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Abstract. Understanding the response of forest net ecosys-
tem productivity (NEP) to environmental drivers under cli-
mate change is highly relevant for predictions of annual for-
est carbon (C) flux budgets. Modeling annual forest NEP
with soil–vegetation–atmosphere transfer models (SVATs),
however, remains challenging due to unknown delayed re-
sponses to weather of the previous year. In this study, we
addressed the influence of previous year’s weather on the
interannual variability of NEP for a subalpine spruce forest
in Switzerland. Analysis of long-term (1997–2011) eddy co-
variance measurements showed that the Norway spruce for-
est Davos Seehornwald was a consistent sink for atmospheric
CO2, sequestering 210± 88 g C m−2 yr−1 on average. Previ-
ous year’s weather strongly affected interannual variability
of NEP, increasing the explained variance in linear models
to 53 % compared to 20 % without accounting for previous
year’s weather. Thus, our results highlight the need to con-
sider previous year’s weather in modeling annual C budgets
of forests. Furthermore, soil temperature in the current year’s
spring played a major role controlling annual NEP, mainly
by influencing gross primary productivity early in the year,
with spring NEP accounting for 56 % of annual NEP. Conse-
quently, we expect an increase in net CO2 uptake with future
climate warming, as long as no other resources become lim-
iting.

1 Introduction

Modeling and explaining interannual net ecosystem produc-
tivity (NEP) of forests, where NEP is the relatively small dif-
ference between gross primary productivity (GPP) and total

ecosystem respiration (TER), has been shown to be challeng-
ing (Urbanski et al., 2007; Gough et al., 2008), and only weak
links (r2 < 0.25) have been found between climate variables
and NEP (e.g.,Gough et al., 2008). Furthermore, it is still un-
clear how forest NEP will respond to climate change, mak-
ing predictions of this policy-relevant variable using soil–
vegetation–atmosphere transfer models (SVATs) difficult and
potentially inaccurate (e.g.,Hanson et al., 2004; Katul et al.,
2001; Richardson et al., 2007). However, due to large car-
bon (C) sink activities of forest ecosystems (Bonan, 2008),
understanding the climate control on forest NEP and its role
in the terrestrial carbon cycle is of great global importance
(Stoy et al., 2009).

The challenges of SVATs to precisely model interannual
NEP may arise from their focus on immediate responses
of forest ecosystems to the current year’s weather (Han-
son et al., 2004; Urbanski et al., 2007). However, it is very
likely that forest ecosystems do not only respond immedi-
ately to actual changes in environmental conditions, but can
also show delayed responses to legacy-effects or climate-
vegetation feedbacks. Such delayed responses to seasonal
weather conditions of the previous year (hereafter referred
to as previous year’s weather) might include weather in-
duced alterations of the built-up stored C in the previous
year’s summer and/or fall used to fuel current year’s growth
and metabolism (Carbone et al., 2013) and the formation of
buds in the previous year’s fall with the associated implica-
tions for current year’s leaf area index (LAI), and thus GPP
(Zweifel et al., 2006). Furthermore, the compensation of res-
piratory C losses due to frost damages induced in winter and
spring of the previous year is yet another process possibly re-
sponsible for delayed responses. Therefore, we hypothesize
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that responses to previous year’s weather affect climate–
vegetation feedbacks by modulating CO2 release and/or up-
take, and thus, will improve our ability to explain interan-
nual variability of forest NEP. Such phenomena have been
reported for both nonforest and forest ecosystems.Rocha and
Goulden (2010) showed that negative effects on LAI and
photosynthesis induced by an extreme drought in a freshwa-
ter marsh lasted for several years. Dendrochronological stud-
ies focusing on the tree scale, e.g., byRocha et al.(2006),
Pichler and Oberhuber(2007), andBabst et al.(2012), re-
ported a significant influence of previous year’s weather on
current year’s radial tree growth. Until now, however, little
attention has been paid to the influence of such relationships
on CO2 exchange of entire forest ecosystems, and existing
results have been contradictory. WhileUrbanski et al.(2007)
suggested an influence of severe weather events from previ-
ous years on the current year’s carbon uptake capacity, and
thus GPP, of a mixed forest,Gough et al.(2008) showed
lagged influences of environmental conditions on net primary
productivity (NPP), but not on NEP.

In accordance with the above mentioned ecophysiological
processes possibly responsible for delayed responses of for-
est NEP, we would expect the previous year’s summer or fall
to be of importance for forest NEP. If unfavorable conditions
occur during these seasons, e.g., a precipitation deficit, the
build-up of stored C and the formation of buds might be ham-
pered and thus, affecting current year’s NEP. Also, we expect
cold winter conditions, promoting a long-lasting snow cover
accumulated already in late fall of the previous year, to play
an important role due to its importance for soil temperature
and soil water availability in current year’s spring, hence an
early onset of NEP.

Here, we present a 15 yr (1997–2011) study on climate
drivers of eddy covariance based NEP of a subalpine spruce
forest. Based on this long-term data set, the goals of this
study are (1) to identify climate drivers of NEP; and (2) to
quantify the influence of previous year’s weather on NEP at
the Swiss FluxNet site Davos Seehornwald.

2 Materials and methods

2.1 Site description

We conducted measurements at the Swiss FluxNet site
Davos Seehornwald, a subalpine coniferous forest located
in the southeastern part of Switzerland (46◦48′55.2′′ N,
9◦51′21.3′′ E) at 1639 ma.s.l. The annual mean tempera-
ture at the MeteoSwiss weather station Davos Dorf, ap-
proximately 1 km southeaster of the Davos Seehornwald at
1594 m a.s.l., is 3.6◦C, and the mean annual precipitation
is 1035 mm (30 yr means, 1981–2010; MeteoSwiss). The
forest is dominated by Norway spruce (Picea abies) and
shows a patchy understory of shrubs (Vaccinium myrtillus,
Vaccinium gaultherioides), mosses (Hylocomium splendens,

Dicranum scoparium) and scattered occurrence of grasses
(Calamagrostis villosa, Avenella flexuosa, Luzula sylvatica).
Stand age of mature trees ranges from 240 to 400 yr, tree
height is ca. 25 m, and leaf area index (LAI) is 3.9 m2m−2.
The soils range from Chromic Cambisols to Rustic Podzols
(FAO classification;Jörg, 2008).

2.2 Climate data

Climate data used in this study were obtained from meteo-
rological measurements on site: photosynthetic photon flux
density (PPFD) (SKP 215, Skye Instruments Ltd., UK), soil
temperature (TS107, Markasub, Switzerland), and global ra-
diation data, complemented with data from the nearby Me-
teoSwiss weather station Davos Dorf (air temperature, va-
por pressure deficit (VPD), precipitation, snow height). This
enabled us to incorporate climate information in the sta-
tistical analysis of years before on-site flux measurements
were available (see below). We inferred mean daily soil tem-
peratures for two years before on-site measurements (1995,
1996) from air temperatures, using a linear regression model
between the two variables for the period 1997–2011 (ad-
justedr2

= 0.69;p < 0.001).

2.3 Flux measurements and data processing

Since 1997, the net ecosystem exchange (here defined as
NEE= −NEP) of CO2 between the biosphere and the at-
mosphere has been determined continuously on a 35 m flux
tower using the eddy covariance (EC) method (cf.Zweifel
et al., 2010; Etzold et al., 2011). From 1997 until the end
of 2005, CO2 concentrations were measured using a closed-
path infrared gas analyzer (IRGA) LI-6262 (LI-COR, Lin-
coln, Nebraska, USA). Since the end of autumn 2005, the
respective concentrations have been measured with an open-
path IRGA LI-7500 from the same manufacturer. Three
dimensional wind speed was measured with a three axis
sonic anemometer, model Solent R2 (Gill Instruments Ltd.,
Lymington, Hampshire, UK), until 2006, which was then re-
placed by a Solent R3-50 sonic anemometer.

CO2 concentrations, measured at 20 Hz, were post-
processed with the in-house softwareeth-flux (cf.
Mauder et al., 2008) to obtain 30 min means of CO2 fluxes.
We corrected the 30 min mean fluxes measured by the open-
path IRGA for density fluctuations (Webb et al., 1980) and
for self-heating of the LI-7500 instrument surface (Burba
et al., 2008). Since the LI-7500 was mounted obliquely
to let rainwater drip off, not the full optical path length
of the sensor is subject to self-heating effects. The frac-
tion δ of the optical path affected by self-heating was esti-
mated atδ = 0.085 based on a direct determination at a sim-
ilar site (Järvi et al., 2009). We filtered corrected fluxes
for unrealistically high values (±50 µmolm−2s−1) and un-
favorable atmospheric conditions such as snow, heavy rain
and/or dust (window dirtiness> 70 %; open-path IRGA
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fluxes only). Insufficient turbulent mixing of the atmosphere
was accounted for using au∗ filter with a threshold of
u∗ < 0.2 ms−1. In addition, we filtered large unrealistic neg-
ative nighttime CO2 fluxes. Therefor, we used a symmetric
method, i.e., within a 14 d moving window, both negative and
positive nighttime CO2 fluxes outside the 14 d mean±1 SD
(standard deviation) were dismissed. High-quality data were
available between 43 % (2008) and 53 % (2002) of the time
after data screening and removal of periods with instrument
failures.

Gap-filling and partitioning of the CO2 fluxes into GPP
and TER was done using the online tool byReichstein et al.
(2005). After flux partitioning, 10 % of the daytime GPP
fluxes were negative because modeled TER was lower than
the measured NEE. In such cases, we set GPP to zero, and as-
signed the corresponding NEE to TER. The same procedure
was repeated for all GPP values during nighttime (photosyn-
thetic photon flux density< 80 µmol m−2s−1).

2.4 Statistics

All statistical analyses were performed using the R statis-
tical software, version 3.0.1 (R Core Team, 2012). In gen-
eral, we used seasonal climate variables to determine which
drivers exerted the greatest influence on C exchange pro-
cesses at what time of the year (Table 1). The nomenclature
used in the statistical analysis was composed of the abbrevi-
ation and the meteorological season of each climate variable,
e.g., spring soil temperature was namedSoilTemp.spring. We
used the meteorological definition to define seasons (win-
ter: DJF; spring: MAM; summer: JJA; fall: SON). Previous
year’s weather variables were denoted with “−1”, e.g.,Soil-
Temp.spring−1. Accordingly, “winter−1” is the season with
the longest time period between itself and current year’s NEP,
including December of the year before the previous year as
well as January and February of the actual previous year. The
current year’s winter then includes the previous year’s De-
cember as well as the current year’s January and February.
We used two subsets of data to analyze climate drivers of
NEP: one with current year’s weather variables only (28 vari-
ables) and one with both current and previous year’s weather
variables (56 variables).

The analysis itself was conducted in two steps. In the first
step, we diagnosed and corrected collinearity due to interde-
pendences among climate variables within the two subsets of
data, using the condition index (CI;Rawlings et al., 1998).
CI is the square root of the ratio of each eigenvalue to the
smallest eigenvalue ofX, with X representing an×p matrix
of predictors (p) and withn being the sample size. A CI> 30
is critical, i.e., collinearity is present and should be corrected
for (Rawlings et al., 1998; Dormann et al., 2012). Thus, we
correlated each climate variable with each other and when
the absolute correlation coefficient exceeded a threshold of
| r |= 0.58, we calculated bivariate regressions between NEP
and these two independent variables. We then dismissed the

Table 1. Abbreviations of the climatic variables used in this study,
their descriptions and units.

Variable Description Unit
abbreviation

T2 Mean air temperature at 2 m height ◦C
T2max Maximum air temperature at 2 m height◦C
T2min Minimum air temperature at 2 m height ◦C
VPD Vapor pressure deficit kPa
Precip Precipitation mm
SoilTemp Soil temperature 5 cm below ground ◦C
PPFD Photosynthetic photon flux density µmolm−2s−1

climate variable with the lower explanatory power according
to the Akaike information criterion (AIC). The chosen cor-
relation threshold allowed fitting of linear models (degrees
of freedom≥ 1), and it was in the range of previously re-
ported values (| r |= 0.4 in Suzuki et al., 2008, | r |= 0.85 in
Elith et al., 2006). In the second step, we selected those cli-
mate variables from the collinearity-corrected data sets that
resulted in the best linear regression models with 1 up tok

variables, withk being the number of climate variables after
collinearity correction.

We used adjustedr2 (adj. r2) as selection criterion for the
best model and constrained the analysis of climate drivers to
models with three variables at the most (see Sect.3.2 for de-
tails). By calculating standardized regression coefficients (β;
Quinn and Keough, 2001), we determined the importance of
each individual climate variable in the best models, and thus,
the contribution of each climate variable to the prediction of
NEP. Finally, we assessed the overall performance of the best
linear regression models obtained from our first statistical ap-
proach by determining their ability to reproduce measured
single-year sums of NEP. Therefore, we used the regression
equations with the respective climate variables as input to re-
calculate annual NEP.

3 Results

3.1 Annual carbon dioxide flux and intra-annual
patterns

The subalpine coniferous forest was a net CO2 sink through-
out the measurement period from 1997 until 2011. An-
nual sums of net CO2 uptake ranged from 54 (1997) to
336 gCm−2yr−1 (2009), with a 15 yr average of 210±
88 gCm−2yr−1 (mean± 1 SD) (Fig. 2) and we did not
find a significant trend towards increasing NEP within the
measurement period (p = 0.08). On average, cumulative
C losses exceeded CO2 uptake (| TER |> GPP) from the
beginning of the year until the beginning of May (mean
date±1 SD: 8 May± 23 d). Typically, at the end of March
(27 March± 16 d), when air temperature was still below
zero and the soil was snow-covered (Fig. 1), photosynthesis
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1981–2010 are given in the top right corner.
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Fig. 1. Mean monthly air temperature and precipitation(a) and
mean monthly snow height(b) at the Davos site for the reference pe-
riod 1981–2010 (MeteoSwiss). Vertical bars indicate the interquar-
tile ranges. Mean annual temperature and mean annual precipitation
for the period 1981–2010 are given in the top right corner.

compensated respiration and the cumulative NEP began
to increase until the beginning of November (6 Novem-
ber± 15 d), when it reached its maximum. At this time,
monthly temperatures fell below zero, with only a shallow
snow cover present (Fig. 1). The temporal pattern of cumula-
tive NEP in 2001 differed substantially from all other years
(Fig. 2). Photosynthesis started to dominate already at the
end of February (25 February 2001), and a positive cumula-
tive NEP was reached in mid-March (12 March 2001), almost
two months earlier than in other years. The early compensa-
tion by photosynthesis and onset of net C uptake were the
result of an early warm period from the end of February until
the beginning of April, with air temperatures more than 2◦C
higher than average (1.7◦C in 2001 vs. a mean of−0.5◦C
from 1981 to 2010). Consequently, the year 2001 showed
the second highest net carbon uptake during the measure-
ment period with an annual NEP of 314 gCm−2yr−1, only
slightly lower than the maximum net carbon uptake in 2009,
since a long cold spell in spring 2001 caused a stagnation and
even a slight decrease of NEP for about three weeks in April
2001.

Across all 15 yr, the intra-annual pattern of daily mean
NEP showed a steep increase from the beginning of spring
(March–May) until they peaked around mid-May (Fig. 3),
the time in year when air temperature was well above zero
and the snow cover had disappeared (Fig. 1). This increase
in mean daily NEP from the beginning of spring was mainly
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Fig. 2. Annual net ecosystem productivity (NEP) of the Davos Seehornwald spruce forest for
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Fig. 2.Annual NEP of the Davos Seehornwald spruce forest for the
measurement period 1997–2011. Seasons are defined according to
their meteorological definition (winter: DJF; spring: MAM; sum-
mer: JJA; fall: SON).

driven by an increase in photosynthetic CO2 uptake (Pear-
son’s product moment correlation coefficient (r) for spring
GPP vs. spring NEP= 0.98), while TER remained more or
less constant at a low base level until about May. Spring
time NEP alone accounted for 56 % of annual NEP at the
Davos site. With the sharp increase of TER at the end of May,
daily mean NEP slowly decreased, yet stayed positive since
GPP outperformed TER until the end of October. Between
November and mid-April of the following year, daily mean
NEP of the Davos site was negative. Although photosynthe-
sis did occur at the Davos site during winter, TER always
exceeded GPP (Fig. 3).

3.2 Climate drivers of net ecosystem productivity

At the Davos site, 20 % of interannual variability of NEP dur-
ing the period 1997–2011 could be explained with two out of
a maximum of three climate variables from the current year
(Fig. 4a). However, also including climate variables from the
previous year in the analysis (Fig. 4b), and thus accounting
for a response of NEP to previous year’s weather, further
increased the explained interannual variance, reaching 53 %
(limiting the analysis to three variables, see Sect.2.4). These
results were highly consistent, also if only two variables were
used from the data set with previous year’s weather or if
the collinearity threshold was chosen in such a way that
both initial variable subsets (without and with previous year’s
weather) had the same number of variables (data not shown).
Using more than three independent variables would further
increase the explained variance of NEP for the data set with
current and previous year’s weather (Fig. 4b, hatched area),
yet, strongly overparameterizing the linear models in relation
to the dependent variable (i.e., 15 yr). Therefore, we limited
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Fig. 3. Smoothed mean daily sums of NEP, GPP and TER as
well as smoothed mean daily soil temperature at 5 cm depth of
the Davos Seehornwald spruce forest for the measurement period
1997–2011. Smoothing was done by fitting a local polynomial re-
gression (LOESS) to the original mean daily values, using a 7 and
18 d smoothing window for the fluxes and the soil temperature, re-
spectively. Seasons are defined according to their meteorological
definition (see Fig. 2).

all our analyses to a maximum of three independent vari-
ables.

Regardless of which subset was analyzed (with current
year’s weather only or with both current and previous year’s
weather), soil temperature of current year’s spring (Soil-
Temp.spring) was identified as the most influential driver of
NEP (Table 2). NEP always increased with increasing soil
temperatures. Winter irradiance was ranked second for the
subset with current year’s weather only, always with a neg-
ative effect on NEP (β = −0.34 and−0.42 for models with
two and three independent variables, respectively; Table 2).
When previous year’s weather was included, minimum air
temperature of the previous year’s spring (T2min.spring−1)
was the second most important variable, also with a strong
positive effect on NEP, similar to soil temperature (β = 0.68
and 0.70 for models with two and three independent vari-
ables, respectively). For both subsets, the third explanatory
variable was only of minor importance (PPFD.fall−1, β =

−0.30; Table 2) and did not increase the explained interan-
nual variability of NEP significantly.

3.3 Modeling of annual net ecosystem productivity

We used the best linear regression models with current year’s
weather only and with both current and previous year’s
weather (two and three independent variables, respectively;
Table 2) to compare their performance to measured single-
year NEP (1997–2011; Fig. 5). The model with both cur-
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Fig. 4. Number of predictors used in the model’s NEP vs. climatic
variables (1997–2011) against the adjusted coefficient of determina-
tion (adj.r2) for the data subsets with current year’s weather only
(a) and with both current and previous year’s weather(b) of the
Davos Seehornwald spruce forest. Hatched areas in(a) and(b) in-
dicate overparameterized models.

Table 2.Linear regression coefficients,p values, andβ coefficients
for individual variables of the best models for NEP with up to three
variables with current year’s weather only and with both current and
previous year’s weather included as well as adj.r2 andp values
for the entire model (pmod). Previous year’s weather variables are
denoted with “−1”.

Variable Coefficient p β adj.r2 pmod

Models with current year’s weather only
Intercept 578.23 0.0139 –
SoilTemp.spring 49.65 0.0913 0.44
PPFD.winter −3.12 0.1811 −0.34 0.20 0.1051

Models with current and previous year’s weather
Intercept 583.93 0.0464 –
SoilTemp.spring 101.96 0.0022 0.90
T2min.spring−1 75.93 0.0059 0.70
PPFD.fall−1 −1.81 0.1708 −0.30 0.53 0.0094

p andβ are valid for each independent variable.
adj.r2 andpmod are valid for the entire model.

rent and previous year’s weather was substantially better
able to reproduce the interannual variability than the one
without (current and previous year: adj.r2=0.53 vs. current
year only: adj.r2=0.20, Table 2), and also showed smaller
confidence intervals (Fig. 5a, b). Focusing on single years,
the linear model with year’s weather only over- or under-
estimated measured annual NEP anomalies by more than
50 gCm−2yr−1 for 10 of the 15 yr – this model only per-
formed well in five years (1997, 1999, 2003, 2010, and 2011)
(Fig. 5c). In contrast, the linear model including current and
previous year’s weather performed well in 11 out of 15 yr –
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Fig. 5. Measured and modeled annual NEP of the Davos Seehorn-
wald spruce forest for the period 1997–2011 using the best two and
three climatic variables from the data subsets with current year’s
weather only(a) and with both current and previous year’s weather
(b), respectively. Grey shaded areas indicate 95 % confidence inter-
vals for the modeled annual NEP. Differences between the measured
NEP anomalies and modeled NEP anomalies are given as well(c).

only in four years (2003, 2008, 2009, 2010) were the devia-
tions from the measured annual NEP anomalies were larger
than 50 gCm−2yr−1.

4 Discussion

Our study showed that only when considering previous
year’s weather we explained interannual variability of NEP
well, increasing the explained variance of NEP at the Davos
forest from 20 to 53 %. Yet, current year’s spring conditions
still exerted a continuous influence on NEP, independent of
whether or not previous year’s weather was included in the
analysis.

4.1 Ecosystem carbon sink

The Davos forest was a consistent carbon sink over 15 yr of
measurements (1997–2011; Fig. 2), with annual CO2 sinks
ranging from 54 to 336 gCm−2yr−1 and no significant trend
of increasing CO2 sink activity with time. Eddy covariance
measurements in subalpine forest ecosystems are scarce, and
therefore, the possibilities for comparisons of annual NEP
with other sites are limited.Zeller and Nikolov(2000) re-
ported a modeled annual C uptake of 196 gCm−2yr−1 for
the Glacier Lakes Ecosystems Experiment Site (GLEES),
a subalpine forest in southern Wyoming, USA, dominated
by Engelmann spruce (Picea engelmannii) and subalpine
fir (Abies lasiocarpa). Long-term CO2 flux observations at
the Niwot Ridge AmeriFlux site, another subalpine conifer-
ous forest (Abies lasiocarpa, Picea engelmannii, Pinus con-
torta), showed a mean annual uptake of 216 gCm−2yr−1

(Desai et al., 2011). These values are in line with the mean
annual NEP (210 gCm−2yr−1) at our site in Switzerland.
Annual cumulated NEP at the Davos site was controlled by
the combination of strongly increasing spring C uptake and
consistently low spring C loss, causing NEP to reach 56 % of
its annual sum in the three months March, April, and May.
Such a strong control of springtime photosynthesis over an-
nual NEP is in accordance with results from a subalpine
coniferous forest (Abies lasiocarpa, Picea engelmannii, Pi-
nus contorta) (Niwot Ridge, USA;Monson et al., 2002).

4.2 Environmental controls of annual net ecosystem
productivity

Considering previous year’s weather substantially increased
explained variance of interannual variability in NEP from
20 to 53 % (Fig. 4, Table 2), leading to an adj.r2 much
higher than reported for other studies using only current
year’s weather (typically,r2 < 0.25 for single climate vari-
ables; e.g.,Gough et al., 2008). Our analysis highlighted
the relevance of favorable previous year’s spring conditions
(T2min.spring−1) promoting current year’s NEP (Table 2),
e.g., by warm temperatures and/or less frequent occurrence
of frost events. Possible reasons for the delayed response of
NEP and forest growth to weather of the previous year are
manifold and potentially superimposed. It is generally ac-
cepted that nonstructural carbohydrates (NSC) stored in the
previous year are used to fuel C consuming processes early in
the current year, such as for bud break/leaf flush (e.g.,Epron
et al., 2012) and early wood formation (e.g.,Oberhuber et al.,
2011), in both deciduous and coniferous trees (Hoch et al.,
2003; Schädel et al., 2009). Unfavorable weather during the
previous year might lead to a reduction in C allocation to
young and readily available NSC, which is primarily used
for growth (Richardson et al., 2013), and thus, might af-
fect NEP. Additionally, bud formation in the previous year’s
late summer and autumn might affect current year’s tree
growth and thus the ecosystem C balance, as indicated by the
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relationship between NEP and previous year’s fall radiation
(PPFD.fall−1; Table 2). Weather, and thus GPP and C sup-
ply, during the formation process of buds predetermines max-
imum needle number as well as maximum length of needles
and shoots in the following year (Dobbertin, 2005). Hence,
closely related variables, such as the maximum LAI and rate
of photosynthesis, which build a feedback loop with GPP and
tree growth, are partially preset and constrained by previous
year’s weather (Zweifel et al., 2006).

Furthermore, frost and winter damages to parts of the tree
might indirectly play a role in NEP responses to previous
year’s weather. Warm temperatures and less occurrence of
frost events in the previous year’s spring (T2min.spring−1;
Table 2) could be associated with reduced frost damage, e.g.,
to buds and recently flushed needles, as well as with re-
duced xylem embolism or fine root mortality (Pederson et al.,
2004). Accordingly, less respiratory C losses and an earlier
compensation of these C losses by photosynthesis will affect
GPP and the ecosystem C balance.

The importance of considering delayed NEP responses,
e.g., in SVATs, is clearly shown in the strikingly better fit
of the regression models when incorporating previous year’s
weather (compare Fig. 5a, b). The incorporation led to more
accurate estimates of annual NEP sums, with much smaller
deviations between modeled and measured single year NEP
(Fig. 5c) and reduced uncertainty of modeled NEP (Fig. 5b).
Also Babst et al.(2013) emphasized the relevance of lagged
climatic effects on radial tree growth, a measure closely re-
lated to annual NEP at the Davos site (Zweifel et al., 2010).

Although our models explained 53 % of interannual vari-
ability, and thus improved earlier explanations of variance in
annual NEP (compare withUrbanski et al., 2007), our mod-
els nevertheless focused only on seasonal climatic drivers
of NEP, still leaving 47 % (= 100–53 %) of the interannual
variability of NEP unexplained. Unusually extreme weather
events occurring at shorter timescales than the seasonal scale
used in this study and biotic processes occurring at longer
timescales (e.g., changes in stand structure or species com-
position) were not considered. Biotic processes have been
shown to determine 10 % of interannual variability of NEP
in a coniferous forest (Duke forest, USA;Hui et al., 2003),
55 % in a mixed forest (Howland forest, USA;Richardson
et al., 2007), and up to 80 % in a broadleaf forest (Soroe for-
est, Denmark;Wu et al., 2012), with increasing importance
at longer timescales (Wu et al., 2012). However, biotic pro-
cesses are less likely to be responsible for 47 % of interannual
variability of NEP at Davos that remained unexplained, since
stand structure and species composition did not change over
the 15 yr of EC measurements.

Despite the impact of previous year’s weather on NEP, cur-
rent year’s weather in spring had a consistent and strong in-
fluence on annual NEP of our subalpine spruce forest over
15 yr, although current year’s weather only explained 20 % of
the interannual variability of NEP when used alone. Higher
soil temperatures in spring (March–May) increased annual

NEP (Table 2), mainly due to GPP increasing earlier and
faster in spring than TER (Fig. 3). This asynchrony of GPP
and TER seems to be related to different temperature re-
sponses. During winter, the thermal insulation of a full snow
cover (Fig. 1b) causes soil temperatures to linger at the freez-
ing point (Fig. 3). As soon as mean daily soil temperatures
rose above 0◦C, GPP started to increase (Fig. 3), even though
air temperatures were still below zero at that time (Fig. 1a).
Thawing of the upper soil layer, and thus mediating water
availability, has been shown to control annual NEP (Mon-
son et al., 2002; Sacks et al., 2007), trigger photosynthesis
(Jarvis and Linder, 2000; Bergh and Linder, 2001), and ra-
dial tree growth (Vaganov et al., 1999) in forests of cold
climates, such as the Davos Seehornwald forest.Suni et al.
(2003) showed that photosynthetic C uptake was possible
even with soil temperatures at the freezing point, support-
ing our results of needle C uptake throughout the whole win-
ter (Fig. 3). In contrast, TER started to increase only when
soil temperatures values rose above 2◦C (Fig. 3), which only
happened when air temperatures clearly exceeded the freez-
ing point and snow cover had disappeared (Fig. 1). Such a re-
sponse to temperatures well above the freezing point was also
shown for soil respiration, the major component of TER at
the Davos site (Etzold et al., 2011).

5 Conclusions

Based on this long-term, 15 yr dataset we strongly recom-
mend considering the influence of previous year’s weather
on NEP modeled SVATs to allow for more precise estimates
of annual C budgets in forest ecosystems. With this addition
to a SVAT we expect the greatest improvements in modeled
NEP of forest ecosystems in cold climates, as shown here for
the subalpine Davos forest. Moreover, assuming a continu-
ing trend of increasing spring temperatures in Europe under
future climate warming, we expect that the carbon sequestra-
tion potential of the Davos forest will further increase, unless
other resources become limiting.

Acknowledgements.We acknowledge the use of meteorological
data from MeteoSwiss, Federal Office of Meteorology and Cli-
matology, Switzerland, and from the Swiss air quality monitoring
network (NABEL). We also thank Rudolf Häsler, Thomas Baur,
Peter Plüss, and the Swiss Federal Laboratories for Materials Sci-
ence and Technology (EMPA) for infrastructure maintenance at the
Davos Seehornwald site, and Dennis Imer for valuable comments
on an earlier version of the manuscript. The study was funded by
the Swiss National Science Foundation (grant PDFMP3_132562)
and the State Secretariat for Education, Research and Innovation
(COST SBF no. C10.0101), and is part of COST Action FP 0903:
Climate Change and Forest Mitigation and Adaption in a Polluted
Environment (MAFor).

Edited by: M. Williams

www.biogeosciences.net/11/1627/2014/ Biogeosciences, 11, 1627–1635, 2014



1634 S. Zielis et al.: NEP of a Swiss subalpine forest is significantly driven by previous year’s weather

References

Babst, F., Carrer, M., Poulter, B., Urbinati, C., Neuwirth, B., and
Frank, D.: 500 years of regional forest growth variability and
links to climatic extreme events in Europe, Environ. Res. Lett.,
7, 045705, doi:10.1088/1748-9326/7/4/045705, 2012.

Babst, F., Poulter, B., Trouet, V., Tan, K., Neuwirth, B., Wilson, R.,
Carrer, M., Grabner, M., Tegel, W., Levanic, T., Panayotov, M.,
Urbinati, C., Bouriaud, O., Ciais, P., and Frank, D.: Site-and
species-specific responses of forest growth to climate across the
European continent, Global Ecol. Biogeogr., 22, 706–717, 2013.

Bergh, J. and Linder, S.: Effects of soil warming during spring on
photosynthetic recovery in boreal Norway spruce stands, Glob.
Change Biol., 5, 245–253, 2001.

Bonan, G. B.: Forests and climate change: forcings, feedbacks, and
the climate benefits of forests, Science, 320, 1444–1449, 2008.

Burba, G. G., McDermitt, D. K., Grelle, A., Anderson, D. J., and
Xu, L.: Addressing the influence of instrument surface heat ex-
change on the measurements of CO2 flux from open-path gas
analyzers, Glob. Change Biol., 14, 1854–1876, 2008.

Carbone, M. S., Czimczik, C. I., Keenan, T. F., Murakami, P. F.,
Pederson, N., Schaberg, P. G., Xu, X., and Richardson, A. D.:
Age, allocation and availability of nonstructural carbon in mature
red maple trees, New Phytol., 187, 819–830, 2013.

Desai, A. R., Moore, D. J., Ahue, W. K., Wilkes, P. T.,
De Wekker, S. F., Brooks, B. G., Campos, T. L., Stephens, B. B.,
Monson, R. K., Burns, S. P., Quaife, T., Aulenbach, S. M.,
and Schimel, D. S: Seasonal pattern of regional carbon bal-
ance in the central Rocky Mountains from surface and air-
borne measurements, J. Geophys. Res.-Biogeo., 116, G04009,
doi:10.1029/2011JG001655, 2011.

Dobbertin, M.: Tree growth as indicator of tree vitality and of tree
reaction to environmental stress: a review, Eur. J. Forest Res.,
124, 319–333, 2005.

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G.,
Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B.,
Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E.,
Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., and
Lautenbach, S.: Collinearity: a review of methods to deal with it
and a simulation study evaluating their performance, Ecography,
36, 27–46, 2012.

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S.,
Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R.,
Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion,
G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC.,
Townsend Peterson, A., Phillips, S. J., Richardson, K., Scachetti-
Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M.
S., and Zimmermann, N. E.: Novel methods improve prediction
of species’ distributions from occurrence data, Ecography, 29,
129–151, 2006.

Epron, D., Bahn, M., Derrien, D., Lattanzi, F. A., Pumpanen, J.,
Gessler, A., Hogberg, P., Maillard, P., Dannoura, M., Gerant, D.,
and Buchmann, N.: Pulse-labelling trees to study carbon allo-
cation dynamics: a review of methods, current knowledge and
future prospects, Tree Physiol., 23, 776–798, 2012.

Etzold, S., Ruehr, N. K., Zweifel, R., Dobbertin, M., Zingg, A.,
Pluess, P., Häsler, R., Eugster, W., and Buchmann, N.: The
carbon balance of two contrasting mountain forest ecosystems
in Switzerland: similar annual trends, but seasonal differences,
Ecosystems, 14, 1289–1309, 2011.

Gough, C. M., Vogel, C. S., Schmid, H. P., Su, H. B., and Cur-
tis, P. S.: Multi-year convergence of biometric and meteorologi-
cal estimates of forest carbon storage, Agr. Forest Meteorol., 148,
158–170, 2008.

Hanson, P., Amthor, J., Wullschleger, S., Wilson, K., Grant, R.,
Hartley, A., Hui, D., Hunt, E., Johnson, D., Kimball, J.,
King, A., Luo, Y., McNulty, S., Sun, G., Thornton, P., Wang, S.,
Williams, M., Baldocchi, D., and Cushman, R.: Oak forest car-
bon and water simulations – model intercomparison and evalua-
tion against independent data, Ecol. Monogr., 74, 443–489, 2004.

Hoch, G., Richter, A., and Körner, C.: Non-structural carbon com-
pounds in temperate forest trees, Plant Cell Environ., 26, 1067–
1081, 2003.

Hui, D., Luo, Y., and Katul, G.: Partitioning interannual variabil-
ity in net ecosystem exchange between climatic variability and
functional change, Tree Physiol., 23, 433–442, 2003.

Järvi, L., Mammarella, I., Eugster, W., Ibrom, A., Siivola, E., Dell-
wik, E., Keronen, P., Burba, G., and Vesala, T.: Comparison of
net CO2 fluxes measured with open- and closed-path IRGA in
an urban complex environment, Boreal Environ. Res., 14, 499–
514, 2009.

Jarvis, P. and Linder, S.: Botany: constraints to growth of boreal
forests, Nature, 405, 904–905, 2000.

Jörg, S.: Böden im Seehornwald bei Davos und deren Vorrat an
Kohlenstoff und Stickstoff, diploma thesis, Zürcher Hochschule
für Angewandte Wissenschaften ZHAW, 2008.

Katul, G., Lai, C.-T., Schäfer, K., Vidakovic, B., Albertson, J.,
Ellsworth, D., and Oren, R.: Multiscale analysis of vegetation
surface fluxes – from seconds to years, Adv. Water Resour., 24,
1019–1032, 2001.

Mauder, M., Foken, T., Clement, R., Elbers, J. A., Eugster, W.,
Grünwald, T., Heusinkveld, B., and Kolle, O.: Quality con-
trol of CarboEurope flux data – Part 2: Inter-comparison
of eddy-covariance software, Biogeosciences, 5, 451–462,
doi:10.5194/bg-5-451-2008, 2008.

Monson, R., Turnipseed, A., Sparks, J., Harley, P., Scott-Denton, L.,
Sparks, K., and Huxman, T.: Carbon sequestration in a high-
elevation, subalpine forest, Glob. Change Biol., 8, 459–478,
2002.

Oberhuber, W., Swidrak, I., Pirkebner, D., and Gruber, A.: Tempo-
ral dynamics of nonstructural carbohydrates and xylem growth
in Pinus sylvestrisexposed to drought, Can. J. Forest. Res., 41,
1590–1597, 2011.

Pederson, N., Cook, E. R., Jacoby, G. C., Peteet, D. M., and Grif-
fin, K. L.: The influence of winter temperatures on the annual
radial growth of six northern range margin tree species, Den-
drochronologia, 22, 7–29, 2004.

Pichler, P. and Oberhuber, W.: Radial growth response of coniferous
forest trees in an inner Alpine environment to heat-wave in 2003,
Forest Ecol. Manag., 242, 688–699, 2007.

Quinn, G. and Keough, M.: Experimental Design and Data Analysis
for Biologists, Cambridge University Press, 2001.

R Core Team: R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
available at:http://www.R-project.org/, 2012.

Rawlings, J. O., Pantula, S. G., and Dickey, D. A.: Applied Regres-
sion Analysis: a Research Tool, Springer, 1998.

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T.,

Biogeosciences, 11, 1627–1635, 2014 www.biogeosciences.net/11/1627/2014/

http://dx.doi.org/10.1088/1748-9326/7/4/045705
http://dx.doi.org/10.1029/2011JG001655
http://dx.doi.org/10.5194/bg-5-451-2008
http://www.R-project.org/


S. Zielis et al.: NEP of a Swiss subalpine forest is significantly driven by previous year’s weather 1635

Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H.,
Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Mat-
teucci, G., Meyers, T., Miglietta, F., Ourcival, J-M., Pumpanen,
J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G.,
Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separa-
tion of net ecosystem exchange into assimilation and ecosystem
respiration: review and improved algorithm, Glob. Change Biol.,
11, 1424–1439, 2005.

Richardson, A. D., Hollinger, D. Y., Aber, J. D., Ollinger, S. V., and
Braswell, B. H.: Environmental variation is directly responsible
for short- but not long-term variation in forest-atmosphere carbon
exchange, Glob. Change Biol., 13, 788–803, 2007.

Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I.,
Hollinger, D. Y., Murakami, P., Schaberg, P. G., and Xu, X.:
Seasonal dynamics and age of stemwood nonstructural carbo-
hydrates in temperate forest trees, New Phytol., 197, 850–861,
2013.

Rocha, A. V. and Goulden, M. L.: Drought legacies influence the
long-term carbon balance of a freshwater marsh, J. Geophys.
Res., 115, G00H02, doi:10.1029/2009JG001215, 2010.

Rocha, A. V., Goulden, M. L., Dunn, A. L., and Wofsy, S. C.:
On linking interannual tree ring variability with observations
of whole-forest CO2 flux, Glob. Change Biol., 12, 1378–1389,
2006.

Sacks, W. J., Schimel, D. S., and Monson, R. K.: Coupling between
carbon cycling and climate in a high-elevation, subalpine forest:
a model-data fusion analysis, Oecologia, 151, 54–68, 2007.

Schädel, C., Blöchl, A., Richter, A., and Hoch, G.: Short-term
dynamics of nonstructural carbohydrates and hemicelluloses in
young branches of temperate forest trees during bud break, Tree
Physiol., 29, 901–911, 2009.

Stoy, P. C., Richardson, A. D., Baldocchi, D. D., Katul, G. G.,
Stanovick, J., Mahecha, M. D., Reichstein, M., Detto, M.,
Law, B. E., Wohlfahrt, G., Arriga, N., Campos, J., Mc-
Caughey, J. H., Montagnani, L., Paw U, K. T., Sevanto, S., and
Williams, M.: Biosphere-atmosphere exchange of CO2 in re-
lation to climate: a cross-biome analysis across multiple time
scales, Biogeosciences, 6, 2297–2312, doi:10.5194/bg-6-2297-
2009, 2009.

Suni, T., Berninger, F., Vesala, T., Markkanen, T., Hari, P.,
Mäkelä, A., Ilvesniemi, H., Hänninen, H., Nikinmaa, E., Hut-
tula, T., Laurila, T., Aurela, M., Grelle, A., Lindroth, A., Arneth,
A., Shibistova, O., and Lloyd, J.: Air temperature triggers the re-
covery of evergreen boreal forest photosynthesis in spring, Glob.
Change Biol., 9, 1410–1426, 2003.

Suzuki, N., Olson, D. H., and Reilly, E. C.: Developing landscape
habitat models for rare amphibians with small geographic ranges:
a case study of Siskiyou Mountains salamanders in the western
USA, Biodivers. Conserv., 17, 2197–2218, 2008.

Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E.,
Budney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., and
Munger, J. W.: Factors controlling CO2 exchange on timescales
from hourly to decadal at Harvard Forest, J. Geophys. Res., 112,
G02020, doi:10.1029/2006JG000293, 2007.

Vaganov, E., Hughes, M., Kirdyanov, A., Schweingruber, F., and
Silkin, P.: Influence of snowfall and melt timing on tree growth
in subarctic Eurasia, Nature, 400, 149–151, 1999.

Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux
measurements for density effects due to heat and water vapour
transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, 1980.

Wu, J., van der Linden, L., Lasslop, G., Carvalhais, N., Pile-
gaard, K., Beier, C., and Ibrom, A.: Effects of climate variability
and functional changes on the interannual variation of the car-
bon balance in a temperate deciduous forest, Biogeosciences, 9,
13–28, doi:10.5194/bg-9-13-2012, 2012.

Zeller, K. and Nikolov, N.: Quantifying simultaneous fluxes of
ozone, carbon dioxide and water vapor above a subalpine forest
ecosystem, Environ. Pollut., 107, 1–20, 2000.

Zweifel, R., Zimmerman, L., Zeugin, F., and Newbery, D.: Intra-
annual radial growth and water relations of trees: implications
towards a growth mechanism, J. Exp. Bot., 57, 1445–1459, 2006.

Zweifel, R., Eugster, W., Etzold, S., Dobbertin, M., Buchmann, N.,
and Häsler, R.: Link between continuous stem radius changes
and net ecosystem productivity of a subalpine Norway spruce
forest in the Swiss Alps, New Phytol., 187, 819–830, 2010.

www.biogeosciences.net/11/1627/2014/ Biogeosciences, 11, 1627–1635, 2014

http://dx.doi.org/10.1029/2009JG001215
http://dx.doi.org/10.5194/bg-6-2297-2009
http://dx.doi.org/10.5194/bg-6-2297-2009
http://dx.doi.org/10.1029/2006JG000293
http://dx.doi.org/10.5194/bg-9-13-2012

