5-20°C and VWCs of 15-30% (Buyanovsky and Wagner, 1983) and  
21 with 0.3-0.9%  $p\text{CO}_2$  at 15 cm depth in loam (temp. and VWC not reported) (Smith and Brown,  
22 1933). The alkalinity in the mesocosms was typical for streams fed by percolation water from  
23 western Danish sand soils (-0.23 to 1.55 meq L<sup>-1</sup>) (Rebsdorf et al., 1991). The average [DIC] in our  
24 study was similar to the [DIC] in the percolate from sandy forest soils with a topsoil pH of 3.8-4,  
25 but was far below the [DIC] in the percolate from croplands and grasslands (Kindler et al., 2011;  
26 Walmsley et al., 2011; Siemens et al., 2012). This indicates that a higher pH in cropland soil and a  
27 lower  $p\text{CO}_2$  in the absence of roots are acting in opposite directions in terms of DIC formation. The  
28  $p\text{CO}_2$  decrease over time was probably due to the concurrent increased soil gas diffusivity with  
29 decreasing water content in the topsoil (Fig. 3) (Bouma and Bryla, 2000; Jassal et al., 2005; Zhang  
30 et al., 2010).

1 The alkalinity increased from the A to the C horizon, in accordance with mineral dissolution by  
2 carbonic acid. However, the alkalinity decreased towards the bottom of the mesocosm. This  
3 suggests the presence of an acid-generating process at the mesocosm bottom that consumes  
4 alkalinity (Eq. 2, where  $\text{H}_2\text{CO}_3^* = \text{CO}_{2(\text{aq})} + \text{H}_2\text{CO}_3$ ), such as the precipitation of a gibbsite-type  
5 mineral (Eq. 3), as has been shown for several western Danish non-calcareous sandy sediments  
6 (Hansen and Postma, 1995; Kjøller et al., 2004).



9 The accuracy of  $p\text{CO}_2$  and alkalinity measurements at the mesocosm bottom was crucial because  
10 both were used for estimating the DIC percolation. The reason for the decreased  $p\text{CO}_2$  at the  
11 mesocosm bottom on days 64 and 71 is not clear but might be related to prolonged periods of high  
12 VWC (~25 %) (Fig. 3). It is well known that the  $p\text{CO}_2$  decreases at high water content due to the  
13 inhibition of respiration as the pore spaces become saturated with water and depleted of oxygen  
14 (Linn and Doran, 1984; Bekele et al., 2007). However, despite lower  $\text{CO}_2$  production at high VWC  
15 at depth in the mesocosms, vertical diffusion should still have settled  $p\text{CO}_2$  at fairly equal level, as  
16 is seen in the field (Hamada and Tanaka, 2001; Schulz et al., 2011; Wang et al., 2013). Hence we  
17 reason that the explanation for low  $p\text{CO}_2$  lies in the combined action of the high applied suction (0.3  
18 atm, or  $-0.7$  atm relative to atmospheric pressure) beneath the filter disc and considerable  
19 waterlogging above the filter disc. The lowering in total pressure (i.e., to 0.3 atm) across the filter  
20 disc may have given rise to gas phase formation because the sum of the partial gas pressures of  $\text{N}_2$ ,  
21  $\text{O}_2$ ,  $\text{CO}_2$ ,  $\text{Ar}$ , etc. then obviously must have exceeded that of the total pressure. The gas phase may  
22 have formed within the filter disc itself and/or in the cavity immediately below the disc. This would  
23 allow dissolved  $\text{CO}_2$  to degas into the newly formed gas phase and hence lead to a drop in the  
24 dissolved concentration of  $\text{CO}_2$ . In that case diffusion of  $\text{CO}_2$  through the ponded water and across  
25 the filter disc would lead to a lowering of the  $p\text{CO}_2$  in the stagnant water at the mesocosm bottom,  
26 i.e. above the filter disc. The effect was only visible when ponding submerged the lowest gas  
27 sampler. Also, bubbles were observed sporadically in the tubing to the effluent bottle, supporting  
28 gas phase formation in response to the drop in total pressure. Further, this explanation is supported  
29 by current HYDRUS/HP1 modelling results (Thaysen et al., *in prep.*). The diffusional efflux of  $\text{CO}_2$   
30 across the filter disc might have slightly lowered total  $\text{CO}_2$  within the mesocosm, though probably  
31 to a minor extent only. Meanwhile, the degassing of  $\text{CO}_2$  had little effect on the measurement of

1 CO<sub>2</sub> flux to the aquifer, as the latter was determined by the amount of carbon trapped in the NaOH  
2 solution of the effluent flask, independently on whether the carbon arrives to the trapping solution  
3 in its dissolved or gaseous form. In the light of high nutrient concentrations in the irrigation water  
4 and possible interaction with soil mineral equilibria and cation exchange, the lowering of total  
5 pressure beneath the filter disc might also cause other complications such as clogging of the filter  
6 disc by precipitation. Since high irrigation amounts are needed in order to flush the mesocosms with  
7 by at least one water-filled pore volume the application of lower suction at the lower boundary is  
8 not an option if an experiment is to be carried out within reasonable time. We suggest the use of a  
9 free-drainage boundary in order to avoid complications arising at the filter disc, though this implies  
10 dealing with vertical movement of soil air induced by a fluctuating groundwater table. The latter  
11 can similarly complicate the interpretation of measured CO<sub>2</sub> fluxes due to hence induced advective  
12 gas transport.

13 The mesocosm column height of course constrains the emulated vadose zone thickness; in our case  
14 the mesocosm height (0.8 m) was much lower than the vadose zone thickness at the site of soil  
15 collection (4-6 m). This implies a lower capacity for downward diffusing CO<sub>2</sub> and some difference  
16 in the *p*CO<sub>2</sub> at the artificial (mesocosm) and at the true (field site) groundwater table can therefore  
17 be expected to arise from the experimental setup alone. However, carbon dioxide production in the  
18 mesocosms is not thought to have been influenced by the mesocosm height as most respiration is  
19 generated in the topsoil where organic matter is abundant (Table 1) (Kuzyakov, 2006; Trumbore,  
20 2006).

21 The installation of monitoring equipment along the depth of the mesocosms is expected to have  
22 caused little alteration to the soil integrity and bulk density as the combined volume of all samplers  
23 (~9.7\*10<sup>-2</sup> L) constituted only ~0.5% of the volume of the soil-filled mesocosm (19.8 L).

24

## 25 **5 Conclusion**

26 In this study, a novel mesocosm system was evaluated for the measurement of DIC percolation  
27 fluxes from the vadose zone. Our results show that measured DIC percolation fluxes can be  
28 predicted by indirect estimates derived from soil gas *p*CO<sub>2</sub>, soil water alkalinity and drainage flux.  
29 Hence, the mesocosm system appears to be a promising tool for more process-related research on  
30 CO<sub>2</sub> fluxes in the vadose zone, potentially involving plants and various soil managements.

1 **Acknowledgements**

2 We would like to thank Jens Bisgaard for construction of the mesocosm bottom plates and Preben  
3 Jørgensen, Mette Hem Flodgaard, Anja C. Nielsen and Nina Wiese Thomsen for skilled technical  
4 and laboratory support during the construction of mesocosms, sampling and analysis. The project  
5 was financed by the Danish Council for Strategic Research (DSF-09-067234).

6

7 **References**

8 Appelo, C. A. J., and Postma, D.: Geochemistry, groundwater and pollution, 2nd edition ed.,  
9 Balkema, 2005.

10 Bekele, A., Kellman, L., and Beltrami, H.: Soil Profile CO<sub>2</sub> concentrations in forested and clear cut  
11 sites in Nova Scotia, Canada, Forest Ecol Manag, 242, 587-597, 2007.

12 Bouma, T. J., and Bryla, D. R.: On the assessment of root and soil respiration for soils of different  
13 textures: interactions with soil moisture contents and soil CO<sub>2</sub> concentrations, Plant Soil, 227, 215-  
14 221, 2000.

15 Buyanovsky, G. A., and Wagner, G. H.: Annual Cycles of Carbon Dioxide Level in Soil Air, Soil  
16 Sci Soc Am J, 47, 1139-1145, 1983.

17 Cheng, W. X., Sims, D. A., Luo, Y. Q., Johns  
18 on, D. W., Ball, J. T., and Coleman, J. S.: Carbon budgeting in plant-soil mesocosms under elevated  
19 CO<sub>2</sub>: locally missing carbon?, Global Change Biol, 6, 99-109, 2000.

20 Clark, I., and Fritz, P.: Environmental Isotopes in Hydrogeology, edited by: Starkweather, A. W.,  
21 CRC Press LLC, 1997.

22 Gran, G.: Determination of the Equivalence Point in Potentiometric Titrations .2., Analyst, 77, 661-  
23 671, 1952.

24 Hamada, Y., and Tanaka, T.: Dynamics of carbon dioxide in soil profiles based on long-term field  
25 observation, Hydrol Process, 1829-1845, 2001.

26 Hansen, B. K., and Postma, D.: Acidification, Buffering, and Salt Effects in the Unsaturated Zone  
27 of a Sandy Aquifer, Klosterhede, Denmark, Water Resour Res, 31, 2795-2809, Doi  
28 10.1029/95wr02217, 1995.

1 Hendry, M. J., Mendoza, C. A., Kirkland, R., and Lawrence, J. R.: An assessment of a mesocosm  
2 approach to the study of microbial respiration in a sandy unsaturated zone, *Ground Water*, 39, 391-  
3 400, 2001.

4 Hoagland, D. R., and Amon, D. I.: The water-culture method for growing plants without soil, *Circ.*  
5 347, College of Agriculture, University of California, Berkley, 1950.

6 Houghton, R. A.: Balancing the Global Carbon Budget, *Annu Rev Earth Pl Sc*, 35, 313-347,  
7 10.1146/annurev.earth.35.031306.140057 2007.

8 Jassal, R., Black, A., Novak, M., Morgenstern, K., Nesic, Z., and Gaumont-Guay, D.: Relationship  
9 between soil CO<sub>2</sub> concentrations and forest-floor CO<sub>2</sub> effluxes, *Agr Forest Meteorol*, 130, 176-192,  
10 DOI 10.1016/j.agrformet.2005.03.005, 2005.

11 Kessler, T. J., and Harvey, C. F.: The global flux of carbon dioxide into groundwater, *Geophys Res*  
12 *Lett*, 28, 279-282, 2001.

13 Kindler, R., Siemens, J., Kaiser, K., Walmsley, D. C., Bernhofer, C., Buchmann, N., Cellier, P.,  
14 Eugster, W., Gleixner, G., Grünwalds, T., Heim, A., Ibrom, A., Jones, S., Jones, M., Lehuger, S.,  
15 Loubet, B., McKenzie, R., Moors, E., Osborne, B., Pilegaard, K., Rebmann, C., Saunders, M.,  
16 Schmidt, M. W. I., Schrumpf, M., Seyferth, J., Skiba, U., Soussana, J.-F., Sutton, M. A., Tefs, C.,  
17 Vowinkel, B., Zeeman, M. J., and Kaupenjohann, M.: Dissolved carbon leaching from soil is a  
18 crucial component of the net ecosystem carbon balance, *Global Change Biol*, 17, 1167-1185,  
19 10.1111/j.1365-2486.2010.02282.x, 2011.

20 Kjøller, C., Postma, D., and Larsen, F.: Groundwater Acidification and the Mobilization of Trace  
21 Metals in a Sandy Aquifer, *Environ Sci Technol*, 38, 2829-2835, 2004.

22 Kuzyakov, Y.: Sources of CO<sub>2</sub> efflux from soil and review of partitioning methods, *Soil Biol*  
23 *Biochem*, 38, 425-448, DOI 10.1016/j.soilbio.2005.08.020, 2006.

24 Lange, S. F., Allaire, S. E., and Rolston, D. E.: Soil-gas diffusivity in large soil monoliths, *Eur J*  
25 *Soil Sci*, 60, 1065-1077, DOI 10.1111/j.1365-2389.2009.01172.x, 2009.

26 Lawrence, J. R., and Hendry, M. J.: Mesocosms for Subsurface Research, *Water Qual Rese J Can*,  
27 30, 493-512, 1995.

1 Lewis, J., and Sjöstrom, J.: Optimizing the experimental design of soil columns in saturated and  
2 unsaturated transport experiments, J Contam Hydrol, 115, 1-13, DOI  
3 10.1016/j.jconhyd.2010.04.001, 2010.

4 Lin, G. H., Adams, J., Farnsworth, B., Wei, Y. D., Marino, B. D. V., and Berry, J. A.: Ecosystem  
5 carbon exchange in two terrestrial ecosystem mesocosms under changing atmospheric CO<sub>2</sub>  
6 concentrations, Oecologia, 119, 97-108, 1999.

7 Linn, D. M., and Doran, J. W.: Effect of Water-Filled Pore Space on Carbon Dioxide and Nitrous  
8 Oxide Production in Tilled and Nontilled Soils, Soil Sci Soc Am J, 48, 1268-1272, 1984.

9 Pinsent, B. R. W., Pearson, L., and Roughton, F. J. W.: The Kinetics of Combination of Carbon  
10 Dioxide with Hydroxide Ions, Trans Faraday Soc, 52, 1512-1520, 1956.

11 Raich, J. W., and Potter, C. S.: Global Patterns of Carbon-Dioxide Emissions from Soils, Global  
12 Biogeochem Cy, 9, 23-36, 1995.

13 Rebsdorf, A., Thyssen, N., and Erlandsen, M.: Regional and temporal variation in pH, alkalinity  
14 and carbon dioxide in Danish streams, related to soil type and land use, Freshwater Biol, 25, 419-  
15 435, 1991.

16 Schnyder, H., Schaufele, R., Lotscher, M., and Gebbing, T.: Disentangling CO<sub>2</sub> fluxes: direct  
17 measurements of mesocosm-scale natural abundance (CO<sub>2</sub>)-C-13/(CO<sub>2</sub>)-C-12 gas exchange, C-13  
18 discrimination, and labelling of CO<sub>2</sub> exchange flux components in controlled environments, Plant  
19 Cell Environ, 26, 1863-1874, 2003.

20 Schulz, M., Stonestrom, D., Von Kiparski, G., Lawrence, C., Masiello, C., White, A., and  
21 Fitzpatrick, J.: Seasonal dynamics of CO<sub>2</sub> profiles across a soil chronosequence, Santa Cruz,  
22 California, Appl Geochem, 26, S132-S134, DOI 10.1016/j.apgeochem.2011.03.048, 2011.

23 Siemens, J., Pacholski, A., Heiduk, K., Giesemann, A., Schulte, U., Dechow, R., Kaupenjohann,  
24 M., and Weigel, H.-J.: Elevated air carbon dioxide concentrations increase dissolved carbon  
25 leaching from a cropland soil, Biogeochemistry, 108, 135-148, 2012.

26 Smith, F. B., and Brown, P. E.: The concentration of carbon dioxide in the soil air under various  
27 crops and fallow soils, Iowa State Coll J Sci, 8, 1-16, 1933.

1 Thaysen, E.M., Jacques, D., Jessen, S., Andersen, C. E., Laloy, E., Ambus, P., Postma, D.,  
2 Jakobsen, I.: Carbon dioxide fluxes across the unsaturated zone of planted and unplanted soil  
3 mesocosms, *in prep.*

4 Trumbore, S.: Carbon respired by terrestrial ecosystems - recent progress and challenges, Global  
5 Change Biol, 12, 141-153, DOI 10.1111/j.1365-2486.2006.01067.x, 2006.

6 Walmsley, D. C., Siemens, J., Kindler, R., Kirwan, L., Kaiser, K., Saunders, M., Kaupenjohann,  
7 M., and Osborne, B. A.: Dissolved carbon leaching from an Irish cropland soil is increased by  
8 reduced tillage and cover cropping, Agr Ecosyst Environ, 142, 393-402, DOI  
9 10.1016/j.agee.2011.06.011, 2011.

10 Wang, Y. Y., Hu, C. S., Ming, H., Zhang, Y. M., Li, X. X., Dong, W. X., and Oenema, O.:  
11 Concentration profiles of CH<sub>4</sub>, CO<sub>2</sub> and N<sub>2</sub>O in soils of a wheat–maize rotation ecosystem in North  
12 China Plain, measured weekly over a whole year, Agr Ecosyst Environ, 2013, 260-272, 2013.

13 Zhang, J. Y., Lin, Z. B., Zhang, R. D., and Shen, J.: Effects of simulated rainfall events on soil  
14 carbon transformation, Aust J Soil Res, 48, 404-412, Doi 10.1071/Sr09182, 2010.

15

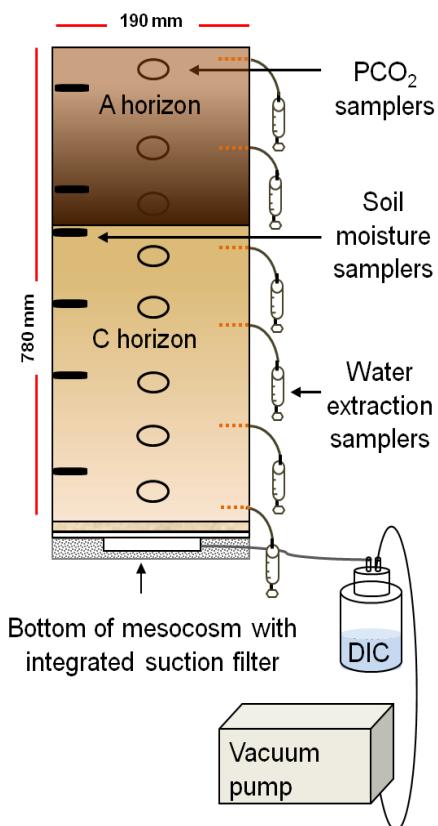



Fig. 1. Sketch of mesocosm with integrated sampling equipment and collection system for DIC at the bottom.

1  
2



1

2 Fig. 2. Mesocosm construction for measurement of CO<sub>2</sub> fluxes in the vadose zone. A: PEHD plate  
 3 as bottom of the mesocosms with integrated filter disc. A 3 mm wide hole (not visible) connects a  
 4 narrow cavity under the filter disc with the mesocosm outlet, allowing for controlled suction  
 5 pressure at the mesocosm bottom. B: Each layer is compacted by a weight that is above the wet tare  
 6 of the overlying soil column at the given depth. C: Gas sampler. D: Gas sampler built into a 30 mm  
 7 layer in the mesocosm. E: Mesocosm with irrigation tubing during watering of a newly constructed,  
 8 dry mesocosm. Red arrow indicates infiltration front. F: Vacuum flasks for effluent collection.

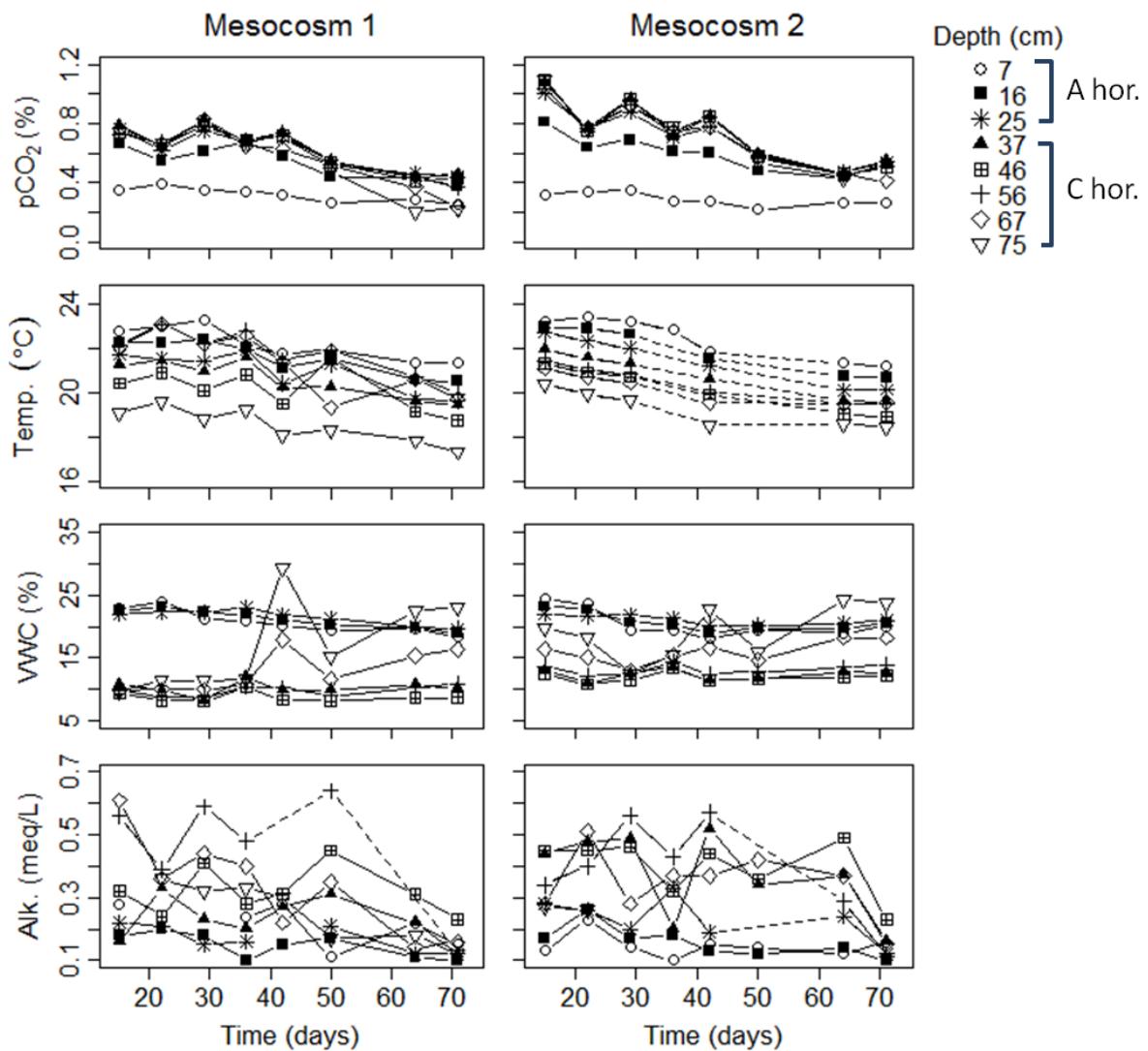



Fig. 3. Time course of linearly-interpolated  $\text{pCO}_2$ , temperature, volumetric water content (VWC) and alkalinity on measurement days throughout depth in the mesocosms. Dashed lines indicate missing samples/measurements.

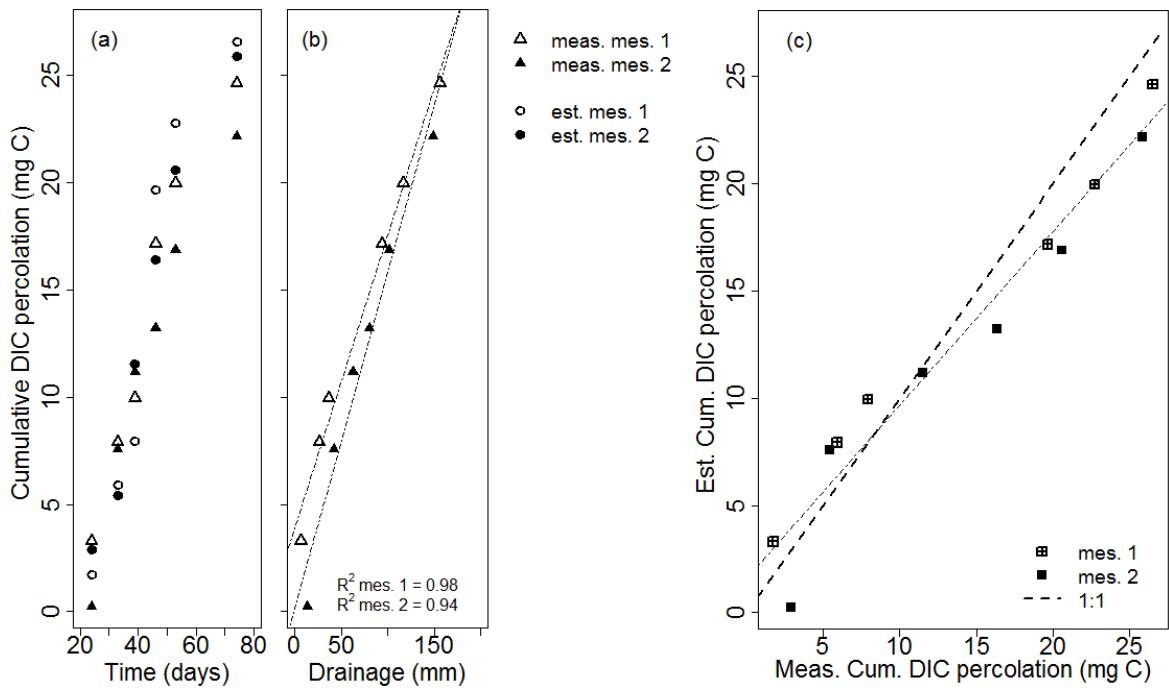



Fig. 4. Directly measured and estimated cumulative DIC percolation *vs.* time (a), directly measured cumulative DIC percolation *vs.* cumulative drainage (b) and estimated *vs.* directly measured cumulative DIC percolation (c). The estimated DIC percolation was calculated from alkalinity,  $p\text{CO}_2$  and water flux. Bold stippled lines indicate closure of the outlet. Narrow dot-dashed lines in b) and c) are regression lines; in (c) the regression comprises both mesocosms.

Table 1. Soil properties.

| <b>Parameter</b>                                        | <b>Horizon</b>      |                       |
|---------------------------------------------------------|---------------------|-----------------------|
|                                                         | <b>A (0-300 mm)</b> | <b>C (300-780 mm)</b> |
| Organic C content (%) <sup>2</sup>                      | 2.8                 | 0.04                  |
| C/N ratio <sup>2</sup>                                  | 18.9                | 4.5                   |
| Plant-available P ( $\mu\text{g g}^{-1}$ ) <sup>2</sup> | 34.8                | 3.5                   |
| Bulk density ( $\text{g/cm}^3$ ) <sup>1</sup>           | 1.47                | 1.54                  |
| Porosity (%) <sup>1</sup>                               | 45                  | 42                    |
| Clay and silt content (%) <sup>2</sup>                  | 4.0                 | 0.2                   |
| Cation exchange capacity <sup>2</sup> (meq/100g)        | 2.59                | 0.34                  |
| pH <sup>2</sup>                                         | 6.0                 | 6.6                   |

<sup>1</sup> Measured from samples collected from the mesocosms.

<sup>2</sup> Measured prior to filling of the mesocosms.