Supplement to: ## Inferences from CO_2 and CH_4 concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on regional summertime ecosystem fluxes J. Winderlich^{1,2}, C. Gerbig², O. Kolle², and M. Heimann² The Figs. S1 to S6 show the average height-resolved diurnal cycles of ZOTTO summer data (June to Sept., 2009-2011). **Fig. S1.** *left:* Average diurnal cycle of potential temperature, sensible heat, and wind speed of all tower heights; *right:* average profile throughout the day ¹Max Planck Institute for Chemistry, P.O. Box 3060, 55020 Mainz, Germany ²Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena, Germany $\textbf{Fig. S2.} \ \ \text{Average diurnal cycle of the storage flux term between all tower levels for CO}_2 \ (\text{left}) \ \ \text{and} \ \ \text{CH}_4 \ (\text{right})$ Fig. S3. Average diurnal cycle of the eddy flux term between all tower levels for CO₂ (left) and CH₄ (right) Fig. S4. Average diurnal cycle of the vertical wind on all tower levels Formula for the vertical advection flux (Winderlich, 2012): $$F_{vAdv} = \overline{w}(z_r) \left(\overline{c}(z_r) - \frac{1}{z_r} \int_0^{z_r} \overline{c}(z) dz \right) = \overline{w}_r \left(c_r - \langle c \rangle \right)$$ $\langle c \rangle$... average gas concentration within the observed air volume below height z_r c_r ... concentration of overlaying air in height z_r \overline{W}_r ... mean vertical wind velocity Fig. S5. Average diurnal cycle of the advection term (c_r - <c>) between all tower levels for CO₂ (left) and CH₄ (right) Fig. S6. Average diurnal cycle of the advection flux between all tower levels for CO₂ (left) and CH₄ (right) The ZOTTO data set is available through the ZOTTO consortium. Please, find the up-to-date contacts on www.zottoproject.org. ## References Winderlich, J.: Setup of a CO2 and CH4 measurement system in Central Siberia and modeling of its results, Technical Report Vol. 26, ISSN 1615–7400, Max-Planck-Institut für Biogeochemie, Jena, 2012.