
Biogeosciences, 11, 1461–1478, 2014
www.biogeosciences.net/11/1461/2014/
doi:10.5194/bg-11-1461-2014
© Author(s) 2014. CC Attribution 3.0 License.

Biogeosciences

O
pen A

ccess

Development of a regional-scale pollen emission and transport
modeling framework for investigating the impact of climate change
on allergic airway disease

R. Zhang1,*, T. Duhl2, M. T. Salam3, J. M. House4, R. C. Flagan4, E. L. Avol3, F. D. Gilliland 3, A. Guenther2,
S. H. Chung1, B. K. Lamb1, and T. M. VanReken1

1Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering, Washington State University,
Pullman, WA, USA
2National Center for Atmospheric Research, Boulder, CO, USA
3University of Southern California, Los Angeles, CA, USA
4Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
* now at: Rice University, Department of Civil and Environmental Engineering, Houston, TX, USA

Correspondence to:S. H. Chung (serena_chung@wsu.edu)

Received: 31 January 2013 – Published in Biogeosciences Discuss.: 1 March 2013
Revised: 16 September 2013 – Accepted: 5 February 2014 – Published: 19 March 2014

Abstract. Exposure to bioaerosol allergens such as pollen
can cause exacerbations of allergenic airway disease (AAD)
in sensitive populations, and thus cause serious public health
problems. Assessing these health impacts by linking the air-
borne pollen levels, concentrations of respirable allergenic
material, and human allergenic response under current and
future climate conditions is a key step toward developing pre-
ventive and adaptive actions. To that end, a regional-scale
pollen emission and transport modeling framework was de-
veloped that treats allergenic pollens as non-reactive trac-
ers within the coupled Weather Research and Forecasting
Community Multiscale Air Quality (WRF/CMAQ) model-
ing system. TheSimulator of theTiming and Magnitude of
PollenSeason (STaMPS) model was used to generate a daily
pollen pool that can then be emitted into the atmosphere by
wind. The STaMPS is driven by species-specific meteorolog-
ical (temperature and/or precipitation) threshold conditions
and is designed to be flexible with respect to its representa-
tion of vegetation species and plant functional types (PFTs).
The hourly pollen emission flux was parameterized by con-
sidering the pollen pool, friction velocity, and wind thresh-
old values. The dry deposition velocity of each species of
pollen was estimated based on pollen grain size and den-
sity. An evaluation of the pollen modeling framework was
conducted for southern California (USA) for the period from

March to June 2010. This period coincided with observations
by the University of Southern California’s Children’s Health
Study (CHS), which included O3, PM2.5, and pollen count,
as well as measurements of exhaled nitric oxide in study par-
ticipants. Two nesting domains with horizontal resolutions
of 12 and 4 km were constructed, and six representative al-
lergenic pollen genera were included: birch tree, walnut tree,
mulberry tree, olive tree, oak tree, and brome grasses. Under
the current parameterization scheme, the modeling frame-
work tends to underestimate walnut and peak oak pollen con-
centrations, and tends to overestimate grass pollen concentra-
tions. The model shows reasonable agreement with observed
birch, olive, and mulberry tree pollen concentrations. Sensi-
tivity studies suggest that the estimation of the pollen pool is
a major source of uncertainty for simulated pollen concentra-
tions. Achieving agreement between emission modeling and
observed pattern of pollen releases is the key for successful
pollen concentration simulations.

1 Introduction

Exposure to respirable allergenic materials from ruptured
pollen grains can stimulate the production of antibodies in
the human body and trigger allergic airway diseases (AAD),
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such as asthma, sinusitis, and allergic rhinitis (Taylor et al.,
2002; Adhikari et al., 2006). AAD is a serious public health
concern worldwide with the most prevalent impacts among
children and adolescents (Nathan et al., 1997; WHO 2003;
Miguel et al., 2006; Taylor et al., 2007). The burden from
AAD may increase further in the future due to intensive hu-
man activities that perturb the environment and change land
management practices, which could shift the pollen amount,
pollen allergenicity, duration of pollen season, and pollen
spatial distributions (Beggs 2004; D’Amato et al., 2007; Reid
and Gamble, 2009). Evidence also suggests that sensitization
to pollen allergens can be enhanced with co-stressors such
as gaseous and/or particle-phase of air pollutants, including
nitrogen dioxide, ozone, and diesel exhaust particles (e.g.,
Knox et al., 1997; Motta et al., 2006; Després et al., 2012).
Hence, building a quantitative model to link airborne pollen
levels, concentrations of respirable allergenic material, and
human allergenic response under current and future climate
conditions is needed to assess the health impacts on AAD and
develop corresponding preventive actions (Hugg and Rantio-
Lehtimäki, 2007; Efstathiou et al., 2011). Simulating the spa-
tiotemporal variation of pollen occurrence is the central task
toward this goal.

The dispersal of pollen grains and their fragments in
the atmosphere is controlled by meteorological factors as
well as the pollen physical characteristics such as shape,
density, size, and vitality (Helbig et al., 2004; Pfender et
al., 2007; Veriankaite et al., 2010; Despés et al., 2012).
Even though pollen dispersal is normally treated as a local
scale transport phenomenon, long distance dispersal (LDD)
through mechanically- and thermally-induced updraft tur-
bulent eddies and regional transport is also possible (Ku-
parinen, 2006). These additional dispersal mechanisms have
been confirmed both by observations (Cecchi et al., 2006;
Ranta et al., 2006; Skjøth et al., 2007; Mahura et al., 2007)
and by modeling using back trajectory analysis (Smith et
al., 2008; Markra et al., 2010) and source apportionment
(Veriankaiṫe et al., 2010; Zink et al., 2012). The regional
transport of pollen is especially important from a health im-
pact perspective since non-local pollen sources from LDD
will change the local pollen load and shift the exposure po-
tential for pollen allergens (Sofiev et al., 2006; Zink et al.,
2012). Long-term pollen observations from networks such as
the European Aeroallergen Network Pollen Database (EAN,
http://ean.polleninfo.eu/Ean/) and US National Allergy Bu-
reau pollen counts database (NAB,http://www.aaaai.org/
global/nab-pollen-counts.aspx) would provide a platform to
evaluate regional pollen dispersion simulation results if these
data could be made available.

Several numerical models have been used to simulate re-
gional pollen transport for the purpose of evaluating the im-
pact of pollen dispersal to AAD or cross pollination (e.g.,
Hunt et al., 2001; Tackenberg et al., 2003; Helbig et al., 2004;
Schuler and Schlünzen, 2006; Verinakaite et al., 2010, Sil-
jamo et al., 2012). Even though the details of the schemes

vary, two core parts are central to all models, namely pollen
emission and pollen transport. For the pollen emission com-
ponent, the start, end, and duration of the pollen season as
well as the diurnal emission profiles are typically generated
via a regression analysis between observed pollen counts and
key meteorological factors such as temperature, relative hu-
midity, and wind speed (Jones and Harrison 2004; Schuler
and Schlünzen, 2006; Laursen et al., 2007; Marceau et al.,
2011). The spatial patterns of the pollen sources are based
on vegetation distribution maps, which are subject to large
uncertainties (Sofiev et al., 2006, 2013; Skjøth et al., 2010;
Pauling et al., 2011). For pollen transport modeling, the
pollen dispersion is either modeled by Lagrangian trajectory
models such as PAPPUS (Tackenberg et al., 2003), SMOP-
2D (Jarosz et al., 2004), CALPUFF (Pfender et al., 2006),
and HYSPLIT (Pasken and Pietrowicz, 2005; Verinakaite et
al., 2010), or by Gaussian advection-diffusion models such
as ADMS (Hunt et al., 2001), DRAIS/MADEsoot (Helbig
et al., 2004), Aquilon (Dupont et al., 2006), and METRAS
(Schuler and Schlünzen, 2006). Some key physical modules,
such as dry deposition due to gravity, washout by precipita-
tion, and resuspension by updrafts, can be parameterized ex-
plicitly into a model (Helbig et al., 2004; Kuparinen, 2006;
Siljamo et al., 2012).

In recent years, there has been a growing effort to sim-
ulate regional pollen dispersal within the framework of so-
phisticated regional air-quality models, which has multiple
benefits compared to the traditional approach. First, it can
be used in forecast mode to predict the pollen concentra-
tions on a daily basis (Zink et al., 2012). Second, the pre-
dicted air pollutant concentrations already included in air-
quality models are also important for AAD assessment, thus
allowing the exacerbating effects of pollution and pollen ex-
posure on AAD to be evaluated under the same modeling
framework. Third, pollen grains can serve as cloud conden-
sation nuclei (CCN) or ice nuclei (IN) for cloud formation
and thereby change precipitation patterns, which can have
important impacts on aerosols and related pollutants (Möh-
ler et al., 2007). Thus simulating pollen within this type of
modeling framework is a step towards being able to quan-
tify the feedbacks between pollen concentration and radia-
tive forcing. In Europe, the air-quality models SILAM (Sys-
tem for Integrated modeLling of Atmospheric coMposition;
Sofiev et al., 2013, 2006) and COSMO-ART (COnortium for
Small-scale MOdeling – Aerosols and Reactive Trace gases;
Vogel et al., 2008) have been used to forecast regional birch
pollen dispersion by adding a pollen emission prediction
module. In North America, a combined MM5-CMAQ-Pollen
model merges the Mesoscale Meteorological Model (MM5;
Grell et al., 1994), components of the Biogenic Emissions
Inventory System (BEIS) and major elements of SILAM
and COSMO-ART for pollen emissions, and the Commu-
nity Multiscale Air Quality (CMAQ, Byun and Schere, 2006)
modeling system for pollen transport; the combined model
was used to simulate birch and ragweed pollen dispersion
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behaviors during their peak pollination periods in 2002 for
the northeastern US (Efstathiou et al., 2011).

In this study, using a new model for predicting the daily
pollen pool in terrestrial, temperate vegetation, a new hourly
pollen emission flux parameterization scheme has been de-
veloped and incorporated into the state-of-the-art mesoscale
Weather Research and Forecasting Model (WRF; Skamarock
et al., 2008) and CMAQ air-quality modeling framework to
simulate regional pollen dispersion behaviors. This simula-
tion platform has the flexibility to predict the spatiotemporal
variations of different pollen species under current and fu-
ture climate conditions. The model results can be linked with
AAD clinical data to assess and forecast pollen impacts on
target-sensitive groups. Model evaluation has been carried
out by simulating representative allergenic pollen species
during the March–June 2010 flowering season over southern
California (USA) where the Children Health Study (CHS)
campaign had collected pollen count and measured exhaled
nitric oxide in study participants. The uncertainties of the
emission and transport modules of this modeling framework
are also discussed through sensitivity studies. The framework
can also be applied to estimate the changes in the timing of
pollen seasons and the magnitude of pollen production for
selected allergenic species over California under current and
future climate scenarios; description and results are available
in the companion paper (Duhl et al., 2013).

2 Methodology

2.1 STaMPS model

The Simulator of the Timing and Magnitude of Pollen
Season (STaMPS) is a model that generates daily pools of
pollen available for release (emission potentials) into the at-
mosphere. It is a module within the Model of Emissions of
Gases and Aerosols from Nature (MEGAN; Guenther et al.,
2006, 2012) and is driven by meteorological conditions such
as temperature and precipitation. It is designed to be sensi-
tive to potential climate shifts and flexible with respect to its
representation of pollen species and plant functional types
(PFTs). A detailed description of the STaMPS model is pro-
vided in a companion paper by Duhl et al. (2013); only a
brief description is given here.

The magnitude of daily pollen emission potentialPa
(grains m−2) at each simulation grid cell for a given pollen
species is determined as

Pa = εsp · αP,TP · γ (1)

whereεsp is the pollen pool size (grains m−2), which was
directly derived from the literature values or the associated
average values for the PFT to which a given species be-
longs;αP, T P is a coefficient with values between 0 and 1
that modifies the pool size according to either precipitation
(αP) or both temperature and precipitation (αTP); andγ is

the total area occupied by the species in a grid cell. The to-
tal area occupied by the species in a grid cell,γ , was de-
termined using fractional vegetation and land cover data sets
such as the National Land Cover Database (NLCD;http://
www.epa.gov/mrlc/nlcd-2001.html) and species inventories
from different sources, including Forest Inventory & Analy-
sis data sets (FIA;http://www.fia.fs.fed.us/tools-data/default.
asp), Natural Resources Conservation Service data sets
(NRCS; http://soildatamart.nrcs.usda.gov/), and the Crop-
land Data Layer from National Agricultural Statistic Service
(CDL/NASS; http://www.nass.usda.gov/research/Cropland/
SARS1a.htm). The homogenization process for combining
these different data sets is documented in detail in the com-
panion paper (Duhl et al., 2013).

The onset and duration of pollen season for each species
was based on the thermal time approach, modeled after
García-Mozo et al. (2002). Pollen is available to be re-
leased into the atmosphere after a prescribed species-specific
threshold of heat-accumulation units (i.e., growing degree
days, GDD) for flowering. Different species have different
associated pollen production response curves, sensitive to ei-
ther precipitation or both ambient temperature and precip-
itation. For some species with dual heating and vernaliza-
tion requirements (e.g., birch, olive, and walnut), chilling
units must also be accumulated until a species-specific chill-
ing threshold has been achieved before GDD accumulation
is initiated. The chilling module for birch, olive, and walnut
was based on the chill-heating model of De Melo-Abreu et
al. (2004), in which the accumulation of chilling units is de-
termined via a piecewise approximation using the ratio of the
actual hourly temperature data for a location to an optimal
chilling temperature for a given species. After initiation, the
distribution of the potential pollen pool is assumed to be log-
normal over a two-week duration. Hence, the peak value of
daily pollen emission potential will appear at day eight with
normally distributed emissions seven days before and after
the peak day.

2.2 Pollen emission flux parameterization

The MEGAN/STaMPS model determines the onset and dura-
tion of the pollen season and the potential amount of pollen,
Pa, that can be emitted into the atmosphere for each day dur-
ing the pollen season. The actual amount of pollen emitted
into the atmosphere depends on dispersion conditions and is
a fraction ofPa. There are very few comprehensive param-
eterizations of pollen emission that can be applied at a re-
gional scale, especially with respect to the diurnal variation
in pollen release and changing ambient meteorological con-
ditions. The parameterization scheme proposed by Helbig et
al. (2004) based on friction velocity,u∗, has been widely used
in other regional modeling studies (Sofiev et al., 2006; Vo-
gel et al., 2008; Efstathiou et al., 2010; Zink et al., 2012).
A recent paper by Sofiev et al. (2013) reported a new birch
pollen emission scheme based on a temperature-dependent
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parameterization (Linkosalo et al., 2010) and used the con-
vective velocity scale (w∗) together with the 10 m wind speed
to represent the influence of both mean wind and convection
on pollen emission. The authors suggested that this was a
more realistic approach for free convection and low mean
wind conditions.

Since the MEGAN/STaMPS pollen emission potential
module already explicitly accounts forPa with different
species based on species-specific temperature–precipitation
regression mechanisms, only the wind effect in scaling the
pollen potentialPa is considered to calculate the rate of emis-
sion into the atmosphere. Hence, the hourly average vertical
emission rate,EP (grains s−1 m−2), at each grid cell is pro-
portional toPa, u∗ (m s−1), and a wind effect scale factor,
Ke:

EP =
Pa

Hs · C
· Ke · u∗ (2)

where the constant,C, is the conversion constant from day
to seconds, andHs (m) is the average canopy height for
species within each genus. Values ofHs used in this study are
listed in Table 1. In Eq. (2),Pa/Hs represents the characteris-
tic concentrations (grains m−3) of pollens within the canopy.
The wind effect scale factor,Ke, is a non-dimensional factor
between 0 and 1 and is parameterized, following Helbig et
al. (2004) using a threshold friction velocity,u∗te, which is
the product of a resistance factor,α, and a standard threshold
friction velocity,u∗t (m s−1):

Ke =

{
1−

u∗te
u∗

, u∗ > u∗te

0, u∗ ≤ u∗te
(3)

u∗te = α · u∗t = α · (0.0123× [
ρP

ρ
· g · dp +

0.0003

ρ · dP
])

1/2

(4)

Equation (4) foru∗t is the regression formula based on wind
tunnel data for sand erosion (Greeley and Iversen, 1985) and
is related to the pollen density,ρP (kg m−3), and aerody-
namic diameter,dP (m); ρ is the air density (kg m−3); and
g is the gravitational acceleration (9.8 m s−2). Equations (2)
and (3) indicate that the amount of pollen released each hour
depends on the ratio of the threshold friction velocity and the
friction velocity. For a given 10 m wind speed, higher canopy
height means higher emissions because of higher friction ve-
locity as a result of higher surface roughness and zero-plane
displacement height. The resistance factor,α, is introduced
here to distinguish the different natures of sand erosion on
the ground and the pollen release above the canopy height. It
is a ratio of an empirical threshold wind speed,U10e, and the
modeled 10 m wind speed,U10:

α = U10e/U10. (5)

For the base case, the value ofU10e was set at 2.9 m s−1 for
all pollen genera following Helbig et al. (2004). As discussed

below and listed in Table 2, we also performed sensitivity
simulations using different values ofU10e. Equations (3)–(5)
indicate that the greater the ambient wind speed, the smaller
the threshold friction velocity (u∗te), which means that a
higher proportion ofPa can be released into the atmosphere.

The emission flux parameterization scheme used in this
study differs significantly from the earlier parameterization
of Helbig et al. (2004) in that their bloom probability func-
tion, which was based on an assumed timing and duration
of the flowering season, is replaced here by more explicit
modeling of pollen emission potential, driven by tempera-
ture and/or precipitation. Equation (1) does not include a leaf
area index (LAI) factor because biomass and fractional veg-
etation cover are already considered in the pollen emission
potential calculation.

The dry deposition process during pollen dispersion is
modeled using the settling velocity,Vdp (m s−1), which is
calculated according to Eq. (6) (Seinfeld and Pandis, 1998):

Vdp =
ρp · g · Cc·d

2
p

18µ
(6)

whereCc is the slip correlation coefficient andµ is the vis-
cosity of air as a function of temperature. For each genus
modeled here, we assume monodisperse spherical parti-
cles, with particle diameters and densities based on val-
ues reported in the literature; the assumed particle diame-
ter dP, densityρP, and settling velocitiesVdp, as calculated
by Eq. (6), are provided in Table 1. Table 1 also lists the
measured settling velocity reported by Jackson and Lyford
(1999). Uncertainty in model results associated with deposi-
tion velocities is addressed with sensitivity simulations (see
Sect. 2.5) and discussed in Sect. 3.3. Due to the relatively
large diameter of pollen grains, the contribution of canopy re-
sistance to bulk dry deposition rate is small. The hourly dry
deposition flux of simulated pollen can be calculated using
Vdp as dry deposition rate, following the Regional Particu-
late Model (RPM) approach (Binkowski and Shankar, 1995).
Pollen dispersion is also subject to wet deposition via cloud
scavenging and precipitation. The algorithms for wet deposi-
tion processes in our framework are taken from the Regional
Acid Deposition Model (RADM) (Change et al., 1987).

2.3 WRF-MEGAN-CMAQ modeling framework

The STaMPS model for daily pollen emission potentials and
the pollen emission flux parameterization scheme described
above were incorporated into the WRF-MEGAN-CMAQ re-
gional air-quality modeling system to simulate the variation
of spatiotemporal patterns for different species. This WRF-
MEGAN-CMAQ modeling framework has been applied to
provide daily air-quality forecasts (e.g., Herron-Thorpe et al.,
2012), to study present-day air-quality issues (e.g., Appel et
al., 2012), and to investigate the impact of climate change
on regional air quality (e.g., Avise et al., 2012). Similarly,
the modeling framework can be applied for retrospective
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Table 1.Pollen genera considered in this study and their physical properties. Note: N.A. indicates not available.

Genus Pollen Density Diameter Settling Calculateda Canopy Threshold
species ρP DP velocity Vdp height friction
included (kg m−3) (µm) Vdp (m s−1) Hs velocityb

(m s−1) (m) u∗te (m s−1)

Betula Betula pedula 800c 24c 0.013d 0.014 6c 0.37
(birch trees)
Bromus B. diandrusandB. mollis 900d 24c N.A. 0.0158 0.1 0.37
(grass)
Juglans J. regiaandJ. californica 940d 35 0.029–0.044d 0.035 9.2 0.31
(walnut trees)
Morus M. alba, M. rubra, and unspeciated 1140e 19 N.A. 0.0126 7.6 0.41
(mulberry trees) Morustrees
Olea O. europaea 1000 25 N.A. 0.019 7.2 0.36
(olive trees)
Platanus P. acerifolia 920d 19 0.0104d 0.0096 6.8 0.42
(plane trees)
Quercus Early-blooming oak species: 1058f 31 0.029d 0.0309 9.6f 0.33
(oak trees) Q. agrifolia, Q. douglasii, Q. dumosa,

Q. engelmannii, Q. laurifolia, Q. lobata,
Q. turblinella, Q. velutina, Q. virginiana,
Q. wislizeni

Late-blooming oak species:
Q. alba, Q. chrysolepis, Q. coccinea,
Q. gambelii, Q. garryana, Q. grisea,
Q. llex, Q. kelloggii, Q. macrocarpa,
Q. palustris, Q. rubra, and misc.
Quercus species

a Calculated using Eq. (6) and the listed density and diameter.
b Assume air densityρ of 1.161 kg m−3, 10 m wind speedU10 of 3 m s−1 and empirical threshold wind speedU10eof 2.9 m s−1 in Eq. (5).
c Efstathiou et al. (2010).
d Jackson and Lyford (1999).
e Martonen and O’Rourke (1993);
f Schuler and Schlünzen (2006).

analyses and daily forecasts of pollen concentrations, and to
project the impact of pollen on AAD under future climate
conditions by using downscaled meteorological fields from
global climate models and the corresponding estimation of
pollen emission fluxes. In addition, the modeled pollen con-
centrations can be used to derive the concentration response
function (CRF) for overall and species-specific allergen con-
centrations for key respiratory health outcomes.

The schematic flowchart of this modeling framework is
given in Fig. 1, with the core modules relevant for pollen
highlighted in tan. The key meteorological variables for
pollen emission and dispersion – wind speed and direc-
tion, temperature, relative humidity (RH), radiation, and
dew point temperature – are predicted by WRF (Weather
Research and Forecasting model). WRF’s dynamical core
includes multiple physical schemes for radiation, cumu-
lus, microphysics, planetary boundary layer (PBL) meteo-
rology, and land-surface process representation (Skamarock
et al., 2008). Hourly temperature and precipitation needed
for the STaMPS model are provided by WRF through the
Meteorology–Chemistry Interface Processor (MCIP) utility
(Otte and Pleim, 2010). The Models-3 Community Multi-

scale Air Quality (CMAQ) modeling system from the US
EPA (Environmental Protection Agency) (Byun and Schere,
2006) is applied as the host model to simulate pollen trans-
port. CMAQ is a highly modular Eulerian model with state-
of-art chemical and physical process schemes to solve the
mass and energy conversation equations. Selected pollen
species were added into CMAQ by treating them as non-
reactive tracers. The emission flux of different pollen species
are released into the first model layer. Once released, the
pollen tracers were subjected to the standard CMAQ trans-
port process modules of advection, diffusion, dry deposition
and cloud washout. This approach required hourly gridded
emission fluxes and dry deposition velocities for each species
of pollen as inputs for CMAQ.

2.4 Simulation domain and model configurations

During March–June 2010, pollen counts and the fractional
exhaled nitric oxide (FeNO) level of 950 children partici-
pants were measured at eight sites across southern California
as part of the University of Southern California’s Children’s
Health Study (CHS, McConnell et al., 2006). These sites

www.biogeosciences.net/11/1461/2014/ Biogeosciences, 11, 1461–1478, 2014
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Table 2.List of WRF-MEGAN-CMAQ simulations.

Case ID Description Purpose

BASE Base case simulation

BCON Use dynamic boundary conditions extracted from Case study with simulated pollen concentration
D1 of CMAQ pollen transport simulation influenced by outside domain

PAHI Use the upper bound estimates of pollen emission;
pollen emission pool sizeεsp in Eq. (1). Compared
with case BASE, +74 % for birch and walnut, +113 %
for grass, +53 % for walnut, +43 % for olive and
+93 % for oak Sensitivity study of the uncertainties for pollen

emission pool sizeεsp estimates to their
PALO Use the lower bound estimates ofεsp. Compared simulated concentration

with case BASE,−74 % for birch and walnut,
−113 % for grass,−53 % for walnut,−43 % for
olive and−93 % for oak

UTHI Set empirical threshold wind speedU10e in Eq. (4)
as 4.0 m s−1 compared with case BASE 2.9 m s−1 Sensitivity study of empirical threshold wind

speedU10esetting to simulated pollen
UTLO Set empirical threshold wind speedU10e in Eq. (4) concentration

as 2.0 m s−1 compared with case BASE 2.9 m s−1

DVHI Increase the mean diameter of each pollen genera
in Table 1 by 10 % compared to case BASE Sensitivity study of dry deposition velocity

Vdp calculation for pollen genera to their
DVLO Decrease the mean diameter of each pollen genera simulated concentration

in Table 1 by 10 % compared to case BASE

34 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Flowchart of a regional WRF-MEGAN-CMAQ air-quality modeling framework with 
pollen emission and transport modeling highlighted. 
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Fig. 1. Flowchart of a regional WRF-MEGAN-CMAQ air-quality
modeling framework with pollen emission and transport modeling
highlighted.

were selected to detect the spatial variability in air pollution
and pollen exposures, and their health impacts across the tar-
get communities (see Fig. 2). Pollen samples were collected

Fig. 2. (a)Domain coverage of the 12 km California (D1) and 4 km
southern California (D2) grids with terrain height; and(b) the loca-
tion of pollen sampling sites (red) and the AWS sites (blue).

using Burkard Sporewatch samplers and were subsequently
analyzed using standard protocols by a pollen counter that
has been certified by the NAB. Results were reported as daily
mean number concentration (grains m−3). In addition to the
CHS community sites, long-term pollen counts were col-
lected at the campus of California Institute of Technology in
Pasadena, California (data available athttp://pollen.caltech.
edu/DataFrameset.html). As in most communities, the avail-
ability of long-term pollen count data over southern Califor-
nia is limited. Therefore, the observational data acquired dur-
ing the CHS study provide a unique opportunity to evaluate a
pollen dispersion model on a regional scale. This is also the
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first modeling study on pollen regional dispersion to include
the western US.

Six tree pollen genera and one grass pollen genus are in-
cluded in the STaMPS model for this study, representing
important allergenic species that typically bloom in south-
ern California during the period covered in our simulations
(Hjelmroos-Koski et al., 2006). These genera areBetula
(birch tree),Bromus(brome grass),Juglans(walnut tree),
Morus (mulberry tree),Olea (olive tree),Platanus (plane
tree) andQuercus(oak tree). Each pollen genus contains a
number of species, with varied abundance over the study do-
main. For instance, there is only one species considered in
birch tree pollen genus (Betula pedula), while 19 species are
included in the oak tree pollen genus over southern Califor-
nia. For genera that include more than one species,Pa is
calculated from the STaMPS model for the lumped results,
which are sensitive to the grouping of blooming categories
(based on GDD threshold, Duhl et al., 2013) for included
species. The important physical properties of each genus
such as pollen density and aerodynamic diameter, canopy
height, and threshold friction velocity are summarized in Ta-
ble 1 and are taken from previous studies (Martonen and
O’Rourke, 1993; Jackson and Lyford, 1999; Schueler and
Schlünzen, 2006; Efstathiou et al., 2011). All data for each
genus are the representative mean of their included pollen
species.Platanuspollen is not included in the CMAQ sim-
ulations because no observational data were available for
model evaluation.

Two nesting domains with horizontal grid cell sizes of
12 km× 12 km (D1) and 4 km× 4 km (D2) with 105× 95
(D1) and 126× 93 (D2) cells were set up for the WRF and
CMAQ models; domain coverage is shown in Fig. 2. CMAQ
simulations for pollen dispersion were initially conducted for
the inner domain (D2) with boundary conditions of zero. The
WRF version 3.2.1 meteorological simulations were driven
by initial and boundary conditions from the North Amer-
ican Regional Reanalysis results (NARR; Mesinger et al.,
2006). Twenty-nine vertical layers were constructed from the
ground to the 50 mb level, with 11 vertical layers in the low-
est 1 km above the surface and first layer height at around
40 m. The physical options chosen for the WRF simulations
were Yonsei University scheme (YSU) for PBL simulation,
Thompson scheme for microphysics, thermal diffusion meth-
ods for land-surface model, and Monin-Obukhov profile for
surface scheme (Skamarock et al., 2008). In order to capture
the wind pattern over complex topography in southern Cal-
ifornia, an analytical nudging technique (Otte et al., 2008)
was applied to the outer domain above the PBL top height us-
ing NARR temperature, wind, and moisture fields. Observa-
tional nudging was applied to the inner domain at the surface
layer using wind and temperature data that were obtained
from the California Air Resources Board (CARB) from 46
meteorological stations throughout the region. The CMAQ
version 4.7.1 was compiled with the option to run only for
dispersion of pollen tracers or with full chemical reactions of

other air pollutants. The global mass-conserving Yamartino
scheme was chosen to calculate the horizontal and vertical
advection terms, while the horizontal diffusion term was cal-
culated based on local wind deformation (Byun and Schere,
2006). Vertical diffusion was calculated using the Asymmet-
ric Convective Model version2 (ACM2) in CMAQ (Byun and
Schere, 2006). The off-line calculated average settling veloc-
ities (Eq. 6) of each pollen genus in Table 1 were written into
MCIP METCRO2D files to drive the CMAQ dry deposition
module.

The STaMPS model was run over the 4 km southern Cal-
ifornia domain (D2) for all cases and over the 12 km larger
domain (D1) for the BCON sensitivity case (see Sect. 2.5
below). Even though the focus of this study is March–June
2010, to simulate pollen potentialPa daily temperatures start-
ing from six months prior and monthly precipitation start-
ing from 15 months prior were used by STaMPS to model
vernalization and chilling (vernalization) requirements and
to model the effect of prior-year wet season precipitation on
pollen potential (see Duhl et al., 2013 for details). For the
October 2009–June 2010 period, daily temperature and pre-
cipitation fields from the WRF model were used to drive the
STaMPS model. For computational efficiency, for the Oc-
tober 2008–September 2009 period, 30-arcsecond PRISM
monthly precipitation data (PRISM Climate Group, 2010)
were used.

2.5 Case study design

Before running CMAQ for the pollen dispersion simulation,
the overall performance of predicted pollen emission poten-
tials Pa by the STaMPS model was compared with observed
pollen count data to assess the general observed day-by-day
temporal trend. This comparison resulted in an adjustment
made to the lumping scheme for theQuercusgenus by sepa-
rating the included oak species into two categories, one early-
blooming and one late-blooming (Table 1), according to the
phenological observations and qualitative time-of-flowering
data from the NRCS data set (Duhl et al., 2013). For the
base case (“BASE”), the validatedPa go through the emis-
sion flux parameterization process and the WRF-MEGAN-
CMAQ modeling framework, as described in Sects. 2.2 and
2.3, to simulate the ambient pollen level.

In order to test the impact of uncertainties from impor-
tant model parameters on the simulated pollen concentra-
tions, four sets of sensitivity simulations were also conducted
with the descriptions documented in Table 2. The first set of
sensitivity simulations (“BCON”) was designed to test the
impact of boundary conditions on the simulated pollen con-
centrations. In this case, the pollen concentrations from the
outer domain were also simulated by CMAQ to provide dy-
namic conditions for the inner domain instead of using zero
values. The second set of sensitivity simulations (“PAHI” and
“PALO”) were designed to test the impact of pollen emission
potential estimates on simulated pollen concentrations. The
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uncertainties inPa mainly come from the variation in pollen
pool sizeεsp estimates, species composition, and the frac-
tional vegetation cover data sets used in the model (Eq. 1).
Pollen production can vary by at least an order of magnitude
between species within a given genus (Duhl et al., 2013).
In this study, only the uncertainties in the pollen pool size
estimates were quantified, based on the work of Molina et
al. (1996). The estimated standard deviations of the six pollen
generaεspare±74 % for birch and walnut,±113 % for grass,
±53 % for walnut,±43 % for olive, and±93 % for oak. Case
PAHI used the upper bound estimates ofεspwhile case PALO
used the lower bound estimates ofεsp. The third set of sen-
sitivity simulations (“UTHI” and “UTLO”) were designed
to test the impact of the empirical threshold wind speed set-
tings on simulated pollen concentration. SmallerU10e results
in increased pollen release into atmosphere under the same
wind conditions (Eq. 5). The lower and upper settings of
U10e in the UTHI and UTLO simulations were 2.0 m s−1 and
4.0 m s−1, respectively, compared with the base case setting
2.9 m s−1. The last set of sensitivity simulations (“DVHI”
and “DVLO”) were designed to test the uncertainties in de-
position velocity calculation to simulated pollen concentra-
tion. Higher deposition rates are associated with faster dry
deposition processing and thus lower ambient pollen concen-
trations. The estimated mean diameters in Table 1 for each
pollen genus were varied by±10 % for the two sensitivity
simulations, corresponding to approximately±20 % changes
in deposition velocityVdp based on Eq. (6); note that this
±20 % inVdp is greater than the difference between the base
caseVdp and the measuredVdp (Table 1).

3 Results and discussion

3.1 Meteorological simulation

Meteorological variables predicted by WRF and processed
through MCIP are used by the MEGAN and CMAQ models
to model the pollen potential, emissions, and regional disper-
sion. A key step in accurately simulating ambient pollen con-
centrations is being able to accurately simulate meteorolog-
ical fields, especially the spatial distribution of winds, given
the complex terrain in southern California (Fig. 2), which
leads to diurnal land–sea breezes and mountain–valley circu-
lations. The comparison of observed and simulated surface
winds during March–June 2010 at two southern California
sites is shown in Fig. 3. At the UC Riverside site (Fig. 3a),
the observed and modeled wind patterns are quite similar
with nearly 50 % occurrence of southerly and 50 % north-
westerly winds and average wind speeds of 3–4 m s−1 dur-
ing the four-month simulation period. The WRF model with
the data assimilation performed well for wind speed as well
as wind direction at this site. For the Pomona site (Fig. 3b),
which is several kilometers away from the Caltech sampling
site (CALT, Fig. 2), the model performed less well. South-
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Fig. 3. Wind rose plots comparing observed (left column) and
simulated (right column) winds during March–June 2010 at UC
Riverside (33.96◦ N, 117.33◦ W) (top) and Pomona (34.05◦ N,
117.81◦ W) (bottom).

westerly winds were dominant both in the observations and
simulations (more than 90 % occurrence), but the model had
the tendency to overestimate wind speeds under mild wind
conditions.

Table 3 summarizes the month-by-month WRF-MCIP
model performance at 46 sites inside the 4 km southern Cal-
ifornia domain (D1). Simulated surface wind speeds, 2 m
temperatures, relative humidities (RH), downward solar ra-
diation at the ground, and dew points are evaluated with
corresponding observations using standard statistical metrics
such as mean, index of agreement (Willmott et al., 1981),
correlation coefficient (r), root mean square error (RMSE),
mean bias (MB), and normalized mean bias (NMB) and er-
ror (NME). The patterns of temporal variation for tempera-
ture and radiation were simulated well by the WRF model
with r near 0.9 or higher for all four months. Since only
temperature and wind observational data were nudged in the
inside simulation domain, the model tends to underestimate
the daily radiation peaks but shows decent agreement with
ground temperature. The model performed less well for wind
fields; it overestimated surface wind speeds by 30 % on aver-
age, and the simulated wind direction was more divergent, as
indicated by the MNB index. Except for wind, the model per-
formance for June 2010 is better than the other three months
in terms ofr and NMB. In general, the WRF configuration
used in the study generated good meteorological fields, judg-
ing from the fact that almost all NMB are less than±30 %.
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Table 3.Performance statistics of monthly averages for 4 km southern California WRF simulation.

Obs Model IOAa rb RMSEc MBd MNB NMB NME
mean mean (%)e (%)f (%)g

March 2010
Wind speed (ms−1) 1.7 2.3 0.76 0.68 1.2 0.5 75 33 53
Wind direction (deg) 190 191 0.76 0.57 97 0.3 294 1 30
Temperature (◦ C) 13.0 13.0 0.94 0.92 2.3 −0.1 6 −1 15.0
RH (%) 62 47 0.75 0.72 21.2 −14 −19 −23 28
Radiation (Wm−2) 389 510 0.93 0.88 161 44 31 12 31
Dew point (◦ C) 5.7 4.4 0.54 0.46 4.5 −2.9 −98 −76 90

April 2010
Wind speed (ms−1) 1.8 2.5 0.76 0.68 1.3 0.5 70 32 52
Wind direction (deg) 206 208 0.74 0.54 95 12 282 2 27
Temperature (◦ C) 13.8 13.5 0.93 0.90 2.4 −0.2 1 −2 14
RH (%) 64 52 0.78 0.75 18 −12 −16 −18 24
Radiation (Wm−2) 425 529 0.89 0.82 206 40 78 10 36
Dew point (◦ C) 6.6 5.4 0.61 0.47 3.9 −2.2 −49 −39 54

May 2010
Wind speed (ms−1) 1.9 2.4 0.76 0.68 1.2 0.5 71 33 53
Wind direction (deg) 213 219 0.73 0.53 91 6 216 4 27
Temperature (◦ C) 16.5 16.5 0.91 0.90 2.7 0.2 5 2 14
RH (%) 59 46 0.76 0.76 19 −13 −20 −21 27
Radiation (Wm−2) 472 619 0.91 0.86 195 64 62 14 32
Dew point (◦ C) 7.6 6.0 0.59 0.49 4.3 −2.6 −42 −39 52

June 2010
Wind speed (ms−1) 1.7 2.3 0.67 0.58 1.4 0.6 86 43 65
Wind direction (deg) 212 214 0.65 0.42 96 0.5 212 2 30
Temperature (◦ C) 20.1 20.1 0.89 0.91 3.0 0.2 3 3 13
RH (%) 61 51 0.74 0.78 17 −11 −11 −13 23
Radiation (Wm−2) 463 619 0.95 0.93 162 71 61 17 28
Dew point (◦ C) 10.9 10.1 0.63 0.53 3.2 −0.9 8 −7 24

a IOA: index of agreement (Willmott et al., 1981);
b r: correlation coefficient;
c RMSE: root mean square error;
d MB: mean bias;
e MNB: mean normalized bias;
f NMB: normalized mean bias;
g NME: normalized mean error.

3.2 Pollen emission potential and emission rate

Accurate geographical distributions of relevant vegetation
species, predictions of the timing of the pollen season, and
pollen emission potentials (Pa) are also important factors for
simulating ambient pollen concentrations. The prediction of
the onset and duration of flowering season can be evaluated
with the concurrent ambient observation of pollen concen-
trations. Even though LDD behavior affects the spatial dis-
tribution and magnitude of pollen concentrations at the local
scale (Zink et al., 2012), there should be a correlation be-
tween the timing of pollen emission and that of concentra-
tion on the regional scale. Figure 4 provides an illustrative
comparison between the day-by-day, domain-averaged sim-
ulatedPa and the observed pollen counts. For birch trees,
the predicted flowering season started on 27 April 2010;Pa
peaked on 16 May 2010 (Pa = 9× 1013 grains m−2) and the

birch pollen season lasted for the rest of the simulation pe-
riod (Fig. 4a-1). The observed birch peak concentration in
mid-May (7 grains m−3) corresponds to the timing of emis-
sion peak. However, the appearance of birch pollen in earlier
March at sites CALT and LBAQ is not represented by the
current STaMPS simulation (Fig. 4a-2). This could be due
to the fact that birch pollen cannot be differentiated at the
species level, and there may be otherBetulaspecies present
in the domain other than justB. pendulawith unique flower-
ing seasons. For grass pollen, thePa predicted by STaMPS
started on 19 March 2010 and presented a tri-modal tem-
poral distribution pattern (Fig. 4b-1), which correlates with
the observed regional high concentrations over the simula-
tion domain, especially during May 2010 (136 grains m−3,
Fig. 4b-2). For walnut trees, the simulated temporal pattern
of Pa is slightly offset with pollen count observations. Even
though the high concentrations at a single site, CALT (green
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Fig. 4. Temporally-aligned pollen emission potentials !! (left) and observed pollen counts (right) 
for (a) birch, (b) grass, (c) walnut, (d) mulberry, (e) olive, and (f) oak.  

Fig. 4. Temporally-aligned pollen emission potentialsPa (left col-
umn) and observed pollen counts (right column) for(a) birch, (b)
grass,(c) walnut,(d) mulberry,(e)olive, and(f) oak.

in Fig. 4c-2), on March and earlier April 2010 are not repre-
sented in the STaMPS predictions, the later-observed pollen
concentrations at multiple sites do match with concurrent
emission prediction. For mulberry (Fig. 4d) and olive trees
(Fig. 4e), both the predicted onset and duration of flower-
ing season from STaMPS closely match the corresponding
pollen count temporal pattern at the nine stations for which
data are available. For the oak tree pollen emission potential
simulation (Fig. 4f-1), the day-by-day variation of predicted
emission using an old species lumping scheme (dash line)
did not match with that of the observations (Fig. 4f-2), with
the simulations predicting higher pollen levels in June while
the observed concentrations peaked in March. The tempo-
ral trend ofPa with the updated lumping scheme that sep-
arates oak species into early-blooming and late-blooming
groups results in a much better agreement with the observed
data (solid lines in Fig. 4f-1), compared to the results when
all oak species are lumped into one group (dashed lines in
Fig. 4f-1). This is consistent with the fact that the oak genus
in the model contains several species with different thermal
requirements for flowering (Table 1) (Duhl et al., 2013).
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Fig. 5. Simulated spatial patterns of total pollen emission poten-
tial during March–June 2010 for(a) birch, (b) grass,(c) walnut,
(d) mulberry,(e)olive, and(f) oak.

Figure 5 provides the spatial distribution of simulated to-
tal emission potential of six pollen genera during March–
June 2010 over the 4 km domain (D2). The spatial patterns of
the different pollen genera vary, with birch (Fig. 5a), walnut
(Fig. 5c), mulberry (Fig. 5d) and olive (Fig. 5e) mostly occur-
ring along the coast, and grasses (Fig. 5b) and oak (Fig. 5f)
more evenly distributed across the simulation domain. No-
tice that the color bar in Fig. 5 is on a logarithmic scale; the
variation in estimatedPa for different grid cells is high. For
instance, the variation of oak treePa for different grid cells is
greater than ten orders of magnitude, with a maximum value
of 1.0× 1018 grains per grid area along southeast border and
a minimum value of 1.0×108 grains per grid area near north-
west corner of the domain. In terms of absolute value, com-
paring the totalPa between different pollen genera indicates
that oak tree pollen has the greatest potential, with nearly
half of the grid cells more than 1.0× 1015 grains per grid
area. In contrast, the typical value for walnut trees pollen is
only 1.0× 109

∼ 1.0× 1010 grains per grid area. The repre-
sentativeness of the estimatedPa and locations of each pollen
genus will strongly impact model performance with respect
to final simulated pollen concentrations.

By using the emission flux parameterization scheme de-
scribed in Sect. 2.2, the hourly gridded emission rates,EP,
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Fig. 6. Average diurnal profile of (a) threshold friction velocity and (b) average normalized 
hourly emission flux with standard deviation (shown as error bars) for oak pollen emission 
during flowering season at Pasadena CA. 

  

Fig. 6.Average diurnal profile of(a) threshold friction velocity and
(b) average normalized hourly emission flux with standard devia-
tion (shown as error bars) for oak pollen emission during flowering
season at Pasadena, California.

of the six pollen genera were calculated for input into the
CMAQ model. Only a portion of the pollen potential amount
can be emitted into the atmosphere, constrained by the wind
conditions. For the different pollen genera, the average frac-
tion of Pa actually emitted varied from 35 % for oak to 85 %
for birch under the base case model configuration. Figure 6
shows the average diurnal profile of threshold friction veloc-
ity (Fig. 6a) and the average normalized hourly emission flux
(Fig. 6b) for oak pollen emission during the simulation pe-
riod for the grid cell that includes Pasadena, California. By
introducing the resistance factorα into Eq. (6),u∗te has a
diurnal profile rather than the constant value, which is only
determined by pollen physical properties such as diameter
and density. At the Pasadena cell location, the daily pattern
of averageu∗te for oak tree pollen emission (Fig. 6a) peaks in
early morning and starts to decline after sunrise with the low-
est value around 16:00 local time (LT). This means that there
is a higher chance of pollen release to the atmosphere under
convective conditions. The average normalized hourly oak
pollen emission flux (with standard deviation) at Pasadena
shows a dominant peak during the afternoon with around
20 % of daily total emission release at 16:00 LT and a small
peak during evening hours. The calculated typicalEP diur-
nal profile has a unimodal distribution with the peak in the
afternoon, which is consistent with other observational and
modeling studies (Jones and Harrison, 2004; Laursen et al.,
2007; Marceau et al., 2011).

3.3 Pollen concentrations

Due to the relatively short lifetime of simulated pollen grains
in the atmosphere- half lives of roughly a few hours to a
day (Sofiev et al., 2006), the impact of pollen emission on
a receptor is highly dependent on the PBL structure and
meteorological conditions. Fig. 7 demonstrates how olive
pollen emission near Pasadena could impact or not impact
the cell containing the city within the course of a single day
(April 12, 2010). It can be seen that within 24 h, the pre-
dicted pollen concentration for the receptor site in Pasadena
(purple dot in the figure) can vary greatly as the wind pat-
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Fig. 7. Simulated olive emissions (left panel) and pollen plumes with wind vector overlays (right 
panel) on April 12, 2010 (a) at midnight PST when Pasadena was affected; and (b) at 3:00 pm 
PST when Pasadena, CA was not affected. 

  

Fig. 7. Simulated olive emissions (left panel) and pollen plumes
with wind vector overlays (right panel) on 12 April 2010(a) at mid-
night PST when Pasadena was affected; and(b) at 15:00 PST when
Pasadena, California, was not affected.

tern changes. During daytime (15:00 Pacific Standard Time
– PST), even though the hourly emission flux is stronger
(Fig. 7b-1), the strong sea breeze penetrated several miles
inland and diluted the pollen concentration at Pasadena. In
contrast, at night (midnight PST), a dominant southerly syn-
optic flow coupled with the valley (downhill) wind formed a
surface convergence zone and caused the local pollen sources
to more significantly impact Pasadena. This situation can
strengthen with the reduction of PBL height at night. The di-
urnal variation of simulated olive concentration varied from
0 to 9 grains m−3.

The method for evaluating pollen concentration simula-
tion performance differs from the usual statistical metrics for
assessing standard air-quality models. Sofiev et al. (2013)
applied threshold-based statistics such as model accuracy,
probability of detection, false alarm ratio, etc., to assess the
SILAM model’s ability to predict certain birch pollen con-
centration thresholds. However, this method requires a large
volume of observational data – thousands of samples. Ambi-
ent pollen count data are very sparse in the western US. Fur-
thermore, the NAB has not allowed access to its historical
data set, which makes it difficult to get pollen count data be-
sides the CHS campaign and long-term Caltech data for the
simulation period. For this study, daily mean pollen count
data are only available from nine sites for the four-month
simulation time window. At some sites, the sampling fre-
quency is longer than daily, resulting in an even more limited
data set. Hence, we evaluate the overall model agreement in
terms of daily mean and maximum for each site as well as
the spatial distribution of pollen concentrations. For clarity
in evaluating the spatial representativeness of the model, the
nine pollen monitoring sites were grouped into three regions
of the simulation domain: (1) Santa Barbara County (SBC),
containing pollen site SBBG; (2) Los Angeles Metropolitan
Area (LAM), containing pollen sites CALT, LBAQ, GAQM,
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Fig. 8.Time series of simulated pollen concentrations at the Caltech
site (CALT) during March–June 2010 for(a) birch, (b) grass,(c)
walnut,(d) mulberry,(e)olive, and(f) oak.

SDAE, and SDLH; and (3) Riverside & Orange Counties
(ROC), containing pollen sites AHAQ, MLAQ, and RSAQ.

3.3.1 Birch tree pollen concentration

Figure 8a compares the time series of observed pollen count
concentration (red dots) and simulated concentration (black
line) for case BASE during the four-month simulation win-
dow at the Caltech site (CALT). The model can reproduce
the observed peak in early May (observed concentration
6 grains m−3 versus simulated concentrations 3 grains m−3)

but misses the earlier observed peaks during March. This is
presumed to be due to either a temporal non-alignment be-
tween modeled pollen seasons and observed concentrations
at large scale during that time (Fig. 4a) or to the presence of
additional birch species in the domain with unique flower-
ing requirements that were not included in the simulation.
Figure 9a provides the overall performance of the WRF-
MEGAN-CMAQ modeling system in reproducing the spa-
tial birch concentrations in terms of mean (Fig. 9a-1) and
maximum (Fig. 9a-2) at the nine available sites. The mean
concentration level for birch during the flowering season is
very low (less than 1 grains m−3); hence, the receptor points
in the model can easily miss the pollen plume, given the dis-
tortion of simulated wind field relative to the observations or
the mismatch of emission representation from the STaMPS
model. In terms of the maximum concentration prediction,
the case simulation BASE tends to underestimate in the SBC
and LAM regions but overestimate at ROC region. The re-
sults of multiple sensitivity simulations (Table 2) to test the
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Fig. 9. Modeled vs. observed mean (left panel) and maximum (right panel) pollen concentrations 
at nine observation sites for (a) birch, (b) grass, (c) walnut, (d) mulberry, (e) olive, and (f) oak.  

Fig. 9. Modeled vs. observed mean (left panels) and maximum
(right panels) pollen concentrations at nine observation sites for(a)
birch, (b) grass,(c) walnut,(d) mulberry,(e)olive, and(f) oak.

impact of boundary conditions, emission pool size, empirical
wind threshold setting, and deposition velocity calculation of
birch pollen are summarized in Table 4. The reported val-
ues are the average concentration of sites within each of the
three grouped regions and are rounded to the nearest integer
number. Compared with the case simulation BASE, the case
simulations BCON with the dynamic boundary condition did
not improve the birch simulation result much. However, by
varying the emission pool size estimation, case simulations
PAHI and PALO for birch could impact the final simulation
results by 30 % or more for the maximum concentration. For
instance, the simulated maximum at LAM region increases
from 2 grains m−3 for case BASE to 4 grains m−3 for case
PAHI compared with the corresponding observed concen-
tration 7 grains m−3. No significant model improvement was
found with case UTHI and UTLO for birch simulation. The
sensitivity simulation that decreased the birch pollen grain
mean diameter estimates (DVLO) showed a decreased un-
derestimation of maximum concentration of∼ 33 % over the
middle and southern regions of the simulation domain.
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Table 4.Evaluation of simulated daily mean and daily maximum pollen concentrations (grains m−3) for different cases over three grouped
regions in southern California.

Mean (grainsm−3) Maximum (grainsm−3)
OBSa BASE BCON PAHI PALO UTHI UTLO DVHI DVLO OBS BASE BCON PAHI PALO UTHI UTLO DVHI DVLO

Santa Barbara County (SBC)b

Birch 0 0 0 0 0 0 0 0 0 0 3 4 7 3 3 3 3 5
Grass 8 34 36 42 27 32 35 28 39 44 457 479 605 297 451 465 332 547
Walnut 0 1 1 2 1 1 1 1 1 1 4 4 8 4 4 4 3 6
Mulberry 0 0 0 1 0 0 0 0 0 0 1 1 7 1 1 1 1 4
Olive 2 3 3 4 2 3 3 3 3 15 10 11 19 8 10 12 7 16
Oak 4 22 27 32 13 23 25 16 28 16 223 264 289 171 217 250 199 254

Los Angeles Metropolitan Area (LAM)c

Birch 1 0 0 0 0 0 0 0 0 7 2 2 4 2 2 2 2 3
Grass 10 6 7 19 4 6 6 4 9 36 141 143 178 92 120 159 110 151
Walnut 1 0 0 1 0 0 0 0 0 7 3 3 10 3 3 3 3 7
Mulberry 3 2 2 2 2 2 2 2 2 13 8 8 11 7 8 10 7 10
Olive 6 3 3 5 2 3 3 4 3 46 20 21 37 16 20 27 15 31
Oak 11 7 8 13 4 6 8 9 6 114 58 69 89 49 51 63 50 77

Riverside & Orange Counties (ROC)d

Birch 1 1 1 1 1 1 1 1 1 5 2 2 3 2 2 2 2 3
Grass 5 31 31 43 19 28 34 27 36 13 181 183 262 127 150 201 154 222
Walnut 2 0 0 1 0 0 0 0 0 9 2 2 7 2 2 2 2 4
Mulberry 4 1 1 2 1 1 1 1 1 17 9 9 13 7 9 10 8 12
Olive 3 2 2 3 2 2 2 2 3 10 7 7 12 7 7 9 7 8
Oak 29 10 10 16 8 9 10 8 12 159 64 64 82 50 60 69 55 72

a For description of each simulation case, refer to Table 3.
b Santa Barbara: includes pollen count sites “SBBG” (Fig. 2);
c Los Angeles Metropolitan Area: includes pollen count sites “CALT”, “LBAQ”, “GAQM”, “SDAE” and “SDLH”;
d Riverside & Orange: includes pollen count sites “AHAQ”, “MLAQ” and “RSAQ”.

3.3.2 Grass pollen concentration

For case BASE, the model has poor performance for grass
at the CALT site in terms of both the mean value and daily
variation trend (Fig. 8b). In terms of the model spatial vari-
ation representation performance, the case BASE tends to
overestimate the mean grass pollen concentration by 4–6
times over SBC and ROM regions, but exhibits compara-
ble level at LAM region (simulated 6 grains m−3 versus ob-
served 10 grains m−3). In terms of maximum concentration,
the BASE case heavily overestimates by a factor of 10 or
more over the whole simulation domain. A possible reason
for the overestimation is that the geographic locations of
most receptor sites are very close to locations of the peak
emission potentials (see Figs. 2b and 5b). Since the spatial
gradient of grassPa predicted by the STaMPS model is quite
large and the magnitude can vary by three orders within a few
kilometers (Fig. 5b), the pollen plume from the nearby source
will easily impact the receptor sites and cause high spikes
in the CMAQ simulation under certain wind conditions. For
sensitivity simulations, even though decreasing the emission
pool size (case PALO) and increasing the grass pollen mean
diameter (case DVHI) will improve the overestimation situa-
tion from 20 to 38 % and 15 to 27 %, respectively, depending
on the region, the current model still has systematic overesti-
mations for grass, which suggests the possible deficits for ge-
ographic representation of gridded emission in the STaMPS
model.

3.3.3 Walnut trees pollen concentration

For walnut, the simulated concentrations at CALT site are
very sparse and systematically low (1 grain m−3) compared
to observed mean value (5 grains m−3 in Fig. 8c), which sug-
gests that the pollen potential or species abundance may be
underestimated. The vegetation data sets used in this study
could have significantly underestimated walnut distribution
if the tree inventory data sets used to determine urban tree
species distribution are not representative of the actual urban
canopy (Duhl et al., 2013). In terms of spatial distribution,
the case BASE also tends to underestimate walnut pollen
concentrations both in mean and maximum (Fig. 9c). The
total walnut emission potential was 2–3 orders of magnitude
smaller during the simulation window compared with other
pollen genera (Fig. 5); hence the simulated ground concen-
tration is also low. Sensitivity simulations suggest increas-
ing emission pool size (case PAHI) will result in much bet-
ter agreement with the observed mean and maximum in all
three regions (Table 4), which again implies a tendency for
emission underestimation in STaMPS over most of the do-
main. Varying the settling velocity estimates (case DVHI and
DVLO) will impact the simulated maximum concentration
by 33 to 133 % but has little impact on simulated mean con-
centration.

3.3.4 Mulberry tree pollen concentration

The case BASE simulation for mulberry compares reason-
ably well with observations at CALT, following the daily
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variation trend and keeping the ratio between simulated and
observed mean within a factor of two (Fig. 8d). In terms
of spatial pattern, the model performance is also reasonably
good, with biases for mean and maximum concentrations
within ±100 % (Fig. 9d). By varying the emission poten-
tial estimates, the model performance, both for mean and
maximum, improved for most regions. For instance, at ROC
region the simulated mean concentration for case PAHI in-
creased from 1 grains m−3 to 2 grains m−3 compared with
observation of 4 grains m−3, while the simulated maximum
concentration increased from 9 grains m−3 to 13 grains m−3

compared with observation of 17 grains m−3. Using lower
empirical wind threshold setting (case UTHI) and deposition
velocity (case DVLO) will improve the model performance
on mulberry maximum value simulation but have little im-
pact on mean value simulation.

3.3.5 Olive tree pollen concentration

For olive the time series comparison for case BASE at site
CALT is also in reasonably good agreement with the ob-
served peak during the end of April (Fig. 8e). The model was
able to predict the olive spatial distribution pattern, with the
predicted mean and maximum values quite similar to obser-
vations at several sites, such as SBBG site at the northwest-
ern corner of D2, LBAQ site at the center of D2, and RSAQ
site in the southeastern corner of D2 (Fig. 9e). For sensitivity
simulations, the case PAHI simulation (Table 4) shows better
predictive capability for the maximum concentration at some
regions (e.g., from 20 grains m−3 to 37 grains m−3 compared
with observed value of 46 grains m−3 at the LAM region).
Like the model performance for mulberry tree pollen, de-
creasing pollen diameter estimates (case DVLO) andU10e
setting (case UTHI) will also significantly improve the un-
derestimation of observed maximum value with comparable
percentage (20 to 35 % for DVLO and 14 to 50 % for UTHI)
but have nearly no improvement on the mean concentration
simulation.

3.3.6 Oak tree pollen concentration

The case BASE configuration for oak performs less well at
site CALT (Fig. 7f), missing completely a large observed
peak in late March, where the observed peak concentra-
tion was∼ 400 grains m−3 but the simulated value was only
150 grains m−3 (Fig. 8f). Spatially, no obvious relationship
exists between observation and simulation. The observed
mean oak pollen concentration peaks at site RSAQ and has
the lowest value at site SBBG, which is consistent with the
spatial pattern of its emission potential (Fig. 5f). However,
the corresponding simulated mean oak pollen concentration
at site RSAQ underestimates the observation by nearly a fac-
tor of five (11 grains m−3 versus 50 grains m−3), while at site
SBBG there is a factor of five overestimation (25 grains m−3

versus 5 grains m−3). As discussed in Sect. 3.2, the varia-

Fig. 10. Sensitivity study for oak pollen simulation during the
episode around 27 March 2010 at Pasadena, California, with(a)
three-day back trajectories from HYSPLIT; and(b) model evalua-
tion with pollen concentration boundary conditions from outer do-
main (BCON) and without (BASE).

tion of oak pollen emission potential across the domain is ten
orders of magnitude and has high uncertainties. Oak pollen
emission in some areas, especially in the highly heteroge-
neous areas near urban locations, appears to be based on a
data set that is not representative of the actual species distri-
bution. Significant additional work is needed to better con-
strain this estimate using novel techniques with emphasis
on improving species distribution data sets and our knowl-
edge of the timing of phonological events (Duhl et al., 2012).
Back trajectory analysis using the NOAA HYSPLIT model
(Draxler and Rolph, 2003) shows that air masses reaching
the site for three days before the observed peak (May 27)
were coming predominantly from the north (Fig. 10a). The
sensitivity case simulation BCON only increases pollen con-
centration by∼ 10 % (from 150 to 177 grains m−3), which
is still lower by a factor of two relative to the observa-
tions. The calculated average settling velocity for oak is quite
high (0.0309 m s−1, see Table 1), which means that the at-
mospheric lifetime is relatively short and that the concen-
trations of oak pollen are dominated by local dispersion.
Thus, the model underestimation of oak pollen at the site
CALT may suggest that pollen emission is underestimated
near the site. The sensitivity simulations by varyingU10e
and velocityVdp still exhibited systematic underestimations
for oak pollen over different regions (Table 4). Instead of
the threshold friction velocity method used in this paper,
Schueler and Schlünzen (2006) parameterized oak pollen re-
lease as the function of water vapor pressure deficit, which
was derived by regression analysis from measured temper-
ature, RH, and wind speed with a synchronous record of
pollen count. Hence, the universal feasibility of the param-
eterization scheme described in Sect. 2.2 for oak tree pollen
may need to be revised in future simulations.

4 Summary

In this paper, a regional-scale pollen release and trans-
port modeling framework was developed to simulate
pollen concentrations. The regional model includes WRF
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for meteorological field simulation, MEGAN/STaMPS for
pollen emission potential estimates, and CMAQ for pollen
tracer transport. The new model STaMPS under the frame-
work of MEGAN was designed to predict daily pollen emis-
sion potential based on species-specific pollen pool size, veg-
etation cover data sets and meteorological conditions. Tem-
perature and precipitation are the major drivers in STaMPS
and determine the onset, duration and magnitude of pollen
emission potential during the flowering season. The hourly
emission flux of pollen was parameterized using friction ve-
locity and a wind effect scale factor. Pollen grains were
treated as passive tracers in CMAQ, emitted above the
canopy height under favorable wind conditions. Dry depo-
sition and precipitation wash-out are considered the only re-
moval pathways from the atmosphere. Compared with previ-
ous regional pollen modeling approaches, this framework has
two advantages. First, the MEGAN/STaMPS pollen emission
potential model allows a sophisticated dynamic response of
pollen potential and release to the key meteorological drivers:
temperature, precipitation, and wind speed. This results in a
more realistic treatment of the pollen emission temporal vari-
ation, with explicit modeling of the onset and duration of the
pollen season and explicit treatment of hourly pollen release
due to local wind conditions. Second, the new framework can
include multiple pollen genera with varying physical proper-
ties (e.g., density, diameter, release canopy height) in a single
simulation, and can be used not only for retrospective case
studies but also for future-climate projection scenarios.

The WRF-MEGAN-CMAQ framework for regional
pollen release and transport modeling was evaluated for
southern California using four months of simulation, March–
June 2010, which coincided with an extensive set of pollen
observations collected as part of the University of South-
ern California’s Children’s Health Study. Five allergenic tree
pollen genera (birch, walnut, mulberry, olive, and oak) and
one grass pollen genus were included in the dispersion and
transport model for these simulations. When comparing the
means and maxima of pollen observations with the simula-
tion results, the framework exhibited relatively good perfor-
mance for birch, mulberry and olive, but generally overes-
timated grass pollen and underestimated the mean concen-
trations for walnut and the maximum concentrations for oak
pollen.

Seven sensitivity simulations were carried out to inves-
tigate the impact of the boundary conditions, pollen pool
size, empirical wind threshold value, and deposition veloc-
ity on the model results. Adding outer domain simulations to
provide dynamic boundary conditions slightly improved the
model performance under favorable wind conditions. Simu-
lation results are very sensitive to the estimated pollen emis-
sion potential, both in terms of magnitude and spatial dis-
tribution. With respect to uncertainty in the pollen emission
potential, here we have only addressed the uncertainty as-
sociated with pollen pool size. As discussed in the compan-
ion paper (Duhl et al., 2013), the errors in speciation com-

position and in applying tree inventories for urban areas are
potentially large but have not been quantified, nor can they
be quantified until there are relevant species-composition
ground-truth data sets available to do so. Thus, the uncer-
tainty associated with pollen emission potential is poten-
tially greater than those addressed in the sensitivity simu-
lations performed here. The time alignment between pre-
dicted emission potential by the MEGAN/STaMPS model
and regional-scale pollen observations is a key factor for suc-
cessful CMAQ simulation. For walnut, mulberry and olive
tree pollen, adjusting the empirical wind threshold value or
deposition velocity setting in CMAQ or MCIP can signif-
icantly improve the model performance on maximum con-
centration, which is important for epidemiological exposure
study. However, the current pollen release parameterization
scheme still was unable to reproduce the observed pattern for
grass and oak pollen, even taking all above sensitivities into
account. More concurrent observations linking the meteoro-
logical factors to the pollen count data are needed to refine
the parameterization scheme to achieve improved model per-
formance.

The accuracy of simulated wind fields in WRF is one of
the key factors for accurate pollen transport simulation. Data
assimilation (both analysis nudging at the outer domain and
observational nudging at the inner domain) was used in WRF
to improve model performance. However, the model tends
to overestimate wind speed, especially during the calm wind
conditions. This leads to overestimation of hourly emission
flux. On the other hand, higher wind speeds tend to distribute
the pollen grains over longer distances and thus can lead to
underestimation of ambient pollen concentrations.

Pollen resuspension processes, including the rebound and
re-entrainment of pollen after deposition to the ground or
plant surface, could contribute to increased airborne pollen
concentrations (Jarosz et al., 2004; Helbig et al., 2004).
These impacts are more pronounced during gusty winds over
relatively dry terrain (Sofiev et al., 2013). Our current model-
ing framework does not include this phenomenon due to lack
of understanding of the behaviors of pollen grains after they
contact the surface (Helbig et al., 2004). Dupont et al. (2006)
introduced a simple resuspension rate as a fraction of de-
posited pollen amount to calculate the resuspension flux. The
underestimation of oak pollen especially may be improved
by incorporating this physical process into the modeling
framework. The uncertainly in pollen size distribution and
its impact on bulk dry deposition rate is not fully addressed
in this study. Pollen grains are not ideal spheres. Many have
very distinctive shapes, some of which are adapted to the
function of increasing the probability of lofting or the time
aloft. A single average value for the diameter and density for
all the lumping species under each genus may not be repre-
sentative. Another limitation of current modeling efforts is to
treat pollen only as intact grains without considering the be-
havior of their respirable fragments. Compared with whole
pollen grains with relatively large diameters (see Table 1),
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the smaller pollen fragments are capable of depositing in
the lower respiratory tract and triggering asthma (Miguel et
al., 2006). A parameterization of the pollen rupture process
and estimation of released pollen number size distribution is
a key future direction to improve regional pollen transport
models. The uncertainties in rainfall prediction are another
potentially liming factor. The location and timing of rain-
fall is difficult to predict, especially over the complex ter-
rain of southern California; a single rain event could effec-
tively wash out most pollen from the air. For future work,
additional important allergenic pollen species, such as sage-
brush, over the study area should also be added into the
model framework to quantify their concentration variation
and associated health impacts. Also, for future work, public
release of the historical ambient data from the National Al-
lergy Bureau would allow for a far more extensive evaluation
of the modeling framework, should that data ever become
more widely available. Finally, direct wind tunnel laboratory
measurements on pollen emission under different wind con-
ditions are also needed to better quantify the different thresh-
old friction velocity for different pollen species.

In terms of the application of this regional pollen release
and transport modeling platform on predicting the pollen
exposure due to climate change, the companion paper by
Duhl et al. (2013) demonstrated its capacity by estimating the
pollen production potential difference under current (1995–
2004) and projected future (2045–2054) meteorological con-
ditions. The future-climate simulation is the WRF downscal-
ing result of the ECHAM5 global climate model under the
IPCC A1B scenarios. With the projected warmer tempera-
tures and less precipitation in spring and summer over Cali-
fornia by climate models, pollen seasons will occur an aver-
age of 5–8 days earlier with 0.1–10 % less pollen production
amount than the current scenario, depending on the species
considered. The ambient pollen exposure level will also be
subject to noticeable change due to the change of pollen pro-
duction potential, and will bring challenges for mitigating al-
lergenic airway disease in the future.
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