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Abstract. This document provides supplementary infor-
mation for the publication ”Technical Note: Approximate
Bayesian parameterization of a process-based tropical forest
model” to appear in Biogeosciences.

1 FORMIND model details

FORMIND is an individual-based, spatially semi-explicit,
dynamic forest model. Spatially semi-explicit means that
trees are assigned to a spatial 20x20m grid, but within
grid cells, trees have no explicit position. Horizontally, tree
crowns are therefore homogeneously distributed across their
respective grid cell. Trees mostly interact within grid cells,
essentially through the mechanisms that are present in all
classical gap models (e.g. Shugart, 1984; Bugmann, 2001):
for each tree, growth and establishment depends on the light
climate at its crown top. The light climate is determined by
the overtopping leaf area. Additional to this central process
of competition for light on grid cells, FORMIND implements
a number of other processes that act across grid cells such
as tree falling and seed dispersal between grid cells. We use
the FORMIND model version of Dislich et al. (2009), devel-
oped for a tropical rainforest in Ecuardor, with some minor
updates that have accumulated since due to the ongoing de-
velopment of the model. The FORMIND scheduling is given
in Alg. 1, a visual representation of the model concept in
Fig. 1. In the next paragraphs, we describe the processes in
the model in some more detail.

Establishment is modeled as a constant seed rain, mean-
ing that tree regeneration is independent of relative species

abundances in the modeled tree community. Provided that
species-specific light conditions are met, the number of new
recruits appearing on a site is a species specific parameter of
the model. There is stochasticity in the recruitment regarding
the spatial distribution of recruits.

After establishment, mortality acts on all trees individuals.
Mortality originates from four sources: 1) Base mortality:
each tree has a species-specific base mortality rate that is in-
dependent of its age and environmental conditions. 2) Small
trees have an additional species specific size-dependent mor-
tality (see Dislich et al., 2009, Appendix A). 3) Self-thinning:
when the crown area in a particular height layer exceeds the
plot area, trees are randomly removed until the layer is suf-
ficiently thinned. 4) Gap-formation: When trees larger than
a threshold diameter df die, they are assumed to fall on a
neighboring plot and produce an additional mortality propor-
tional to their crown size on all trees that do not exceed the
height of the falling tree by one meter. In that sense, FOR-
MIND differs from more traditional gap models, where only
one ”representative” plot is modeled. All four mortality pro-
cesses are modeled stochastically.

For each remaining tree individual, productivity and
thereby growth is calculated. Productivity and growth are
modeled deterministically and depend on tree size and light
climate at crown top, corrected by self-shading, as well as
on PFT-specific functions for light-response, photosynthesis
and respiration. The light climate on the plot is derived by
calculating the leaf area contributed by the trees on the plot
to different height layers, and from that the light intercep-
tion of the different height layers. Respiration rates are cal-
culated according to an inverse method which takes maxi-
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Fig. 1. Formind model principles. Crowns are illustrated as cylinders for the purpose of illustration; in the model there is no explicit position
of the individual tree within the cell, and crows are therefore distributed horizontally across the whole cell.

mum growth rates under full light as an input (Dislich et al.,
2009, Appendix A). Maximum growth rates can be derived
from observations, but in this study, we treat growth rates as
parameters that are fit to observed community data.

For reasons of computability, seedlings of the same PFT
and age within one plot are grouped into cohorts, which is
mathematically identical to calculating individual trees as
there are no stochastic effects on existing tree individuals ex-
cept for mortality.

Algorithm 1 FORMIND scheduling

1: Read initial tree configuration
2: for t= 1 to tend do
3: for all Plots do
4: if Light conditions allow establishment then
5: Establishment of new seedlings from seed bank
6: end if
7: for all Trees do
8: Mortality
9: end for

10: Update light climate
11: for all Trees do
12: Growth
13: end for
14: end for
15: end for

2 Statistical Algorithm

The algorithm for the Bayesian parameter estima-
tion was implemented in Python 2.6, using Scipy
(Jones et al., 2001), Numpy and parallel python
(http://www.parallelpython.com). Parallel python was
used to speed up the MCMC algorithm - instead of calcu-
lating the posterior value of one new parameter proposal,
we always propose n values in parallel (here, n was 6 or
12). If the first value was rejected, the algorithm goes on

to check for acceptance of the second value and so on. If
one value was accepted, the other values were discarded.
The acceptance check was done strictly ordered, so that
the order of steps within this algorithm is identical to that
of a usual MCMC. The advantage, however, is that time
is saved in the case of rejection because practically all our
computational costs are for the FORMIND calculations
(the estimation of mean and covariance of one parameter
combination for a typical situation of 7 PFTs on 1 ha over
10.000 yrs with 5yr time steps takes around 20 seconds).
Therefore, parallel proposals create a considerable speed-up
(maximally by a factor n) when there are high rejection
rates. Based on the observed rejection rates, we estimate that
the average speed-up through parallelization with 6 cores
was approximately a factor 3-4.

Algorithm 2 MCMC-SPL (parallel version)

1: Choose initial condition
2: Calculate initial unnormalized posterior value (eqs. 1,2, main

text)
3: repeat
4: Propose n new φ according to proposal function q(φ→ φ′)
5: Create n proposal φi and run the model with those in parallel

6: repeat
7: Estimate p(φ′i|Dobs) according to eq. 1,2, main text
8: Accept φ′i with probability p(φ′|Dobs)q(φ

′→φ)
p(φ|Dobs)q(φ→φ′) , else stay at

φ
9: until Acceptance of one φ′i or all n runs tested

10: If applicable, adjust q(φ→ φ′) according to (Haario et al.,
2001)

11: until Convergence

The algorithm was started with random initial values φinit

that were generated by adding a random parameter vector φr

to the prior best estimate φ? according to φinit = 0.9 ·φ? +
0.1 ·φr. The best estimate φ? was the ”true” value for the vir-
tual tropical forest, and the value from Dislich et al. (2009)

www.parallelpython.com
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PARAMETER ABBR. LOWER-UPPER (TRUE) UNITS

light extinction coefficient li-ext 0.4-0.8 (0.6) [m2 ·m−2]
recruitment rate pft1 recr1 50-200 (100) [ind/ha/yr]
recruitment rate pft2 recr2 15-50 (30) [ind/ha/yr]
recruitment rate pft3 recr3 10-40 (20) [ind/ha/yr]
min light for establishment pft1 estab1 0-0.3 (0.1) [-]
min light for establishment pft2 estab2 0-0.15 (0.05) [-]
min light for establishment pft3 estab3 0-0.1 (0.01) [-]
mortality pft1 mort1 0-0.25 (0.05) [yr−1]
mortality pft2 mort2 0-0.1 (0.15) [yr−1]
mortality pft3 mort3 0-0.05 (0.005) [yr−1]
falling probability of trees fall 0.2-0.7 (0.4) [-]
leaf area index per tree LAI 1.5-2.5 (2) [m2 ·m−2]
crown diameter cr-d 0.12-0.2 (0.15) [-]
crown length cr-l 0.1-0.35 (0.25) [-]
max dbh growth pf1 gro1 20-80 (41) [mm/yr]
max dbh growth pf2 gro2 5-15 (9.2) [mm/yr]
max dbh growth pf3 gro3 2-6 (3.5) [mm/yr]
start growth pf1 (% of max) start1 0-100 (40) [-]
start growth pf2 (% of max) start2 0-100 (40) [-]
start growth pf3 (% of max) start3 0-100 (40) [-]
end growth pft1 (% of max) end1 0-100 (10) [-]
end growth pft2 (% of max) end2 0-100 (10) [-]
end growth pft3 (% of max) end3 0-100 (10) [-]
max growth diameter pft1 dia1 0.0-1.0 (1/3) [-]
max growth diameter pft2 dia2 0.0-1.0 (1/3) [-]
max growth diameter pft3 dia3 0.0-1.0 (1/3) [-]

Table 1. Ranges for the uniform priors used for fitting the model to the virtual data. ”Abbr.” refers to the parameter abbreviation used in
the figures. Lower, upper refers to the lower and upper bound of the uniform prior distributions. True refers to the values used to create the
virtual data.

for the Ecuadorian parameterization. The proposal function
q(φ→ φ′) was chosen multivariate normal, with a covari-
ance adaptation according to (Haario et al., 2001) for the pa-
rameterizations to the virtual data, and a fixed proposal func-
tion for the parameterization to the Ecuadorian data. The co-
variance adaptation of Haario et al. (2001) sets the covariance
of the proposal function as Σi = c∗covi(p(Φ|D)), where i is
the i− th step of the algorithm, and the scaling parameter
c is a constant whose optimal choice depends on the target
function (we used c= 2.382/d, where d is the number of
dimensions of the parameter space). Although the adaptive
algorithm leads to more efficient proposal generation under
correlations in the posterior, we noted that there were some
remaining inefficiencies in the proposal generation that were
probably due to the observed nonlinear and higher-order cor-
relations in the posterior. To minimize the effect of those, we
did not vary all parameters at once in one step of the MCMC,
but first drew two random parameters, and then drew a pro-
posal for those according to Alg. 2.

3 Prior ranges

Tables 1,2 show prior ranges and additional information of
the parameters estimated in V1-V5 and E1, respectively.

4 Additional analyses of the parameter estimates

In the last part of this supplementary material, we show more
detailed analyses for the results presented in the main article
(in particular Figs. 3,5), and additional analyses that repli-
cates the setup of Figs. 3,5 with differences in the number
of parameters estimated, and in the aggregation type (sum-
mary statistics) that are used to compare model results and
field data. A summary of the cases considered is provided
in Table 3. For all these cases, we show a) a histogram of
the marginal posterior density, which allows gaining a bet-
ter picture of the distribution represented by the violin plots
in the main paper, and b) a plot of posterior pair correlation
density. The width of the marginal distributions was scaled
to the prior width (denoted by the green lines at the sides
of the plot). For the virtual case, the red line depicts the
”true” parameter value that was used to create the virtual
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PARAMETER ABBR. LOWER-UPPER (DISLICH ET AL.) UNITS

recruitment rate pft1 recr1 5-100 (50) [ind/ha/yr]
recruitment rate pft2 recr2 100-300 (180) [ind/ha/yr]
recruitment rate pft3 recr3 50-250 (130) [ind/ha/yr]
recruitment rate pft4 recr4 10-100 (50) [ind/ha/yr]
recruitment rate pft5 recr5 50-200 (120) [ind/ha/yr]
recruitment rate pft6 recr6 100-500 (310) [ind/ha/yr]
recruitment rate pft7 recr7 20-100 (50) [ind/ha/yr]
mortality pft1 mort1 0-0.25 (0.05) [yr−1]
mortality pft2 mort2 0-0.1 (0.09) [yr−1]
mortality pft3 mort3 0-0.1 (0.05) [yr−1]
mortality pft4 mort4 0-0.25 (0.05) [yr−1]
mortality pft5 mort5 0-0.1 (0.06) [yr−1]
mortality pft6 mort6 0-0.05 (0.018) [yr−1]
mortality pft7 mort7 0-0.25 (0.008) [yr−1]
max dbh growth type1 gro1 10-40 (20) [mm/yr]
max dbh growth type2 gro2 5-30 (10) [mm/yr]
max dbh growth type3 gro3 2-30 (6) [mm/yr]
max dbh growth type4 gro4 1-15 (2) [mm/yr]
max growth diameter pft1 dia1 0.0-1.0 (0.33) [-]
max growth diameter pft2 dia2 0.0-1.0 (0.33) [-]
max growth diameter pft3 dia3 0.0-1.0 (0.25) [-]
max growth diameter pft4 dia4 0.0-1.0 (0.33) [-]
max growth diameter pft5 dia5 0.0-1.0 (0.2) [-]
max growth diameter pft6 dia6 0.0-1.0 (0.33) [-]
max growth diameter pft7 dia7 0.0-1.0 (0.33) [-]

Table 2. Ranges for the uniform priors for the Ecuadorian fit. Note that the grouping is for 7 PFTs, but there are also 4 broader growth types
to which the 7 PFTs belong (see Dislich et al., 2009, for details). ”Abbr.” refers to the parameter abbreviation used in the figures. Lower,
upper refers to the lower and upper bound of the uniform prior distributions. Dislicht et al. refers to the parameter values used in Dislich et al.
(2009).

field data. For the dataset from Ecuador, the red line depicts
the parameter values chosen by (Dislich et al., 2009). How-
ever, as we note in the main text, the model setup was not
completely identical, so there are limits in the comparability
for the Ecuadorian case. Prior and true parameter values are
also provided in Tables 1,2. In the caption of the marginal
density plots, we provide some additional information for
the runs such as sample size, convergence diagnostics (us-
ing Geldman-Rubin, see Gelman and Rubin, 1992; Brooks
and Gelman, 1998) and runtime. In all cases, we removed
100.000 samples as burn-in from the chains.

4.1 V1: Parameterization to virtual data, details for re-
sults from the main paper

Figs. 2,3 show detailed plots for Fig. 3 of the main text, which
allows a better assessment of the shape of the distributions,
and of the parameter correlations.

4.2 V2: Parameterization to virtual data, full parameter
set

Figs. 4,5 uses the same data as V1, but with a larger num-
ber of parameters estimated. Those additional parameters are
parameters for the crown geometry, for specific leaf area,
the light extinction coefficient, the leaf area index (LAI) per
tree, and probability of gap formation after tree mortality
(Table 1). As can be seen, marginal parameter uncertainty
considerably increases when fitting a larger number of pa-
rameters, which must be due to additional trade-offs between
the old and the new parameters with respect to the data. The
lower amount of strong pair correlation in Fig. 5 as compared
to Fig. 2 suggests that those newly introduced trade-offs are
predominantly of higher order and therefore not picked up by
the pair correlation plots. Again, we stress that this is neither
a fundamental problem, nor specific to the simulation-based
likelihood approximation, but simply a result from interac-
tions between parameters with respect to the data used for
the fit - we would most probably find the same results in a
conventional Bayesian analysis. However, the wide marginal
distributions that result from these correlations make it dif-
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CASE EXPLANATION DIMENSIONS

Parameterization to virtual data, 3 PFTs:
V 1 Data: SSD, GRO, reduced parameters 12,96
V 2 Data: SSD, GRO, full parameters 26,96
V 3 Data: SSD, reduced parameters 12,48
V 4 Data: total SSD, reduced parameters 12,16
V 5 Data: BM, reduced parameters 12,3

Parameterization to Ecuadorian field data, 7 PFTs:
E1 Data: SSD 18,112

Table 3. Overview of parameterizations for different models, parameters and summary statistics. Abbreviations for the data: SSD = stem size
distribution (16 10-cm classes), GRO = size-specific average growth distribution (16 10-cm classes), BM = biomass. If not stated otherwise,
the data type was available for each PFT separately. If we use the mean over all PFTs, we label the data with ”total”. Full parameters means
that the parameters given in Tables 1,2 are under calibration. Reduced parameters means that from Table 1, only recruitment, mortality,
maximum growth and maximum growth diameter are estimated. Dimensions gives the number of estimated parameters and the number of
data points in that order.

ficult to see how parameter uncertainty is affected by the
simulation-based approximation and by the choice of model
output. The latter is the reason why we estimated only a re-
duced set of parameters for the main results.

4.3 V3-V5: Parameterization to virtual data with more
aggregated model outputs

The next plots Figs. 6-11 show results from fitting the same
parameters as in V1 (Fig. 3, main text), but using more ag-
gregated model outputs (i.e. coarser summary statistics) for
the comparison between model and observed data. One can
see that width of the posterior distribution generally increases
when going to more aggregated representations of the data.
Also some new trade-offs between parameters appear while
going to more aggregated outputs, while others disappear,
potentially indicating higher-order interactions between pa-
rameters with respect to the more aggregated data.

4.4 E1: Parameterization to Ecuadorian data

Finally, Figs. 12,13 show details of the parameter estima-
tion with field data from Ecuador. Our data consisted of size-
abundance distributions only. From our results for the virtual
dataset (Fig 7), we know that this data type leads to relatively
strong correlations when fitting similar parameters as in V3,
which makes the result difficult to interpret. To avoid these
correlations, we estimated a lower number of parameters per
plant functional type than for the virtual case. However, note
that the number of parameters is still larger than for V3, due
to the higher number of plant function types. For the model
parameters that were not fit to data, we used the values from
Dislich et al. (2009).
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Fig. 2. Marginal posterior densities for case V1 in Table 3. Results from 3 chains; sample size per chain: ca. 1.3 million; Gelman-Rubin
multivariate potential scale reduction factor: 1.01; runtime: ca. 6 weeks, 6 parallel cores per chain. Model parameters are explained in Table 1

.
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Fig. 3. Pair correlation density plot of the posterior distribution for case V1 in Table 3. As in Fig. 3b, main text, the histograms on the diagonal
show the marginal distributions for the posterior parameter estimates that were also displayed in the previous figure. The panels in the lower
triangle show pairwise correlations between the parameters. The diagonal shows the marginal densities for the parameters. The numbers
in the upper triangle show Spearman’s rank correlation coefficients for the correlations in the lower triangle. Parameter abbreviations are
explained in Table 1.
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Fig. 4. Marginal posterior densities for case V2 in Table 3. Results from 3 chains; sample size per chain: ca. 1.4 million; Gelman-Rubin
multivariate potential scale reduction factor: 1.17; runtime: ca. 6 weeks, 6 parallel cores per chain. Model parameters are explained in
Table 1.
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Fig. 5. Pair correlation density plot of the posterior distribution for case V2 in Table 3. As in Fig. 3b, main text, the histograms on the diagonal
show the marginal distributions for the posterior parameter estimates that were also displayed in the previous figure. The panels in the lower
triangle show pairwise correlations between the parameters. The diagonal shows the marginal densities for the parameters. The numbers
in the upper triangle show Spearman’s rank correlation coefficients for the correlations in the lower triangle. Parameter abbreviations are
explained in Table 1.
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Fig. 6. Marginal posterior densities for case V3 in Table 3. Results from 2 chains; sample size per chain: ca. 1.4 million; Gelman-Rubin
multivariate potential scale reduction factor: 1.02; runtime: ca. 6 weeks, 6 parallel cores per chain. Model parameters are explained in
Table 1.
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Fig. 7. Pair correlation density plot of the posterior distribution for case V3 in Table 3. As in Fig. 3b, main text, the histograms on the diagonal
show the marginal distributions for the posterior parameter estimates that were also displayed in the previous figure. The panels in the lower
triangle show pairwise correlations between the parameters. The diagonal shows the marginal densities for the parameters. The numbers
in the upper triangle show Spearman’s rank correlation coefficients for the correlations in the lower triangle. Parameter abbreviations are
explained in Table 1.
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Fig. 8. Marginal posterior densities for case V4 in Table 3. Results from 2 chains; sample size per chain: ca. 0.7 million; Gelman-Rubin
multivariate potential scale reduction factor: 1.04; runtime: runtime: ca. 6 weeks, 6 parallel cores per chain. Model parameters are explained
in Table 1.
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Fig. 9. Pair correlation density plot of the posterior distribution for case V4 in Table 3. As in Fig. 3b, main text, the histograms on the diagonal
show the marginal distributions for the posterior parameter estimates that were also displayed in the previous figure. The panels in the lower
triangle show pairwise correlations between the parameters. The diagonal shows the marginal densities for the parameters. The numbers
in the upper triangle show Spearman’s rank correlation coefficients for the correlations in the lower triangle. Parameter abbreviations are
explained in Table 1.
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Fig. 10. Marginal posterior densities for case V5 in Table 3. Results from 2 chains; sample size per chain: ca. 1 million; Gelman-Rubin
multivariate potential scale reduction factor: 1.08; runtime: ca. 6 weeks, 6 parallel cores per chain. Model parameters are explained in
Table 1.
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Fig. 11. Pair correlation density plot of the posterior distribution for case V5 in Table 3. As in Fig. 3b, main text, the histograms on the
diagonal show the marginal distributions for the posterior parameter estimates that were also displayed in the previous figure. The panels in
the lower triangle show pairwise correlations between the parameters. The diagonal shows the marginal densities for the parameters. The
numbers in the upper triangle show Spearman’s rank correlation coefficients for the correlations in the lower triangle. Parameter abbreviations
are explained in Table 1.
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Fig. 12. Marginal posterior densities for case E1 in Table 3. Red bars show the parameter estimates by Dislich et al. (2009). Results from 3
chains; sample size per chain: 0.9 million; Gelman-Rubin multivariate potential scale reduction factor: 1.19; runtime: ca. 5 weeks, 12 parallel
cores per chain. Model parameters are explained in Table 2.
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Fig. 13. Pair correlation density plot of the posterior distribution for case E1 in Table 3. As in Fig. 3b, main text, the histograms on the
diagonal show the marginal distributions for the posterior parameter estimates that were also displayed in the previous figure. The panels in
the lower triangle show pairwise correlations between the parameters. The diagonal shows the marginal densities for the parameters. The
numbers in the upper triangle show Spearman’s rank correlation coefficients for the correlations in the lower triangle. Parameter abbreviations
are explained in Table 2. Note that the 4 growth parameters are assigned to the 7 PFTs as follows: gro1-PFT 2, gro2-PFT 1, gro3-PFTs 3,4,
gro4-PFTs 5,6,7, which is reflected by the correlation structure.
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