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Abstract. Sediments collected from hypersaline and anoxic
deep-sea basins in the eastern Mediterranean (Thetis, Kryos,
Medee, and Tyro) were characterised in terms of their miner-
alogical composition, the distributions of rare earth elements
(REE), Zr, and Hf and their content of microbial DNA. We
identified two major mineralogical fractions: one fraction of
detritic origin was composed of quartz, gypsum, and low-
Mg calcite bioclasts (with 0< Mg < 0.07 %) and another
fraction of authigenic origin constituted of halite, dolomite,
high-Mg calcite (with a Mg content of up to 22 %) and rare
bischofite and showed a textural evidence of microbial as-
semblages.

We found that in the Medee and Tyro sediments, the shale-
normalised REE pattern of these sediments is strongly en-
riched in middle REE (MREE), whereas in the Thetis and
Tyro basins, a positive Gd anomaly in the residue was ob-
tained after the removal of the water-soluble fraction. In all
investigated basins, Y / Ho ratio clustered around chondritic
values, whereas Zr / Hf ratio ranged from slightly subchon-
dritic to superchondritic values. Subchondritic Y / Ho and
Zr / Hf values were mainly found in the high-Mg carbonate
having a microbial origin. The observed preferential removal
of Zr with respect to Hf without significant partitioning of
Y with respect to Ho indicates that the Zr / Hf ratio and Y–
Ho fractionations are influenced by the microbial activity in
the sediments. We propose that the concurrent Y-Ho and Zr–
Hf fractionations are a suitable tracer of microbial activity in
marine sediments.

1 Introduction

The growing interest in rare earth elements (REE – lan-
thanides and yttrium, but not including scandium) Zr and Hf
distributions in marine sediments started with the increased
exploitation of these elements in several industrial practices
(Andrianov et al., 2011; Du and Graedel, 2013; Moriwaki et
al., 2013; Hein et al., 2013, and references therein). Several
studies carried out during the last 25 yr have identified the
processes responsible for REE adsorption onto the surface of
Fe–Mn crusts in marine environments (Bau and Koschinsky,
2009, and reported references), but few have focused on pro-
cesses occurring during the crystallisation of authigenic min-
erals (Bach et al., 2003; Moller and Dulski, 1983; Himmler et
al., 2010; Azmy et al., 2011; Ehya, 2012). There is a paucity
of knowledge regarding processes affecting REE, Zr, and Hf
distributions during carbonate crystallisation and their solu-
ble salts in natural systems, and only limited number of stud-
ies have been carried out under laboratory conditions (Rim-
stidt et al., 1998; Pokrovsky et al., 1999). The difficulty in
recognising these distributions when studying marine sed-
iments is related to the occurrence of a wide spectrum of
detritic minerals associated with authigenic phases such as
Mg-rich calcite, dolomite, and soluble salts. The identifica-
tion of processes allowing the accumulation of REE, Zr, and
Hf in natural sedimentary assemblages requires a detailed
knowledge of the mineralogical composition of the assem-
blage as well as the identification of microbial activity. Censi
et al. (2013) recently demonstrated the capability of micro-
bial assemblages to influence distributions of REE, Zr, and
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Hf at the sediment–water interface in natural systems, pre-
viously shown under controlled lab conditions (Takahashi et
al., 2005, 2007, 2010; Morikawi et al., 2013.

In this work, sediments collected from hypersaline deep-
sea lakes located in the eastern Mediterranean Sea were in-
vestigated for effects related to the concurrent presence of
detritic and authigenic minerals as well as microbial activity
on REE distribution. These lakes occur in depressed areas of
the eastern Mediterranean seafloor which are filled by hyper-
saline brines underlying the oxic water column (Cita, 2006,
and references therein). These lakes are likely formed by dis-
solution of Messinian evaporites in addition to the reactions
of authigenic Mg-rich carbonates and chlorine salts. These
minerals are generally associated with detritic material accu-
mulated during slumping episodes from seafloor elevations
(Rimoldi and Cita, 2007). In the present study, the miner-
alogical composition of sedimentary assemblages was iden-
tified and the extent of microbial activity as well as REE, Zr,
and Hf distribution were analysed to evaluate the geochemi-
cal behaviour of these elements in this complex environment
where both inorganic and biological interfaces are active.

2 Materials and methods

Sediments from the eastern Mediterranean Sea during were
collected during the 2010 MAMBA oceanic expedition using
the RV Urania by M. Yakimov’s team from the Italian Na-
tional Research Council, Institute of Marine and Coastal En-
vironment (IAMC), section of Messina (Italy). Sample col-
lection was carried out on the seafloor of hypersaline lakes
in the Medee, Tyro, Thetis, and Kryos basins in the eastern
Mediterranean Sea near Crete (Fig. 1). These basins are lo-
cated in the inner portion of the so-called “Mediterranean
ridge accretionary complex” (Bortoluzzi et al., 2011) in the
eastern basin. In this basin the Messinian evaporites are of-
ten located immediately below thin hemipelagic sediments
(Ryan et al., 1973; Hsu et al., 1978). According to Camer-
lenghi (1990), tectonic deformation of seafloor sediments
coupled with the submarine dissolution of Messinian evapor-
itic sediments (Cita, 2006) allowed for the formation of the
basins and related hypersaline lakes formed therein.

Sediments were collected using an USGS-modified NEL
box corer (Tranchida et al., 2011) and samples were stored
in polyethylene liners at−20◦C until chemical analysis. In
the laboratory, the defrosted cores were cut at 1–2 cm inter-
vals and dried at 50◦C. Samples from the Thetis and Kryos
basins were ultrasonically cleaned in high-purity water (re-
sistivity at 25◦C = 18.2 M�cm−1) in order to remove salt
minerals, while samples from the Tyro and Medee basins
were analysed without further manipulations.

X-Ray investigations were carried out using a Philips
PW14 1373 X-ray spectrometer using Cu-Kα radiation (22
range 3–90◦, step size 0.02◦, and a 1 min step time) and
analysed by the Rietveld method (program: DiffracPlus

TOPAS®, version 4.0; Bruker AXS Inc., Karlsruhe, Ger-
many) using parameters for the Rietveld refinement method
obtained from the Inorganic Crystal Structure Database
(ICSD) database. This method consists of fitting the exper-
imental XRD spectrum to the theoretical spectrum calcu-
lated by means of several structural parameters by the least-
squares method refinement (Young, 1993). MgCO3 content
calculations were carried out according to the method re-
ported by Zhang et al. (2012).

For analysis of the sediment textures, scanning electron
microscopy (SEM) was used. Sediments, previously dried at
105◦C, were coarsely crushed in an agate mortar, mounted
on aluminium stubs and carbon-coated. SEM analyses were
carried out using a LEO 440 SEM equipped with an EDS sys-
tem OXFORD ISIS Link and Si (Li) PENTAFET detector.

Chemical analyses were carried out by digesting 100 mg
of each sample in 10 mL of a 1: 1 HNO3–H2O2 mixture
in a sealed Teflon TFM bomb using a microwave miner-
aliser (CEM MARS 5 device). For Thetis and Kryos samples,
the trace element composition was measured after remov-
ing the fraction of water-soluble salts (hereafter referred to
as FWSS), while the entire sediment composition (hereafter
called WS) of the Medee and Tyro samples was analysed.
The WS sediment fractions were assumed to be representa-
tive of dissolved carbonates, sulfates, sulfides, and organic
matter (being soluble in HNO3 : H2O2 mixture), whereas sil-
icate residue were separated from the dissolved phase after
filtration onto previously acid-cleaned 0.45 µm Millipore™

filters. The filtered solution was diluted to 50 mL and stored
for chemical analyses.

All chemical analyses were carried out by inductively cou-
pled plasma mass spectrometry (ICP-MS) using an Agilent
Technologies 7500ce series spectrometer equipped with a
collision cell. The instrumental parameters were optimised
daily using a 1 ng mL−1 solution of 7Li, 89Y, 140Ce, and
205Tl, while maximum instrument sensitivity was tuned us-
ing 89Y, each solution measured in triplicate. ICP-MS anal-
yses were carried out with a classical external calibration
approach which involved investigating a range of concen-
trations (between 2.5 and 500 pgmL−1) for each element
and using205Tl (1 ng mL−1) as an internal standard to com-
pensate for signal instability or sensitivity changes during
the analysis. A 1 M HCl washing solution was run dur-
ing the analysis to ensure that the memory effect, which
was due to the more refractory elements, was negligible.
Analyses were carried out in external calibration with stan-
dard solutions prepared daily by stepwise dilution of multi-
element stock standard solutions from CPI International™

(1000± 5 µgmL−1) in HCl medium.
The precision and accuracy of chemical data were eval-

uated by comparison to the USGS standard reference ma-
terials AGV-1 (andesite) and MAG (marine mud) in which
the REE, Zr, and Hf concentrations were known and certi-
fied. The standard reference materials (about 0.2 g of solid
powder) were digested in 12 mL of freshly prepared aqua
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Figure 1 – Location of sampling sites. Data have been derived from the EMODnet (Marine 602	
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Fig. 1. Location of sampling sites. Data derived from the EMODnet (Marine Observation and Data Network) hydrography portal –http:
//www.emodnet-hydrography.eu.

regia solution (HNO3 / HCl, 1 : 3 v/v) and 4 mL of 48 % HF
solution containing 2 g of H3BO3 added to complex excess
HF. Five different aliquots of each standard reference ma-
terial were digested and analysed. The results are shown in
Supplement 1.

DNA, a robust indicator of microbial biomass (Marstorp
et al., 2000; Dequiedt et al., 2011), was extracted from
sediments using the modified Ranjard et al. (2003) proce-
dure. Sample (0.5 g, dry weight) was frozen in liquid N2,
mixed with 106 mm (700 mg) and 2 mm (150 mg) diame-
ter glass beads, and ground for 1 min at 2000 rpm in a mini
bead-beater cell disruptor (Mikro-dismembrator S.B. Braun
Biotech International, Melsungen, Germany). The fine pow-
der was resuspended in 1.5 mL of a pre-warmed (70◦C) ly-
sis solution containing 100 mM Tris-HCl (pH 8.0), 100 mM
EDTA (pH 8.0), 100 mM NaCl, and 2 % (w/v) SDS (10 mL
conical tube), incubated in a hybridisation oven with continu-
ous gentle rotation for 30 min at 70 °C, and then centrifuged
at 7000 g for 5 min at 10◦C. Supernatants were recovered,
precipitated in 1 / 10 volume of 3 M CH3COOK (pH 5.5)
and one volume of ice-cold isopropanol, then centrifuged at
14 000 rpm for 5 min. The nucleic acids (pellet) were washed
with 70 % ethanol and resuspended in 80 µL of sterile ultra-
pure water. Each extraction was repeated in triplicate.

The purified DNA extract was fluorometrically quanti-
fied using Qubit® 2.0 (Life Technologies Corporation, Carls-
bad, USA) following the manufacturer’s instruction. Ex-
tracted DNA was electrophoresed on 0.7 % agarose and com-
pared to serial dilutions of salmon sperm DNA solution
(Life Technologies Corporation, Carlsbad, USA) to estimate

the DNA concentration. Images of the agarose gels stained
with SYBR® Safe (Life Technologies Corporation, Carls-
bad, USA) were captured using the VersaDoc system and
the Quantity One software (Bio-Rad Laboratories, Hercules,
CA, USA) used for densitometric analysis.

3 Results

3.1 Mineralogy

X-ray analyses showed a homogenous mineralogical com-
position in the sites investigated (Supplement 2) where cal-
cite, magnesium calcite, dolomite, and quartz were identified
in all samples. Soluble mineral salts (halite and bischofite)
were preserved only in sediments from the Medee and Tyro
basins, while they were removed from the Thetis and Kryos
sediments during the manipulation procedure in order to in-
vestigate the composition of the remaining sediment fraction.

XRD analysis showed that the calcite d(104) peak had a sig-
nificant asymmetry indicating the possible presence of differ-
ent calcite generations (Milliman et al., 1971): (i) calcite with
a d(104) close to 3.030 Å, (ii) low-Mg calcite with d(104) val-
ues close to 3.013 Å, which correspond to a MgCO3 molar
content near 8 %; and (iii) high-Mg calcite with d(104) values
close to 3.001 Å, which correspond to a MgCO3 molar con-
tent near 12 %. The XRD results were in agreement with the
SEM determinations, which showed the presence of signifi-
cant detritic bioclasts (Fig. 2a, b), carbonate lithic fragments
(Fig. 2c), and gypsum crystals (Fig. 2d) which originated

www.biogeosciences.net/11/1125/2014/ Biogeosciences, 11, 1125–1136, 2014

http://www.emodnet-hydrography.eu
http://www.emodnet-hydrography.eu


1128 P. Censi et al.: Authigenic phase formation and microbial activity control

	
   21	
  

 605	
  
Figure 2 – SEM observations of studied sediments: (a): Detrital carbonate fraction formed by 606	
  

calcareous nannoplankton; (b): possible effects of microbial activity in sediments; (c): Mg-free 607	
  

detrital calcite, probably from the “Calcare di Base” formation of Messinian age (see typical cubic 608	
  

crystal ghost of halite); (d): etched gypsum crystal showing dissolution figures; (e): rounder quartz 609	
  

grain, probably of aeolic origin, enclosed in fine-grained sediment; (f): fine- rhombohedral dolomite 610	
  

in fine grained sediment; (f): authigenic salt minerals encrusting detrital nannoplankton; (h): 611	
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Fig. 2. SEM observations of studied sediments:(a) detrital carbonate fraction formed by calcareous nannoplankton;(b) possible effects of
microbial activity in sediments;(c) Mg-free detrital calcite, probably from the “Calcare di Base” formation of Messinian age (see typical
cubic crystal ghost of halite);(d) etched gypsum crystal showing dissolution figures;(e) rounder quartz grain, probably of aeolic origin,
enclosed in fine-grained sediment;(f) fine-rhombohedral dolomite in fine-grained sediment;(f) authigenic salt minerals encrusting detrital
nannoplankton;(h) possible “organic” textures in sediment;(i) possible “organic” textures in sediment and associated bioclastic materials.

from evaporitic Miocene terrains, as well as rounded quartz
(Fig. 2e). Authigenic carbonates mainly consisted of high-
Mg calcite and dolomite (Fig. 2f), which occasionally con-
tained Fe and magnesium calcite microcrysts.

Soluble salt minerals consisting of halite and bischofite
crystals characterised the shallowest sediment layers and ap-
peared often as a crust on the bioclasts (Fig. 2g). Figure 2h
and i show the presence of fibrous materials suggesting the
presence of microbial mat / organic fractions in the sediments
(Fig. 2h, i), as observed by Daffonchio et al., 2006; Rimoldi
and Cita, 2007; Ferrer et al., 2012; Stock et al, 2012).

In sediments from the Medee Basin (down to a depth of
about 28 cm), detritic minerals (calcite, low-Mg bioclastic
calcite, and quartz) represented 50 % of the fraction, decreas-
ing to ∼ 40 % in deeper samples. Elevated contents of low-
Mg calcite (of bioclastic origin) were also found in the Thetis
specimens, whereas these materials were scarce in the Kryos
samples, in which more abundant biogenic quartz was found.
In the Tyro samples, the amounts of detritic minerals were
lower when compared to the other areas (about 40 %), espe-

cially in samples from depths of 4–6 and 10–11 cm, where
halides, high-Mg calcite, and dolomite were more abundant.

3.2 Molecular microbial biomass in sediments

The amount of DNA recovered from the Tyro sediments
ranged from 1.10 to 5.60 ppm (µg DNA per gram of dry sed-
iment) with a mean value of 3.03 ppm. Sediments from the
Kryos Basin yielded DNA concentrations which ranged from
2.29 to 4.58 ppm with a mean value of 2.96 ppm. Samples of
Medee sediments showed the highest DNA content at 3.46
to 7.34 ppm with an average value of 4.68 ppm. Conversely,
sediments from the Thetis site yielded the lowest DNA con-
centration (mean recovery corresponding to 0.83), with a to-
tal DNA content ranging from 0.34 to 1.81 ppm.

3.3 Geochemistry

The concentrations of REE, Zr, and Hf measured in the
sediments are reported in Supplement 2. The REE, Zr,
and Hf distributions and absolute contents in the sediments
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differed between the WS fraction from Tyro/Medee and
the FWSS fraction from Kryos/Thetis, where Tyro/Medee
had REE concentrations one order of magnitude higher
than Kryos/Thetis. In the Tyro and Medee samples,
REE values were 70± 7.9 and 72.6± 7.9 ppm, respec-
tively. The mean content of Zr and Hf ranged between
46.28± 9.7 and 47.25± 9 ppm and between 0.89± 0.17
and 1.05± 0.15 ppm, respectively, in Tyro and Medee sam-
ples. In the Kryos and Thetis samples, REE concentra-
tions ranged from 32.55± 3.7 to 45.2± 7.7 ppm, Zr val-
ues were 7.33± 1.2 to 9.32± 2.5 ppm and Hf values were
0.35± 0.08 ppm. The higher REE content found in WS sed-
iment fractions (Tyro and Medee basins) with respect to
FWSS fractions (Kryos and Thetis basins) suggested that
halides and organic matter were preserved in the WS frac-
tion, but removed elsewhere.

In FWSS, a sediment fraction with lower biomass content
was found. This may be a consequence of the removal of
biological materials caused by the manipulation procedures.
Moreover, features of shale-normalised REE patterns versus
post-Archean Australian shale (PAAS; Taylor and McLen-
nan, 1995) were different in the Tyro and Medee sediments
with respect to the Kryos and Thetis samples (Fig. 3). In Tyro
and Medee sediments, shale-normalised patterns showed the
typical enrichment in middle REE (MREE); in Kryos and
Thetis it is replaced by the positive Gd anomaly. The ob-
served MREE enrichment suggests that MREE fractiona-
tion can occur in the investigated sediment assemblage, or
that MREE are preferentially scavenged onto sediment sur-
faces during fluid circulations (Bau, 1999; Hannigan and
Sholkovitz, 2001; Haley et al., 2004; Herwartz et al., 2013).
The formation of authigenic minerals may thus produce the
preferential incorporation of MREE into crystal lattice.

The different REE distributions observed in WS and
FWSS sediment fractions were depicted in terms of La / Gd
and Gd / Yb shale-normalised values. WS sediment samples
were characterised by higher La / Gd and lower Gd / Yb val-
ues with respect to the FWSS samples (Fig. 4). The Gd / Yb
values in the FWSS samples were due to the occurrence of
the above-mentioned positive Gd anomaly that was calcu-
lated by the following equation (Moller et al., 2007):

Gd

Gd∗
=

Gdn

√
Hon√

Tb3
n

; (1)

Gd / Gd∗ values are reported in Supplement 3.
A further distinctive characteristic of the REE distribu-

tion was the slight positive Ce anomaly observed only in the
Kryos sediments (1.10≤ Ce/Ce∗ ≤ 1.18), which was not ob-
served in sediments from the Tyro and Medee basins (Fig. 3).
This may correspond to that fact that Eh–pH conditions in
Tyro and Medee did not allow for the oxidative scavenging
of Ce3+ to insoluble CeO2.

The Y / Ho value found in the sediments was between 30
and 55 (molar ratio), whereas the Zr / Hf ratios were between
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Figure 3  - Shale-normalized REE patterns of the analysed sediments from different basins. 617	
  

Analyses of sediments from the Tyro and Medee basins were carried out on the WS fraction, 618	
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Fig. 3. Shale-normalised REE patterns of the analysed sediments
from different basins. Analyses of sediments from the Tyro and
Medee basins were carried out on the WS fraction, whereas anal-
yses of sediments from the Kryos and Thetis basins were carried
out on the FWSS fraction. For further information, see the text.

40 and 120 (molar ratio). Figure 5 shows that sediments
from the Tyro Basin had a broader distribution of Y / Ho
and Zr / Hf values. The Y / Ho ratio was always chondritic-
subchondritic, whereas the Zr / Hf ratio ranged from su-
perchondritic to subchondritic values. Sediments from the
Medee Basin had a narrow distribution of Y / Ho and Zr / Hf
values, and the Y / Ho ratio was clustered from slight sub-
chondritic to chondritic values, whereas Zr / Hf was always
superchondritic. Also, sediments from the Kryos basins in-
dicated a broader distribution of Y / Ho and Zr / Hf values,
which was similar to those from Tyro. Both Y / Ho and Zr / Hf
values were always subchondritic in the Kryos sediments. In
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Fig. 4.Features of shale-normalised REE patterns allowing for dis-
criminating between WS and FWSS sediment fractions recognised
in terms of La / Gd vs. Gd / Yb normalised ratios.

Thetis sediments, Y / Ho and Zr / Hf behaved similarly even
if their distributions fell in a narrow superchondritic range.

The differences observed in terms of REE distributions,
amplitudes Gd amplitude anomaly Y / Ho and Zr / Hf val-
ues could result from the presence of the detritic fraction
and authigenic minerals in the mineral assemblages. In the
detritic fraction, REE distribution had a shale-like feature,
with Gd / Gd∗ close to 1, and chondritic signature with Y / Ho
and Zr / Hf values of 52 and 71, respectively, inherited from
the conditions occurring during the primary crystallisation
of these minerals. However, positive Gd anomalies could be
considered typical features of bioclastic carbonate fractions,
since biogenic carbonates inherit Gd / Gd∗>1 values from
seawater (Wynhdam et al., 2004; Haley et al., 2005; Azmy
et al., 2011), where the positive Gd anomaly is a common
feature (De Baar et al., 1985; Alibo and Nozaki, 1999). In
sulfates and other minerals formed in marine environments,
a positive Gd anomaly is considered a common character of
REE distributions (Ehya, 2012, and references therein).

However, REE distributions and the Y–Ho and Zr–Hf rela-
tionships in authigenic minerals should provide evidence for
the incorporation of these elements into the crystal lattice of
authigenic minerals and their concurrent fractionations dur-
ing competition between dissolved complexation and sur-
face complexation onto these newly formed mineral sur-
faces (Zhong and Mucci, 1995). In order to identify whether
the content of detritic and authigenic carbonates can influ-
ence the observed geochemical character of the studied sed-
iments in terms of the Y / Ho and Zr / Hf values, bioclastic
calcites and authigenic magnesium carbonate content were
compared. Figure 5 shows that Y / Ho and Zr / Hf ratios were
inversely related to authigenic magnesium carbonate content

in the WS and FWSS fractions, suggesting that the formation
of authigenic carbonates involves Y–Ho and Zr–Hf decou-
pling and preferential Ho and Hf fractionations in the solid
phase. The lack of correlation between these ratios and the
contents of bioclastic carbonates could be a consequence of
the biological mediation of the precipitation of biogenic car-
bonates (Haley et al., 2005).

Since WS sediment fractions showed MREE enrichments
and different Y / Ho and Zr / Hf signatures compared to
FWSS, these values were compared to biomass and halide
content in sedimentary assemblages in order to evaluate
whether the observed geochemical signature was induced
by authigenic chloride minerals or by the biological materi-
als in the sediments. Figure 6 shows a significant relation-
ship (rxy > r2.5%) among Zr / Hf, Y / Ho, and the biomass
contents, mainly in WS sediment fractions, while a direct
relationship between with the amplitude of MREE enrich-
ment (calculated as a MREE / LREE shale-normalised ratio)
and biomass contents was less significant (rxy > r20%). How-
ever, MREE enrichment was significantly correlated with the
halide content in WS (rxy > r2.5%), suggesting the observed
MREE-bulged distribution in Tyro and Medee (Fig. 3) was
also influenced by the halide crystallisation. The content of
these minerals in WS sediments was inversely related to the
Y / Ho and Zr / Hf ratios, indicating that the formation of
these minerals influenced the behaviour of the Zr–Hf and Y–
Ho pairs.

The results reported in this study suggest that the biologi-
cal component and salt minerals can contain significant REE,
Zr, and Hf concentrations. Both biological and authigenic
mineral surfaces may fractionate MREE along the REE se-
ries and contribute to the Zr–Hf decoupling. Conversely, dur-
ing these interactions with dissolved-phase Y and Ho behave
similarly and their observed fractionation was apparently in-
fluenced by the Mg-rich carbonate formation.

4 Discussion

The study of hypersaline deep-sea sediments in the Mediter-
ranean Sea provided the opportunity to determine the be-
haviour of REE, Zr, and Hf in a large-scale closed natu-
ral system, where the effects induced by authigenic miner-
als, the presence of a detritic sediment fractions, and micro-
bial colonies in the sedimentary assemblages could be dis-
tinguished. Although these assemblages belong to very ex-
treme earth environments, recent findings show the presence
of several microbial communities, such as prokaryotic and
eukaryotic colonies (van der Wielen et al., 2005; 2007; Fer-
rer et al., 2012), which may provide biological membranes
able to scavenge dissolved metals (Rodionov et al., 2006;
Erkens et al., 2012). Their membranes generally consist of
polysaccharides that can be coated by biofilms of extracellu-
lar polymeric substance (EPS) produced by organisms (Do-
mozych et al., 2009). These films play a key role in protecting
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Fig. 5. Relationships between Y / Ho and Zr /,Hf molar values and contents (weight %) of authigenic Mg-rich (dolomite and magnesium
calcite) and bioclastic carbonates. Symbols as in Fig. 4. Chondritic values are reported for comparison.

the external cellular walls from the surrounding environment
(Merroun et al., 1998). Both microbial assemblages and their
EPS coatings occur in a wide spectrum of environmental
conditions. Under these conditions, microbial assemblages
in sediments may fractionate trace metals during the com-
plex sediment–water interface processes (Monji et al., 2008;
Censi et al., 2013).

In FWSS samples collected from Thetis and Kryos sea-
floor basins, lower trace element concentrations, positive Gd
anomalies, and subchondritic Y / Ho and Zr / Hf values were
seen. As these were the residues remaining after the removal
of water-soluble minerals and biological materials from sed-
imentary assemblages, they were primarily composed of de-
tritic minerals, bioclastic products (quartz, carbonate frag-
ments, gypsum, foraminifera shells, coccoliths, radiolaria),
and authigenic Mg-rich carbonates in the FWSS sediment
fractions. The Gd anomaly does not occur in quartz and other
detritic minerals (Bach et al., 2003; Goetze et al., 2004; Xie
et al., 2005), whereas a positive Gd anomaly is recorded in
marine carbonates, such as those present in chemical sedi-
ments and during the deposition of stromatolites (Haley et
al., 2005; Bau and Alexander, 2006; Mastandrea et al., 2010;
Army et al., 2011; Ehya, 2012; Corkeron et al., 2012).

The capacity for REE3+ to act as a substitute for Ca2+

in several carbonate minerals, including calcite (Zhong and
Mucci, 1995), is related to the similarity of the ionic ra-
dius between Ca2+ and REE3+ in six-fold coordination, driv-
ing the Ca–REE substitution in the crystal lattice of trigonal
carbonates. Since the Ca2+ ionic radius is close to 1.00 Å,
whereas ionic dimensions of Eu3+ and its REE neighbours
are close to 0.95 Å (Shannon, 1976), the Eu–Ca substitution
should be preferred, as reported by Terakado and Masuda
(1988). However, if carbonate precipitation occurs in hyper-
saline deep-sea brines under high ionic strength and reducing
conditions, Eu should be in the Eu2+ form, with a subsequent
increase in its solubility favouring the preferential partition-
ing of other MREEs, from Sm to Tb, during the formation of
authigenic carbonates (Bau, 1991, Stipp et al., 2003).

Despite the lack of data for dolomite, laboratory experi-
ments on CaCO3 crystallisation (both calcite and aragonite)
indicate the preferential incorporation of Ho into CaCO3
with respect to Y (Qu et al., 2009), implying a potential
subchondritic Y / Ho signature for these minerals. Tanaka et
al. (2004, 2008) found a preferential Y enrichment in the
dissolved phase during calcite crystallisation with respect to
Ho, interpreted as a Ho–CO3 and Y–CO3 bonding difference
in carbonate minerals. The preferential Y–Ho decoupling
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Fig. 6. Relationships between amplitudes of MREE enrichment (in terms of MREE / LREE normalised concentrations), Y / Ho and Zr / Hf
molar ratios and biomass (mg kg−1) and halide contents (weight %) in studied assemblages. Tests of significance for observed distributions
have been carried out measuring theta/2 Student factor.rxy > rnm% indicates that the measured sampling correlation factorrxy is greater
than the appropriatetn−2 degree of freedom. Symbols as in Fig. 4.

during carbonate crystallisation was found in the samples
from this study (Fig. 5) and explained the observed subchon-
dritic Y / Ho values found in sediments with high magne-
sium carbonate contents. The subchondritic value observed
for the Zr / Hf ratio found in the sediment fractions suggested
that Y / Ho and Zr / Hf behaved similarly during the crystalli-
sation of authigenic magnesium carbonates. A possible ex-
planation for the observed subchondritic Zr / Hf signature of
FWSS sediment fractions from the Kryos and Thetis basins
can be found in the simplified electrostatic model proposed
by Bau and Koschinsky (2009). These authors proposed the
dissolved speciation of elements and surface charge of po-
tentially sorbent species could lead to elemental fractiona-
tion during sorption. In hypersaline brines from the Mediter-
ranean Sea, slight acidic conditions are found (De Lange et

al., 1990) and PHREEQC calculations simulating these en-
vironmental conditions suggested that Zr and Hf speciation
were dominated by [Zr(OH)4]0 and [Hf(OH)5]− complexes
in brines. Since the surfaces of carbonates crystallising from
brines at pH < 8 are positively charged (Pokrovsky et al.,
1999; Pokrovsky and Schott (1999), a preferential scaveng-
ing of [Hf(OH)5]− with respect to [Zr(OH)4]0 was expected
as a consequence of the authigenic magnesium carbonates’
crystallisation.

WS sediment fractions from the Tyro and Medee sites
were MREE-enriched, together with chondritic and super-
chondritic Y / Ho and Zr / Hf values. In these sediments,
authigenic carbonates and detritic phases were associated
with soluble salts with evidence of microbial communities
(Supplement 2, 3). As previously mentioned, MREE-bulge
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Fig. 7 – Shale normalised REE distributions in selected kainite (MgSO4·KCl·3H2O) (dashed 638	
  

curves) and sylvite (KCl) (full curves) samples. Data from Ragusa (2013). 639	
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Fig. 7. Shale-normalised REE distributions in selected kainite
(MgSO4·KCl·3H2O) (dashed curves) and sylvite (KCl) (solid
curves) samples. Data from Ragusa (2013).

distributions in shale-normalised REE patterns from sedi-
ments may result from the presence of iron oxyhydroxide or
phosphates in the mineral assemblage. However, these min-
erals were not found in the study sediments from the deep-sea
Mediterranean basins. On the other hand, the linear relation-
ship found between the amplitude of MREE enrichments (in
terms of shale-normalised MREE / LREE ratio) and halide
content in WS sediment fractions (Fig. 6) suggested a pref-
erential MREE fractionation during the deposition of authi-
genic halide. This was in agreement with the results of Stein-
mann and Stille (2001), as well as the recent REE analyses
of soluble sulfates and chlorides from undisturbed Messinian
evaporitic sequences from Sicily showing MREE-bulge dis-
tributions (Ragusa, 2013) (Fig. 7). MREE-bulge distribution
was also typical of REE fractionation between biological sur-
faces and the dissolved phase, explained by MREE preferen-
tially binding to carboxylate groups of soft organic matter
(Takahashi et al., 2010).

The lack of Zr / Hf, and the inverse relationship between
Y / Ho and halide content (Fig. 6) implied that chondritic
Y / Ho and superchondritic Zr / Hf values cannot simply be
explained in terms of halide content in the WS sediment.
However, the distributions observed for Zr / Hf and Y / Ho
ratios with respect to the microbial community levels mea-
sured in terms of biomass content (Fig. 6) suggested that
Zr–Hf and Y–Ho fractions in the sediments could be influ-
enced by microbiological activity. If the DNA content was
low, its effect on the Y–Ho and Zr–Hf fractionations be-
came negligible, which was in agreement with the inverse
Y / Ho and Zr / Hf vs. biomass content found in FWSS sed-
iment fractions (Fig. 6). In samples with higher DNA con-
tent, larger microbial communities were expected with larger
Zr–Hf fractionations, as was observed in the WS sediments.
These features were also consistent with the simplified elec-
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Fig. 8.Y / Ho vs. Zr / Hf behaviour.(a) and(b): trends represent hy-
pothetical mixing arrays as detailed in the text. The range of Y / Ho
values measured onto bacterial surfaces by Takahashi et al. (2005)
is reported for reference.

trostatic model proposed by Bau and Koschinsky (2009) ap-
plied to the dissolved Zr and Hf speciation in brine. In fact,
Eubacteria and Archaea, including the phylotypes identified
by La Cono et al. (2009) and Ferrer et al. (2012), synthe-
sise a plethora of glycoconjugates and polysaccharides with
important structural and functional roles. These peptidogly-
cans and glycoproteins coat the external layers of bacte-
ria and Archaea, respectively, reinforcing the cytoplasmic
membranes and providing binding sites for dissolved metal
ion complexes that have negative surface charges (Rendu-
eles et al., 2013). Therefore, [Zr(OH)4]0 was preferentially
scavenged by biological surfaces with respect to the anionic
[Hf(OH)5]− complex, which explained the observed Zr / Hf
superchondritic signature in sediments richer in biomass.
Moreover, this scenario was also consistent with lab exper-
iments on biomass sorption of dissolved Zr and Hf under
acidic conditions, where the preferential Zr scavenging with
respect to Hf is seen (Monji et al., 2008).

Since the dominant dissolved Y and Ho complexes in
brines were [YCl]2+ and [HoCl]2+, respectively, Y–Ho de-
coupling was not expected as a consequence of interac-
tions with negatively charged biological membranes and
films based upon the simplified electrostatic model (Bau and
Koschinsky, 2009). Therefore, a chondritic Y / Ho signature
in samples where DNA content was higher can be justified.
The observed lack of fractionation between Y and Ho was
also in agreement with experimental data from Takahashi et
al. (2005) obtained during scavenging processes involving
bacterial surfaces. Variations in the Zr / Hf and Y / Ho ratios
in FWSS sediment fractions, where biomass was partially re-
moved, were probably due to the overwhelming concurrent
presence of authigenic Mg-rich carbonates that preferentially
scavenged Ho and Hf from the dissolved fraction.
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These data suggested that Y / Ho and Zr / Hf ratios were
sensitive to changes in the mineralogical composition and
biomass content in authigenic sediment fractions and could
indicate mixing processes among microbial assemblages,
chemical marine sediments, and Mg-rich carbonates in dif-
ferent proportions. If halide was removed, Y / Ho and Zr / Hf
values could evolve along the “a” path, otherwise they would
follow trend “b”. In any case, comparison of concurrent Y–
Ho and Zr–Hf fractionations to the “chondritic” signatures
of their ratios appeared to be a suitable proxy indicator of
microbial activity in sedimentary assemblages.

5 Conclusions

Tectonic settling of the seafloor in the eastern Mediter-
ranean led to deep-sea basins filled with reducing hypersaline
brines, extreme environments where the occurrence of au-
thigenic minerals (Mg-rich carbonates and halides) and mi-
crobial colonies in the sedimentary assemblages influenced
the geochemical distribution of REE, Zr, and Hf. Geochem-
ical determination of authigenic and detritic sediment frac-
tions showed MREE enrichments, a positive Gd anomaly,
and Y / Ho and Zr / Hf molar ratios spanning a wide range
of values. MREE enrichment was interpreted as governed by
the presence of soluble halides in Tyro and Medee sediments.

Our results show that the reciprocal Zr-Hf and Y-Ho be-
haviour is influenced by their dissolved speciations at the
brine–sediment interface. The Zr–Hf fractionation without
Y-Ho partitioning is observed when the higher microbial ac-
tivity (DNA content) in sediments occurs. When this activity
is low or absent, both Zr and Y are partitioned compared with
Hf and Ho, respectively. Therefore, the Zr-Hf decoupling and
the concurrent absence of an analogous Y-Ho partitioning
can be considered as a promising new geochemical tool to
recognise traces of microbial activity in sedimentary assem-
blages. The crystallisation of authigenic halide does not sig-
nificantly fractionate Zr and Hf, but can be responsible for
the MREE enrichment in sedimentary assemblages.

On the other hand, the halides’ formation does not involve
Zr–Hf fractionations compared to the chondritic values but
allows for MREE partitioning. Therefore, a geochemical in-
vestigation focused on the REE distributions and the recip-
rocal fractionations of Y–Ho and Zr–Hf pairs can represent a
suitable tool to discriminate among authigenic fraction, de-
tritic minerals, and evidence of microbial activity in marine
sediments.

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/11/
1125/2014/bg-11-1125-2014-supplement.pdf.
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