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Abstract. Soils of temperate forests store significant of SOC). Furthermore, the joint use of all observational con-
amounts of organic matter and are considered to be net sinkstraints made it possible to constrain the humification factor
of atmospheric C@ Soil organic carbon (SOC) turnover has in ICBM, which describes the fraction of the annual outflux
been studied using th&!*C values of bulk SOC or different  from the young pool that enters the old pool. The Bayesian
SOC fractions as observational constraints in SOC modelsparameter estimation yielded the following turnover times
Further, theA14C values of CQ that evolved during the in- (meant standard deviation) for SOC in the young pool:
cubation of soil and roots have been widely used togetheCoulissenhieb Il 1.3 0.5 years, Solling DO 5.% 0.8 years

with AC of total soil respiration to partition soil respira- and Howland Tower 0.8 0.4 years. Turnover times for the
tion into heterotrophic respiration (HR) and rhizosphere res-old pool were 374 61 years (Coulissenhieb 1), 34366
piration. However, these data have not been used as joingears (Solling DO) and 184 42 years (Howland Tower), re-
observational constraints to determine SOC turnover timesspectively. (2) At all three sites the multiple constraints ap-
Thus, we focus on (1) how different combinations of ob- proach was not able to determine if the soil has been los-
servational constraints help to narrow estimates of turnoveing or storing carbon. Nevertheless, the relaxed steady-state
times and other parameters of a simple two-pool model, theassumption hardly introduced any additional uncertainty for
Introductory Carbon Balance Model (ICBM); (2) whether re- the other parameter estimates. Overall the results suggest that
laxing the steady-state assumption in a multiple constraintsising A“C data from more than one carbon pool or flux
approach allows the source/sink strength of the soil to be dehelps to better constrain SOC models.

termined while estimating turnover times at the same time.
To this end ICBM was adapted to model SOC and'&D

in parallel with litterfall and theA'*C of litterfall as driv-

ing variables. TheA4C of the atmosphere with its promi- 1 Introduction

nent bomb peak was used as a proxy for K¢C of lit- ] ) )

terfall. Data from three spruce-dominated temperate forest$0ilS store around 3000 Pg C of soil organic carbon (SOC)
in Germany and the USA (Coulissenhieb 11, Solling DO and (Jobbagy and Jacksp200Q Tarnocai et al. 2009. This

Howland Tower site) were used to estimate the parameter§€ans that soils contain roughly 4 times more carbon than
of ICBM via Bayesian calibration. Key findings are as fol- the atmosphere, and 6 times more carbon than the vegetation

lows: (1) the joint use of all four observational constraints (Prentice et &.200]). About 100 PgC each year are emit-
(SOC stock and it\24C, HR flux and itsA4C) helped to ted to the atmosphere from soiBdnd-Lamberty and Thom-
considerably narrow turnover times of the young pool (pri- 01 2010. A considerable part of this soil Gfflux is the

marily by AT4C of HR) and the old pool (primarily by 24C product of sall organ_ic matter decomposition_ via soil organ-
isms. Apart from the importance of soil organic carbon in the
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global terrestrial carbon cycle as the largest terrestrial carboimto heterotrophic respiration (HR) and rhizosphere respira-
pool and as the source of one of the largest terrestrial carbotion (RR) (e.g.Gaudinski et a].200Q Trumbore 2006 for
fluxes, soil organic matter turnover is a key factor for soil fer- an overviewMuhr and Borken2009 Muhr et al, 2010. To
tility and nutrient resupplydenny et al(1949 were the first  our knowledge, these two approaches of using radiocarbon in
to study soil organic matter (SOM) turnover with a process-soil science research have not been used as joint constraints
based model. In this seminal paper SOC was modeled as orfer the estimation of decomposition rates and other param-
homogenous pool which decomposes according to first-ordeeters of SOC models. Howevechmidt et al. (2011 pro-
kinetics, analogous to nuclear decay. Since then a multitudposed that thé*C content of respired Cand leached dis-
of different SOM models have been devised which vary insolved organic carbon could be used as additional constraints
their degree of complexityManzoni and Porporat@009. in model-data comparisons.
In general, with the spread of personal computers and the Wutzler and Reichsteif2007) have shown that the com-
rapid increase in computing capacity more and more multi-monly used equilibrium or steady-state assumption of many
pool models have been developed. SOC models may lead to biased estimates of SOC turnover
For years, fractionation techniques were developed in thgimes. For a soil with SOC stocks below equilibrium, a cal-
hope that organic matter could be physically and chemicallyibration of turnover times assuming SOC stocks at equilib-
separated into pools that could be related to conceptual modium would yield too-fast turnover time estimates. In their
els of carbon cycling. This strategy is often referred to asmodeling studyWutzler and Reichstei2007) proposed a
“measuring the modelableE(liott et al, 1996. Though this  transient correction for decay rates to account for possi-
approach seems to be successful for specific models and frable disturbances in the past. In the model-data comparison
tionation procedures (e.gzimmermann et al.2007, the  framework we propose, we tackled this issue from a different
premise that measured fractions should represent “uniqu@erspective by introducing and calibrating parameters relax-
and non-composite poolsSnith et al, 2002 is still difficult ing the steady-state assumption. A similar approach has been
to fulfill. On the other hand the notion of “modeling the mea- by taken byCarvalhais et al(2010 who introduced steady-
surable” Elliott et al, 1996 has been put forward and may, state relaxing parameters to allow for vegetation and soil
for example, lead to the inclusion of microbial dynamics in carbon pools out of equilibrium into the ecosystem model
SOC models$charnagl et al2010. Microbial biomass data CASA. Hence, we try to constrain the source/sink function
from chloroform fumigation methods could then serve as anof the soil by subjecting these additional parameters to the
additional observational constraint. In fact, these two relatedpreviously described observational constraints.
strategies can lead to a useful coevolution and refinement of To properly quantify the effect of uncertainties in mea-
both experimental and modeling approaches, given technisurements on the uncertainty of parameter estimates, we per-
cal and conceptual advances. However, an abundance of sdibrmed a Bayesian calibration with a Monte Carlo Markov
observations already exist that have to date not been adéshain (MCMC) algorithm and data from three spruce-
quately used to test carbon cycle models. The strategy welominated sites in the US and Germany. More specifically
suggest here could be described as “considering the meawe wanted to address the following questions:
sured”, meaning that one should check which variables have o ] )
been measured at a certain site and compare it with mod- () How do combinations of different observational con-
eled output variables. Using the model outputs together with ﬂralnts — ranging from measurements of SOC stock,
inverse modeling, soil processes and model parameters can C of SOC, and heterotrophic respiration to measure-
be studied. We propose to use SOC stocks and heterotrophic ~ ments of*4C of heterotrophic respiration — influence
respiration fluxes in order to link observations of soil C pools the parameter and prediction uncertainties of ICBM?
and fluxes Kuzyakoy, 2011) with their respective\14C val-
ues in order to constrain the parameters of a simple seria
two-pool SOC turnover model — the Introductory Carbon
Balance Model (ICBMAnNdrén and Kattere1997).
The “C content of bulk SOC or different SOC fractions
has been successfully used as an observational constraibt \aterial and methods
in SOC models to calculate turnover times of SORQuM-
borg 1993 Gaudinski et al.200Q Schulze et a).2009. 2.1 The Introductory Carbon Balance Model (ICBM)
Although these authors demonstrated the potential of this
approach, they were looking for one single best parametefhe Introductory Carbon Balance Model is a published two-
set, rather than treating the effect of measurement uncempool serial model with first-order reaction kinetiddgnin
tainty on parameter uncertainty in a formal way. Further, theand Dupuis 1945 Andrén and Kéttererl997). We adapted
14C value of CQ that evolved during the incubation of soil this model to the requirements prescribed by the usé®f
and roots has been widely used together withtt@ con-  data and a relaxed steady-state assumption. We refer to this
tent in total soil respiration to partition soil respiration (SR) modified version of ICBM asfCBM. While the original

| (i) How well can the net carbon balance be constrained
with a multiple constraints approach by relaxing the
steady-state assumption?
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model had only one type of litterfall as inpubrfdrén and Cinput via leaf
Katterer 1997), in 1**CBM carbon enters the first SOC pool | and root litterfall
—the young pooY — as aboveground and belowground litter
input (L andiR, upper half of Figl1). Carbon in the” pool

is decomposed according to first-order kinetics with the de-
composition ratey. A parth of the outflow fromY is not Y Humification
directly mineralized to Cg) but transferred via humification hky-Y
(k) into the old poolO (Fig. 1). Mineralization of carbon in

bias;;, (1—-h) ky-Y
bias;p q
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Andrén and Katteref1997) devised a parameter(external
response factor) was intended to comprise the influence of
abiotic conditions on decomposition, like soil moisture and

fnmdpoerastgggé ans Z?;?"%r?frr]ecirfgen?sg;n;oas:lggr:agst-ﬂeﬁg- 1. Conceptual overview of the modification of the Introductory
-9l w unning . ual iM€e 5 hon Balance Model as used in this paper. We call this model
step, we assumed that we do not need to explicitly accouney, f4cBM. All parameters except fok are calibrated. The

for the influence of external factors like climatic and edaphic 4ashed lines indicate which pools are affected by the steady-state
conditions on SOC decomposition. Henees set to 1; this  relaxing parameterg, and fo).

means that external effects are lumped into the other param-

eters, and should be reflected in the variation of the decom-

position ratesky andko and the humification coefficierit ~ graph shows a part of this record from 1900 to 2011 covering

across the different sites. the prominent “bomb peak” resulting from aboveground nu-
Additionally, we introduce the parametetsas. and clear weapons testing during the late 1950s and early 1960s

biasr to the modeling setup (Fid), which should account (Hua and Barbetti2004. Throughout this paper we use the

for a potential bias in litterfall measurements by assumingdefinition of A¥C (Stuiver and Polactl977) as

that the actual litterfall is a multiple of the observed litterfall

(cf. Sect.2.3.1). Potential bias may arise if only leaf litterfall

is sampled or the location of litterfall traps is unrepresenta—A

tive. Hencebiag. andbiasg are two dimensionless param-

eters that express the ratio between the “real” and observed

litterfall (Fig. 1). This technique of accounting for under- or where (1%0>3N denotes the%:-ratio of the sample, nor-

overestimated carbon input fluxes has been successfully used

. . : : e .
in studies modeling the decay of organic matter in marineMalized for isotope fractionation, anthgs the —=-ratio of

sediments. Here, sediment traps were suspected to underes e standard. According tarlen et al.(1968 and Stuiver

_ 12 T
mate the carbon flux to the sedimeSogtaert and Herman  (+980: Aass = 1.176-10"7%. This corresponds to the 95%
2009. specific activity of NBS Oxalic Acid | (SRM 4990B), nor-

In order to adapt ICBM for radiocarbon data, we essen-malized to a3 *Cyppg 0f —19 % 4and decay correcﬁd to
tially replicated Egs.) and @) as an additional*C-module ~ +2°0- Based on the atmosphefi¢“C record and the\“C

of ICBM. Only radioactive decay o¥'C had to be added as notation (Eq.5), the 1*C input viaiL andiR was calculated
an additional process, with, the radioactive decay constant as.

(%)
A—SN —11-1000q (5)
ABS

for 1C, equalinggzs-yr—* (Stuiver and Polach977: AMCOA™ (1 _tlag;)

. YL () = Anss - <1+ 21000 o ) L), (6)
dY g4 s 14 14
. iL+"iR—r ky =Y —1--7Y, 3) | Al4COATM ( —tlagp)\ .
4 YiR(t) = Amgs- [ 1+ 2 1000 AR, (7)
TO:r-h-ky-14Y—r~k0~140—k-140. (4)

whereACO™ (1) is the atmospheria14C signal in year
We used the atmospheric!“C record as a proxy for thé¢C t, andtlag; andtlagy describe the time lag between photo-
input via root and leaf litter input. In Figl a small inset  synthetic fixation of“C, its allocation to leaves, fruits, twigs
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(L) and fine roots (R) and its addition to SOC as abovegroundC and*C. Consequently, two additional parametggsand
and belowground litter inputlag; andtlag, are introduced  fo (Fig. 1) were introduced for the nonsteady-state version
as additional model parameters influencing th@-module  of I'*CBM that allow for a relative deviation of initial values
of ICBM (Fig. 1); priors for these parameters were defined from the steady state of the respective pools:

based on measurements at the different sites (S2@&<}

2.3.1. Yii = fr-Yss ¥ = fr - *Yss (12)
Throughout this work we tried to challenge the assumption 14 1
that total SOC and different SOC pools are in steady stateQini = fo - Oss.  ~"Oini = fo - " Oss. (13)

Dropping the steady-state assumption leads to the problem ) o

of initializing the different conceptual SOC poolgfuripati 22 Site descriptions and data
et al, 2009. The most common way to deal with initializa-
tion problems of conceptual and nhonmeasurable SOC pool
is to perform spin-up runs of the model in an undisturbed\y,s constructed a time series of troposphedid4Co,
environment. Then estimates about initial SOC pools are rey,aasurements from Vermunt (1959-1976) and Schauins-
trieved based on a reconstructed disturbance hisEa§oon  anq (1976-2011) (personal communication, Ingeborg Levin
and Smith 2000 Wutzler and Reichstejr2007 Yeluripati  5011), which are representative of sites influenced by fos-
et al, 2009. Due to its simplicity the steady-state equations gj| f,e| emissionsl{evin and Kromey2004. From the indi-

221 AtmosphericAC record

for the ICBM can still be derived relatively easily: vidual samples we calculated time-weighted averages for the
iRini & iLini summer months May tp August which are c_:ommonly_ used
Yss= ————, (8) for a good representation of the!*C values in vegetation

-k
TRy (Levin and Kromey 2004). For the years 1955-1958 these

h-ky-Yss _ h-(iRini +iLini) ) time-weighted averages were appended with data from the
ko r-ko ’ Northern Hemisphere Zone 1 compilation Hya and Bar-
betti (2004. This compilation is representative for the North-
ern Hemisphere north of 4WN and consists of tree ring data
o - : _from Kiel (Germany), Hungary and Bear Mountain (New
and belowground litter input at the beginning of the simula York, USA). Prior to 1955 the UW 14C atmospheric single

tion perlpd. This amognt of litter mput. IS assymed tp be r.ep.'year data set from 1510 to 1954 was usstlifver and Braz-
resentative of the period before the simulation begins. Simi-

larly, we can derive steady-state pool sizestfaf and40: "33 1993 Stuiver et al, 1999.

Oss=

whereYssandOssdescribe steady state and initial pool sizes
of Y andO. iLj, andiRj,; denote the amount of aboveground

2.2.2 Study sites

14 YiRini + MiLini .
Ysg= ———— (20) We used data from three spruce-dominated forest ecosys-

roky +2 tems in Germany and the USA (Tablg to calibrate the
h-ky - 14y, parameters of I*CBM. The Howland Forest research site
140cc= Y SS 11 . . . .
SS= ko+r (11) is a spruce—fir forest in east-central Maine, USA. The stand

was selectively logged around 1900, but has remained undis-
where Y“iLi,i and iRy, is the initial *C input via lit-  turbed since thenHollinger et al, 1999. Richardson et al.
ter input according to Eqs6) and (7). Here, the assump- (2010 report a mean stand age of around 110 years with a
tion is thatAl“COST'VI (t) was more or less constant be- maximum of about 215 years. The soil can be classified as a
fore 1950. ActuallyA*CO5™ (¢) did vary prior to 1950  Typic Podzol (USS Working Group WRB2007) or Typic
due to natural causes and the Suess effect; neverthelestaplorthod according to the soil taxonomy of the United
AYCO™ (start—tlag,; ) was taken as the initish24C  States Department of Agriculturd999 (Fernandez et al.
signature of litter input, wherstartdenotes the starting year 1993 Gaudinski et al. 2001). Due to the hummocky to-

of simulations. We took the latest year we give in Tablen- pography, the organic layer varies considerably in thickness

der “Stand history” as the starting year for the simulations at(Gaudinskj 2001). Oi, Oe and Oa horizons of varying thick-

the different sites. ness have been separated and could possibly be designated
Contrary to the approach taken lgluripati et al.(2009), as a mor-like humus.

preliminary modeling exercises showed that it is not feasi- The Coulissenhieb Il site is a mature Norway spruce

ble to simultaneously treat the initial model podls, 1*Yini, (Picea abiesL.) stand in the Fichtelgebirge mountains in

Oini and*0y, as unknown parameters, because of the in-northeastern Bavaria, GermarSchulze et al(2009 report
herent link betweerYin, and*Yi,i, and Oini and#0ini via  that according to the forest administration the area has been
AC. There is no reason to assume a discrepancy in the beslear cut during the 16th and 18th century as timber sup-
havior of C and“*C prior to 1950; hence, we have to assume ply for the local mining industry. In 1867 the stand was
that deviations from steady state have the same direction foafforested with Norway spruce, so that the average stand

Biogeosciences, 11, 2142168 2014 www.biogeosciences.net/11/2147/2014/
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Table 1. Location, elevation, dominant tree species, soil type according & Working Group WRBhumus form, soil texture, soil
pH(CaCh), mean annual precipitation (MAP), mean annual air temperature (MAT), stand age, and site history of the 3 study sites.

Howland Forest Coulissenhieb Il Solling DO
Location 4310'N, 6840 W 50°08 N, 11°52 E 51°31UN, 9°34 E
Elevation (m) 60 770 500
Tree species Picea rubens Picea abies Picea abies
Pinus strobus
Tsuga canadensis
Soil type Typic Podzol Haplic Podzol Dystric Cambisol
(IUSS Working Group WRB2007) (IUSS Working Group WRB2007)  (IUSS Working Group WRB2007)
Humus form mor mor moder
Soil texture formed in coarse-loamy sandy loam loam-silt
granitic basal till
Soil pH 2.8 (organic layer) 3.3(0a) 3 upper soil
4.3 (B horizon) 3.7 (Bs) 4 deeper mineral soil
MAP (mm) 1000 1160 1090
MAT (°C) 5.5 5.3 6.4
Stand age (years) 110 (mean), 215 (maximum) in 2010 140 in 2008 71in 2004

Stand history

selective logging around 1900,
undisturbed since then

clear cut during the 16th and 18th
century, 1867 afforestation with

Norway spruce

1880 extensive pasture, 1888
afforestation with Norway spruce,
1933 second generation

age was around 140 years in 2008. The winter storm Kyrill2.2.3 General methods
severely damaged the stand in 2007, causing a considerable _ _
thinning Muhr et al, 2009. The soil is classified as a Haplic Measurements of soil organic carbon stocks

Podzol according to the IUSS Working Grou®0Q7) with
sandy loam texture and a mor-like forest floor consisting o
Oi, Oe and Oa horizon$¢hulze et a).2009. High base sat-
uration in the Oa horizon (54 %) and lower base saturation of

was calculated as

Horizons

¢ The soil organic carbon stock on an area basis (kg®&m

12-16 % in the subsoil indicates past superficial forest limingSOGock= Z SOGCeontenti - BD; -depth - (1—-CF;), (14)
(Hentschel et a]2009.

The Solling roof project is a 71-year-old (2004) Norway
spruce Picea abied..) plantation at the Solling plateau in
Lower Saxony, Germany. The Solling roof project consists of
four different plots, of which three are covered by transpar-
ent roofs underneath the canopy. In this work oAR*Csoc
and A*Cygr data from the ambient control plot without a
roof was used. This plot is mostly referred to as Solling DO

(Bredemeier et al1998.

Tablel gives an overview of the most important character-
istics of all three sites, such as soil type, humus form, mea

annual temperature and precipitation.

www.biogeosciences.net/11/2147/2014/

i=1

where i denotes the individual horizons/layers and
SOGontenti IS a SOC content or mass fraction
(kg C (kgdrysoilyl), BD; is a soil bulk density

(kgdry soilnT3), depth is the thickness of the sampled
horizon/layeti, and CF is the volume fraction of coarse frag-
ments, namely stones and roots C
The correction for coarse fragments is necessary, as stones
contain no organic carbon and (live) roots are generally not
summarized under SOM (dead soil organic matter according
o Rodeghiero et a12009.

gone volume-root volume
soil volume

Soil respiration measurements

Two types of soil respiration chambers of the class of closed
chambers were used: closed dynamic chambers were used
at Howland and Coulissenhieb II, whereas at Solling closed
static chambers were used. Generally, in closed chambers the
CO; flux is estimated by measuring the increase of,Q©

Biogeosciences, 11, 2146B-2014
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the chamber’s head space during a known period of timewhere A'%Csoc; is the AYC value of the horizoni,
(Pumpanen et gl2004 2009. The soil CQ-C efflux can  SOGock is the total SOC stock of the whole profile as de-
then be determined from the increase in theo@Oncen-  fined in Eqg. 4), and SOGioeck; iS the SOC stock of one
tration %. In closed static chambers the g©@oncentra-  horizon.

tion increase% is determined from air sampled with sy- . Lo .

ringes, which are then analyzed for €®ith a CQ, analyzer Calc_ula.tlon of A**C signatures of bulk heterotrophic
(Borken et al, 1999 Pumpanen et al2009. In closed dy-  éspiration

namic systemsﬁ—f is determined with portable infrared gas
analyzers with the air circulating between the chamber an
the analyzerRumpanen et 312009.

d'Similar toGaudinski(200J) a flux-weighted average was cal-
culated as a bulkA1*C value of heterotrophic respiration
from individual incubation samples, when incubations were
conducted per horizon (Howland) and not on soil cores in-

Soil incubations : : . : :
 incubat cluding several horizons (Coulissenhieb and Solling):

The AC signature of HR was determined by incubating
root-free soil samples at a constant temperature for severah4Cyg
days. CQ that evolved during the incubations is sampled and

14 ; :
analyzed forA-*C. Two different sampling methods were whereF (COy); is the CQ produced in jar, BD; is the bulk

?pkplledt. Al HfOWIZntd Floorgst,Lsampleer_om ?aa(t:h dh]?rlzinzn (\j'veredensity of the soil horizon in jar, depth is the thickness of
axen, transterred to ML jars and Incubated tor YSthe soil horizon in jari, and AYCincubation: is the AY4C of

The amount of C@evolved during the incubation was mea- Lo :
sured, and the collected G@vas analyzed fon4C. A4C €O evolved during incubation.
for bulk heterotrophic respiration can then be calculated agatitioning of soil respiration

described in Eq.16) (Gaudinskj 2007). At Coulissenhieb

Il and Solling a different sampling approach was taken. In-Soil respiration SR can be partitioned into heterotrophic res-
stead of incubating disturbed soil samples from individual piration (HR) and rhizosphere respiration (RR) using a va-
horizons, complete soil cores were taken. Roots were eitheriety of approaches. They range from root-exclusion exper-
manually removed from the soil cores at the Coulissenhieb lliments, like trenching and tree girdling experiments, to iso-
site Muhr et al, 2008 2009 or left in the soil cores under topic approaches, like continuous or pulse labeling of plants
the assumption that root fragments die after 10 days and ari 4CO, or 13CO, atmosphere or using the borfiC sig-

not able to respire anymorkdmke 2007). Hence, theA'¥C  nal as a pulse labeK(izyakoy, 2008. At all three sites in
signature of CQ that evolved during the incubation of soil this study, an isotopic approach using the bolB-signal

_ > JSF(COyp); - BD; - depth - AMCincubation:

, (16
JASF(COy); - BD; - depth (19)

cores represents the but4C of HR. was applied. The measurement of th&*C signature of total
_ _ _ soil respiration A1*CsR) and its componentsA**Cpr and
Measuring radiocarbon signatures A*CgR) allows SR to be partitioned into HR and RR using

a linear two-source, single isotope mixing modehf{llips
AC values were determined with accelerator mass specand Gregg2003). On short timescales the radioactive decay
trometry (AMS). The radiocarbon signatures are reportedof 14C can be neglected and the atmosphartéC signal can
in relation to an oxalic acid standard (0.95 times the spe-+he used as a label that allows us to distinguish between plant-
cific aCtiVity of NBS Oxalic Acid | (SRM 49908) normal- derived CQ (RR) and SOM-derived C® Plant-derived
ized to as'3Cyppe of —19 %) (Stuiver and Polaghl977. O, normally closely follows therC signature of the at-
The 8*3Cyppg value of the samples was used to account formosphere, whereas SOM-derived £@reatly differs from
isotopic fractionation that occurred during sample formationthe atmospheria1#C signal due to longer residence times of
(Stuiver and Polacti977). The preparation of AMS graphite  C in SOM pools. TheA4C signature of plant-derived GO
targets followed proceduresl4described)¢u et al. (2007.  can, however, differ from the current atmospheric signal if
The final determination of thﬁ%-ratio of AMS graphite tar-  carbon from storage pools and not only recently assimilated
gets from all three sites was performed at the Keck-CCAMScarbon is metabolizedCzimczik et al, 2006 Muhr et al,

facility of University of California, Irvine, USA. 2009. Al%CgR is then a mixture ofA1*Cpr and ACrg

that can be described by the following mass balance equa-
Calculation of A1C signatures for bulk SOC stock tions:
In order to calculate a bulk\*C value for the whole soil SR=HR+RR, (17)

profile, we used a SOC-stock-based weighting approach:

, AY¥Csr- SR= AY¥Cyr - HR+ AYCrr-RR. (18)
Y HOTZOMSALAC 60 - SOGstocki

, 15
SOGstock ( )

AYCsochuk =

Biogeosciences, 11, 2142168 2014 www.biogeosciences.net/11/2147/2014/
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Based on this equation we can calculate the proportion ofvas used to calculate HR from an annual time series (1997—

heterotrophic respiration in total soil respiratiofyg): 2009) of soil respiration measurements at the tower site from
1 1 n = 8 collars (personal communication, Kathleen Savage).
Fur = HR  A™Csr— A™Crr (19) Standard errors for HR were calculated via error propagation

SR~ AldC g — AlCrg’ using the standard errors of SR afigk. Average annual leaf
litter input at Howland Forest is about 0.155 kg C#r{(per-
sonal communication, Kathleen Savage). As no data on be-
- . lowground litter input for Howland were available, we sim-
14 ,
Uncertainties for SOC, HR and™'Cy were taken directly ply assumed that belowground litter input would be in the

from the original publications we refer to in Se@t2.4 or o
o . . same range as aboveground litter input (cf. aboveground and
were calculated from uncertainties reported therein usin L : : .
elowground litter input at Coulissenhieb Il and Solling, and

Lo (aylo 1997, Because the propagation of incertainos MCCiaugherty et al1984andPerssont o7, Based on lag
ylor s propag times for different types of aboveground litteBgudinskj

14 :
for fur and A™Csocpuik could not be broken down into 1y, p. 121) we calculated a lag time of 5 years between

steps that use the basic rules for error propagation for sumﬁ1e photosynthetic fixation o¥C and its addition to SOC
and products, the general formula for propagation of errors

. . as aboveground litterfall at Howland Forest. A root lag time
had to be appliedTaylor, 1997 Phillips and Gregg2001) 14
(Eg.Al). A detailed description of how the uncertainties for of 10.5 years (Eq7) was calculated from the."C of roots

frm (Eq.A5) andA14Csocbu|k (Eqs.A2-A4) have been cal- < 0.5mm and 0.5-1 mnGRaudinskj 2001, p. 151).
culated can be found in AppendixL.

Data uncertainties

Coulissenhieb Il
2.2.4 Measurements and data processing . i ) .

The total soil organic carbon stock at the Coulissenhieb I
Howland Forest site (151+ 0.9 kg C nT2, meant SE) is based on measure-

ments ofz = 9 soil pits (0.7 mx 0.7 m) including the organic
The total soil organic carbon stock at the Howland Tower horizons (Oi, Oe and Oa) and the mineral horizons (Ea, Bsh,
site was calculated with Eq14) based on carbon content Bs and Bv; bottom depth 52 cmB€hulze et a).2009. A
measurements in 1997 from the soil pit=£ 1) reported in  bulk value of A14C of SOC was calculated with EqL%) us-
Gaudinski(2007) and on data of spatial heterogeneity, coarseing horizon specific SOC stocks amd“C values reported
fraction volume (CF) and bulk density (BD) from= 24 by Schulze et al(2009. A4C values of SOC were deter-
quantitative soil pits reported blfernandez et al(1993. mined forn = 3 of the nine soil pits. The horizon specific
Here, we excluded the measurements from the BC horizonstandard errors for SOC stocks and“C values were used
because for the second samplingf*Csoc in 2007 mea-  to calculate a standard error for the stock-weighted average
surements were only performed up to the Bs horizon. Be-with Egs. A2)—(A4). A A1Cur signature for the year 2007
cause the SOC stock (#92 kg C nT2; meant SE) we cal-  was calculated as the arithmetic meam\df'Cnr values ob-
culated is only based on one soil pit, its standard error istained from six different incubations (Table 2 Muhr and
considerable larger than standard errors of the SOC stocBorken 2009 and Table 2 ifMuhr et al, 2009. The incu-
in other studies for the same sitRi¢hardson et g1.2010 bations were performed with soil cores from a control plot
that are based on several soil pits reported~@rnandez  from six different sampling dates in the period from 3 Au-
et al. (1993. Bulk values of A¥Csoc up to the Bs hori-  gust 2006 to 16 October 200M@hr and Borken 2009
zon (bottom depth 40 cm) were calculated with Ep)(us- Mubhr et al, 2009. The A*Cyr of each sampling date was
ing the horizon specific SOC stocks from 1997 akt'C based om = 3 replicates. The standard error relating to the
values from 1997 and 2007. The 20@2“C values were  A*Cyr 2007value was calculated via error propagation from
weighted with the horizon specific SOC stocks from 1997.the standard errors of the individual sampling dates. The cal-
AYCsoc values stem from only = 1 soil pit. The horizon  culatedA4Chg was assigned to the measurement year 2007.
specific standard errors for SOC stocks are based on estiaA*Cgsgr, A1*Chr and A14Cgg values of the individual sam-
mates fromFernandez et a[1993 and the standard errors pling dates were used to calculafgr and the related stan-
for the ATC values were used to calculate a standard er-dard errors (Eq19). The arithmetic mean of the individual
ror for the stock-weighted average with Ed§—(A4). Bulk fuRr values is 0.82£ 0.06 (meant SE). This value was used
AYCRr values (Eq16) were calculated from incubations of  to calculate HR for the years 2006—2008 with HR:& - SR.
horizon specific soil samples that were performed in 1999Standard errors for HR were calculated via error propaga-
and 2010 (personal communication, Carlos Sierra).fAl tion using the standard errors of SR afigk. Aboveground
of 0.55+0.13 (meant SE) was calculated only with data litter input (L) data was only available from the adjacent
from 1997 (Egs.19 and A5), as A*Csg values were not  Coulissenhieb | site with an average needle litter input of
available for 2010. The atmospheAd“C signal in 1997 was  0.103+0.017 kg C nT?yr—1 (meant SD) (Berg and Gerst-
used as a proxy fon*Cgrr measurements. Thigr value berger2004. A crude annual estimate for belowground litter
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input from fine roots iR) of 0.206 kg Cm2yr—1 was ob-  tuning, i.e., looking for one best parameter set, but rather to
tained by summing up monthly estimates of fine-root mor- show how well we can constrain the uncertainty about model
tality based on the sequential coring method that were reparameters with the data at hand. The Bayesian approach is
ported in studies on the effect of drought and soil frost on thesuited to deal with overparameterized models because we are
fine-root system@aul et al, 2008a b). Schulze et al(2009 able to include prior knowledge about model parametdrng
reported an aboveground litter lag time of six years based ompdating the prior distribution of parametesgd) with the
AC measurements of fresh spruce litter. We calculated alata likelihoodp(y | 8) to the posterior distribution of pa-
root-biomass-weighted lag time of eight years from fine-rootrametersp (8 | y) (Reichert and Omlin1997 Gelman et al.
biomass dataGaul et al, 20083 andA*C measurements of  2004):
live roots in different depthgGaul et al, 2009.

p@1y)xp(yl0)-p@). (20)

The posterior density (6 | y) describes the probability of

. ) , parameters given the model and the observatipni$ is a
The total soil organic carbon stock at Solling DO was cal- .o hination of the prior probability of a parameter &etnd
culated as a combination of SOC stock measurements for thg, ., ikelihood that we observe the observatigngiven this
organic layer from an adjacent spruce forestin 1993 and SO(barameter st (Gelman et a].2004. Numerical algorithms
stock measurements for the mineral soil in 1997. In order ke the class of MCMC algorithms are commonly used to
be able to combine these measurements, we assume that S%Qnerate a sample from the posterjei | y) (van Oijen
s_tocks did not change drastically within four years. The. indi- o¢ al, 2005. The essential property of all MCMC algorithms
vidual SOC stock measurements are based em61 repli- 5 yhat at each iteration the approximate distributions are im-
cate_s for the Oi * Oey = 4_0 repllcates for the Oa_, amd= _5 proved, so that they eventually converge to the target distri-
rep!|cates for ml_ngral so_|l horizons. The combmec_i Oi+0e bution, the posteriop(d | y). After ensuring convergence of
horizon was split into O and.Oe_ _based on datd.emke  yhe MCMC algorithm all drawn samples can be used to make
(2007). Standard errors of the individual horizons were usedinferences abow by simple summary statistics (e.g., mean

to calculate thle4standard error _Of SoC Sto?k up 0 30 CM. Agianqard deviation and percentiles) or histograms and kernel
bulk value ofA**Csoc (3 £ 13 %o, mearnt: SE; bottom depth density estimates which provide insight into the distribution

30cm) was calculated with Eq1%) using horizon-specific 20| y).

SOC stocks and 1“C values for the Solling DO site that were

collected during a Ph.D. thesisgmke 2007. AYC values  2.3.1 Prior parameter distributions

of SOC were determined with = 3 replicates. The hori-

zon specific standard errors for SOC stocks ARSC values ~ Based on concluding remarks Bydrén and Kéttere1997)
were used to calculate a standard error for the stock-weighted broad prior for the humification coefficiehtwas derived
average with Eqs.A2)—(A4). In July 2004 an incubation from the mass fraction remaining after a 5-10-year litterbag
experiment yielded a\1*Cpr signature of 119.4 1.2 %o experimentBerg (2000 reported a remaining mass fraction
(meart: SE). Together withA14Csg and A1Crp signatures  of 0.26 for Norway spruce litter in litterbag experiments.
from Solling DO, theA'4Cyr signature was used to calculate We used this value as the mode for a logit-normal distribu-
fHR (0.694 0.03; meant SE) using Eqs.18) and @A5). This tion with the 99th percentile at 0.9 (Figa). Since the de-
value was used to calculate HR for 2004 with HR& - SR. composition rateéy andko are theoretically bound at 0, a
Standard errors for HR were calculated via error propagaiog-normal distribution was chosen for these two parameters,
tion using the standard errors of SR afigk. As an annual  with modes at 1yr! and 0.006 yr! (the latter is the default
estimate of aboveground litter input the annual average ofecommendation byAndrén and Kattererl997). The 99th
foliage litter input (0.109 kg C m? yr=1) on the roof control  percentile forky was set to 7yrl, and to-gyr—! for ko

plot (D2) was used. Fine-root biomass and necromass megFigs.2b and c).

surements in different depths from the roof control plot (D2) The lag time parameterfiag; andtlagg, are also the-
(Murach et al. 1993 were used to calculate fine-root mor- oretically limited to positive values. We use the measured
tality with the compartmental flow method/(rach et al, lag times, reported in Sec.2.4for the individual sites, as
2009. These data from 1992 give an estimate of fine-rootmodes for log-normal priors, with their 99th percentile at the
mortality of 0.094 kg C m?yr—1. For the Solling DO site we measured lag time +2 years (Figsl and e).

Solling DO

used the samidag; andtlagy as for Coulissenhieb II. Berg and Gerstbergé2004) reported that the ratio of fo-
liar litter input to total aboveground litter input is dependent
2.3 Bayesian calibration on stand age: in a Scots pine chronosequence the relative size

of the foliar litter fraction was 83% in an 18-25-year-old
Process-based models in geosciences tend to be overparastand, 68 % in a 55-61-year-old stand, and 58 % in a 120-
eterized with regard to data availabilityah Oijen et al. 126-year-old stand. This corresponds to a possilalg, fac-
2005. Hence, it does not make sense to apply parameter finetor between 1.2 and 1.7 when only foliar litter input was
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Fig. 2. Prior distributions used for the model parameterBistributions:(a) &z logit-normal distribution(b) ky and(c) ko log-normal,(d)
tlag; and(e)tlagg log-normal (priors for Coulissenhieb Il and Solling are showf))bias. and(g) biasr log-normal distributions(h) fo
and(i) fy truncated normal distributions.

measured. Hence, we set the mode of a log-normal priofable 2. Order of multiple constraints calibration experiments.
for biag. to 1 and the 99th percentile to 2. (Figf). The

same prior was used fdiiasg but with its 99th percentile Code Observational constraints included
at 3 because the amount of root litter input is probably less in data-likelihood function
constrained (Fig2g). Truncated normal distributions with RuN(SOC) socC

mode =1 and th_e E_)ch percentile =1.5 (truncation at 0) were Run(+A14Cso0  SOC +Al4Csoc

used for the_- dgwauo_n of steady—st_a.te paramey_@yrsa,nd fo, Run(+Al4Cr)  SOC+AMCsoc+ AlCHR

so that a priori the highest probability was assigne#l tind Run(+HR) SOC AMCgoc+ Al4CHR + HR

O pools in steady state (Figgh and i).

2.3.2 i i librati i . . S
3 Joint constraints calibration experiment of observational constrainis(Table2). The multi-objective

Under the assumption that the measurement errors were nofiata likelihood is then simply defined as the product of the
mally distributed, we formulated the data-likelihood function the individualp(y | 8); in Run(XY):

for the individual observational constrairitas: P | O)Runcxy) = 1—[ p(y10):. 22)
Py 1) (21) i € Runxy)
1 1 /ICBM;(t)—Obs(t)\? We then used a variant of the standard Metropolis—
= 1_[ Exp o ’ Hastings algorithm, the delayed rejection and adaptive
t Emys V 2o (1) o;i(t) ,

Metropolis (DRAM) algorithm Haario et al.2006, to sam-
wherei is one of the different data streams (SOC, HR, ple from the posterior distributiop(é | y). In the adaptive
AYCsoc, AYChRr), t € myrs denotes the years in which Metropolis part of this algorithm the generation of new pro-
measurements were madg(t) the uncertainty associated posal parameter setsis made more efficient by learning
with the measurement Ofgs), and ICBM (¢) the model pre-  from the accepted parameter sets thus fdagrio et al.
dicted valueg; () was kept fixed at the SEs of the respective 2001). The delayed rejection part of DRAM improves the
measurement under the assumption that these dominate ovefficiency by scaling the proposal covariance matrix with a
modeling uncertaintyReinds et al.2008 van Oijen et al. predefined factor if the proposed parameter set is rejected
2013. In order to study how combinations of different obser- (Haario et al. 200§. We used the DRAM implementa-
vational constraints influence the posterior parameter uncertion of Soetaert and Petzold2010 to perform the cali-
tainty, we devised a set of multiple constraints calibration ex-bration within the statistical software R-2.15R Develop-
periments with four runs containing different combinations ment Core Team2012. The MCMCs were started from
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five overdispersed starting parameter getssing the data- mate of Dk from samples op(0) andp(@ | y), as retrieved

likelihood function as defined in Eq22) and the prior# by Bayesian calibratiorBoltz et al, 2009.

as defined in SecR.3.1 These overdispersed starting points

were retrieved by Latin hypercube sampling from the en-

tire range of the prior distributions. In short, Latin hypercube 3 Results and discussion

sampling means that the prior parameter space is subdivided

into equally sized segments and a set of starting parameterphe results of all three sites will be presented and discussed

is constructed by randomly drawing one value for each pain a comparative fashion to highlight similarities and differ-

rameter out of the segments. All paramettbat appear in  ences between the sites. The results of the calibration at How-

the conceptual overview (Fid) except fori, the radioactive  land Forest will be used to highlight common characteristics

decay constant, are calibrated. in a more detailed fashion, while differences for the two other
We can be sure that the five chains have converged if, afsites are pointed out.

ter thousands of iterations, the chains have forgotten about

their initial values. We monitored convergence using the po-3.1 Information content of different observational

tential scale reduction factat as defined irGelman et al. constraints

(2009. For each site (Tabl®) and each calibration setup (Ta-

ble 2) we ran five chains in parallel, with 100 000 iterations The degree to which the posterior parameter distributions are

each. We discarded the first 50000 iterations of each chaimwonstrained compared to the prior parameter distribution de-

and checked if the within- and between-chain point scale repends on three factors: the observational constraints included

duction factorR < 1.025. Additionally, we visually checked in the calibration, the respective measurement uncertainties,

for convergence with trace plots for the five chains and eachand the parameter in question (Fg).

parameter. Furthermore, we checked density plots for each Using only SOC as observational constraint (Run(SOC))

parameter and chain to ensure that inferences from differerslready narrows the posterior distribution i by 14, 43

chains would give the same results. The second halves of thand 54 % at Howland Tower, Coulissenhieb Il and Solling

chains were merged, thinned to a total sample size of 16 66®0 (Fig. 3). Also, the AIQR of the humification coefficient

(every 15th sampled value was kept) and treated as a sampis somewhat better constrained in Run(SOC) compared to the

from p(@ | y). prior (Fig. 3), but the violin plots of: still cover the whole
range of possible values (e.g., Fg at Howland Forest and
2.3.3 Information content of different constraints Figs.Ala,A2a).

SOC together witA1*Csoc (Run(+A1*Csoce)) consid-

We used two measures to quantify the information gain inerably narrows the estimates for the humification fadtor
moving from the priorp(6) to the posteriorp(@ | y). We and the decomposition rate of the old pdgl. Compared
computed the relative reduction of the interquartile range be+o the prior the interquartile ranges bfandk, are reduced
tween the prior of a certain parameteand its posterior: in Run(+ACso0) by 74-84 % and 88-95 %, respectively
(Fig. 3). The other parameters were not considerably con-
strained by the observational constraints SO€4Csoc

The inclusion of A¥Cyr into the observational con-
straints (Rut+AY*Cyr)) markedly reduced the uncertainty
where IQR denotes the interquartile rangdQR was used of the decomposition rate of the young pdgl compared
to quantify the reduction in uncertainty for individual param- to Run(+A*Csoo) (Fig. 3). The change of the interquartile
eters. range,AIQR, is between 20 % for Howland Forest and 96 %

When we want to take a multidimensional look at combi- for Solling DO. These percentages reflect large differences
nations of parameter?yIQR becomes an undefined quan- in observational uncertainties among the studied sites. While
tity. In this case we used the Kullback-Leibler diver- the reported uncertainty af1“Cng at Solling DO was only
gence, Dk, to quantify the information content of the 1.2 %o, at Howland Forest the uncertainty in different years
different data streamsDk_ is a dimensionless measure was 2 and 5 %o.
for the dissimilarity between two probability density func-  When HR was included in the calibratiobjas. and
tions (PDFs), e.g., the Kullback—Leibler divergence betweerbiasg were shifted towards higher values for Howland Forest
the posteriorp(@ | y) and the priorp(@) is denoted as and Coulissenhieb Il (e.g., Figéh and i for Howland For-
Dk (p(@ | y)|lp(#)). Since an accurate estimation B est). Also, the IQR was markedly decreased by the inclusion
based on PDF estimates pf6 | y) and p(#) is not possi-  of HR in the calibration (Fig3), especially fobiasg.
ble in higher dimensions (the number of element8)inwe Including ACyr in the calibration lead to a slight shift
used aDk| estimator based on/anearest neighbok{NN) to higher posteriotlag; andtlag, values compared to the
search Boltz et al, 2009. This k-NN-basedDk_ estimate  prior (panels f and g in Figgl, A1 andA2). This means that
does not explicitly estimate the PDFs, but allows a direct esti-increasing the lag times is a simple possibility of achieving a

IQR(p(©1y))

AIQR=1-— :
N IQR(p(0))

(23)
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(a) Howland Tower (b) Coulissenhieb Il (c) Solling DO

SOC
ky

SOC
ko

Soc
fy

SOC

fo

SOC
tlag,

SOC
tlagg

SOC
bias;_

SOC
bias;g

SOC

20 0 20 40 60 80 100 0 20 40 60 80 100 20 0 20 40 60 80 100

AIQR (%) AIQR (%) AIQR (%)
Fig. 3. Change of interquartile ranges|QR, between prior and posterior marginal distributions of the different model parameters at all
three sites for the four multiple constraints calibration experiments.

correctA1*Cyr signature by increasing tHéC contents in  sistent as more data streams are included (Basd). This
litter inputs. This already points to a trade-off between esti-is consistent with what we have to expect from the model
matingky and lag times. The slight shift to higher posterior structure: if more carbon from the young pool is transferred
tlag; andtlagy values was accompanied by a broader poste-+to the old pool, the turnover time must be lowered to get the
rior compared to the prior in Ria-A*CpRr) (Fig. 3). same amount of carbon in the old pool.

The parametergy and fo, which were introduced to al- When ACsoc is included in the calibration, another
low for a deviation from steady state, are hardly constrainednteresting correlation emerges: tlfg parameter is posi-
compared to the prior in all runs. In general, only the param-tively correlated with the decomposition rate of the old pool
etersh, ky andko could be constrained well with the used (Fig. 5b). This is in line with considerations Butzler and

observational constraints. Reichstein(2007 who found that for soils that have not
reached (and are below) their equilibrium stock, model cali-
3.2 Correlations between parameters bration to the current carbon stock overestimates the decom-

position rate of the slowest pool. They propose a transient
As shown in Fig.5 for the Howland Tower site, there are correction which prescribes a lower decomposition rate for
many strong correlations between the different combinationghe old pool. The correlation betwegp andko in runs with
of posterior parameter distributions. Prominent correlationsA#Csoc confirms these considerations: i was actually
between parameters can be explained by comparing the dbelow the steady state, but was set téd would be shifted
rection of the correlation coefficient to the model structure. to faster decomposition rates.
The highest positive correlation coefficients were observed In Run(+A1*CyRr) i andky become negatively correlated
betweeni and kp meaning that a higher value @f can  (Fig. 5¢). This correlation betweel andky means that the
be compensated by a faster decomposition rateyofThis ~ sameA14Cyg value can be achieved by either increasing the
strong correlation emerges already in Run(SOC), but is per-
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Fig. 4. Howland Tower. Violin plots of the posterior distributions of parameters using different combinations of observational constraints
(legend). The first column shows the prior distribution of the parameter. The violins show a kernel density estimation of the prior and
posterior. The white dots indicate the median of the parameter set, black boxes indicate the interquartile range (IQR) between the 25th anc
75th percentile, the thin black lines indicate the upper and lower adjacent values.

fraction of the decomposition fluxkf - Y) that is directly  1*CBM models bulk SOC stocks and does not model a depth
respired (i.e., a loweh) or by increasing the decomposi- distribution of root litter inputs, it is not very relevant which
tion flux itself (i.e., a fasteky). Another prominent posi- kind of C inputs drive the model. Still, it was important to
tive correlation emerges in RepA4CyR) for ky andtlagg distinguish between aboveground and belowground litter in-
(Fig. 5¢) and can be interpreted as follows: the young poolput in order to allow different lag times to the atmospheric
can keep its hignA1C signatures by either increasing the record for root litter input and leaf litter input.
decomposition ratéy or with longer lag times oflagy, re- Nevertheless, the overall strong correlations suggest that
sulting in higherA14C signatures of the litter input. This cor- the parameter distributions are more strongly constrained
relation pattern trickles down from the decomposition kgte  than suggested by the marginal distributions (Eg.This
of the young pool towards the decomposition rigteof the is exemplified by the strong correlations betwéeandkg:
old pool via the humification flux (Fig. 5c). the kernel density estimates of the posterior parameter dis-
In Run(+HR)bias. andbiasg become strongly negatively tributions ofz andko (e.g., in the diagonal of Fighd) do
correlated; this means that itf CBM the total amount of lit-  not give any information on how likely it is that low val-
ter inputs have to be at a certain level in order to explain theues of are observed together with very high decomposi-
observed heterotrophic respiration. Hence, we can changton ratesko. If we look at the bivariate probability density
either aboveground litter inputs or root litter inputs to get plot in the lower triangle of Figsd, we get the answer: it
the same amount of total litter inputs. Due to the fact thatis very unlikely. Hence, it is fruitful not only to consider
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14 parameterization, but also as a reflection of the model struc-
(b) Run(+A™Csoc) )
0.04 0 |002|-01(-013| 0 [-0.03 /\h 005 | 04 |001| 0 [-0.33|-0.45]-0.02-0.06 t.l,lre: If! .for examplle_! the young and the O|d POOI .Were_nOt
o] o [0 om oo [om | o % Toor | o Toor| o loot leor] o linked via the humification flux, but received litter input in-

£ I dependently of each other, the correlation betwegrand

= ko would be considerably reduced. In addition, in multiple-
constraints calibration settings, correlations between param-
eters are also an indicator for the strength of trade-offs be-

AN i il tween different objectives/data streams (FEgs-d).
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MDA\ il tings here: the joint posterior of the parametersh andko

&8 [ oo is compared with the joint prior of these parameters (Bjg.

. e in which no correlations were present. The paramdigré
andko govern the overall SOC turnover if we do not account
Fig. 5. Correlation matrices of the posterior parameter distributionsfor possible biases in the assumptions or measurements with
for the four different calibration experiments (a—d). In the lower tri- parameters such dsas,, fo or, for l4c lag timestlag,

angle of each panel, samples of the posterior parameter distributiogndtlag . Further, we compared the joint posterior of all pa-
of two parameters are plotted against each other (tick marks and la- R '

: : . rameters with the respective joint prior to evaluate the over-
bels were left out for clarity). The diagonal shows a kernel density I .  diff d h dSOC
estimate of the marginal posterior distribution. In the upper diagonala constraint of ditterent data streams on the presente

correlation coefficients between the parameters are shown. A gradimOdeI-
ent from white to red indicates increasingly strong positive correla-  1he overall information gain for SOC turnover (joint pos-
tions, whereas a gradient from white to blue indicates increasinghyterior of ky, i andko) was highest when including *4C of
strong negative correlations. SOC and HR in the calibration (Fi@). Including AYCpr
at Solling DO led to a disproportionate information gain due
to the reported low uncertainty of that data stream at this site
the univariate posterior parameter distribution, but also to(Fig. 6). The information gain for the joint posterior of all pa-
consider correlations between parameters in two- or higherrameters was always highest when all data streams were in-
dimensional space, which provide a further constraint for thecluded (Fig 6). For Run+HR), the Kullback—Leibler diver-
possible model behavior. gence did not indicate much information gain for constrain-
Braakhekke et al(2013 conclude that the fact they ob- ing ky, h andko (Fig. 6) compared to Ruf-AC); the
served strong correlations between parameters is an indicanformation gain for all model parameters (F&).when in-
tion that the model is overparameterized with respect to thecluding HR in the calibration is, however, considerable. This
available data. Certainly*4CBM is also overparameterized underlines the fact that the HR data are more important for
with regard to the available data at Coulissenhieb I, Sollingconstraining thebiag, andbiasg parameters than for con-
DO and Howland Tower. Strong correlations between modelstraining the essential SOC turnover parametiers) and
parameters are, however, not necessarily only a measure fd,.
the degree of overparameterization of a model: a comparison
between Run(SOC) (Figa) and Run(+HR) (Figsd) at the
Howland Tower site shows that for Run(SOC) there are far
fewer correlations between the posterior parameter samples
than in Run(+HR). We can expect that strong correlations beGraphical inspection of the overall agreement between the
tween parameters will always exist in modeling studies basednodel and the data showed th#{CBM was in general able
on1C and C data, because modelfi§ and C in parallel  to reproduce the data used for calibration (Ff}y. This is
introduces parameters that govern several similar equationgalid for all sites and for the all constraints run, Run(+HR)
(e.g.,ky in Egs.1 and3). Hence, strong correlations between (not shown for Coulissenhieb and Solling). This result can
parameters should not only be seen as an indication for overpossibly be expected for most inverse modeling studies at

IR EREEEN
AR REEEN
L BE. BB 3L L
. elenle >

3.3 Relaxed steady-state assumption
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(a) Howland Tower (b) Coulissenhieb Il (c) Solling DO
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Fig. 6. Kullback—Leibler divergence)k, , at all three sites between the joint posterior distributipt® y) of then calibration experiments
and the joint prior distributiong (9) of the parameterky, h andk, and of all calibrated parameters.

other sites, as practically all SOM models are overparamenonsteady state) rapidly approaches the modeled HR of
terized considering the inherent scarcity/of'C data. Run(+HR; steady state) (e.g., Figg). This is due to the fact
Some features, however, are notable: even with all obserthat HR is dominated by Cfevolved from the young pool
vational constraints included, the joint use of SOC stock,(Fig. 7f). As the young pool only has mean turnover times
HR, A%Csoc and ACyr data did not make it possible Ty of 0.8 (Howland Tower), 1.1 (Coulissenhieb I1) and 5.7
to determine if any of the sites has been gaining or losingyears (Solling D0O) in Run(+HR), steady state will be reached
SOC (Fig.7), because the marginal distributions of the pa- rather rapidly. Conversely, the young pool only accounts for
rametersfy and fo generally followed their prior distri- less than 10 % of the total SOC stock at all sites (e.g., How-
butions (Figs4, Al, A2). Nevertheless, at least some con- land Tower in Fig.7f); thus, the steady state of modeled
straint for the fp parameter was gained through the corre- SOC stock could not be reached within the simulation pe-
lation betweenfy andko (Fig. 5b) which emerged when riod, as mean turnover times of the dominant old pool are
including A™Csoc into the calibration. This shows that 377 (Coulissenhieb), 313 (Solling) and 184 years (Howland
only the use of a multiple constraints approach (here mainlyTower).
SOC +A1Cs00) made it possible to put this admittedly ~ The modeled uncertainty ak14Cng varies considerably
weak constraint on the source/sink strength of the investithroughout the time series: the uncertainty is low before
gated soils. Nevertheless, this correlation makes it difficult tothe bomb peak and increases towards the bomb peak, drops
simultaneously estimate decomposition rates (ég),and  again and is considerably reduced after the observation point
the source/sink strength of a soil (e.gy), especially for  (Figs.7g and h). The curve of the modeledt“Cyr values
soils with only small deviations from a steady-state SOCis beginning to level out, so that differencesAt*C of het-
stock. We could potentially resolve this trade-off by prescrib- erotrophic respiration between subsequent years will become
ing stronger priors foifp if we have strong indications for a increasingly difficult to detect. This is even more pronounced
major carbon loss in the past. Better yet, we could estimatdor the modeled bulk soih*Csoc signature, because bulk
ako for a soil for which we can be reasonably sure that the A1*Csoc has nearly reached a plateau phase, where values
SOC stocks are in equilibrium. Thig) could then serve asa hardly change from year to year. One has to keep in mind,
strong prior for a soil with fairly similar conditions, for which  however, that this does not tell us anything about how the
we want to estimatgy . bomb peak propagates through the soil profile. Nevertheless,
At the Howland Tower site, SOC stocks modeled in when looking at the\1C signatures of the young and the old
Run(+HR) do not differ much between the nonsteady statepool (Figs.7i and j), it becomes obvious that the first peak of
and the steady state case (Fiy. Not surprisingly, the ef-  A1%Cgoc stems from the peak ak“C in the young pool.
fects of the parameters that allow for a deviation from steadyThe beginning of a plateau phase #tCsoc can then be
state are seen more clearly in the time series of modeledittributed to a mixture of the decreasing“C signature of
HR (Fig. 7d). At all three sites, modeled HR of Run(+HR;
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Fig. 7. Posterior predictive uncertainty of several output variables of tA€BM at the Howland Tower site. Left column: results of a

usual steady-state calibration using all observational constraints Run(+HR). Right column: results of a nonsteady-state calibration using all
observational constraints Run(+HR). The solid lines display the maximum a posteriori (MAP) prediction of the respective variable. The
shaded bands show the 25 % and 75 % quantile (Q25 and Q75) of the respective variable. The slightly lighter bands show the 5% and 95 %
quantile (Q05 and Q95) of the predictive uncertainty. The gradient of shading is valid for all color codes. Circles with error bars denote the
data values: standard error (Obs SE).

the young pool and a still increasimg'*C signature of the  scaled to 1, so we can also use the maximum density as
old pool. a measure for how well a parameter is constrained. The
One may hypothesize that parameters will be less wellmarginal density plots in Figd compare how well the model
constrained in the nonsteady-state case wligrand fo parameters are constrained in the nonsteady-state case and
do not show a significant deviation from steady state, be-steady-state case. The maximum posterior density of
causefy and fp introduce additional degrees of freedom is reduced at all sites. At Solling DRy is also slightly
that might not actually be needed. The marginal densityless well constrained in Run(+HR; nonsteady state) than in
plots in Fig. 8 have the advantage over the violin plots Run(+HR; steadystate Overall, the marginal density plots
(e.g., Fig.4) that the posterior probability density is not in Fig.8suggestthat parametdss, ko andh are constrained
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Fig. 8. Comparison of posterior parameter distributions of the all-observational-constraints run, Run(+HR), under steady-state assumption
(solid black line) and under a relaxed steady-state assumption (dashed green line). The additional pafamedefs for the nonsteady-
state run are not plotted.

well in the nonsteady-state as well as in steady-state versioturnover estimates with the parametig,, but merely at

of Run(+HR) compared to the prior. a realisticA14C value of root litter input to the soil organic
carbon pool, outlagy values might be overestimated due to
3.4 Discussion of fitted turnover parameters a bias towards larger roots when handpicking roots. Hence,

fast-cycling roots with a smaller difference w*4C0O)™

Giardina et al(2004 report that only around 10 % of soil res- might be underrepresente@4udinski et al.200J). In turn,
piration is derived from the decomposition of old soil organic this bias for larger roots and a low#agy would result in
carbon. Taking the proportion of heterotrophic respiration inlongerTy estimates.
total soil respirationfyr, (Eg.19) and the contribution of the The mean turnover timeg, of the old pool (184 years at
old pool O to HR at our three sites into account, we have sim-Howland, 377 years at Coulissenhieb Il, 313 years at Solling
ilar mean contributions of 7.3 % (Howland), 5.4 % (Coulis- DO) point to the presence of a relatively persistent carbon
senhieb Il) and 13 % (Solling DO) of old soil organic carbon pool that makes up more than 90 % of the soil organic car-
to soil respiration. Because we used a bulk soil organic mattebon stock. This high contribution of slowly cycling organic
turnover model, the turnover times and the humification coef-carbon can be mainly attributed to the inclusiomdf'Csoc
ficient give a diagnostic rather than a mechanistic insight intodata in the calibration. Again, this shows the merits of includ-
how much carbon is cycling on the different timescales. Theing SOC stocks and heterotrophic respiration fluxes plus their
mean turnover timegy of the young pool of 0.8 (Howland respective'*C isotopologues. Nevertheless, one has to con-
Tower), 1.1 (Coulissenhieb 1) and 5.7 years (Solling DO) to- sider that with a bulk SOC model we have to sum and weight
gether with the humification coefficientof 0.14 (Howland  SOC stocks and S¥C up to certain depth, so that, e.g., the
Tower), 0.07 (Coulissenhieb 1) and 0.21 (Solling DO) indi- Coulissenhieb site with a considered bottom depth of 52 cm
cate that most of the organic carbon in these soils is turnedhas a much longer turnover time for the old pool than Solling
over within a relatively short period. DO, where we used a bottom depth of 30 cm. Here, vertically

For the estimation oky, one has to keep in mind that it explicit SOC turnover and transport models (ekpneyuki
vitally depends on the\*Cy value (Fig.4), and thus, by and Kichirg 1978 O'Brien and Stout 1978 Elzein and
way of 4L (r) and4iR(r), also on the lag timetlag, and  Balesdent 1995 Baisden et a).2002 Braakhekke et 3.
tlagy that we used. Although we do not look at actual root
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2017 might be helpful in order to resolve different bottom 4 Conclusions

depths for sampling SOC and $&. Given the structure of

these models, their turnover times, however, still give more 1.
diagnostic than mechanistic insight because they do not con-
sider important processes such as sorptive stabilization, en-
ergy limitation or the recycling of SOM through microorgan-

isms which are expected to contribute to radiocarbon ages of
SOC of more than 1000 years in the deep gBdifant et al.

2011, Schmidt et al.2017).

3.5 Interpretation of litter input bias parameters

If the sites are in steady state, the bias parameters can be
interpreted as a systematic deviation of HR and litter input
because HRi# + iR under steady stat&Sanderman et al.
2003. Already by comparing the relation of HR, andiR

to the calibratebias,. andbiasgr, we see that for Coulis-
senhieb Il and Howland Tower these two parameters have to
be higher than 1. The reasons for a bias at these two sites
can be manifold: the belowground litter input at these sites
might have been underestimated (sequential coring at Coulis-
senhieb Il and the assumption at Howland that belowground
litter input is in the same range as aboveground litter input),
or there may be a significant contribution of subsoil SOC
turnover to overall heterotrophic respiration. Further, our par-
titioning of soil respiration using the bom¥C signal might
have overestimated the proportion of heterotrophic respira- 4,
tion in total soil respiration,fir, because the incubations

used to measura®Cyg might not have been conducted un-

der conditions that are representative of what is observed in
the field over the course of a year.

Furthermore, one could also speculate about recent devi-
ations from steady state for faster-cycling soil components
(organic layer). The applied deviation from the steady-state
parameter,fy, only matters in the first years of the simu-
lation period, but due to its fast decomposition rate, the
pool approaches steady state rather rapidly. Hence, one could
also interpret a bias parameter above 1 as disturbance of the 5.
Y pool leading to a loss of SOC in the young pool. Given
the information we have about these two sites, this seems,
however, quite unlikely. Nevertheless, at sites where mea-
surements of aboveground litter input and heterotrophic res-
piration are available, one could use the steady-state relation
iR = HR—IL as an additional criterion for assessing the relia-
bility of different methods quantifying root turnovdrykac
2012.

3.

www.biogeosciences.net/11/2147/2014/

The Bayesian parameter estimation was very instruc-
tive: violin plots of posterior parameter distributions
were useful to quickly study the effect of different mul-
tiple constraint experiments. The correlation structure
between different posterior parameter estimates pro-
vided useful insights on model behavior and additional
constraints for the parameters.

. The joint use of four observational constraints did not

make it possible to determine whether any of the sites
has been storing or losing carbon. Nevertheless, the
joint calibration to SOC stocks and tke'“C of SOC
stocks showed that there is a trade-off between es-
timating the source/sink strength of the investigated
soils and the decomposition rate of the old pool. Since
the introduction of the relaxed steady-state assumption
did not cause a considerable amount of extra uncer-
tainty, we can recommend the use of a relaxed steady-
state assumption in order to identify possible devia-
tions from steady state.

The relation of heterotrophic respiration to the sum of
above- and belowground litter input is useful for eval-
uating the reliability of root turnover estimates.

The joint use of all four observational constraints —
SOC stock,AC of SOC stock, heterotrophic respi-
ration andA14C of heterotrophic respiration — gives
the tightest uncertainties ranges for the most essential
model parameters ofi{CBM: ky, ko andh. ky can be
primarily constrained byA*C of heterotrophic respi-
ration, whilek, can be constrained well with4C of
SOC. The transfer coefficient between the young and
the old pool,h, was best constrained by the joint use
of all data streams.

The calibration of thel*CBM with the four observa-
tional constraints provided a good diagnostic for how
much carbon is cycling on the different timescales. The
fitted parameters show that in the three investigated
soils more than 90 % of the soil organic stock resides
in a relatively persistent carbon pool, while the fast-
cycling young pool contributes more than 80 % to the
overall heterotrophic respiration.

. Using different data streams of model output variables

to constrain the parameters of conceptual model pools
is a valuable strategy for parameter calibration besides
“measuring the modelable”, i.e., finding fractions that
are relatable to conceptual model pools, or “modeling
the measurable”, i.e., introducing model pools that can
be measured directly.
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Supporting material explicit soil organic matter model, Ecol. Model., 222, 1712—
1730, 2011.
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Appendix A
Observational constraints included in calibration (@ h -)
Prior 1.09
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Fig. AL. Coulissenhieb Il. Violin plots of the posterior distributions of parameters using different combinations of observational constraints
(legend). The first column shows the prior distribution of the parameter. The violins show a kernel density estimation of the prior and
posterior. The white dots indicate the median of the parameter set, black boxes indicate the interquartile range (IQR) between the 25th anc
75th percentile, the thin black lines indicate the upper and lower adjacent values.

Al Data uncertainties (1) The standard error of the SOC-stock-weighretfC

value (Eq.15) was therefore calculated as:
According toTaylor (1997, for independent random errors

the uncertaintyg (here, standard error) of any functign 3¢ (AMCsochbulk) = (A2)
with the variablesy, ..., z with their corresponding uncer- Horizons 2 2 Horizons o 2
tainties (here, standard erro, ..., 8z, can be calculated <76AC ,> + (7880 ,-) .
as: ( ). 82 9ACsoci o0C ; 9S0Gomey 0 B0k

i=1

The partial derivative in the first term under the square root
dq SOGstocki

2 2 i
qu\/<z—z-8x> +...+(3—Z-82> : (A1)
= : . (A3)

9 A14CSOC,1' ZjHonzonsSOQtockj
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Observational constraints included in calibration (@ h )
Prior 1.0
= SOC 0.8
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Fig. A2. Solling DO. Violin plots of the posterior distributions of parameters using different combinations of observational constraints
(legend). The first column shows the prior distribution of the parameter. The violins show a kernel density estimation of the prior and
posterior. The white dots indicate the median of the parameter set, black boxes indicate the interquartile range (IQR) between the 25th and
75th percentile, the thin black lines indicate the upper and lower adjacent values.

The partial derivative in the second term under the squarave were not able to use these directly in the error propaga-
root is tion.
Horizons 1 1 (2) The uncertainty (here, standard error) of the pro-
dq :Z,- SOGsiock j (A**Csoci—A*Csoc,) (Ad) portion fyr of heterotrophic respiration at soil respiration
9SOGstocki (leﬂorizonssocstockj)z ' (Eq.19) can be calculated aRkillips and Gregg2001;, Tay-
lor, 1997):

In Eq. (A2) we operate under the assumption of indepen-

dence between horizons and different types of measuredq(fHrR) = 1 " > (
ments. This is already a conservative estimation of uncertain- (A Chr— A CRR)
ties because mcludmg the covariance between van_ab.les into + fHZRsi g + (1= fur)? 82 14CHR) )

the error propagation normally reduces the uncertainties due

to negative correlations, i.e., between bulk density and SOGNe here follow the statement Whillips and Gregd20071)
content Panda et a]2008 Goidts et al. 2009 Schrumpf et  that it is reasonable to assume independence between the
al., 2011). Because we do not have information about the ac-standard errors &, 1ac g, Sa14c,, @NASA1acq,-

tual covariance between measurements at the individual sites,

82 (A5)

A 14CSR
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