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Abstract. Marine microbial communities mediate many bio-
geochemical transformations in the ocean. Consequently,
processes such as primary production and carbon (C) export
are linked to nutrient regeneration and are influenced by the
resource demand and elemental composition of marine mi-
crobial biomass. Laboratory studies have demonstrated that
differential partitioning of element resources to various cel-
lular components can directly influence overall cellular ele-
mental ratios, especially with respect to growth machinery
(i.e., ribosomal RNA) and phosphorus (P) allocation. To in-
vestigate whether allocation to RNA is related to biomass P
content and overall C : P biomass composition in the open
ocean, we characterized patterns of P allocation and C : P
elemental ratios along an environmental gradient of phos-
phate supply in the North Atlantic subtropical gyre (NASG)
from 35.67◦ N, 64.17◦ W to 22.676◦ N, 65.526◦ W. Because
the NASG is characterized as a P-stressed ecosystem, we
hypothesized that biochemical allocation would reflect sen-
sitivity to bioavailable phosphate, such that greater phos-
phate supply would result in increased allocation toward P-
rich RNA for growth. We predicted these changes in allo-
cation would also result in lower C : P ratios with increased
phosphate supply. However, bulk C : P ratios were decou-
pled from allocation to nucleic acids and did not appear to
vary systematically across a phosphate supply gradient of
2.2–14.7 µmol m−2 d−1. Overall, we found that C : P ratios
ranged from 188 to 306 along the transect, and RNA repre-
sented only 6–12 % of total particulate P, whereas DNA rep-
resented 11–19 %. We did find that allocation to RNA was
positively correlated with phosphate supply rate, suggesting

a consistent physiological response in biochemical allocation
to resource supply within the whole community. These re-
sults suggest that community composition and/or nonnucleic
acid P pools may influence ecosystem-scale variation in C : P
stoichiometry more than nucleic acid allocation or P supply
in diverse marine microbial communities.

1 Introduction

Redfield observations of the stoichiometric similarly be-
tween dissolved nutrients in the deep ocean and surface
ocean plankton represent one of the cornerstones of marine
biogeochemistry (Redfield, 1934, 1958). Coupling among
macronutrients across dissolved and particulate fractions car-
ries consequences for the flux of energy and elements in
marine systems (Arrigo, 1999; Deutsch and Weber, 2012;
Hessen et al., 2004). For example, carbon (C): phospho-
rus (P) ratios link nutrient cycling with CO2 fixation and
the biological C pump (Omta et al., 2006; Tyrrell, 1999).
It is now clear that broad-scale spatial and temporal vari-
ability in elemental ratios and departures from Redfield pro-
portions are common (Martiny et al., 2013; Michaels et al.,
2001). Furthermore, incorporating stoichiometric flexibility
into ecological models has improved their ability to capture
certain biogeochemical dynamics (Christian, 2005; Deutsch
and Weber, 2012; Flynn, 2010). Understanding both the pat-
terns and mechanisms of stoichiometric variability is central
to interpreting biogeochemical data and predicting ecologi-
cal consequences.
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Several mechanisms have been identified that may con-
tribute to variation in stoichiometric ratios at various scales.
Marine plankton have taxon-specific limitations on biomass
stoichiometry and can have different stoichiometric compo-
sition under the same environmental conditions (Grob et al.,
2013; Quigg et al., 2003, 2011; Zimmerman et al., 2013).
Consequently, community composition affects community
stoichiometry, and may contribute to significant differences
between oceanic regions (Martiny et al., 2013; Weber and
Deutsch, 2010). Several studies have also demonstrated sig-
nificant differences in elemental stoichiometry as popula-
tions or communities respond to prevailing environmental
conditions, most often characterized by nutrient supply ra-
tios (Bratbak, 1985; Rhee, 1978; Tezuka, 1990; Vrede et
al., 2002). Taxonomic constraints and nutrient supply are not
mutually exclusive mechanisms and likely interact along en-
vironmental gradients to influence stoichiometry at ecosys-
tem scales.

Underlying these mechanisms is a dynamic allocation of
cellular resources according to ecological growth strategy
(Elser et al., 2003; Franklin et al., 2011; Klausmeier et al.,
2004; Vrede et al., 2004). Biochemical allocation influences
the elemental composition of a cell via inherent elemen-
tal differences in biomolecules, including proteins, carbohy-
drates, nucleic acids, lipids, and polyphosphate (Geider and
La Roche, 2002; Sterner and Elser, 2002). Nucleic acids in
particular have been highlighted as quantitatively important
to cellular P quotas due to their relatively high P content and
the necessity of ribosomal RNA (rRNA) for growth (Elser
et al., 2000, 2003; Sterner and Elser, 2002). In the field of
ecological stoichiometry, relationships among RNA content,
biomass P, and growth are formalized as the growth rate hy-
pothesis (GRH). The influence of RNA P on total cellular
P content is expected to be strongest under conditions of P
limitation (Elser et al., 2003; Makino et al., 2003), imply-
ing that differential nucleic acid allocation may significantly
contribute to variation in community C : P stoichiometry in
P-limited ecosystems. To our knowledge, the relationships
between RNA allocation and P content, and the resulting im-
pact on biomass C : P ratios have been studied exclusively
in culture-based experiments, and no published studies have
examined these relationships in the open ocean.

The Sargasso Sea in the North Atlantic subtropical gyre
(NASG) is characterized by low concentrations of dissolved
inorganic P and rapid turnover rates, which indicate condi-
tions of P stress (Ammerman et al., 2003; Cavender-Bares
et al., 2001; Cotner et al., 1997; Mather et al., 2008; Wu et
al., 2000). Evidence suggests that chronic P depletion has
driven organisms from the western NASG to evolve sophis-
ticated genetic mechanisms for responding to P fluctuations
(Coleman and Chisholm, 2010; Martiny et al., 2006). Plank-
ton can use both dissolved inorganic and organic forms to
satisfy cellular P quotas (Casey et al., 2009; Lomas et al.,
2010), but inorganic forms (operationally defined as soluble
reactive phosphorus, SRP) are more directly bioavailable and

preferred by osmotrophs (Dyhrman et al., 2007; Moore et
al., 2005). Accordingly, taxon-specific rates of inorganic P
uptake by native plankton responded positively to increasing
SRP concentration (Casey et al., 2009). Biochemical alloca-
tion may be similarly responsive to SRP supply in the west-
ern NASG, but this prediction remains to be tested.

The objective of this study was to analyze the relationship
between biochemical allocation strategy and nutrient supply
in open ocean communities to evaluate a potential driver of
ecosystem-scale variability in the particulate element ratios
of surface waters. To address this objective, we analyzed bi-
ological pools of P and biomass C : P ratios of bulk seawa-
ter along a latitudinal gradient in the Sargasso Sea represent-
ing a range of SRP supply rates. The surface waters north of
the Bermuda Atlantic Time-series Study (BATS; 31.67◦ N,
64.17◦ W) station generally experience more frequent ex-
change with nutrient-rich deep water due to convective mix-
ing, resulting in higher SRP fluxes at the northern latitudes
than in the more permanently stratified water of the southern
latitudes (Cavender-Bares et al., 2001). We hypothesized that
in this P-depleted system, SRP supply influences biochemi-
cal allocation, with increased allocation toward P-rich RNA
for growth at higher SRP flux rates. In turn, we hypothesized
that these changes in allocation may reduce biomass C : P ra-
tios. We therefore expected higher SRP fluxes to correlate
with higher total RNA, RNA : DNA ratios, proportion of P
allocated to RNA and total P biomass but lower C : P ratios.
Support for our hypothesis would imply that the RNA alloca-
tion strategy is a principal biological mechanism for linking
nutrient supply to variation in biomass stoichiometry at the
ecosystem scale.

2 Methods

2.1 Sample collection

Samples were collected from a Niskin bottle on a rosette
equipped with a CTD instrument (conductivity, temperature
and depth; Sea-bird Electronics, Inc., Bellevue, WA, USA)
during cruise AE1226/BV47 aboard the R/VAtlantic Ex-
plorer in the Sargasso Sea (Fig. 1). Sampling occurred from
27 September to 6 October 2012 on a transect from 35.67◦ N,
64.176◦ W to 22.67◦ N, 65.52◦ W, past the BATS site at
31.67◦ N, 64.17◦ W (Fig. 1).

Samples were collected for determination of particu-
late (nominally > 0.3 µm) organic carbon (POC), particulate
phosphorus (PPhos), nucleic acids (RNA and DNA), sol-
uble reactive phosphorus (SRP), and total dissolved phos-
phorus (TDP). Surface seawater (≤ 5 m depth) from repli-
cate Niskin bottles was collected directly into polycarbonate
Nalgene bottles (Thermo Scientific Nalgene, Rochester, NY,
USA), which had previously been washed with Micro-90 de-
tergent (International Products Corp., Burlington, NJ, USA)
and 10 % HCl (with repeated rinsing after each wash), and
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Fig. 1. Map of sampling stations in the North Atlantic subtropical
gyre during the BV47 cruise in 2012. The BATS site corresponds to
station 2. All samples were collected from surface water (< 10 m).

rinsed three times with the seawater to be sampled. Subsam-
ples from each replicate Nalgene bottle were immediately
collected onto precombusted (450◦C, 5 h) 0.3-µm-pore-size
glass fiber filters (Sterlitech Corp., Kent, WA, USA) under
gentle filtration for POC, PPhos, and nucleic acid concentra-
tions. Filters for nucleic acid analyses were flash frozen in
liquid nitrogen and stored at−80◦C for up to 10 days, while
filters for POC and PPhos analyses were stored at−20◦C for
up to 1 month. Filter blanks (rinsed with high-purity water)
were also collected as described and processed identically
to the samples. Separate samples for SRP and TDP analy-
ses were collected from different Niskin bottles on the same
hydrocasts, representing depths from 0 to 250 m. SRP and
TDP samples were stored unfiltered in acid-cleaned, high-
density polyethylene (HDPE) bottles at−20◦C until analysis
(Lomas et al., 2010).

Additional hydrographic and biogeochemical measure-
ments were collected at each sampling station (st.) and
are accessible through the BATS web page (http://bats.bios.
edu/). Sample collection and analysis details for these addi-
tional parameters can be found in theBATS Method Man-
ual (Knap et al., 1997) or online (http://bats.bios.edu/). To
complement our data, we analyzed POC, PPhos, and SRP
concentrations from three additional cruises in this region
but spanning multiple seasons (cruise X0705 in June 2007,
BVal39 in October 2007, and X0804 in May 2008). SRP flux
and surface C : P ratios were calculated and analyzed as de-
scribed below.

2.2 Sample analysis

2.2.1 Dissolved phosphorus pools

SRP concentrations were measured using the magnesium-
induced co-precipitation method (MAGIC, Karl and Tien,
1992) with modifications as described by Lomas et
al. (2010). TDP concentrations were determined using a
modified version of the high temperature/acid persulfate

oxidation method (Lomas et al., 2010; Ridal and Moore,
1990). Dissolved organic phosphorus (DOP) concentrations
were calculated as the difference between TDP and SRP
concentrations. The upward flux of SRP was calculated
as the product of the coefficient of vertical diffusivity
(0.000035 m2 s−1 for BATS, Ledwell et al., 2008) and the
concentration gradient from 80–160 m at each sampling sta-
tion. SRP was drawn down to the method detection limit
above 80 m, thus SRP flux could not be calculated reliably
over shallower depths. For stations where the measured con-
centration gradient was ambiguous (stations 4, 7, and 10),
SRP flux was linearly interpolated from the two immediately
adjacent values.

2.2.2 Particulate elements

POC was determined using a CHN analyzer (Thermo Finni-
gan EA 1112) after samples were treated with HCl (0.2 M) to
remove inorganic material and dried overnight at 65◦C. Sam-
ple C mass was calculated from chromatogram area using at-
ropine standards and corrected for filter blanks. PPhos was
determined using an ash-hydrolysis method with MgSO4
(0.017 M) treatment as previously described (Lomas et al.,
2010; Solorzano and Sharp, 1980). Sample P was calculated
from a linear regression of absorbance vs. known concentra-
tions of potassium phosphate standards and corrected for fil-
ter blanks. PPhos includes both organic and inorganic phos-
phorus, as no effort was made to separate the two fractions.
POC and PPhos bulk concentrations and nutrient molar ratios
are reported.

2.2.3 Nucleic acids

Seawater RNA and DNA concentrations were determined us-
ing high-sensitivity, macromolecule-specific Quant-iT fluo-
rophores (Molecular Probes, Inc., Eugene, OR, USA) follow-
ing a crude lysis as previously described (Zimmerman et al.,
2013). Briefly, nucleic acids and proteins were released from
filters by mechanical lysis (MP FastPrep-24 bead beater, MP
Biomedicals, Solon, OH, USA) in a solution of Tris buffer
(5 mM) and RNA preservative (saturated ammonium sulfate
solution). Sample supernatant was used to prepare assays in
96-well microplates with fluorescent dye, buffer, and predi-
luted standards provided with each kit (E. coli rRNA or λ ds-
DNA). Fluorescence was measured on a SpectraMax M2 mi-
croplate reader (Molecular Devices, LLC, Sunnyvale, CA).
Standards, buffers, and reagents were stored and used ac-
cording to the manufacturer’s suggestions. Spiked control
samples from the ship’s underway system were included to
account for potential signal quench. Macromolecule con-
centrations were calculated based on standard curve regres-
sions of fluorescence vs. known standard concentrations. The
amount of P present in RNA (RNA-P) and DNA (DNA-P)
was calculated assuming nucleic acids are 9 % P on average
(Sterner and Elser, 2002).
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Fig. 2. Phosphorus pools as a function of latitude across the BV47
cruise transect (see Fig. 1). Shaded region represents the approxi-
mate location of BATS.(a) Surface concentrations of dissolved or-
ganic phosphorus (DOP, filled circles), bulk particulate phospho-
rus (PPhos, open circles; shown as means± SE), and soluble reac-
tive phosphorus (SRP, open squares, “nd” denotes stations that were
below detection).(b) Estimated vertical SRP flux (µmol m−2 d−1)
across the base of the euphotic zone. Flux was calculated as the
product of the vertical concentration gradient (from 80 to 160 m)
and diffusivity coefficient (0.000035 m2 s−1; Ledwell et al., 2008).
Filled circles represent stations where the SRP flux was linearly in-
terpolated from the two immediately adjacent values because the
concentration gradient was not measurable.

2.3 Statistical analysis

All statistical analyses were conducted using the “stats”
package in R (R Core Team, 2012). Values are expressed
as means± standard error (SE), unless otherwise indicated.
Differences in allocation and stoichiometry among stations
along the transect were examined using analysis of variance
(ANOVA). Data that did not meet assumptions of normality
and homoscedasticity were evaluated with the nonparametric
Kruskal–Wallis ANOVA. Spearman’s rank correlations were
used to assess latitudinal trends, as well as associations be-
tween measured variables. This correlation analysis reduces
the influence of outlying data points that were observed in
our data set (e.g., st. 16 SRP flux). We used Wilcoxon signed
rank tests to test whether C : P ratios differed from Red-
field proportions (C : P = 106) at each station (n = 4 per sta-
tion) and averaged across all stations (n = 11). We also used
Wilcoxon signed rank tests to test for differences between
RNA and DNA allocation along the transect. We considered
all statistical analyses to be significant for P < 0.05.
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Fig. 3. Allocation to nucleic acids as a function of latitude across
the BV47 cruise transect (see Fig. 1). Shaded region represents the
approximate location of BATS. All points represent means± SE.
(a) Concentrations (µg L−1) of particulate RNA (filled circles)
and DNA (open circles). Concentrations of DNA were consis-
tently higher than RNA (P < 0.001, Wilcoxon signed rank test).
(b) RNA : DNA mass ratios.(c) Phosphorus in nucleic acids as a
proportion of total particulate phosphorus (PPhos). The proportion
of PPhos in RNA was consistently lower than in DNA (P = 0.004,
Wilcoxon signed rank test).

3 Results

3.1 Transect description

We analyzed biological allocation of P resources and partic-
ulate C : P ratios of bulk seawater at 11 stations along a N–S
transect spanning 13◦ of latitude (22.67–35.67◦ N; 1445 km)
in the oligotrophic Sargasso Sea (Fig. 1; Table 1). Surface
(≤ 5 m) water temperature was negatively correlated with
latitude (Spearman rank correlation,ρ =−0.92, P < 0.001;
Fig. A1), and decreased from 28.8◦C at 22.67◦ N (st. 11)
to 25.7◦C north of the BATS station (34.67◦ N, st. 15).
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Table 1.Summary of abiotic and biotic transect parametersa, including surface concentrations and upward flux of SRP and concentrations of
TDP, DOP, PPhos, POC, and nucleic acids (RNA and DNA). Particulate C : P molar ratios and proportions of total PPhos in RNA and DNA
(PRNA and PDNA ) were also calculated.

Latitude SRP fluxb TDP SRPc DOP PPhos POC RNA DNA RNA:
Station (◦ N) (µmol m−2 d−1) (nmol L−1) (nmol L−1) (nmol L−1) (nmol L−1) (µmol L−1) C : P (µg L−1) (µg L−1) DNA PRNA PDNA

11 22.67 2.59 54.3 NA 53.8 13.5 3.6 264 0.27 0.53 0.50 0.06 0.13
10 23.67 2.46 46.3 NA 45.8 10.3 2.8 291 0.26 0.48 0.54 0.10 0.18
8 25.67 2.20 50.2 NA 49.7 13.0 2.4 189 0.24 0.43 0.56 0.06 0.11
7 26.67 2.34 41.2 NA 40.7 13.0 2.8 229 0.23 0.47 0.47 0.07 0.13
6 27.67 2.48 53.6 1.9 51.7 12.0 2.7 242 0.24 0.52 0.46 0.07 0.15
5 28.67 2.65 35.6 NA 35.1 12.2 3.9 306 0.22 0.48 0.46 0.06 0.13
4 29.67 2.74 32.2 NA 31.7 12.1 2.4 210 0.25 0.38 0.61 0.08 0.12
3 30.67 2.83 35.6 2.8 32.8 11.8 3.0 257 0.36 0.52 0.71 0.10 0.14
2 31.66 2.93 21.8 3.1 18.7 12.8 3.0 244 0.36 0.61 0.59 0.09 0.15
15 34.67 5.07 52.1 5.2 46.9 15.8 3.9 242 0.61 0.99 0.62 0.12 0.19
16 35.67 14.70 54.4 2.5 51.9 21.5 4.1 188 0.63 1.16 0.62 0.09 0.17

a Values shown represent the mean of four station replicates, except for TDP, SRP, and DOP (n = 2). Geometric means are reported for the C : P ratios.b SRP flux values for stations 4, 7, and 10 were calculated from linear
interpolation of the two immediately adjacent stations.c NA, value was below detection.

Consequently, variation in temperature is inherent to the lat-
itudinal trends described below.

3.2 Latitudinal trends in phosphorus pools

DOP was the largest P pool measured, ranging from 18.7
to 53.8 nmol L−1 (Fig. 2a), but was not significantly corre-
lated with latitude. The highest DOP concentrations were
found at either end of the transect, with the lowest con-
centration occurring at the BATS station. All of the surface
SRP concentrations were low (< 5 nmol L−1; Fig. 2a), and
six stations were below the nominal detection limit of the
MAGIC-SRP method (∼ 1 nmol L−1; Lomas et al., 2010).
Mean PPhos concentrations varied only by a factor of 2
among stations, with the variation across stations marginally
significant (P = 0.052, ANOVA; Fig. 2a). The highest PPhos
concentration (21.5 nmol L−1) was found at the northern-
most station (35.67◦ N, st. 16). The lowest concentration of
PPhos (10.3 nmol L−1) occurred at 23.67◦ N (st. 10, Fig. 2a),
but was still twofold higher than the maximum SRP concen-
tration. Estimated vertical SRP flux across the base of the
euphotic zone (80–160 m) ranged from 2.2 µmol m−2 d−1 at
25.67◦ N (st. 8) up to 14.7 µmol m−2 d−1 at 35.67◦ N (st. 16;
Fig. 2b). This diapycnal SRP flux was relatively consistent
in the lower- and mid-latitudes of the transect, but showed a
distinct increase north of BATS, as would be expected near
the edge of the Gulf Stream. SRP flux was significantly cor-
related with latitude (Spearman rank correlation,ρ = 0.88,
P < 0.001). Bulk POC varied significantly among stations
(P = 0.002, Kruskal–Wallis ANOVA; Fig. A2), but did not
show a directional change with increasing latitude (Spear-
man rank correlation,ρ = 0.46, P = 0.082).

3.3 Latitudinal trends in nucleic acids

Concentrations of bulk particulate RNA and DNA in surface
waters varied∼ threefold across stations (P < 0.001 for both,
ANOVA; Fig. 3a), ranging 0.22–0.63 µg L−1 for RNA and

0.38–1.15 µg L−1 for DNA. Similar to SRP flux, both nu-
cleic acids showed relatively uniform concentrations in the
lower latitudes and an increase at the north end of the tran-
sect (Spearman rank correlations, RNA :ρ = 0.59, P = 0.027,
DNA: ρ = 0.51, P = 0.057). Concentrations of DNA were
consistently higher than RNA (P < 0.001, Wilcoxon signed
rank test), and RNA : DNA ratios along the transect varied
significantly from 0.46 to 0.71 (P = 0.046, ANOVA; Fig. 3b).
In contrast to total nucleic acid concentrations, the maxi-
mum RNA : DNA ratio was at 30.67◦ N (st. 3), just south of
BATS, but RNA : DNA ratios across stations still showed a
significant monotonic increase with latitude (Spearman rank
correlation,ρ = 0.65, P = 0.016). Overall, the contribution of
P in nucleic acids to total PPhos was low (< 32 % in RNA
and DNA combined; Fig. 3c), and the proportion of PPhos
in RNA (PRNA, 0.06–0.12) was lower than in DNA (PDNA ,
0.11–0.19; P = 0.004, Wilcoxon signed rank test). Allocation
of P to both nucleic acids was variable and did not signifi-
cantly differ among stations, but mean PRNA was positively
correlated with latitude across the transect (Spearman rank
correlation,ρ = 0.57, P = 0.034).

3.4 Latitudinal trends in C : P stoichiometry

Particulate C : P ratios were significantly greater than Red-
field (C : P = 106) at all stations (P < 0.001, Wilcoxon signed
rank test), ranging from 188 to 306, but showed no significant
trend with latitude (Fig. 4a). Plotting POC against PPhos re-
vealed a significant positive relationship (Spearman rank cor-
relation,ρ = 0.56, P = 0.038; Fig. 4b).

3.5 Response to gradients in nutrient flux

Contrary to our expectation, bulk PPhos concentrations did
not significantly increase with SRP flux across sampling sta-
tions (Spearman rank correlation,ρ = 0.33, P = 0.164; Fig. 5).
Furthermore, we did not find total PPhos concentrations
to be significantly dependent on RNA-P (Spearman rank
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1604 A. E. Zimmerman et al.: C : P stoichiometry in the North Atlantic Ocean

0

100

200

300

400
C

:P
 (m

ol
ar

 ra
tio

)

8 10 12 14 16 18 20 22 24
0

1000

2000

3000

4000

5000

6000

PPhos (nmol L−1)

P
O

C
 (n

m
ol

 L
−1

)

22 24 26 28 30 32 34 36
Latitude (°N)

a

b

Figure 4

Fig. 4.Relationships between POC and PPhos among sampling sta-
tions.(a) C : P molar ratio (geometric means± SE) as a function of
latitude across the BV47 transect (see Fig. 1). Shaded region repre-
sents approximate location of BATS. C : P ratios were greater than
Redfield (C : P = 106, red line) at all stations (P < 0.001, Wilcoxon
signed rank test).(b) POC as a function of PPhos (Spearman rank
correlation,ρ = 0.56, P = 0.038). Points represent means± SE.

correlation,ρ = 0.35, P = 0.150; Fig. A3). By comparison,
bulk particulate RNA and DNA concentrations both signif-
icantly increased with the SRP supply rate along the tran-
sect (Spearman rank correlations, RNA :ρ = 0.77, P = 0.003,
DNA: ρ = 0.69, P = 0.012; Fig. 6a). Similar relationships with
SRP flux were observed for RNA : DNA ratios (Spearman
rank correlations,ρ = 0.66, P = 0.013; Fig. 6b), as well as the
proportion of PPhos in RNA or DNA (Spearman rank corre-
lations, RNA :ρ = 0.57, P = 0.034, DNA:ρ = 0.51, P = 0.054;
Fig. 6c).

Overall, whole community C : P ratios were not signifi-
cantly related to SRP flux for our 2012 samples (Spearman
rank correlation,ρ =−0.06, P = 0.441; Fig. 7) or for previ-
ous transects through the same region (Fig. A4). The rela-
tionship between POC and SRP flux, however, was signif-
icant for our samples (Spearman rank correlation,ρ = 0.63,
P = 0.022; Fig. A5).

4 Discussion

We hypothesized that greater supply of phosphate across the
base of the euphotic zone in the northern latitudes of the
Sargasso Sea would support more P biomass and facilitate
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Fig. 5. PPhos as a function of vertical flux of SRP across the BV47
transect (see Fig. 1). Points represent means± SE. PPhos was not
significantly correlated with SRP flux (Spearman rank correlation,
ρ = 0.33, P = 0.164).

greater biochemical allocation toward P-rich RNA for growth
than in the more permanently stratified lower latitudes. Phos-
phate supply (operationally defined as soluble reactive phos-
phorus, SRP) varied sevenfold across our latitudinal transect
(Fig. 2b, Table 1), but this gradient was accompanied by less
variation in biochemical allocation (1.5-fold for RNA : DNA
ratio, threefold for nucleic acid concentration) in correspond-
ing surface waters (Fig. 3, Table 1). In support of our hy-
pothesis, we found evidence for a community-level increase
in allocation to RNA in response to higher SRP supply rates
(Fig. 6); however, a concurrent increase in total PPhos with
SRP flux was not supported (Fig. 5). This disconnect may
reflect a mismatch in sampling horizons, although previous
studies in this region clearly show that phytoplankton in the
surface mixed layer obtain nutrients from depth (Fawcett et
al., 2011, 2014; Johnson et al., 2010). Therefore it is likely
that phosphate from depth supports surface plankton. Alter-
natively, the relatively small proportion of total PPhos repre-
sented by RNA and weak change in RNA : DNA ratio across
sampling stations (Table 1) may have contributed to the dis-
connect between SRP flux and total PPhos.

We additionally predicted that the supply of phosphate
from depth is related to community-level C : P stoichiometry
in the P-depleted surface waters of the NASG. However, the
C : P ratio did not vary systematically with latitude or SRP
supply rate (Figs. 4a, 7). Accumulated dead plankton mate-
rial could mask the effect of changes in the RNA content of
living plankton biomass on particulate P content and commu-
nity C : P ratios. However, this does not appear to be the case
in the subtropical North Atlantic, as shown by an analysis of
the summed contributions of flow-cytometrically sorted pop-
ulations to total particulate carbon, nitrogen, and phosphorus
pools (Martiny et al., 2013). Thus there was little support for
a consistent influence of nutrient supply rate or biochemical
allocation on whole community C : P stoichiometry despite
a regionally coherent response in biochemical allocation to
nutrient supply rate.
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Fig. 6. Allocation to nucleic acids as a function of vertical flux
of SRP across the BV47 transect (see Fig. 1). All points repre-
sent means± SE. All measurements of nucleic acids were signif-
icantly correlated with SRP supply (Spearman rank correlations).
(a) Concentrations (µg L−1) of particulate RNA (filled circles,
ρ = 0.77, P = 0.003) and DNA (open circles,ρ = 0.69, P = 0.012).(b)
RNA : DNA mass ratios (ρ = 0.66, P = 0.013).(c) The proportion of
total PPhos bound in RNA (ρ = 0.57, P = 0.034) or DNA (ρ = 0.51,
P = 0.054).

Both POC and DNA concentrations increased with SRP
flux along the transect (Figs. 6a, A5). These results sug-
gest that greater supply of resources from nutrient-rich deep
water facilitated an increase in the total biomass supported
in surface water. Likewise, the significant increase in the
RNA : DNA ratio, a potential proxy for growth rate (Dortch
et al., 1983), with SRP supply (Fig. 6b) suggests that com-
munity growth rate could be similarly sensitive to nutrient
supply. However, we recognize that the correlation between
the RNA : DNA ratio and growth rate tends to be weaker for
a mixed community than an individual taxon (Jeffrey et al.,
1996; Kemp et al., 1993). Though we are unable to tease
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Fig. 7. C : P molar ratio as a function of vertical flux of SRP
across the BV47 transect (see Fig. 1). Points represent geometric
means± SE. Red line represents Redfield C : P ratio (106). No sig-
nificant relationship was detected between the C : P ratio and SRP
supply (P = 0.441)

apart the individual influences of SRP and other nutrients that
may have been supplied concurrently, high C : P ratios (i.e.,
significantly greater than Redfield) measured along the tran-
sect indicated P stress. Given that the western NASG is char-
acterized by conditions of P stress (Ammerman et al., 2003;
Cavender-Bares et al., 2001; Cotner et al., 1997; Mather et
al., 2008; Wu et al., 2000), we hypothesize that it is likely
P regulates growth and biomass accumulation, though other
factors may also have an impact. Higher biomass may be
the result of increased carrying capacity of the ecosystem
(i.e., greater abundance of individual populations) or a shift
to larger cells, whose relatively higher cellular quotas could
be supported by the increased supply rate (Chisholm, 1992;
Edwards et al., 2012; Marañón et al., 2013). Additionally,
with the data we collected, we cannot exclude the possibility
that this pattern reflects accumulation of particulate matter
resulting from a decrease in loss processes (e.g., grazing and
viral lysis).

Although we focused on SRP supply rates under the as-
sumption that SRP is the form of P preferred by marine mi-
crobes (Casey et al., 2009), DOP is also important for sus-
taining primary productivity in the Sargasso Sea (Lomas et
al., 2010). DOP may be especially important as an alterna-
tive P source at lower SRP supply rates, though we did not
detect any significant correlations between DOP and the bio-
logical parameters we measured. There does not appear to be
long-range transport of DOP from the eastern North Atlantic
upwelling regions (Roussenov et al., 2006; Torres-Valdés et
al., 2009). Additionally, uptake of SRP by organisms in this
region has been shown to be sensitive to SRP concentration
while DOP uptake rates were not sensitive to DOP concen-
tration (Casey et al., 2009).

Overall, P from nucleic acids only represented∼ 22 % of
total PPhos (Fig. 3c). Our values are likely driven by gen-
erally low concentrations of total particulate RNA and DNA
in our samples (Fig. 3a), which correspond to the low end
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of values reported for the range of nucleic acid concentra-
tions in the Gulf of Mexico (Jeffrey et al., 1996) and the olig-
otrophic Mediterranean Sea (Dell’Anno et al., 1999). We rec-
ognize that there may be uncertainty in our PRNA and PDNA
data because we could not account for potential variation in
nucleic acid extraction efficiency due to incomplete cell ly-
sis, and therefore these values should be considered as min-
imum quotas. Regardless, our calculations of PRNA in nat-
ural marine microbial communities are low in comparison
to previous studies. Makino et al. (2003) demonstrated that
the allocation of P resources to RNA can vary in cultures
of E. coli from 40 to 80 %, depending on growth rate. Like-
wise, the proportion of biomass P represented by RNA varied
from 25 to 93 % for communities of lake bacteria under ma-
nipulated growth and substrate ratio conditions (Makino and
Cotner, 2004). In addition to PPhos bound in nucleic acids,
∼ 23 % of total PPhos may be found in phospholipids (Van
Mooy et al., 2006). Our results suggest that there appear to
be additional quantitatively important reservoirs of PPhos for
plankton communities in the NASG. A likely candidate is
polyphosphate, which has recently also been shown to be part
of a stress response to P deficiency in diatoms (Dyhrman et
al., 2012) and to increase in concentration from the coastal to
open ocean (Martin and Van Mooy, 2013). These potentially
important alternative reservoirs of PPhos warrant further in-
vestigation in order to comprehensively understand dynamic
P allocation in natural plankton communities.

We speculate that taxonomic diversity within communi-
ties of marine plankton likely contributed to variation in
C : P stoichiometry along the SRP supply gradient. Previ-
ous studies have demonstrated that a broad range of plankton
taxa, from heterotrophic bacteria to diatoms and micrograz-
ers, persist in this oligotrophic region (DuRand et al., 2001;
Longnecker et al., 2010; Treusch et al., 2012; Worden and
Binder, 2003), and that the relative abundances of planktonic
groups change with latitude (Cavender-Bares et al., 2001;
Martiny et al., 2013). These broad taxonomic groups repre-
sent a range of ecological and trophic strategies, which inher-
ently differ in resource requirements and may therefore ex-
perience varying degrees of P stress in the same environment
(Casey et al., 2009; Lomas et al., 2004). For example, photo-
synthetic machinery imposes different constraints on cellu-
lar resource allocation and stoichiometry for autotrophs ver-
sus heterotrophs (Vrede et al., 2004). Cell sizes vary across
taxonomic groups and are robustly correlated with nutrient
uptake and use properties (Chisholm, 1992; Edwards et al.,
2012; Marañón et al., 2013). Consequently, multiple effects
of broad taxonomic diversity likely interact at the ecosystem
scale to constrain emergent community patterns in biochem-
ical allocation and stoichiometry.

Underlying broad-scale taxonomic diversity is additional
fine-scale functional diversity in resource use and physiolog-
ical plasticity related to P cycling. This diversity potentially
further exacerbated the decoupling of SRP supply from com-
munity C : P stoichiometry in our study. For example, within

the well-studiedProchlorococcusand Synechococcusgen-
era, lineages vary in their P-stress response mechanisms as
well as in their ability to use a variety of inorganic and or-
ganic P sources (Martiny et al., 2006; Moore et al., 2005).
Synechococcusalso shows interstrain differences in the abil-
ity to store P as polyphosphate under conditions of P star-
vation (Mazard et al., 2012), with probable impacts on cel-
lular C : P ratios. Therefore, different individuals within the
same taxonomic group may experience different degrees of
P stress and exhibit different strategies when responding to
changes in nutrient supply. Accordingly, it may be neces-
sary to evaluate genotype- and even cell-specific responses
to environmental P supply to understand variability in the
aggregate community patterns of biochemical allocation and
stoichiometry in response to large-scale changes in nutrient
conditions in the ocean.

Our results have important implications for ecosystem-
scale variability in the particulate element ratios of the ocean
surface. We have shown that community C : P stoichiome-
try varied little across a latitudinal gradient of SRP supply
(Figs. 4a, 7). PPhos concentrations across the range of the
transect were likewise decoupled from both SRP supply rate
(Fig. 5) and allocation of biomass P to RNA (Fig. A3). By
contrast, we detected a coherent community response in nu-
cleic acid allocation to SRP flux (Fig. 6). Collectively, our
results imply that neither biochemical allocation (at least to
nucleic acids) nor prevailing environmental conditions (i.e.,
phosphate supply rate) are the primary mechanisms for ex-
plaining emergent community variation in C : P stoichiome-
try at this scale. We speculate that alternative reservoirs of
cellular P, such as phospholipids and storage compounds,
and taxonomic composition, which appears to be important
at broader spatial scales (Martiny et al., 2013; Weber and
Deutsch, 2010), may also constrain ecosystem-scale varia-
tion in elemental ratios, though these remain to be tested. De-
tailed characterization of taxon-specific resource strategies
in marine plankton will be essential for identifying the level
of taxonomic grouping relevant to understanding emergent
community variation in C : P stoichiometry. Building such a
framework will in turn strengthen predictions of community
response to large-scale changes in ocean nutrient conditions.
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Supplemental figures
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Figure A1

Fig. A1. Temperature as a function of latitude across the BV47 cruise transect (see Fig. 1). Shaded region represents approximate location
of BATS. Regression line depicts significant inverse relationship between temperature and latitude (Spearman rank correlation,ρ =−0.92,
P < 0.001).
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Figure A2

Fig. A2. Particulate organic carbon (POC) as a function of latitude across the BV47 cruise transect (see Fig. 1). Shaded region represents
approximate location of BATS. POC varied among stations (P = 0.002, Kruskal–Wallis ANOVA – analysis of variance), but was not signifi-
cantly correlated with latitude (Spearman rank correlation,ρ = 0.46, P = 0.082).
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Figure A3

Fig. A3. Particulate phosphorus (PPhos) as a function of phosphorus in RNA (RNA-P, calculated as 9 % RNA mass). Total PPhos was not
significantly correlated with RNA-P (Spearman rank correlation,ρ = 0.35, P = 0.150).
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Figure A4

Fig. A4. C : P molar ratio as a function of vertical flux of soluble reactive phosphorus (SRP) from additional cruises in this region across
multiple seasons. No significant relationship was detected between C : P ratio and SRP supply (Spearman rank correlations, P > 0.05) for
cruise(a) X0705 in June 2007 (open squares),(b) BVal39 in October 2007 (open circles), or(c) X0804 in May 2008 (shaded squares). Data
for BVal39 were retrieved from the BATS web page (http://bats.bios.edu/) and data for X0705 and X0804 were retrieved from BCO-DMO
(http://www.bco-dmo.org). Red line represents Redfield C : P ratio (106).
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Figure A5

Fig. A5. POC as a function of vertical flux of SRP across the BV47 transect (see Fig. 1). Points represent means± SE. POC was significantly
correlated with SRP flux (Spearman rank correlation,ρ = 0.63, P = 0.022).

www.biogeosciences.net/11/1599/2014/ Biogeosciences, 11, 1599–1611, 2014

http://bats.bios.edu/
http://www.bco-dmo.org

