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Abstract. A large amount of terrestrial organic matter is an-
nually delivered by rivers to the continental shelf, where this
material is either degraded, buried or transferred to the deep
sea by hydrodynamic processes such as storms. The rela-
tive amount of terrestrial organic matter in the marine sed-
iments is often determined by analysing the stable isotopes
(δ13C andδ15N) and the C / N ratio of organic matter be-
cause the various particulate organic matter (POM) sources
have distinct isotopic compositions. With the objective to re-
fine and better interpret POM sources in the marine environ-
ment, we have characterized monthly terrestrial POM deliv-
ered by eight rivers discharging to the NW Mediterranean
Sea: the Rhône, Hérault, Orb, Aude, Têt, Fluvià, Ter and
Tordera rivers. These rivers were simultaneously sampled
from November 2008 to December 2009 and the concentra-
tions of total suspended matter (TSM), particulate organic
carbon (POC) and nitrogen (PN), as well as their stable iso-
topic ratios (δ13C andδ15N) were determined.

During the survey, three rainstorm events with winds com-
ing from the E–NE and the S–SE impacted the NW Mediter-
ranean. Depending on the direction of incoming winds, the
fluvial response (amount of water discharge and TSM) was
different. Rivers draining the Alps (Rhône River) and Cen-
tral Massif (Hérault, Orb, and Aude rivers) were mostly im-
pacted by rainstorms associated with winds coming from the
S–SE, while rivers draining the Pyrenees (Têt, Fluvià, and
Ter rivers) and the Montseny Massif (Tordera River) were
impacted by rainstorms associated with winds coming from

the E–NE. In addition, the spatial evolution of water dis-
charges shows a different hydrological regime of the Rhône
River, with relatively constant and high water stages and
TSM concentrations when compared to coastal rivers, char-
acterized by long periods of low water stages. TSM concen-
trations are positively correlated to water discharges (high
water flows resuspended riverbed sediments) but show an in-
verse relationship with POC and PN relative contents (mostly
due to dilution and by low availability of light in river wa-
ters during flood events). TSM in most of the coastal rivers
have on average 2.5–3 times higher POC and PN mean con-
tents than the Rhône River (8.5 and 1.5 %, respectively, for
coastal rivers compared to 3.6 and 0.5 %, respectively, for the
Rhône River). This discrepancy may be caused by the long
drought periods in small coastal Mediterranean watersheds
that enhance the eutrophication in studied coastal rivers. The
δ13C ratios of organic matter also reflect this discrepancy be-
tween high and low water stages with values ranging from
−33.2 to−24.5 ‰. The enriched13C values (−26.3± 0.4 ‰
for the Rhône River and−26.9± 1.2 ‰ for coastal rivers),
measured during high water stages, express mostly a mix-
ture of terrestrial source (plant remains and soils) whereas
depleted13C values (∼ −30 ‰) associated with low water
stages exhibit a source with predominant freshwater algae.
The highδ15N mean values (> 8 ‰) found in Têt, Ter and
Tordera rivers may underline the importance of denitrifica-
tion processes as a consequence of the eutrophication and
anthropogenic impact.
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1 Introduction

Approximately 87 % of Earth’s land surface is connected
to the oceans by rivers (Ludwig and Probst, 1998), which
represent the primary pathway for water and particulate
matter (mostly lithogenic particles and terrestrial organic
matter) to be transported to the marine environment, con-
tributing 35 000 km3 yr−1of freshwater (Milliman, 2001) and
18 GT yr−1of suspended sediment (Milliman and Syvitski,
1992; Ludwig and Probst, 1998; Syvitski, 2003). These in-
puts are highly variable over time, ranging from low river
discharges and low sediment inputs to the occurrence of flood
events with high sediment supplies (Wheatcroft and Borgeld,
2000).

Numerous studies have documented the delivery of sed-
iments to the oceans from large rivers such as the Ama-
zon (e.g. Nittrouer and DeMaster, 1996), Yellow (Huanghe)
(Liu et al., 2002 and Liu et al., 2004), Ganges-Brahmaputra
(Goodbred and Kuehl, 2000; Kuehl et al., 1997), and Yangtze
(Changjiang) (Chen et al., 2001; Liu et al., 2007). However,
Milliman and Syvitski (1992) emphasized the importance of
smaller rivers (< 5000 km2) and speculated that they may ac-
count for as much as half of the present-day sediment flux to
the oceans.

River inputs play a major role in the semi-enclosed
Mediterranean Sea, because changes in their inputs are po-
tential drivers for long-term changes in the marine ecosys-
tems (Ludwig et al., 2009). Recent studies have shown that
freshwater discharges by Mediterranean rivers decreased sig-
nificantly by about 20 % between 1960 and 2000 (Ludwig et
al., 2009). This reduction is probably the result of several
stress factors, including climate change and dam construc-
tion (Ludwig et al., 2003). First, the increase of temperature
during the 20th century, in particular since the late 1970s
(Gulf of Lion: 0.5◦C decade−1 for 1979–2004, Lespinas et
al., 2010), and the decrease of precipitation during certain pe-
riods of the year in the upstream watersheds may have caused
a significant water discharge reduction (López-Moreno et al.,
2008; Lespinas et al., 2010). Second, rivers are highly af-
fected by artificial river damming, often related to water ex-
tractions for irrigation, which alters the natural functioning
of Mediterranean rivers. The Nile is a clear example of this,
with a decrease from 40–45 to 15 km3 of freshwater dis-
charge to the Mediterranean Sea after building the Aswan
High Dam in 1964 (Schroeder et al., 2012).

At present, the Rhône River represents the major source of
freshwater and terrestrial particulate matter to the Mediter-
ranean Sea (Margat, 1992; Pettine et al, 1998; Sempéré et
al., 2000). Furthermore, the Mediterranean shore is charac-
terized by numerous coastal rivers that discharge significant
amounts of water and sediment, mainly during the occur-
rence of short but violent flash flood events (Serrat et al.,
2001; Bourrin et al., 2008). Several studies on the Rhône
River have shown that the terrestrial particulate organic mat-
ter (POM) may be qualified as enough fresh, labile and mod-

ern POM to drive degradation processes (Bourgeois et al.,
2011; Cathalot et al., 2010) and to sustain dense macrofau-
nal communities in surface sediments of the prodelta (Dar-
naude et al., 2004; Hermand et al., 2008). Once the terres-
trial POM is deposited on the prodelta, physical processes
such as downwelling induced by eastern storms and dense
shelf water cascading induced by cold winds are capable of
transferring matter to the shelf and up to the deep sea (Palan-
ques et al., 2006; Sanchez-Vidal et al., 2009, 2012). Accord-
ing to the quality of this resuspended prodelta POM, the ex-
port of terrestrial POM may sustain the biological activity
up to marine sub-canyons and deep basins (Company et al.,
2008; Fontanier et al;, 2008). Therefore, it is essential to ac-
curately assess the origin and nature of the organic matter
discharged by the Rhône River and also by coastal Mediter-
ranean rivers to understand the marine carbon and nitrogen
cycling on the continental margin. Riverine organic matter
derives from two fundamentally different sources, which are
autochthonous aquatic production and allochthonous plant
detritus deposited on the ground (Finlay and Kendall, 2007).
Stable isotopes offer an important tool for estimating the rel-
ative contributions of both autochthonous and allochthonous
sources of terrestrial POM. Indeed, carbon and nitrogen iso-
topic ratios (δ13C andδ15N) are widely used as natural trac-
ers of carbon sources in riverine, estuarine and marine coastal
ecosystems (Riera and Richard, 1997; Rolff and Elmgren,
2000; Darnaude et al., 2004; Wissel and Fry, 2005). In the
NW Mediterranean, several studies on the Rhône River (Au-
cour et al., 2003; Darnaude et al., 2004; Harmelin-Vivien
et al., 2010) determined the isotopic signatures of total sus-
pended matter (TSM) within the range−27.4 to−26.1 ‰
for δ13C and 4.8 to 5.7 ‰ forδ15N. Recently, the suspended
matter in coastal rivers Fluvià, Ter and Tordera has been iso-
topically characterized by aδ13C mean of 28 ‰ and aδ15N
mean of 9.3 ‰ (Sanchez-Vidal et al., 2013).

To date, few coastal Mediterranean rivers have been stud-
ied and no investigations have been carried out to simulta-
neously trace the POM discharged by all the small and large
rivers flowing into the NW Mediterranean Sea. The main ob-
jective of this current work is to accurately assess the quan-
tity and quality of POM discharged into the NW Mediter-
ranean Sea by the eight main rivers (from north to south:
Rhône, Hérault, Orb, Aude, Têt, Fluvià, Ter and Tordera) and
to investigate their role in the transport of POM according to
their watersheds and anthropogenic uses, as well as the oc-
currence of meteorological events. This study will help us to
determine the spatial and temporal variations of the riverine
inputs (TSM, particulate organic carbon (POC) and nitrogen
(PN)) into the NW Mediterranean Sea and POM sources and
determine their relation to water flows.
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Table 1. Main characteristics of the studied river basins ordered
from north to south.

Basin area River length AnnualQmean
River (Km2) (Km) (m3 s−1)

Rhône 97800 812 1710
Hérault 2500 150 44
Orb 1800 136 25
Aude 4840 224 49
Têt 1400 120 7.5
Fluvià 1125 97.2 9
Ter 3010 208 12
Tordera 894 60 7

2 Material and methods

2.1 Study area

This study is focused on eight rivers discharging into the
NW Mediterranean Sea (Fig. 1), which is characterized by
warm temperatures, winter-dominated rainfall, dry summers
and a profusion of microclimates due to local environmental
conditions (Ludwig et al., 2003). The most important river
is the Rhône River, with the largest catchment in Western
Europe and the highest freshwater input into the Mediter-
ranean Sea (Table 1). The Rhône River originates in the Alps
(Switzerland) at an elevation of 2150 m and meets the sea
at the Camargue Delta (southeastern France). In its lower
course, the river receives tributaries typified by steep gradi-
ent and the predominance of a Mediterranean climate. Tribu-
taries coming from its west bank (Central Massif) are torren-
tial Mediterranean rivers, with low average discharges and
very severe floods that occur mostly in autumn (Pont et al.,
2002). Near its mouth, at 40 km from the sea, the river splits
into two distributaries, the so-called Great Rhône and Little
Rhône, carrying about 90 and 10 % of the water discharge,
respectively (Ibañez et al., 1997).

We also report on seven coastal Mediterranean rivers that
flow into the NW Mediterranean Sea with draining catch-
ment areas lower than 5000 km2: the Hérault, Orb, Aude,
Têt, Fluvià, Ter and Tordera rivers (Table 1). In contrast to
the Rhône River, their water discharges can be torrential in
character, with low water discharges during long periods ex-
cept in times of heavy rainfall that cause flash floods (Paloc,
1967). Moreover, these rivers are also characterized by flow-
ing through high percentage vegetated land and therefore can
be highly affected by anthropogenic activities in their down-
stream parts (Lespinas et al., 2010).

These studied coastal rivers originate in Massif Central
(Hérault and Orb rivers), the Pyrenees (Aude, Têt, Fluvià
and Ter rivers) and Montseny Massif (Tordera River). The
Hérault basin comprises very few industries and is predom-
inantly dedicated to agriculture. It can be considered as a
relatively rural watershed. The Orb watershed is character-
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Figure 1. Location of the study area with the eight studied rivers and their watersheds, the 831 

orography and the main wind directions.  832 
Fig. 1. Location of the study area with the eight studied rivers and
their watersheds, the orography and the main wind directions.

ized by agricultural activities from the middle part to the
alluvial plain. The Aude River is the longest of the inves-
tigated coastal rivers. Although originating in the Pyrenees,
it follows a south–north course to Carcassonne before turn-
ing abruptly east and entering into the Mediterranean Sea.
During its course, this river is also influenced by tributaries
coming from the Central Massif. The Aude River plain, the
tributary valleys and the moderate slopes are mainly cov-
ered by vineyards (Gaume et al., 2004). The Têt watershed
is characterized by agricultural activities on the plain, as
well as by the large urban waste-water treatment plant from
the Perpignan district (about 150 000 inhabitants) that may
have an influence on the chemistry of the Têt River (Garcia-
Esteves et al., 2007). The Fluvià River is the only one of all
the studied rivers that remains undammed along its entire
course. The Fluvià watershed, as well as the watersheds of
Ter and Tordera rivers are quite densely vegetated, mostly by
Gramineaewith woody elements and by coniferous forests,
which cover around 50 % of the Fluvià, Ter and Tordera wa-
tersheds (Liquete et al., 2009). It is important to note that the
Ter watershed is regulated by dams (97 % of the watershed
area) (Liquete et al., 2009). The Sau, Susqueda and Pasteral
reservoirs are located in its middle course. The damming im-
pact on the physical–chemical and biological characteristics
of the lower stretch of the river is notable (Sabater and Ar-
mengol, 1986).
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2.2 Sampling strategy

The Rhône, Hérault, Orb, Aude, Têt, Fluvià, Ter and
Tordera rivers were monthly and simultaneously sampled
from November 2008 to December 2009. Sampling stations
were located on the lower most course of each river in order
to collect the particulate material that would be discharged
into the sea. As the Mediterranean Sea is a microtidal sea, the
marine influence is limited to the last few kilometres of all the
small Mediterranean coastal rivers (Pauc, 2005). Our sam-
pling stations were located only a few kilometres (< 4 km)
upstream of the mouths, which was far enough to guaranty
the collection of freshwaters after checking its conductivity.
The exception was the Rhône Observatory Station at Arles
(SORA) located 45 km upstream from its mouth. The Rhône
River receives all its tributaries at this SORA station. Further-
more, the station was designed to monitor river inputs into
the Mediterranean via the Mediterranean Sea Ocean Observ-
ing System on Environment (MOOSE). Water samples of
the Rhône and Têt rivers were collected from two automatic
sampling stations (Arles and Villelongue-de-la-Salanque, re-
spectively), whereas Hérault, Orb and Aude rivers were sam-
pled from bridges at the middle of the river channels. Flu-
vià, Ter and Tordera rivers were sampled from the shore near
the last gauging station of the Agència Catalana de L’Aigua.
Twenty litres of water were collected from each river and
stored one or two nights in polyethylene bottles in a refriger-
ated room (5◦C) and in darkness.

2.3 Analytical methods

The collected water was filtered onto four precombusted (at
450◦C for 12 h) glass fiber filters (GF/F, 47 mm diameter) to
determine POC, PN,13C and15N. Then, filters were freeze-
dried, weighted for determining the concentration of TSM on
each filter and stored in desiccators before analysis.

Prior to the POC and13C analyses, the inorganic carbon
(mainly in the form of calcium carbonate) was removed by
repeated additions of 100 µL of HCl 25 %, separated by 60◦C
drying steps until no effervescence was observed (Fabrés et
al., 2002). No treatments were performed on both PN and
15N filters. Then, POC and PN contents from the Rhône,
Hérault, Orb, Aude and Têt rivers were measured on a Leco
CN 2000 elemental analyser (EA). Stable isotopic ratios (13C
and 15N) were separately performed on two distinct filters
with an isotope ratio mass spectrometer (IR/MS, EA Eu-
rovector3000 interfaced with a GVI Isoprime) at the CE-
FREM laboratory in France. Only two filters (POC+13C and
PN+

15N) from the Fluvià, Ter and Tordera rivers were anal-
ysed on an elemental analyser interfaced to an IR/MS (Delta
Plus Finnigan MAT, and interface GC Combustion III Finni-
gan MAT) at the Scientific-Technical Services of the Univer-
sity of Barcelona. As no C and N peaks were detected on
precombusted “blank” GF/F filters, no “blank” corrections
were done for POC and PN contents as well as forδ13C and

δ15N ratios. POC and PN are expressed in % of the sample
dry weight, and isotopic ratios are given in the conventional
δ notation:

δ13Corδ15N =

[
Rsample

Rstandard
− 1

]
· 1000 (1)

whereR corresponds to13C /12C or 15N / 14N and the ref-
erence materials are the international standards Pee Dee
Belemnite (PDB) and atmospheric N2 for C and N, respec-
tively. The working standard used at the CEFREM laboratory
was crushed and homogenized Rhône sediments calibrated
against IAEA-CH-3 (cellulose) and IAEA-CH-7 (polyethy-
lene) forδ13C analyses and IAEA-N-1 and IAEA-N-2 (am-
monium sulfate) forδ15N analyses. At the Barcelona labo-
ratory, calibrations were made straight with the same IAEA
reference materials completed by USGS40 (L-glutamic acid)
for both δ13C andδ15N analyses. The standard deviations
from 13C and15N replicates of internal standards were lower
than 0.2 ‰ at the CEFREM laboratory and 0.2 and 0.3 ‰,
respectively, at the Scientific-Technical Services of the Uni-
versity of Barcelona.

3 Results

The mean water discharge (Q) during the survey at the Rhône
River was of 1386 m3 s−1, which was much larger than those
recorded in the coastal rivers (3–38 m3 s−1) (Table 2). All
mean water flows calculated during the survey period were
lower than long-term (40 yr) averaged values (see Table 1)
so the studied period can be considered as drier than usual.
Time series of water discharge of the Rhône River was higher
and less variable than most coastal rivers (Fig. 2). Dur-
ing the survey, high and punctual (a few days long) water
flows were recorded in November 2008, December 2008 and
February 2009, whereas a wider (a few weeks long) high
water stage occurred in April–May 2009. In early Novem-
ber 2008, the Rhône, Hérault, Orb, and Aude rivers recorded
an increase of their water flows. The highestQ values were
recorded in the Rhône River (up to 4806 m3 s−1) with a cal-
culated return period of 2 years, followed by the Hérault
River (455 m3 s−1, return period of 1 yr). Lower values were
recorded in Têt, Fluvià, Ter and Tordera rivers, withQ val-
ues around 20 m3s−1. In late December 2008, the Têt, Flu-
vià, Ter and Tordera rivers reached their highestQ of the
studied period (up to 155.9 m3 s−1), with return periods of
1 to 3 years (Fig. 2). In early February 2009, an increase of
Q values up to 4848 m3 s−1 in the Rhône and up to 687 and
280 m3 s−1 in Hérault and Orb rivers, respectively (Fig. 2),
were recorded. This corresponded to a return period of 1.5–
2 yr. In addition, the Hérault, Orb, Aude, Têt and Ter rivers
simultaneously recorded a significant increase of water dis-
charges in April–May 2009 (404, 128, 178, 37, 46 m3 s−1,
respectively). In contrast, extremely low water flows were
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Figure 2. Average daily water discharge (Q) measured at the gauging station of each studied 834 
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Fig. 2. Average daily water discharge (Q) measured at the gaug-
ing station of each studied river from November 2008 to Decem-
ber 2009 by Compagnie Nationale du Rhône (Rhône River), Banque
Hydro France (Hérault, Orb, Aude and Têt rivers) and Agència
Catalana de L’Aigua (Fluvià, Ter and Tordera rivers). The three
storm events (November 2008, December 2008 and February 2009)
that impacted the study area are shown as a dotted line and the
snowmelt event is shown as a grey band. Plots show the tempo-
ral variability of total suspended matter (TSM) concentrations with
corresponding average daily water discharge.

recorded during long periods (from July to October 2009)
in coastal rivers.

TSM concentrations in the Rhône River ranged from 5.5
(to 488.7 mg L−1, with a mean of 71.9 mg L−1, whereas in
the coastal rivers TSM ranged from 0.5 to 223.1 mg L−1

with a mean of 15.9 mg L−1 (Table 2). Indeed, high TSM
concentration was measured in the studied rivers during the
high water flows recorded in November 2008 (330.6, 57.1,
22.2 and 194.7 mg L−1 in the Rhône, Hérault, Orb and Aude
rivers, respectively), February 2009 (488.7, 86.5, 27.5 and
103.4 mg L−1 in the Rhône, Fluvià, Ter and Tordera, respec-
tively) and April–May 2009 (223.1and 28.4 mg L−1 in the
Têt and Ter rivers) (Fig. 2). Unfortunately, TSM were not
sampled over the highestQ recorded in December 2008 in
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Fig. 3.Temporal variability of particulate organic carbon (POC) and
nitrogen (PN) contents (in percentage) with the corresponding av-
erage daily water discharges (Q) of the eight studied rivers from
November 2008 to December 2009.

the Têt, Fluvià, Ter and Tordera rivers and in February 2009
in the Hérault, Orb and Aude rivers.

The contribution of POC to TSM (expressed as percent-
age) ranged from 1.2 (March 2009) to 6.7 % (August 2009)
in the Rhône River (mean of 3.6 %), and from 1.1 % (Novem-
ber 2008 in the Aude River) to 23.5 % (June 2009 in the
Tordera River) in the coastal rivers (mean of 7.1 %). PN
percentages ranged from 0.1 (February 2009) to 1.1 % (Oc-
tober 2009) in the Rhône River (mean of 0.5 %), and from
0.2 % (November 2008 in the Aude River) to 4.6 % (Septem-
ber 2009 in the Tordera River) in the coastal rivers (mean
of 1.5 %) (Table 2). Studied rivers recorded the lowest POC
and PN contents coinciding with peaks of the water flows
recorded in November 2008 (POC: 2.7, 4.5 and 1.1 % and
PN: 0.3, 0.6 and 0.2 % in Hérault, Orb and Aude rivers, re-
spectively), February 2009 (POC: 1.2, 5.7, 5.8 and 3.8 % and
PN: 0.1, 0.9, 0.7 and 0.4 % in the Rhône, Fluvià, Ter and
Tordera, respectively) and April–May 2009 (POC: 3.7 % and
PN: 0.9 % in Têt River) (Fig. 3). Using arithmetic means
gives an equal weight to each measurement. TSM, POC and
PN means weighted byQ (Table 2) contribute also to the
characterization of the exported material throughout the sur-
vey. Since high water stages tend to give high TSM values

www.biogeosciences.net/11/157/2014/ Biogeosciences, 11, 157–172, 2014
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Table 2. Water discharge (Q), total suspended matter (TSM), suspended POC and PN contents, their stable isotopes (δ13C andδ15N) and
atomic C / N ratios are the biogeochemical parameters measured in all studied rivers from November 2008 to December 2009. TheQ data
are extracted from different data bases: Compagnie Nationale du Rhône (Rhône), Banque Hydro France (Hérault, Orb, Aude and Têt) and
Agència Catalana de L’Aigua (Fluvià, Ter and Tordera).

Rhône Hérault Orb Aude Têt Fluvià Ter Tordera

Q (m3 s−1)
Mean 1386.3 34.1 18.3 28.2 5.0 3.5 10.8 3.0
Standard deviation 740.7 71.2 27.4 37.0 7.2 9.8 12.5 5.3
Maximum 4847.7 687.0 280.0 261.0 56.9 155.9 118.7 50.3
Minimum 308.5 1.4 3.9 0.0 0.0 0.2 2.3 0.0

TSM conc. (mg L−1)
Mean 71.9 6.1 9.2 26.1 28.7 10.3 16.1 14.6
Q weighted mean 153.4 32.8 7.9 25.8 86.4 22.9 20.9 54.8
Standard deviation 146.5 14.4 15.7 49.0 56.5 22.2 7.7 27.1
Maximum 488.7 57.1 60.8 194.5 223.1 86.5 28.4 103.4
Minimum 5.5 2.2 2.4 5.4 4.2 0.5 3.1 0.8

POC contents ( %)
Mean 3.6 8.4 7.8 4.7 8.0 11.4 7.7 11.9
Q weighted mean 3.1 4.6 6.9 3.9 5.8 7.0 7.7 7.1
Standard deviation 1.6 4.3 2.2 2.1 3.4 4.1 1.3 6.0
Maximum 6.7 15.5 11.5 9.3 15.8 22.0 10.0 23.5
Minimum 1.2 2.7 3.8 1.1 3.7 5.7 5.8 3.8

PN contents (%)
Mean 0.5 1.7 1.8 1.0 1.6 1.6 1.0 1.7
Q weighted mean 0.4 0.7 1.3 0.7 1.2 1.3 1.0 0.8
Standard deviation 0.3 1.2 0.8 0.6 0.7 0.7 0.2 1.2
Maximum 1.1 3.9 3.3 2.6 3.3 3.5 1.6 4.6
Minimum 0.1 0.3 0.6 0.2 0.8 0.9 0.7 0.4

δ13C (‰)
Mean −27.1 −28.6 −27.0 −28.4 −26.2 −28.7 −27.4 −28.6
Standard deviation 0.6 1.5 0.3 1.8 0.8 1.4 0.6 1.6
Maximum −26.1 −26.9 −26.5 −26.3 −24.5 −26.4 −26.2 −26.4
Minimum −27.9 −31.6 −27.6 −33.2 −27.3 −31.0 −28.4 −33.0

δ15N (‰)
Mean 5.0 5.8 4.6 6.2 7.6 8.1 10.2 9.7
Standard deviation 1.0 1.4 1.1 2.2 2.0 1.0 2.9 2.9
Maximum 6.4 8.9 6.3 11.9 10.9 9.8 16.8 14.4
Minimum 3.1 4.6 1.9 4.3 4.8 6.1 6.5 4.8

C / N ratio
Mean 8.2 6.6 5.8 6.3 5.9 7.7 9.4 9.2
Standard deviation 2.5 2.1 1.9 1.4 1.3 1.2 1.5 2.2
Maximum 14.7 11.1 9.8 8.9 9.3 10.4 13.3 12.0
Minimum 10.5 4.1 3.0 4.2 4.0 5.6 6.3 2.8

and low POC and PN contents,Q weighted TSM, POC and
PN means often differ from arithmetic means for our rivers.

Stable isotopic ratios of suspended organic matter from
rivers varied from−33.2 ‰ to−24.5 ‰ forδ13C and from
1.93 ‰ to 16.8 ‰ forδ15N (Table 2). Theδ13C values were
high (> −27 ‰) and relatively constant (standard deviation
< ±1 ‰) in the Rhône, Orb, Têt and Ter rivers. In con-
trast, values were lower (< −28 ‰) and more variable (stan-

dard deviation> −1.5 ‰) in the Hérault, Aude, Fluvià and
Tordera rivers (Fig. 4). Theδ15N values were low (< 6 ‰)
and relatively constant (standard deviation around±1 ‰)
during the survey in the Rhône, Orb and Hérault rivers. The
Aude River also showed relatively low but more variable val-
ues. In contrast, high (> 7 ‰) and dispersed values (standard
deviation> ±2 ‰) were recorded in the Têt, Ter and Tordera
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Fig. 4. Temporal variability of the stable isotopes (δ13C andδ15N)
with the corresponding average daily water discharges (Q) of the
eight studied rivers from November 2008 to December 2009.

rivers. The Fluvià River also exhibited high but almost con-
stantδ15N values (standard deviation around±1 ‰) (Fig. 4).

The atomic C / N ratios of particulate organic matter varied
over a large range from 2.8 to 14.7 (Table 2). The lowest val-
ues (< 3) were obtained in the Orb and Tordera rivers in June
and September 2009. On the other hand, the Rhône, Ter and
Tordera rivers recorded the highest values (> 12) in Novem-
ber 2008, February and July 2009.

4 Discussion

4.1 Meteorological and hydrological drivers of
continental organic matter input into the
NW Mediterranean

From a meteorological point of view, the NW Mediterranean
Sea is mainly affected by N–NW, E–NE and S–SE winds.
The cold, dry and persistent N–NW winds (Tramontane and
Mistral) are responsible in winter for the strong cooling and
homogenization of the shelf water column, which may pro-
mote dense shelf water formation over the Gulf of Lion. In
contrast, heavy winds coming from E–NE (90 to 45◦) and
S–SE (180 to 135◦) are warm and loaded with moisture, and

when they meet the cold air aloft the Massif Central relief
and the Pyrenees mountains the atmosphere becomes un-
stable and rain falls over these mountains. These types of
rainstorms are namedCévenolwhen caused by S–SE winds
(more frequent in the northern Gulf of Lions due to the orien-
tation of the coast; see Fig. 1) andLlevantadawhen caused
by E–NE winds (more frequent in the Catalan Coast). This
causes sudden and elevated river discharges that can last for
a few hours to days, the so-called flash flood events.

During the studied period (from November 2008 to De-
cember 2009), three rainstorm events with E–NE and S–SE
wind directions impacted the study area and affected dif-
ferently rivers discharging to the NW Mediterranean Sea
(Fig. 2).

The first event was recorded on the 3 November 2008 fol-
lowing a two-month dry period. This rainstorm was asso-
ciated with a mean wind direction from 170◦ (recorded at
the meteorological station of Cap Béar) and caused an in-
crease of water flows in rivers from the Alps (Rhône River)
and Central Massif (Hérault, Orb, and Aude rivers). Indeed,
the Aude River, although originating in the Pyrenees, is in-
fluenced by tributaries coming from the Central Massif. On
the 26 December 2008 a severe rainstorm impacted the Cata-
lan coast (Sanchez-Vidal et al., 2012). Heavy winds blowing
from E–NE (the mean wind direction recorded at the mete-
orological station of Cap Béar was of 90◦) triggered rain-
falls associated with an increase of water flows, especially in
the Pyrenees (Têt, Fluvià and Ter rivers) and the Montseny
Massif (Tordera River). The third rainstorm event occurred
in early February 2009. Heavy S–SE winds (the mean wind
direction recorded at the meteorological station of Cap Béar
was of 170◦) triggered intense rainfall in the Central Mas-
sif and, thus, increased water flows in the Rhône and in the
northern most coastal rivers (Hérault and Orb rivers, respec-
tively) (Fig. 2).

The direction of the incoming wind produced different hy-
drological responses of the investigated rivers. Windstorms
from the E–NE caused increased water discharge in rivers
from the Pyrenees (Têt, Fluvià, and Ter rivers) and Montseny
Massif (Tordera River) whereas windstorms from the S–SE
caused increased flows of rivers from the Alps (Rhône River)
and Central Massif (Hérault, Orb, and Aude rivers). In addi-
tion, some of the coastal rivers (Hérault, Orb, Aude, Têt and
Ter) simultaneously recorded a significant increase of water
discharges in April–May 2009. Increased insolation in spring
caused snowmelt that impacted the rivers flowing from the
mountains that had accumulate large amounts of snow during
the winter season (mostly the Massif Central and the Pyre-
nees).

Therefore, rainstorms and snowmelt were the major mech-
anisms triggering increased water flows that can increase
sediment inputs to nearshore waters of the NW Mediter-
ranean Sea. It is well known that rapid increases ofQ

associated with heavy rainstorms cause erosion of river-
banks and the resuspension of riverbed sediments, removing
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Table 3. TSM and POC annual estimated fluxes (2008–2009) of each studied river calculated from 14 samples using power equations:
TSM= a× Qb, POC %= a× TSMb and PN %= a× TSMb, wherea andb are regression coefficients. Fluxes are only calculated in rivers
with a statistically significantp value (p < 0.05).

River Equation n R2 p value (106T yr−1)

TSM vs.Q TSM Flux

Rhône TSM= 7.9 10−7 Q2.4 14 0.8 7 10−6 2.8
Hérault TSM= 0.8Q0.5 14 0.6 0.0010 0.012
Orb TSM= 5.0Q−0.1 14 – – –
Aude TSM= 7.1Q0.2 14 0.1 0.3 –
Têt TSM= 6.1Q0.8 14 0.5 0.0040 0.008
Fluvià TSM= 0.5Q1.8 14 0.7 0.0001 0.090
Ter TSM= 3.1Q0.6 14 0.3 0.04 0.008
Tordera TSM= 5.4Q0.5 14 0.5 0.0040 0.001

POC vs. TSM POC Flux

Rhône %POC= 7.6 TSM−0.3 14 0.6 0.001 5.8
Hérault %POC= 12.2 TSM−0.4 14 0.3 0.04 0.06
Orb %POC= 7.8 TSM−0.03 14 – – –
Aude %POC= 17.1 TSM−0.5 14 0.9 7 10−6 0.06
Têt %POC= 17.1 TSM−0.3 14 0.5 0.0040 0.04
Fluvià %POC= 13.7 TSM−0.2 14 0.5 0.0040 0.3
Ter %POC= 7.7 TSM−0.01 14 – – –
Tordera %POC= 15.8 TSM−0.3 14 0.5 0.0040 0.01

PN vs. TSM PN Flux

Rhône %PN= 1.5 TSM−0.4 14 0.9 5.8 10−8 0.8
Hérault %PN= 2.8 TSM−0.5 14 0.3 0.04 0.009
Orb %PN= 1.6 TSM0.01 14 – – –
Aude %PN= 4.6 TSM−0.7 14 0.8 7 10−6 0.01
Têt %PN= 3.1 TSM−0.3 14 0.4 0.01 0.008
Fluvià %PN= 1.9 TSM−0.2 14 0.4 0.01 0.04
Ter %PN= 1.0 TSM−0.04 14 – – –
Tordera %PN= 2.3 TSM−0.3 14 0.4 0.01 0.001

the sediments accumulated during low water flow periods
(Sanchez-Vidal et al., 2013). In order to elucidate the re-
lationship between water discharges and TSM, a sediment
rating curve was established. The most commonly used is a
power function with the standard form TSM= a×Qb, where
a and b are regression coefficients (Asselman, 2000). The
sediment rating curve shows a good correlation between log
TSM and logQ in the Rhône River (R2

= 0.8) (Fig. 5), and
relatively poorer in coastal rivers (0.3< R2 < 0.7) (Fig. 5).
It should be noted that the Orb and Aude rivers do not have
any correlation betweenQ and TSM, as found by Liquete et
al. (2009) in several coastal rivers flowing into the Catalan
margin. Therefore, the use of a sediment rating curve to esti-
mate TSM in the Rhône River is relatively accurate, whereas
caution is needed for the coastal rivers. This is probably
caused by two main factors: first, the strong natural tempo-
ral variability of the water flow. Brooks et al. (2003) reported
that the rivers with flash flood events may take years to re-

cover their original sediment curve. Second, the high impact
of anthropogenic activities, such as dam constructions and
water extractions for irrigation, which are very efficient fil-
ters for particulate matter (Meybeck and Vörösmarty, 2005),
can alter the natural functioning of coastal rivers in terms
of sediment transport (Liquete, 2008; Ludwig et al., 2009).
For many fluvial systems the impact of dam constructions
has been documented, which intercept half of the water dis-
charge, store at least 30 % of sediment fluxes (in major fluvial
systems) and produce variations in the composition of sus-
pended material (Meybeck and Vörösmarty, 2005; Syvitski
et al., 2005). On the other hand, fluvial systems affected by ir-
rigation, sometimes associated with water diversion from one
basin to another, have much lower transport potential than
under natural conditions (Meybeck and Vörösmarty, 2005).

The mechanism that controls the export of riverine POM
is the riverine sediment load (Meybeck, 1982, Ludwig et al.,
1996). The POC and PN contents of the TSM (in percentage)
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Figure 5. Logarithmic plot between total suspended matter (TSM) concentration and average 852 

daily water discharge (Q) with R2 values obtained using the sediment rating curve: TSM= 853 

a·Qb, where a and b are regression coefficients. 854 

Fig. 5. Logarithmic plot between total suspended matter (TSM)
concentration and average daily water discharge (Q) with R2 values
obtained using the sediment rating curve: TSM= a× Qb, wherea

andb are regression coefficients.

are usually highly variable in world rivers, ranging from
0.3 to 37 % (Ittekkot and Arain 1986; Cauwet et al., 1990;
Martin-Mousset et al.,1997) and from 0.1 to 1.3 % (Malcolm
and Durum, 1976; Meybeck, 1982), respectively. As we are
also dealing with small coastal rivers, less turbid but en-
riched in OM compared to large rivers, our study presents
a wider range of values (from 1.1 to 23.5 % for POC and 0.1
to 4.6 % for PN) than those of large worlds rivers. In order
to prove the relationship between %POC and TSM and %PN
and TSM in studied rivers, the power functions %POC and
%PN= a× TSMb have been also established.

The inverse relationship between %POC and TSM and
%PN and TSM obtained in most of sampled rivers (Figs. 6

36 
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Figure 6. Relationships between total suspended matter (TSM) concentration and particulate 856 

organic carbon (POC) contents (in percentage) with R2 values obtained using the power 857 

equation: POC% = a·TSMb, where a and b are regression coefficients.  858 

Fig. 6. Relationships between total suspended matter (TSM) con-
centration and particulate organic carbon (POC) contents (in per-
centage) withR2 values obtained using the power equation: POC %
= a× TSMb, wherea andb are regression coefficients.

and 7) suggests dilution of the riverine POC and PN by the
mineral matter resuspended from the riverbed during flash
flood events. When the intensity of rainfall exceeds the in-
filtration rate, the soil surface becomes saturated in water
and the eroded surface material is transported into streams
and rivers. In Mediterranean coastal watersheds, soils dry out
during periods of limited rainfall and heavier rainfall results
in greater and more rapid runoff, thereby increasing the soil
erosion (Nadeu et al., 2012). In addition, during events of
high Q and TSM the in situ primary production of POC
and PN by riverine phytoplankton is reduced because of the
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Figure 7. Relationships between total suspended matter (TSM) and particulate nitrogen (PN) 860 

contents (in percentage) with R2 values obtained using this equation: PN% = a·TSMb, where a 861 

and b are regression coefficients. 862 

Fig. 7. Relationships between total suspended matter (TSM) and
particulate nitrogen (PN) contents (in percentage) with R2 values
obtained using this equation: PN %= a× TSMb, wherea andb are
regression coefficients.

high turbidity and the low availability of light in river waters
(Ludwig et al., 1996; Ni et al., 2008).

In contrast, the suspended material of coastal rivers was
enriched in POC (from 9.3 to 23.5 %) and PN (from 1.6
to 4.6 %) during low water stages when TSM concentra-
tions were low (< 5.4 mg L−1). In this case photosynthesis
can be an important contributor to POC and PN in low tur-
bidity waters (Ni et al., 2008). The calm and stagnant wa-
ters in coastal rivers, associated with high water temperature,
likely favour the proliferation of freshwater phytoplankton.
In the Rhône River, the mean TSM content is about 5 times
higher than in coastal rivers. This high turbidity attenuates

the photosynthetically available radiation (PAR) by produc-
ing a “shadow” effect. Harmelin-Vivien et al. (2010) found
that the autochthonous phytoplankton in the downstream part
of the Rhône River accounted on average for only 10 % of
the POM. For that reason, suspended particles of coastal
rivers seem to be particularly more enriched in POM than
the Rhône River (Table 2, Figs. 6 and 7).

Besides having a critical effect on the suspended sediment
transport, river damming may also be responsible for the
poor relationship between %POC and TSM and %PN and
TSM in the Orb and Ter rivers (Figs. 6 and 7). Therefore,
trapping of sediments by dams may also cause a decrease
of POC and PN transport from the terrestrial to the marine
environments (Sanchez-Vidal et al., 2013).

The amounts of TSM, POC and PN delivered annually
(2008–2009) by the studied rivers have been estimated us-
ing the above mentioned power functions and the dailyQ

data (Table 3). It is important to note that these fluxes are
only calculated in rivers with a statistically significant p-
value (p < 0.05). As have all the previous studies performed
on Mediterranean Rivers, we assumed that most of the fresh-
water particulate material is discharged into the microti-
dal sea (Cauwet et al., 1990; Sempere et al., 2000; Lud-
wig et al., 2003, Garcia-Esteves, 2005) and deposited and
degraded in their marine prodeltas (e.g. Miserocchi et al.,
2007; Cathalot et al., 2013). The lack of estuaries formed by
tidal waves and characterized by large marine intrusions ex-
plain why studies on river inputs into the Mediterranean Sea
consider the mouth as the boundary between fresh and salt-
water though the wind direction and the freshwater runoff
may affect this boundary as well. We found that the Rhône
River delivered 2.8× 106 t yr−1 of TSM, 5.8× 104 t yr−1 of
POC and 0.8× 104 t yr−1 of PN while the sum of the
studied coastal rivers discharged 0.1× 106 t yr−1 of TSM,
0.6× 104 t yr−1 of POC and 0.1× 104 t yr−1 of PN. Thus,
coastal rivers accounted for approximately 5 % (TSM) and
10 % (POC and PN) of the Rhône River fluxes. This rel-
ative contribution of coastal rivers compared to a large
river should be considered as the minimum contribution,
owing to the lack of some small coastal rivers (e.g. Tech
River) and Mediterranean lagoons receiving small rivers. Our
estimations for the Rhône River match those found by
Cauwet et al. (1990) for the period 1986–1987 (2.8× 106 t
TSM yr−1 and 7.9× 104 t POC yr−1).

It is important to note that both studies were carried out
during dry periods, as ourQ means were lower than the
long-term mean of the Rhône River (1710 m3 s−1). In con-
trast, Sempéré et al. (2000) reported for 1987–1996 higher
TSM and POC fluxes (9.9× 106 t yr−1 and 19.2× 104 t yr−1,
respectively) than in this study. During their 10 yr survey
more than 15 flood events over 5000 m3 s−1 were recorded,
whereas no similar peaks were found during years 2008–
2009 nor since December 2003. The highest reported TSM
flux (31× 106 t yr−1) for the Rhône River was calculated be-
fore the building of dams (Milliman and Syvitski, 1992).
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Figure 8. Spatial variations of the stable isotopes δ13C (a) and δ15N (b) and C/N ratio (c) from 864 

November 2008 to December 2009. The boxplot shows the extreme values, the quartiles and 865 
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Fig. 8. Spatial variations of the stable isotopesδ13C (a) andδ15N
(b) and C / N ratio(c) from November 2008 to December 2009. The
box plot shows the extreme values, the quartiles and the mean value
of each river.
Rh: Rhône, He: Hérault, Or: Orb, Au: Aude, Tt: Têt, Fl: Fluvià, Te:
Ter and To: Tordera.

These dam constructions have had a major impact on the
overall sediment transport to the Mediterranean Sea. The
most striking example is the Ebro River where the recent
sediment flux (0.092× 106 t yr−1) represents less than 1 %
of what was transported before the period of dam con-
structions (Tena et al., 2011). In comparison, two other
French rivers (Garonne River and Dordogne River) flow-
ing into the Gironde estuary exhibited TSM (2.4× 106 t yr−1

and 0.8× 106 t yr−1, respectively) and POC (7.2× 104 t yr−1

and 4.7× 104 t yr−1, respectively) fluxes, varying within the
same ranges as our Rhône River fluxes (Schäfer et al., 2002).

Pont et al. (2002) estimated that Rhône floods with re-
turn period higher than one year accounted for 77 % of
the TSM export. During our study (2008–2009), this flood
(> 1 yr return period) contribution to the TSM flux, as well
as to the POC and PN fluxes, were varying around a low

40 % as no floods over 5000 m3 s−1 were recorded. Compar-
isons can also be done on the most studied of the coastal
rivers, the Têt River. Our annual TSM and POC flux es-
timations (8339 t TSM yr−1and 393 t POC yr−1) exhibit sig-
nificantly lower fluxes than fluxes (16046 t TSM yr−1 and
524 t POC yr−1) reported for the period 2000–2001 (Garcia-
Esteves, 2005) and than TSM fluxes (50 000 t yr−1) calcu-
lated for the 1980–1999 period (Serrat et al., 2001). These
latter authors revealed an extreme variability between annual
water and sediment fluxes. According to Serrat et al. (2001),
more than 50 % of the overall sediment transported for the
20 yr of investigation was discharged during only 13 days of
exceptional floods. This contribution reached up to 80–90 %
when including moderate floods. In this study, we found the
lowest contribution (18 %) of floods (> 1 yr) on the TSM ex-
port of the Ter River, which is strongly affected by dams and
reservoirs trapping sediments. On the other hand, more than
95 % of the TSM, POC and PN exports occurred during a
unique but significant flood in December 2008 (return pe-
riod of 3 yr) of the Fluvià River. It is evident that estimates
of TSM, POC and PN fluxes from coastal rivers depend on
whether the survey has been performed during dry, normal or
humid years.

4.2 Sources of POM transferred to the
NW Mediterranean Sea

Riverine POM is habitually composed of a mixture of or-
ganic matter derived from autochthonous aquatic produc-
tion and allochthonous terrestrial detritus of various ori-
gins (Maksymowska et al., 2000; Finlay and Kendall 2007;
Harmelin-Vivien et al., 2010), which include vascular plants,
soil-derived organic matter, freshwater algae and anthro-
pogenic inputs. The proportions of each source vary accord-
ing to the size of watershed, meteorological factors (such as
the occurrence of storms) and land use. In the Mediterranean
basins the natural forest and grassland are dominated by C3
plants (mainly higher plants), although a minor contribution
of invasive C4 plants (cactus and herbs) are found in some ar-
eas of the Mediterranean coast (Sage et al., 1999; Novara et
al., 2011). C3 plants are characterized byδ13C values from
−25 ‰ to −28 ‰ (Hedges et al., 1997),δ15N values from
3 ‰ to 7 ‰ (Ongrinc et al., 2008) and C / N values from
20 to 100 (Countway et al., 2007). Accordingly, the soil or-
ganic matter has typicallyδ13C values of−24 ‰ to−29 ‰
(Ogrinc et al., 2008), which indeed reflect the plants growing
on it. δ15N values of soil organic matter range from 2.6 ‰ to
6.4 ‰ (McCallister et al., 2004) and the C / N found in soils
range from 8 to 15 (McCallister et al., 2004). Concerning
algae sources, photosynthesis by freshwater phytoplankton
generates POM with13C values mostly ranging from−25 ‰
to −30 ‰ (Boutton, 1991; Cloern et al., 2002), though sev-
eralδ13C ratios lower than−30 ‰ have been encountered in
rivers (e.g. Hellings et al., 1999; Cloern et al., 2002).

www.biogeosciences.net/11/157/2014/ Biogeosciences, 11, 157–172, 2014



168 M. Higueras et al.: Biogeochemical characterization of the riverine particulate organic matter transferred

δ15N values range from 5 to 8 ‰ (Cloern et al., 2002; Mc-
Callister et al., 2004) and C / N ratios from 4 to 10 (Meyers,
1994, Cloern et al., 2002). Therefore,δ13C andδ15N of sus-
pended POM as well as C / N ratios will allow us to determine
the source of organic matter in all studied rivers.

δ13C andδ15N mean values found in TSM in the Rhône
River are−27.1± 0.6 ‰ and 4.9± 1 ‰, respectively, which
are within the range of those by Harmelin-Vivien et al. (2010)
in 2004 (δ13C: −26.6± 1.2 ‰ andδ15N: 5.7± 1.8 ‰) and
2005 (δ13C: −27.4± 1.4 ‰ andδ15N: 4.8± 1 ‰). These
values are also similar to those found by Bănaru et al. (2007)
in the Danube River, the second largest river in Europe (δ13C:
−27.5± 0.9 ‰ andδ15N: 4.9± 1.5 ‰). Interestingly,δ15N
of TSM in the Têt River increased significantly from 2006
(δ15N of 1.9± 1.2 ‰, Kerhervé, personal communication,
2007) to 2008 (δ15N of 7.5± 1.9 ‰, this study). As will be
discussed later, this isotopic shift is probably related to the
construction in 2008 of a new wastewater treatment plant
(WWTP) for the district of Perpignan city.

The isotopic composition of POC and PN as well as the
C / N ratio were highly variable during the investigated year
and between rivers (Fig. 8a, b, c), which suggest that differ-
ent sources of POM dominate during the survey. Theδ13C
values were specially variable in the Hérault, Aude, Flu-
vià and Tordera rivers, while rather constant values were
found throughout the survey in the Rhône, Orb, Têt and
Ter rivers (Fig. 8a). This discrepancy between rivers is due
to the 13C-depleted values (−29.4 to −33.2 ‰) recorded
during summer and early autumn months (July to Octo-
ber 2009) in the Hérault and Aude rivers, as well as the
Tordera River (also in November and December 2008). Dur-
ing those months very low water discharges and high wa-
ter temperatures (up to 25°C) were recorded. These condi-
tions may have favoured the proliferation of phytoplankton,
thus increasing in POC contents (up to 15.5, 9.3 and 22.4 %
in the Hérault Aude and Tordera rivers, respectively) and
decreasing theδ13C ratio (∼ −30 ‰). Indeed, nutrients are
large enough in warm and stagnant waters from the down-
stream part (the most human influenced area) of coastal
rivers to provoke algae productions (Garcia-Esteves 2005,
Ludwig et al., 2003). The13C-depleted POM produced in
such conditions is mainly attributed to high contents of13C-
depleted DIC produced by the mineralization of terrestrial
and freshwater13C-depleted POM (Cloern et al., 2002; Liu
et al., 2007).

The rivers with the smaller watersheds (Fluvià and Tordera
rivers), which are torrential in their character, exhibited a dif-
ferent temporal pattern in the origin of the POM, with13C-
depleted values found in winter (Fluvià River) and summer
(Tordera River). Thus, suspended particles during the long
periods of low water discharges and low TSM concentra-
tions are enriched in POC derived from autochthonous pri-
mary production (δ13C from −33 to−29.4 ‰) even in win-
ter. In contrast, high water discharges, produced by rainstorm
events or snowmelt, trigger a fast increase of TSM, thus re-

ducing the POC contents (because of the dilution effect and
lowered primary production) and showing enriched-13C val-
ues (from−28.1 to−25 ‰) compared to low water stages.
During these periods, when the TSM concentration is higher
than 50 mg L−1, an averagedδ13C value of 26.3± 0.4 ‰ is
calculated in the Rhône River, and coastal rivers show an
averagedδ13C of −26.9± 1.2 ‰. This POM is likely orig-
inated from eroded soils and their C isotopic values vary
within the same range (around−25.8 ‰) as compared to sur-
face soils from a small Mediterranean watershed in SE Spain
(Nadeu et al., 2012). The soil end-member of coastal rivers
exhibits a lower averagedδ13C value than that of the Rhône
River. This difference may be explained by the importance
of natural vegetation (more than 75 % of the total areas) in
watersheds of coastal rivers (Lespinas et al., 2010). In the
Mediterranean region, plant remains are deposited and accu-
mulated on the ground during long drought periods before
they are transported into streams and rivers.

Theδ15N values of POM show a clear difference between
studied rivers. POM in rivers draining the Alps and the Cen-
tral Massif show rather constantδ15N values (meanδ15N of
5.4± 1.4 ‰) while POM in rivers draining the Pyrenees and
Montseny Massif exhibit the highest and most variableδ15N
ratios (meanδ15N of 9.2± 2.6 ‰), except the Fluvià River,
which is more constant (meanδ15N of 8.1± 1 ‰) (Fig. 8b).
The maximumδ15N values were obtained in the Têt, Ter and
Tordera rivers (10.9, 16.8 and 14.4 ‰, respectively), coin-
ciding with the lowestQ as well as the highest POC and PN
contents. Thisδ15N enrichment during low water discharge
is probably influenced by human activities and the denitri-
fication processes occurring in WWTPs. The dissolved in-
organic nitrogen (DIN) present in sewage effluents is usu-
ally enriched with15N (Bottcher et al.,1990; Kendall et al.,
2001; Cole et al., 2006). During low water stages the con-
tribution of sewage inputs increases (Garcia-Esteves, 2005)
and eutrophication processes such as denitrification can oc-
cur in the river as in the water treatment plants. This pro-
cess removes14N-nitrate at a faster rate than15N-nitrate be-
cause14N is lighter and easier to metabolize (Heaton, 1986).
The remaining nitrate in sewage effluent is therefore15N-
enriched and organic nitrogen compounds produced by phy-
toplankton cells will also tend to become enriched in15N
(Costanzo et al., 2005), withδ15N values reaching up 10
or 20 ‰ in polluted rivers (Kreitler et al., 1978; Macko and
Ostrom, 1994; McClelland and Valiela, 1998). Therefore, the
15N-enriched POM in Têt, Ter and Tordera rivers likely re-
flects the importance of urban activities in the lowest part of
their watersheds.

5 Conclusions

This study has allowed us to simultaneously assess for the
first time the variations in the quantity and origin of the POM
discharged by eight rivers into the NW Mediterranean Sea
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and their relation to the water flows. Our main conclusions
are as follows.

1. The large Rhône River is characterized by high and
relatively constant water flow and TSM concentra-
tions, in contrast to coastal rivers characterized by long
periods of low water stages and eutrophication pro-
cesses, as well as by ephemeral high flows produced
by rainstorm events. Coastal rivers draining the Cen-
tral Massif (Hérault, Orb and Aude rivers) are more
impacted by Cévenol events triggered by S–SE winds,
whereas coastal rivers draining the Pyrenees and the
Montseny Massif (Têt, Fluvià, Ter and Tordera rivers)
are more affected by Llevantada events triggered by E–
NE winds. These rainstorms produce a fast increase of
Q, which removes the sediments accumulated during
the low water flow periods, thus increasing the TSM
concentration in coastal rivers.

2. This study shows that riverine inputs to the NW
Mediterranean are not homogeneous throughout the
survey in terms of quality of organic matter discharged
from land to sea.

– The coastal rivers transport suspended particles
that are enriched in organic compounds (POC
∼ 8.5 % and PN∼ 1.5 %) compared to the Rhône
River material (POC∼ 3.6 % and PN∼ 0.5 %).
This discrepancy reflects a more pronounced eu-
trophication of waters in coastal rivers that is
likely due to the reduction of the water discharge
for all studied rivers, as observed throughout
Mediterranean rivers over the last 40 years by
Ludwig et al. (2003). This decrease ofQ is likely
directly related to the temperature increase (mean
annual: 1.5◦C during 40 yr period) as well as
the increasing use of water for human activities
(Lespinas et al., 2010). The decrease of precipi-
tation during certain periods of the year in the up-
stream watersheds can also affect the water flows
and favour the eutrophication of waters in coastal
rivers.

– The isotopic ratios (δ13C and δ15N) of POM
reflect a mixture of terrestrial (plants remains
and soils) and algae (freshwater phytoplank-
ton) sources, with different proportions accord-
ing to the river and the water flow. The coastal
rivers, characterized by long periods of low wa-
ter stages, are often places where eutrophication
processes enhance the production of freshwater
phytoplankton, as indicated by high POC and
PN contents as well as13C-depleted (∼ −30 ‰)
and 15N-enriched (> 8 ‰) values. During high
flows (rainfalls and snowmelt), the isotopic ra-
tios (δ13C andδ15N ) of coastal rivers (−26.9 and
4.7 ‰, respectively) tend to isotopic values of the

Rhône River (−26.3 and 3.8 ‰). These ratios ex-
press an organic-poor material mainly associated
with soils and plant remains.
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