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Abstract. Global terrestrial atmosphere—ecosystem carbonl Introduction

dioxide fluxes are well constrained by the concentration and

isotopic composition of atmospheric carbon dioxide. In con-

trast, considerable uncertainty persists surrounding regionalerrestrial ecosystems remove roughly 25 percent of an-
contributions to the net global flux as well as the impacts ofnual anthropogenic fossil fuel carbon dioxide (§Qvia
atmospheric and biological processes that drive the net fluxgross primary production (GPP) in excess of respiration
These uncertainties severely limit our ability to make confi- (Keeling et al, 1996. More completely, net ecosystem ex-
dent predictions of future terrestrial biological carbon fluxes.change (NEE) — the balance between photosynthesis and
Here we use a simple light-use efficiency land surface modeheterotrophic respiration — controls the magnitude of atmo-
(the Vegetation Photosynthesis Respiration Model, VPRM)SPhere to ecosystem G@ptake. Diagnosing terrestrial bi-
driven by remotely sensed temperature, moisture, and phé)logical carbon dioxide fluxes with confidence is a neces-
nology to diagnose North American gross ecosystem exSary step toward understanding biological and climatological
change (GEE), ecosystem respiration, and net ecosystem edrivers of these fluxes. Because these fluxes are first-order in-
change (NEE) for the period 2001 to 2006. We optimizefluences on the accumulation of carbon dioxide in the atmo-
VPRM parameters to eddy covariance (EC) NEE observasSPhere Denman et a).2007), understanding their mechanics
tions from 65 North American FluxNet sites. We use a sep-IS necessary to forecast impacts of past and future fossil fuel
arate set of 27 cross-validation FluxNet sites to evaluate £Missions. In spite of this, atmosphere-based methods to es-
range of spatial and temporal resolutions for parameter estitimate global NEE (e.gPeters et al.2007 Janssens et al.
mation. With these results we demonstrate that different spa2003 and ground-based approaches (égtfer et al.2007,

tial and temporal groupings of EC sites for parameter estimaJanssens et al2003 have produced conflicting estimates,
tion achieve similar sum of squared residuals values througlflémonstrating substantial uncertainty surrounding these ef-
radically different spatial patterns of NEE. We also derive forts to describe terrestrial carbon cycle mechanics.

a regression model to estimate observed VPRM errors as a Several recent studies demonstrate the discrepancy in
function of VPRM NEE, temperature, and precipitation. Be- diagnosed NEE between “top-down” approaches (i.e.,
cause this estimate is based on model-observation residuals@dmosphere-based) and “bottom-up” approaches (i.e.,
is comprehensive of all the error sources present in modeleground-based methods rooted in eddy covariance (EC) flux
fluxes. We find that 1km interannual variability in VPRM Measurements combined with ecosystem modais)ssens

NEE is of similar magnitude to estimated 1 km VPRM NEE €t al. (2003 assembled top-down and bottom-up estimates
errors. for late 20th Century annual cumulative European NEE and

found that the top-down estimates are larger by roughly
100 TgCQ per year. This 100 Tg difference is between
30% and 100 % of their best-estimate annual total of 100
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to 300 Tg per yearPeters et al(2007) estimated a North Beer et al(2010 compared five different diagnostic GPP
American uptake for 2001 to 2005 of roughly 700 Tg £0 models with sharply contrasting structures, including two
per year using a top-down approach, whitetter et al. machine learning approaches, an NEE—biome region look-
(2007 estimated uptake of 100 to 200 Pg £@er year over  up table, and a LUE model. Each of these approaches was
the same period using a bottom-up meth8dhwalm et al.  then used to estimate regional NEE values and uncertainties.
(2017 found conflicting estimates of global NEE anoma- The Beer et al.study explicitly considered many sources of
lies estimated from upscaled FluxNet observations wheruncertainty in the models considered. For the light-use effi-
compared against top-down inversion anomaly estimates. ciency model, the authors estimated site-specific parameter
A number of studies have explored approaches to estimatprobability density functions (PDFs) at a number of FluxNet
regional NEE using some combination of land surface mod-eddy covariance sites around the globe. The Bayesian frame-
els and eddy covariance fluxes (bottom-up methdésjter  work of the study allowed the authors to consider PDFs from
et al. (2007 chose a set of four North American EC towers multiple uncertainty sources: parameter value uncertainty as
to represent characteristic North American ecosystems andell as driver data uncertainty. By taking random draws from
used them to evaluate the performance of the NASA-CASAthese parameter PDHeer et al(2010 constructed a popu-
ecosystem model run with a global set of previously pub-lation of global GPP estimates driven by their distribution of
lished parameter values. They then used the NASA-CASAparameter values. This population then provided confidence
model to estimate North American annual cumulative NEE.intervals for their global GPP estimates.
This approach requires no computationally intensive data as- Each study outlined above presents a framework to use
similation (e.g. parameter estimation), but achieves such savecosystem modeling to combine the information in eddy co-
ings at the cost of considering only a small portion of the variance flux tower observations with the information con-
NEE observations that are now available. tained in an ecosystem model structure and allows estima-
Xiao et al.(2008 used a modified regression tree to cre- tion of regional biological C@fluxes. These studies exhibit
ate a model suite to explain observed NEE as a function ofmany ways to treat uncertainty sources, ranging in complex-
a variety of satellite-derived ecological measures. A regresity from not including uncertainty to Bayesian consideration
sion tree is a method to empirically derive a best-fit statisticalof multiple uncertainty sources. The set of available eddy co-
model based on a set of linear models. They derived the modvariance NEE observations has increased dramatically in re-
els using data from 42 AmeriFlux EC sites in the coterminouscent yearslfttp://www.fluxdata.orly none of the above stud-
United States, producing a set of empirical models capable ofes, however, take advantage of the wide spatial coverage of
upscaling the tower observations to the continental scale. Théhese observations except to perform site-specific calibration
model that best explained the observed NEE used a combief model parameters.
nation of MODIS surface reflectances, enhanced vegetation Hilton et al. (2013 used North American eddy covari-
index (EVI), land surface temperature, and normalized dif-ance NEE observations from 65 different locations from the
ference water index (NDWI). Though statistical, this model FluxNet project kttp://www.fluxdata.ory) to optimize pa-
structure is quite similar to light-use efficiency (LUE) based rameter values for a simple land surface model (VPRM;
models such as the Vegetation Photosynthesis Respirationadevan et al.2008. The 65 tower locations span North
Model (VPRM) of (Mahadevan et g12008. America in both space and plant functional type. That study
Yuan et al.(2010 develops the EC-LUE model and uses presents extensive experiments varying the temporal and spa-
it to produce global estimates of gross primary productiontial periods for parameter estimation to determine an optimal
(GPP) and evapotranspiration (ET), whilang et al.(2007) strategy, producing nine different spatial and temporal reso-
use a machine learning approach coupled with remote sensutions.
ing data to extrapolate eddy-covariance-estimated GPP to Here we use VPRM and the assimilated data from this ex-
the coterminous USA, and also use their method to estimatéensive tower network to diagnose annual integrated gross
maximum light-use efficiency. ecosystem exchange (GEE), ecosystem respiradnand
Jung et al(2010 describe a method to upscale FluxNet NEE for the coterminous United States of America, Alaska,
eddy covariance ET observations to the global scale usingind Canada for the period 2002 to 2006. We use eddy covari-
machine learning algorithms. This method could in conceptance observations from a further 27 FluxNet tower locations
be applied to NEE as well, though the machine learning ap+to quantitatively cross-validate the parameter optimizations.
proach is purely empirical and does not attempt to incorpo-This rigorous cross-validation analysis is a crucial step in a
rate any ecological understanding. model-based carbon flux upscaling; without such an exercise
Schwalm et al(2010 andSchwalm et al(201]) present it is difficult to measure the spatial accuracy, or lack thereof,
methods to globally upscale FluxNet observations by plantof estimating unobserved fluxes using a model and data as-
functional type. These methods depend on the commonlysimilation. Cross-validation would not be possible without
employed assumption that plant functional types are goodhe recent growth of eddy covariance observation networks:
predictors of landcape NEP. if only a handful of observation locations exist, as in the
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recent past, we cannot afford to withhold data from parame-
ter estimation.

We also extend the analysis to derive empirical confi- ggen|
dence intervals for NEE diagnoses based on observed NEE
residuals and NEE drivers. Because this uncertainty is de-
rived from eddy-covariance-observation—model NEE residu-
als, it considers all of the uncertainty sources that are presen
in model-based upscaling: eddy covariance observation er-
ror, model structural error, model parameterization error, and
random natural ecosystem variability. This comprehensive ., |
and quantitative uncertainty analysis is also, to our knowl-
edge, unique.

2 Methods

30°N
2.1 Land surface model

X+049qAavDP>OD

The Vegetation Photosynthesis and Respiration Model
(VPRM, Mahadevan et g1.2008 is a light-use efficiency

(LUE)-based land surface model. Ecosystem respiration is
treated as a linear function of surface air temperature:

Fig. 1. The 65 eddy covariance flux tower sites from the FluxNet
network fttp://www.fluxdata.ory that provide observations for
VPRM parameterization and VPRM flux residual calculation. ENF
— evergreen needleleaf forest, DBF — deciduous broadleaf forest,
F — mixed forest, CS — closed shrubland, OS — open shrubland,
S — woody savanna, Gr — grassland, Wet — permanent wetland,
Crop — cropland.

R=aT + B, 1)

with slopea and intercep; g determines the basal rate of
respiration that occurs at near-freezing temperatures. Gro
Ecosystem Exchange (GEE) is modeled as

GEE= X X Tscalex PscaleX Wscalex EVI 2

x——- % PAR in space (individual sites, plant functional types (PFTs), and
1+ PAR/PARy all sites together), and three different ways in time (monthly,

with PAR denoting photosynthetically active radiation and @1nual, and all available data). This produced nine unique
EVI the satellite derived enhanced vegetation indexedte ¥~ RM parameter sets with differing spatial and temporal op-

et al, 2002. Pscale (satellite derived)Wecae (satellite de- timization “resolutions”: single sites—monthly, PFT—annual,

rived), andTscqie (literature derived) are scaling terms that etc. . )
take values between 0.0 and 1.0 and attenuate GEE according As argued byHilton et al.(2013, an ideal model parame-

to phenology, moisture conditions, and temperature, respe(,l-er estimation scheme should permit parameter values to vary

tively. Parametet. encodes light-use efficiency, and param- at space_and timescales matching var_iations in NEE. Because
eter PAR encodes the LUE curve half-saturation valva- ~ NEE varies on numerous space and timescales, the space and
hadevan et ak2009 provide detailed description of VPRM timescales in Wh|ch NEE variations are deeme_d “of interest”
structure and performance. As described more fulljilon (85 0PPOsed to *noise”) will vary with the modeling goals and

et al. (2013, the relatively simple structure of VPRM and spatial domain to be modeled. The range of temporal param-

its small number of parameters make it computationally in-€t€rization windows considered (annual, seasonal, monthly,
expensive. This makes relatively sophisticated parameter e&nd 10 day) allow variation consistent with a number of first

timation methods possible and makes VPRM a useful toolerder NEE drivers: annual climate variation, seasonal eco-
for diagnosing carbon fluxes, estimating flux uncertainty, andigical cycles, and synoptic weather. Evaluating PFT-specific

exploring the impacts of model parameterization and modeﬁalrameters T‘S Wellhas pa:cameters es]:umated acrolss :jnanyfsnes
error spatial covariance. elps to evaluate the performance of PFTs as a land surface

classification method for NEE diagnosis.
2.2 Land surface model parameterization Upscaling tower measurements intrinsically requires
model parameters that are applicable in spatial locations
Hilton et al.(2013 presented estimated values fqrPAR, without tower observations, making the single-site param-
«, and g using data from 65 North American eddy covari- eters not useful for the task. This leaves the six parameter
ance towers (Figl, Tablel). For parameter estimation, the sets from the PFT and all-sites-together spatial groupings
eddy covariance data were partitioned in three different waysvailable for upscaling. In addition to those six, PFT-10-day
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Table 1.65 North American eddy covariance sites used to parameterize VPRM and calculate VPRM flux errors. PFTs are taken from the
International Geosphere-Biosphere Programme (IGBP) land cover classification stlogeiar(d and Belwardl997). The PFT classifica-

tions are taken from literature citations or investigator descriptions where available, and otherwise derived from MODIS 1 km land surface
classifications. Data are from the 2007 FluxNet synthesis dataset.

Site code  Site name Latitude Longitude Land cover Reference

(°N) (°E)
CA-Cal British Columbia — Campbell River — Mature Forest Site .820 —125340 1 - Evergreen Needleleaf ForesHumphreys et al(2006
CA-Ca2 British Columbia — Campbell River — Clearcut Site 8  —125290 1 - Evergreen Needleleaf ForesHumphreys et al(2006
CA-Ca3 British Columbia — Campbell River — Young Plantation Site .520  —124900 1 — Evergreen Needleleaf ForesHumphreys et al(2006
CA-Gro Ontario — Groundhog River-Mature Boreal Mixed Wood 2®  —82160 5 — Mixed Forest McCaughey et al(2006
CA-Let Lethbridge 49710 —112940 10 - Grasslands Flanagan and Adkinsof2011)
CA-Mer Eastern Peatland — Mer Bleue 450  -75520 11 — Permanent Wetlands Lafleur et al.(2003
CA-NS2 UCI-1930 burn site 5910 —98520 1 - Evergreen Needleleaf ForesGoulden et al(200
CA-NS3 UCI-1964 burn site 5910 —98380 1 — Evergreen Needleleaf ForesGoulden et al(2006
CA-NS4 UCI-1964 burn site wet 5810 —98.380 1 - Evergreen Needleleaf ForesGoulden et al(2009
CA-NS5 UCI-1981 burn site 5860  —98490 1 — Evergreen Needleleaf ForesGoulden et al(2006
CA-NS6 UCI-1989 burn site 5920 —98960 1 - Evergreen Needleleaf ForesGoulden et al(200
CA-NS7 UCI-1998 burn site 5640  —99.950 1 — Evergreen Needleleaf ForesGoulden et al(2006
CA-Oas Sask — SSA Old Aspen B30 106200 4 - Deciduous Broadleaf ForestBlack et al.(2000
CA-Obs Sask — SSA Old Black Spruce 980 —105120 1 -Evergreen Needleleaf ForesBergeron et al(2007)
CA-Ojp Sask — SSA Old Jack Pine 520 —104690 1 - Evergreen Needleleaf ForesHoward et al(2004
CA-Qcu Quebec Boreal Cutover Site 290 —74.040 7 — Open Shrublands Giasson et al(2006
CA-Qfo Quebec Mature Boreal Forest Site .88  —74.340 1 — Evergreen Needleleaf ForesBergeron et al(2007)
CA-SF2 Sask — Fire 1989 5650 —105880 6 — Closed Shrublands Mkhabela et al(2009
CA-SF3 Sask — Fire 1998 900 -106010 6 — Closed Shrublands Mkhabela et al(2009
CA-SJ1 Sask — 1994 Harv. Jack Pine B  -104660 1 - Evergreen Needleleaf ForesZha et al.(2009
CA-SJ2 Sask — 2002 Harvested Jack Pine 953 —104650 1 - Evergreen Needleleaf ForesZha et al.(2009
CA-WP1  Western Peatland — LaBiche-Black Spruce/Larch Fen 9684 —112460 11 - Permanent Wetlands Flanagan and Syg@011)
US-ARM  ARM Southern Great Plains site — Lamont — Oklahoma 636 —97.490 12 — Croplands Fischer et al(2007)
US-Atq Atgasuk — Alaska 7870 —157410 11 - Permanent Wetlands Oechel et al(2000
US-Aud Audubon Research Ranch — Arizona 58D —110510 10 - Grasslands Wilson and Meyer$2007)
US-Blo Blodgett Forest — California 30  —-120630 1 - Evergreen Needleleaf ForesGoldstein et al(2000
Us-Bnl Delta Junction 1920 Control site 830 —145370 1 -Evergreen Needleleaf Forest.iu et al. (2005
uUs-Bn2 Delta Junction 1987 Burn site .20 —145370 4 - Deciduous Broadleaf ForestLiu et al. (2005
US-Bn3 Delta Junction 1999 Burn site 830 —145740 7 - Open Shrublands Liu et al. (2005
US-Bol Bondville — lllinois 40010 —88.290 12 - Croplands Meyers and Hollinge2004)
US-Bo2 Bondville — lllinois (companion site) Mo —88290 12 — Croplands Meyers and Hollinge(2004)
US-Brw Barrow — Alaska 7B20 —156630 11 - Permanent Wetlands Harazono et al2003
US-CaV Canaan Valley — West Virginia B0  —79420 10 — Grasslands Wilson and Meyer$2007)
US-Dk1 Duke Forest-open field — North Carolina BB  —79.090 10 — Grasslands Stoy et al (2009
US-Dk2 Duke Forest-hardwoods — North Carolina B¥H —-79.100 4 — Deciduous Broadleaf Forest Stoy et al.(2006
US-Dk3 Duke Forest — loblolly pine — North Carolina 880  —79.090 1 — Evergreen Needleleaf ForesStoy et al(2009
US-FPe Fort Peck — Montana &30 —105100 10 - Grasslands Wilson and Meyerg2007)
US-Goo Goodwin Creek- Mississippi 260 —89970 10 — Grasslands Wilson and Meyer$2007)
US-Hal Harvard Forest EMS Tower — Massachusetts (HFR1) 5402 —-72170 4 — Deciduous Broadleaf ForestUrbanski et al(2007)
US-Ha2 Harvard Forest Hemlock Site — Massachusetts S54p  -72170 1 — Evergreen Needleleaf ForesHadley and Schedlbaué2002
US-Hol Howland Forest (main tower) — Maine .60 —68740 1 - Evergreen Needleleaf ForestHollinger et al.(1999
US-Ho2 Howland Forest (west tower) — Maine 2850 -68750 1 — Evergreen Needleleaf ForestHollinger et al.(2004
US-KS1 Florida-Kennedy Space Center (slash pine) A@8  —80.670 1 - Evergreen Needleleaf ForesBracho et al(2008
US-KS2 Florida-Kennedy Space Center (scrub oak) 628 —80.670 6 — Closed Shrublands Powell et al. (2006
US-Los Lost Creek — Wisconsin 480  —89.980 6 — Closed Shrublands Sulman et al(2009
US-Me2 Metolius-intermediate aged ponderosa pine — Oregon 4584 —121560 1 - Evergreen Needleleaf ForesThomas et al(2009
US-Me4 Metolius-old aged ponderosa pine — Oregon .5@8@ —-121620 1 - Evergreen Needleleaf ForestAnthoni et al.(2002
US-MMS  Morgan Monroe State Forest — Indiana 3  -86410 4 — Deciduous Broadleaf Forest Schmid et al(2000
US-MOz  Missouri Ozark Site 3840 —92.200 4 — Deciduous Broadleaf ForestGu et al.(2006
US-Nel Mead — irrigated continuous maize site — Nebraska 1001 —96.290 12 - Croplands Verma et al(2005
US-Ne2 Mead — irrigated maize-soybean rotation site — Nebraska .10@1 —96.280 12 — Croplands Verma et al(2005
US-Ne3 Mead - rainfed maize-soybean rotation site — Nebraska  .18@1 —96.440 12 - Croplands Verma et al(2005
US-NR1 Niwot Ridge Forest — Colorado (LTER NWT1) .880 —105550 1 - Evergreen Needleleaf ForesMonson et al(2002
US-PFa Park Falls/WLEF — Wisconsin 850 —90.270 5 — Mixed Forest Davis et al.(2003
US-S02 Sky Oaks — Old Stand — California 380 -116620 6 — Closed Shrublands Luo et al.(2007)
US-S03 Sky Oaks — Young Stand — California .3  -116620 6 — Closed Shrublands Luo et al.(2007)
US-SO4 Sky Oaks — California 30 —-116620 6 — Closed Shrublands Luo et al.(2007)
US-SP1 Slashpine-Austin Cary — 65 yr nat regen-FL 720  —-82220 1 - Evergreen Needleleaf ForesPowell et al (2008
US-SP2 Slashpine-Mize-clearcut-3 yr-regen-FL 78D  —82240 1 — Evergreen Needleleaf ForesBracho et al(2012
US-SP3 Slashpine-Donaldson-mid-rot — 12 yr-FL .3 -82160 1 - Evergreen Needleleaf ForesBracho et al(2012
US-Syv Sylvania Wilderness Area — Michigan 460 —89.350 5 — Mixed Forest Desai et al(2005
US-Ton Tonzi Ranch — California 30 —120970 8- Woody Savannas Ma et al.(2007)
US-UMB  Univ. of Mich. Biological Station — Michigan 4560 —84.710 4 — Deciduous Broadleaf ForestGough et al(2008
US-Var Vaira Ranch — lone — California 230 —120950 10 - Grasslands Ma et al.(2007)
US-WCr  Willow Creek — Wisconsin 4810  —90.080 4 — Deciduous Broadleaf Forest Cook et al.(2004
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parameters were calculated as well. The sum of squared er
rors (SSE) were computed for the seven VPRM parameter
sets that are useful for upscaling, using observations fromggen|
27 “cross-validation” eddy covariance sites (TaBjd=ig. 2; '
Sect.2.3) that were not used for parameter estimation.

To evaluate model performance we use SSE at the 27
cross-validation sites and penalized sum of squared errors
(PSSE, e.gHilborn and Mangel1997 at all 92 sites (the
27 cross-validation sites plus the 65 parameterization sites).
PSSE is given by

SSE

PSSE= —MM, 3
Nobs— 2'lpars @)

45°N|.

with SSE the sum of squared errorggrs the number of
unique model parameter values, an@s the number of data
points available. Among cross-validation sites withheld from
parameter estimation, we can detect overfitting when the
SSE begins to increase with the number of parameters. Be: Wet
cause model parameterization, by definition, fits the model
to observed data, SSE among parameterization sites shoulu

only decrease with additional parameters. PSSE provides @y 5 The 27 eddy covariance flux tower “cross-validation” sites
method to detect overfitting among parameterization sites. from the 2007 FluxNet synthesis dataset that were not used for
We chose SSE because a statistically proper likelihood/pRM parameterization or for VPRM NEE error covariance pa-
function would require integrating likelihood functions for rameter estimation. Plant functional type abbreviations: ENF — ev-
all of the sources of error that contribute to model error. ergreen needleleaf forest, DBF — deciduous broadleaf forest, MF —
These include model structural error, model parameterizamixed forest, CS — closed shrubland, OS — open shrubland, WS —
tion error, eddy covariance observation error, and “naturaMoody savanna, Gr — grassland, Wet — permanent wetland, Crop —
variability” (microscale flucutations in the atmosphere, cli- cropland.
mate, and ecosystem behavior). Distributions, and therefore
likelihood functions, may be approximated for these error ) ,
sources. Reducing their integrated product to a computation- YPRM uses temperature and photosynthetically active ra-
ally tractable form is difficult and beyond the scope of this diation (PAR) to drive GEE and respiration. To run VPRM
study. In the absence of a statistically proper likelihood func-2t the continental scale, air temperature and downward sur-
tion, we chose to use the mathematically simple SSE. Thidace radlatlor_l values were obtained from the reanalysis prod-
is equivalent to a maximum likelihood approach if the model ucts of Sheffield et al(2009. The Shefﬁeld et al(2009
errors may be assumed to be independent and identically di2r0ducts attempt to correct known biasBsdtzge 2004 to
tributed (i.i.d). Model errors are probably not i.i.Ri¢ciuto e NCEP-NCAR reanalysis productsginay et al. 199.
et al, 2008, but we have made this simplification in light of YPRM was driven with the three-hourly? X 1° product for

the points mentioned above. temperature and PAR. _ , _
VPRM is also driven by satellite-derived moisture and

2.3 Data phenology. MODIS products MOD13A2 (enhanced vegeta-
tion index (EVI); Huete et al.2002 1999, MCD12Q1 (land
The 2007 FluxNet synthesis datasétt://www.fluxdata.  cover;Friedl et al, 2002 Strahler et al.1999, MCD12Q2
org) assembled eddy covariance observations from field siteg¢vegetation dynamicsZhang et al. 2003, and MCD43B4
around the world. The data were gap-filled and assignedBidirectional Reflectance Distribution Function (BRDF) re-
quality scores using published metho@spale et al.2006 flectancesSchaaf et a).2002 provided these drivers. EVI
Moffat et al, 2007). The present study uses non-gap-filled data reported with quality ratings of “lowest quality” and
NEE from 92 eddy covariance sites from the United States‘not useful” (VI quality bits 2—3 equal to 11) were discarded.
and Canada: 65 flux towers to estimate VPRM parameterssaps from discarded MODIS data were not filled; VPRM
(Table 1, Fig. 1), plus 27 “cross-validation” sites (Tabg fluxes were not calculated in these instances. EVI and BRDF
Fig. 2). The cross-validation sites used in this study were notdata are reported at one-kilometer, 16-day resolution; land
used for VPRM parameterization because of data availabilitycover and vegetation dynamics are reported at 500 m, an-
difficulties. After all necessary VPRM input data were even- nual resolution and were processed from 500 m resolution
tually obtained for these sites, they were used to evaluate theo 1000 m resolution using software tools provided by the
performance of the optimized VPRM. MODIS Land quality assessment groupoly et al, 2002).

30°N

120°W 100°W 80°W
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Table 2.27 North American eddy covariance cross-validation sites.

Site code Site name Latitude Longitude Land cover Reference
(°N) (°E)
CA-SJ3 Sask — SSA 1975 Harv Yng Jack Pine .888  —104650 1 - Evergreen Needleleaf ForesZha et al.(2009
US-SP4 Slashpine-Rayonier-mid-rot — 12 yr-FL &  —-82200 1 - Evergreen Needleleaf ForesClark et al.(2009
CA-SF1 Sask — Fire 1977 500 —105820 1 - Evergreen Needleleaf ForesfAmiro et al.(2006
CA-TP2 Ontario — Turkey Point Young White Pine 420 —-80.460 1 — Evergreen Needleleaf ForesPeichl and Arair{2006
US-FR2 Freeman Ranch Mesquite Juniper — Texas 959  —98.000 8 — Woody Savannas Heinsch et al(2009
US-NC1 NC Clearcut 3810 76710 1 - Evergreen Needleleaf ForesSun et al(2010
US-NC2 NC Loblolly Plantation 3800 —-76.670 1 — Evergreen Needleleaf ForesSun et al(2010
US-Ivo Ivotuk — Alaska 68190 —155750 6 — Closed Shrublands Epstein et al(2009
US-SRM  Santa Rita Mesquite- Arizona 820 -110870 8- Woody Savannas Scott et al(2009
CA-TP3 Ontario — Turkey Point Middle-aged White Pine .20  —80.350 1 — Evergreen Needleleaf ForesPeichl and Arair{2006
CA-TP4 Ontario — Turkey Point Mature White Pine 420 —80.360 1 — Evergreen Needleleaf ForesPeichl and Arair{2006
CA-TP1 Ontario — Turkey Point Seedling White Pine 880 —80.560 1 — Evergreen Needleleaf ForesPeichl and Arair(2006
US-WBW  Walker Branch Watershed — Tennessee 986 —84.290 4 — Deciduous Broadleaf ForestHanson et al(2009
CA-Man BOREAS NSA — Old Black Spruce B0  —98480 1 — Evergreen Needleleaf ForesDunn et al.(2007)
US-LPH Little Prospect Hill — Massachusetts 220 72180 5 — Mixed Forest Borken et al(2006
US-Bar Bartlett Experimental Forest- New Hampshire  .060  —71.290 4 — Deciduous Broadleaf Forest Smith et al.(2002
US-Mel Metolius — Eyerly burn — Oregon &H80 —121500 1 - Evergreen Needleleaf ForesBond-Lamberty et ali2004)
US-Me3 Metolius-second young aged pine- Oregon .32@ —-121610 1 - Evergreen Needleleaf ForesHibbard et al(2005
US-Wil Intermediate hardwood (IHW) 40 —91.230 4 — Deciduous Broadleaf ForestNoormets et al(2008
US-Wi2 Intermediate red pine (IRP) M0 -91150 1 - Evergreen Needleleaf ForestNoormets et al(2009
Us-wi4 Mature red pine (MRP) 4840 —91.170 1 — Evergreen Needleleaf ForestNoormets et al(2007)
US-Wi5 Mixed young jack pine (MYJP) 4650 —91.090 1 — Evergreen Needleleaf ForestNoormets et al(2007)
US-Wi6 Pine barrens #1 (PB1) &0 —91300 7 — Open Shrublands Noormets et al(2007)
US-Wi7 Red pine clearcut (RPCC) &0 —-91070 7 — Open Shrublands Noormets et al(2008
US-wi8 Young hardwood clearcut (YHW) 40  —91.250 4 — Deciduous Broadleaf ForestNoormets et al(2007)
US-wi9 Young Jack pine (YJP) 420 —91.080 1 — Evergreen Needleleaf ForestNoormets et al(2008
CA-WP2  Poor Fen 5540 112330 11 - Permanent Wetlands Adkinson et al(2017)
2.4 Ecosystem—atmosphere carbon dioxide flux for model NEE error, however, remain an ongoing research
calculation topic, and the calculation itself is computationally expensive.

The method employed here uses an empirically derived
VPRM gross ecosystem exchange (GEE), ecosystem respiratatistical model to characterize VPRM NEE residual spread
tion (R), and net ecosystem exchange (NEE) were calculated- a middle ground between the joint Bayesian inversion with
for the 48 coterminous United States, Alaska, and CanaddCMC and the simple interpolation.
at three-hourly temporal resolution and one kilometer spatial It is known that eddy covariance observation error is pro-
resolution for 2002 to 2006. The MODIS products with 16- portional to NEE magnitude itselRjchardson et al2006.
day temporal resolution were simply repeated at each threeTypical magnitude for this random EC observation error
hourly interval across the 16 days. Three-hourly diagnosess roughly 20 to 30gC m?yr—1 (Richardson et al.2006
of GEE, R, and NEE were integrated to annual values andGoulden et a.1996, roughly an order of magnitude smaller
used to calculate annual anomalies (defined as the annuéthan the VPRM annual NEE residuals. Random eddy covari-
integrated value minus the 2002 to 2006 mean annual inteance observation error is a component of VPRM NEE er-

grated value). ror, making it reasonable to posit that VPRM NEE residual
magnitude is correlated to VPRM NEE magnitude. Further-
2.5 NEE residual spread estimation more, the structure of VPRM (Eg4.and 2) assumes that

temperature, water availability, and greenness (EVI) are pri-

This Study seeks upsca|ed NEE diagnoses accompanied tﬁ)ary drivers of NEE. It seems reasonable, then, that VPRM
uncertainty estimates. There are several methods of varytesiduals would be affected by these influences as well.

ing complexity available to quantify this uncertainty. A joint ~ Systematic bias in eddy covariance observations (such as
Bayesian inversion of VPRM parameters and VPRM NEE underestimation of NEE under low-turbulence conditions) is
variance against eddy covariance NEE observations using &/S0 an important contributor to land surface model uncer-
joint likelihood function would extract information from the ~ tainty (Williams et al, 2009. Typically a friction velocity
available data with maximum mathematical rigor (though is (#*) threshold is used to identify and remove conditions of
still vulnerable to aggregation errors in grouping scheme,low turbulence (e.gBaldocchj 2003; uncertainty in:* was

e.g. plant functional types, as well as errors in observationgecently estimated to contribute as much as 150 g€yn*

and driver data). Statistically rigorous likelihood functions
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to overall land surface model uncertainty (Reichstein et al, . [Ca” SSE. 27 cross_validation sites

unpublished data, cited Williams et al, 2009 141077 o PsSE, 65 parameterization sites
Using non-gap-filled observations from the 65 eddy co-

variance sites used to estimate VPRM parameter values, an&™ 1.2x10” -

nual integrated NEE residuals were calculated as the in---

tegrated sum of non-gap-filed NEE observations minus é 1.0x107 o .

VPRM NEE, both at EC site-specific native reporting res- ﬁ ‘ )
olution (generally 30 min, 60 min at a few sites). Residuals £ 60x10° :

Penalized SSE (umol s™' m)?

were calculated only at time stamps where both quantities ‘ ;
were available. With these integrated residuals squared dif- o i
ferences were calculated for each site year:

NEE2 A &f?;\fbb N cibfb% &
NEE,, i = (NEE — NEE)?. (4) ¥ S &
NG PN & N
® L <\’® &
NEE denotes annually integrated VPRM residual, atieE parameter set, number of parameters

denotes the mean of NERcross all site years. NEE ;i

is closely related to statistical variane® (02 — ZzN=1(xi _ Fig. 3. VPRM sum of squared errors vs. number of unique param-

eter values. Shown are the seven VPRM parameter sets available

p— 2 _ . . ) . _
x.). /(N 1)3 EStlmatIEg dNElgq diff n tern’;]s of knov(\;n qfu\a/lgRMfor upscaling. Parameter sets are labeled as (space grouyfiimye
tities provides a method to estimate the spread o grouping) used for VPRM parameter estimation. Left vertical axis

NEE errors that can be upscaled along with the flux diag-ghows sum of squared errors (SSE) for the 27 cross-validation sites

noses. not used to estimate VPRM parameters (RigTablel); right ver-
Regression models for NEE ;i were derived from sub- tical axis shows penalized sum of squared errors (PSSE) for the 27

sets of these candidate explanatory variables: VPRM aneross-validation sites combined with the 65 sites used to parame-

nual integrated NEE, total annual precipitation, annual mearterize VPRM (Fig.1, Tablel). Note the log-scale on the horizontal

surface air temperature, annual mean EVI, PFT, and yea®xis.

The set of models consisting of all combinations within the

categorical variables, the linear numerical terms, and the

quadratic numerical terms was searched exhaustively usin{re: those parameters are used for most of the analyses pre-

the gimulti packageQalcagno2019) for R (R Development ~ Sented here.

Core Team 2007 and the results ranked by Akaike’s In-

formation Criterion (AIC ,Akaike, 1976. Annual mean EVI

was calculated as the mean of 16-day MODIS EVI values

(see Sect2.3). Annual total precipitation and annual mean

temperature were calculated as the sum and mean, resp

tively, of the monthly mean °1x 1° Sheffield et al.(2006

reanalysis products.

3.2 VPRM NEE residual evaluation

To evaluate the quality of VPRM NEE diagnoses, Fg.
e[:C>[esents the histogram of VPRM NEE residuals calcu-
lated at eddy covariance site reporting intervals (30 min
at most sites; 60min at a few sites), calculated using
PFT-all-data VPRM parameters. The mean residual of
4.66 x 10~*umolCO:m~2s~1 corresponds to an annually

3 Results integrated flux of 0.18gCmfyr—1, small compared to
a typical observed EC annual NEE between 100 and
3.1 Land surface model parameter set ranking 3009 C m2yr~1. This suggests that the parameter optimiza-

tion achieved its task of optimizing VPRM to observed fluxes
As described in Sec®.2, we ranked the parameter sets that at hourly timescales. A normal distribution with the same
are useful for upscaling (this excludes the three individual-mean and standard deviation is overlaid; the observed residu-
site-based parameter sets) by sum of squared errors (SSEls show a higher peak around their mean but otherwise cor-
Figure3 presents these SSE values, plotted against the nunrespond closely to the normal distribution.
ber of unique parameter values. The solid curve plots the SSE Having demonstrated that the parameter optimization per-
for the 27 cross-validation sites not used for VPRM parame-forms well at hourly intervals we turn now to the annual
ter estimation, and the dashed curve plots the penalized sutimescale. Figures examines the distribution at the an-
of squared errors (PSSE; defined in S@c®) for all 92 sites  nual timescale, showing the VPRM NEE residuals integrated
(the 27 cross-validation sites and the 65 sites used to paranby site year. Because NEE gapfilling would introduce a
eterize VPRM). Figure suggests that the monthly and 10- new source of error to VPRM residuals, the annual inte-
day VPRM parameter sets overfit the data. The PFT-all-datgrated residuals in Fig are calculated from non-gap-filled
VPRM parameters achieved the lowest cross-validation SSENEE observations. The mean integrated residual value of
as well as a PSSE only slightly above the lowest PSSE; theret.6 g C m2yr—1 demonstrates that VPRM optimization also
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Fig. 4. Histogram of VPRM NEE residuals at eddy covariance Fig. 5.Histogram of VPRM annual integrated NEE residuals, PFT—
site reporting temporal resolution (30 min or 60 min), PFT-all-data all-data VPRM parameters. These are the residuals in4Figte-
VPRM parameters. NEE residuals are calculated as observed NEBrated by site year. The residuals are calculated as ((annual inte-
(non-gap-filled) minus VPRM NEE. A normal distribution proba- grated observed NEE, non-gap-filled) minus (VPRM annual inte-
bility density function with the same mean and standard deviationgrated NEE)).

is overlaid.

ing 1000 g C m2yr—1. VPRM was optimized to these data,

performed well at the annual scale. This observed residua@nd the left-side tail of the VPRM diagnosed NEE distribu-
distribution also follows a normal distribution (overlaid) rea- tions does contain more mass than the right side.
sonably well. Overall, the VPRM performance summarized by Figs.

Satisfied now that VPRM residuals are small relative to 5, and6 are encouraging for the ability of the parameter es-
EC-observed fluxes, we investigate whether 1 km VPRM di-timation process to optimize VPRM to eddy covariance ob-
agnosed annual NEE for North America seems reasonablgervations at both hourly and annual timescales.
when compared to EC-observed annual NEE. Figuzem-
pares the distribution of annually integrated VPRM NEE di- 3.3 VPRM fluxes
agnoses for the modeling domain (Sez#) with the dis-
tribution of annually integrated NEE observations from the Figures?, 8, and9 show annually integrated VPRM GEE,
2007 FluxNet synthesis dataset for the sites in Tdbl&o R, and NEE, respectively, for 2002. The larger-scale (order
obtain a meaningful comparison to model diagnoses, we> 100 km) spatial patterns are representative of the integrated
use the FluxNet synthesis dataset gap-filled NEE observafluxes for 2003 to 2006 (not shown). NEE is the difference
tions in this case. The gapfilling used the method$?af  between GEE an®, both much larger in magnitude. This
pale et al.(200§ and Moffat et al. (2007). VPRM repro-  raises detectability issues for NEE: this difference between
duces well the mode of the observed distribution as welltwo larger and roughly equal quantities is easily polluted by
as the right-hand tail (sources of @@ the atmosphere). errors from GEE andR estimation. Therefore, rather than
The left tail of the observed NEE distribution contains more focus on integrated annual NEE values or aggregated conti-
density than the VPRM diagnoses, suggesting that VPRMnental NEE, this study instead focuses on year-to-year NEE
estimates lower sinks of atmospheric £@an the gap- differences and NEE differences across different VPRM pa-
filled FluxNet 2007 synthesis dataset in some cases. Theameter sets.
FluxNet synthesis dataset contains a handful of site years Year to year flux differences are reported here as annual
with sinks of atmospheric Cfapproaching or even exceed- anomalies, calculated as integrated annual flux minus mean
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Fig. 6. Histograms of annually integrated NEE. Observations are
the 2007 FluxNet synthesis gap-filled annual NEE.

integrated annual flux (2002—-2006). VPRM integrated an-
nual flux anomalies for 2002—2006 are shown in Fit.
(GEE),11(R), and12 (NEE).

3.4 Estimated spread of VPRM fluxes

uncertainties 225
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Fig. 7. The 2002 annual integrated VPRM GEE, gCfyr—1.
PFT—all-data VPRM parameters. Black areas are outside of the
study domain.
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Determining whether these flux diagnoses are able to degig. 8. The 2002 annual integrated VPRM respiration,

tect meaningful interannual variability (IAV) requires a mea-
sure of the variance of annual integrated NEE. Sec®idén
describes the empirical derivation of a statistical model to

predict the squared difference between the annual integrate °

VPRM residual and its mean (Nrggdiﬁ, Eq. 4) across site

years. Of the candidate models, the best-fitting model (low-

est AIC) was
NEEL, g = 2.66 x 10 NEE{ppy +
5.72 NEE/prv + 9.86 x 107 T+
3.95x 102 pcp? + 2.05 x 10°. (5)

NEEyprMm is annual integrated VPRM NEE, T is annual
mean temperaturéC), and pcp is annual total precipitation
(mm). The fit achieved a multipl& squared of 0.289, with
the coefficients significant gt < 0.001 (NEI?,PRM), p<
0.05 (pcp), p < 0.1 (T), and no significance for NEfprm
(p =0.12).

The regression model in E&. was tested at the cross-
validation EC sites (Tabl@, Fig. 2). Figure13 (top panel)
shows observed vs. predicted NEfG with the 95%

www.biogeosciences.net/11/217/2014/

gCm2yr~1. PFT-all-data VPRM parameters. Black areas
are outside of the study domain.
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Fig. 9. The 2002 annual integrated VPRM NEE, gC?ryrfl.
PFT-all-data VPRM parameters. Black areas are outside of the
study domain.
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Fig. 10.Annual anomaly, annual integrated VPRM GEE, calculated using PFT-all-data VPRM parameters. Units ar?e)gtlr.TAnoma-
lies are calculated as annual integrated VPRM GEE minus the 2002—-2006 mean annual integrated VPRM GEE. Thus negative values denot
lesser than average atmosphere to ecosystepfldQ Black areas are outside of the study domain.
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Fig. 11. Annual anomaly, annual integrated VPRM respiration, calculated using PFT-all-data VPRM parameters. Units areygCGm
Anomalies are calculated as annual integrated VPRIMinus the 2002—2006 mean annual integrated VPRNhus negative values denote
greater than average atmosphere to ecosystemfl0Q Black areas are outside of the study domain.
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a) 2002 b) 2003 c) 2004
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Fig. 12.Annual anomaly, annual integrated VPRM NEE, calculated using PFT-all-data VPRM parameters. Units aTr%)gCImAnoma-
lies are calculated as annual integrated VPRM NEE minus the 2002—2006 mean annual integrated VPRM NEE. Thus negative values denote
greater than average atmosphere to ecosystepfldf Black areas are outside of the study domain.

prediction interval. The prediction intervals at each point areSSE (Fig.3). The starkly different spatial patterns of grow-
calculated from the regression slope and intercept variancesng season NEE from the two parameter sets with similar
which are estimated from the residuals of the regression fitcross-validation SSE demonstrate the problem of equifinal-
Of 56 site years in the cross-validation data set, one obseiity in land surface model results. The NEE differences be-
vation is outside of the 95% prediction interval. The bottom tween the two parameterizations are of similar magnitude to
panel of Fig.13 shows histograms of the observed and pre-the estimated VPRM NEE errors of Fit4.

dicted values. The distributions are similar, except for pre-

dicted values around zero. This highlights a shortcoming of i i

the regression model approach: negative predicted N 4 Discussion

values are possible. Thl§ ;hould emphasag that, as with any 1 Model parameterization

regression model, predictions are only valid when the ex-

planatory variables take values within the ranges used 1o fitrhe five lowest cross-validation SSE values in Higre not

the model. drastically different from one another, though the penalized

Figurel4shows the square root of estimated NEf«for  SSE values for the two most parsimonious parameter sets
the modeling area for 2002, providing an estimate of VPRM (g|_g]| and all-annual) are significantly higher. In combina-
error magnitude. The spatial patterns for 2003 to 2006 (notjon with the parameter distributions presenteditton et al.
shoyvn_) are S|m_|lar. The estimated VPRM errors are broadly(2013, this result might suggest that order 100 parameters
of S|m|Ia_r magnitude to the VPRM NEE differences between 5. optimal for flux upscaling. The two parameter sets con-
years (Fig12). sidered in Fig3 that use parameterization temporal windows
shorter than annual (monthly and 10 day) produced notably
3.5 Modeled flux equifinality higher cross-validation SSE values and higher penalized SSE

values than the other five parameter sets, suggesting these pa-
Figure 15 presents the June-July-August VPRM NEE for rameterizations overfit the observations.
the southeastern USA for two different parameter sets: all- Considered in conjunction with the differing spatial be-
sites—all-data (top panel) and PFT-all-data (bottom panel)haviors in Fig.15, the similar PSSE values among the better-
These two parameter sets result in similar cross-validatiorperforming parameter sets in Fi§.suggest an instance of
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Fig. 13. Results from an empirical regression model (By.for 4.2 Spatial behavior of modeled fluxes

VPRM NEE residual spread. Units are (g CAyr—1)2. Top panel

shows observed values vs. predicted values at 27 cross-validatioqrhe broad spatial patterns in the NEE, GPP, &iksults

sites (Table2). Observed values are outside of the 95 % prediction : .

interval where the solid line falls outside of the dashed lines. Onepresented here (Fig3, 8, and 9)_Iarge|y agree'WIIh o.ther

of 56 predicted values (2 %) is outside the 95 % prediction inter- analyses (e.gBeer et al. 2010 Xlao.et al, 201% Rl.'mnmg

val. The bottom panel shows histograms for observed values an(_fjEt al, 200‘9_- AS_ we W0U|d expect given the prominence of

model-predicted values. the vegetation index in VPRM structure (E1), the patterns
of strong GPP reflect areas of relatively dense vegetation as

measured by vegetation indexiete et al.2002 or biomass

(Myneni et al, 20079).

Zgg:g The relatively large respiration diagnoses for the south-
428.6 eastern USA in Fig8 is also present in the 2003 to 2006
392.9 diagnoses. This area, roughly covering the US states of
357.1 - T )
3214 Louisiana, Mississippi, Alabama, Georgia, and South Car-
2857 olina, is dominated by the mixed forest PFT in the MODIS
gig-g land cover classification (Sec2.3). The three mixed for-
178.6 est eddy covariance sites used for VPRM parameterization
142.9 are in Wisconsin, USA and Ontario, Canada. Rather than
Wt conclude that the mixed forests of the U.S. Gulf Coast are
35.7 much stronger sources of biological g@an other classes
0.0 of southern forests or more northerly mixed forests, sev-
[ Missing Data eral alternative explanations seem more likely. First, per-

haps the carbon cycle mechanics of northern mixed forests

Fig. 14. The 2002 estimated square root of NEE residual squareddodng.t describe well the Ibehtawor of soluttherly rrT]uxed folr.ezt.s
difference (Eq4), calculated using PFT-all-data VPRM parame- and diagnose erroneously strong respiration when applied in

ters. Units are gCm?yr—1. Estimates are calculated by a statis- SOUt_he”Y regipns. Second, three eddy covgriance sites may
tical model (Eq5, Sect.2.5) with explanatory variables annual in- Provide insufficient data to characterize this (or any) PFT.
tegrated VPRM NEE, annual total precipitation, and annual meanL-astly, stand age is an important driver of NHEtak et al,
surface temperature. The 2003—2006 estimated annual errors (@003, and is ignored by the modeling methods employed
shown) show similar spatial patterns. here.
The region of positive NEE in Fid.5, bottom panel corre-

- ) sponds to the region of large diagnosed respiration discussed
equifinality: PFT—all-data parameters and all-sites—-all-dataapove. Once again, instead of concluding that respiration is
parameters produce comparable sums of 30min squaregqysing the mixed forests of the southeastern USA to re-
residuals via strongly divergent spatial outcomes. lease on the order of 150gCthyr—! to the atmosphere,
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the explanations discussed previously (exclusively northerlystructure of VPRM GEE (ER) this leaves moisture avail-
mixed forest parameterization sites; insufficient quantity ofability, PAR, and vegetation index as primary candidates for
mixed forest parameterization sites; potentially importantdriving GEE variability.
ecological drivers not included in VPRM) seem more plausi-
ble. 4.3 VPRM uncertainty estimation

The differences in growing season NEE in the southeast-
ern USA between the two parameter sets shown in B5g. In spite of itsr2 of 0.289, Eq.5 performed well across 27
highlights a question: what are the most appropriate pa<cross-validation sites on two performance measures: First,
rameterization time and space windows for a land surfaceb5 of 56 predicted errors (98 %) fall within the 95 % predic-
model? In contrast, other results of this work might suggesttion confidence interval (Fig. 13, top panel). Second — and
de-emphasizing this line of inquiry. For example, the total crucially — the distribution of predicted errors matches the
30 min cross-validation SSE values (FR). across the five distribution of observed errors (Fig. 13, bottom panel) at the
most optimally fitting VPRM parameter sets are nearly equal,cross-validation sites. This suggests that the distribution of
suggesting that the choice of parameter optimization spatiatiagnosed VPRM NEE error magnitudes is consistent with
and temporal windows is perhaps of secondary importanceobservations.
In that case, the drastically lesser computational cost makes The multipler? value of 0.289 achieved by E§.may at
coarser spatial and temporal windows preferable. a glance appear relatively low. However, our ultimate goal

Notable in the annual anomaly diagnoses (FIg5SGEE), in this exercise is a spatial estimate of VPRM NEE uncer-
11 (R), and12 (NEE)) is the much larger variability of GEE tainty. In this context it is more important to successfully di-
as compared t®. That GEE variability is reflected in NEE agnose the distribution of error magnitudes than to accurately
variability as well. This could be a consequence of VPRM'’s capture every local rise and fall of the error magnitude as a
structural treatment of respiration as a linear function of tem-function of its drivers. This is because spatial aggregation
perature (Eql). In contrast VPRM GEE (ER) considers  of high-resolution VPRM error diagnoses will smooth out
a number of other variables in addition to temperature. In-the high-resolution inaccuracies without sacrificing the more
creased interannual variability (IAV) in GEE may simply re- important regional accuradililton et al.(2013 provides the
flect that there are more constituent quantities to vary. spatial error covariances needed to perform this aggregation.

Much of the stronger GEE IAV (FidL0) occurs in the up- Though the regression model estimation methods devel-
per midwestern USA. The 2006, for example, showed a paroped here are applied to estimate VPRM NEE error magni-
ticularly strong VPRM GEE diagnosis centered around thetude, the approach is equally applicable to estimating errors
US state of Indiana. This area is dominated by agriculturein an ecosystem model diagnosis of GEERrthis change
— the cropland PFT in the MODIS IGBP landcover classifi- would be subject only to quality of the partitioning of EC
cation. Within the cropland PFT different agricultural prod- NEE observations into GEE arl
ucts are known to vary in the strength of their carbon uptake. As noted in Sectl, several recent studies have attempted
Corn, for example, has particularly strong atmospherie CO continent-scale carbon flux diagnoses; those diagnoses gen-
uptake Lokupitiya et al, 2009. Without parameterizations erally do not report uncertainteer et al.(2010 reported
specific to particular crops, model NEE diagnosis can be poospatial estimates of GPP accompanied by globally aggre-
(Lokupitiya et al, 2009. There are only five agricultural EC gated uncertainties. The work presented here reports spatial
sites in the group used to parameterize VPRM (Tahl& his GPP, R, and NEE diagnoses, and further extends the liter-
makes it possible that the model parameterization suffer@ture by estimating annual continental NEE uncertainty in
from the same representativeness problem that may cause pspace.
tentially spurious VPRM respiration spatial structure in the Beer et al(2010 estimate GPP uncertainty for their LUE
southeastern USA. Many farms rotate crops from one seasomodel by randomly resampling from within their population
to the next; for example, corn in yeafollowed by soybeans of parameters; these parameters are optimized to eddy co-
in yeary + 1. If reflected in remotely sensed ecosystem vari-variance observations at each observation site. Because the
ables (e.g. vegetation indices or moisture) this sort of rotatiorparameters are optimized to flux observations, these uncer-
could itself cause the GEE interannual variation seen in theainty estimates include observation errors and model param-
VPRM annual anomalies. Similarly, if the cropland VPRM eterization errors. Driver data uncertainty is quantified by an-
parameter estimation EC sites (US-Nel, US-Ne2, US-Ne3alyzing uncertainty separately for three different reanalysis
US-Bol, and US-Bo2) were consistently planted with a par-products.
ticular crop during the periods used for parameter estimation, The difference between EC-observed NEE and model
VPRM should not be expected to perform well for differ- NEE includes contributions from the error sources described
ent crops. Looking to other potential causes for large year tdn Sect.2.2 eddy covariance observation error, VPRM pa-
year changes in the upper midwestern USA, VPRMiag- rameterization error, driver data error, VPRM structural er-
noses in that region show little year to year variation, remov-rors, and natural variability. Because the uncertainty esti-
ing temperature anomalies as a driver of GEE IAV. From themates presented here are derived from model-data residuals,
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all land surface model error sources other than systematiforms quite well in close proximity (order one kilometer)
eddy covariance observation bias are considered implicithto an optimization location. Eddy covariance observation er-
by this approach. This makes these estimates inclusive of &or is independent of VPRM optimization spatial and tem-
broader range of error sources relative to most approachegoral windows, so its contribution to either nugget should re-
that focus on propagating specific errors through a model calmain constant across these windows. The much larger nugget
culation. The method also avoids the need to quantify distri-when the temporal optimization window is all available ob-
butions of specific error sources, but sacrifices the possibilservations therefore suggests that microscale VPRM NEE er-
ity of partitioning the estimated error into contributions from ror increases dramatically from its value when VPRM is op-
constituent sources. timized monthly for individual sites. This means that VPRM
Because it is based on model-data residuals, the regresan perform quite poorly even in close proximity to an opti-
sion model method presented here represents a different aprization location in these cases.
proach to flux diagnosis uncertainty from the metho8eér Light-use efficiency models such as VPRM make climate-
et al. (2010, which individually samples different model driven diagnoses of NEE (Egsand?2). Widespread VPRM
error contributors such as parameterization uncertainty anénnual NEE error magnitudes (Fi/4, this section) on the
meteorological driver data uncertainty. Direct comparisonorder of VPRM NEE interannual variability (Fid2) imply
is difficult because the uncertainty estimates presented herhat climate (or, at least, climate viewed through the prism of
quantify NEE errors for North America, whilBeer etales-  VPRM) cannot reliably explain NEE interannual variability.
timate globally aggregated GPP uncertainty. It is simple in
concept, however, to extend the methods shown here to GP#.5 Caveats

uncertainty and to the global scale. ) ) )
The results reported here were compiled using VPRM, a sim-

ple LUE-based land surface model, and are therefore most

directly informative toward similar models. Questions of spa-

The estimated nugget values from the VPRM NEE errortial and temporal resolution for model parameterization arise
for more complicated mechanistic ecosystem models as well.

spatial covarianceHilton et al, 2013 quantify combined P
eddy covariance observation error and “microscale varia-Whether optimizing more complex model structures would

tion”. that is. the behavior of the difference in VPRM NEE 'esult in similar total PSSE values for strongly contrasting
error between two locations that are closer to one anothepPatial and temporal optimization windows (as reported here
than the closest pairs of towers among the 65 used for coll Fig. 3) is a question for further analysis. Regardless, this

variance parameter estimation. The median estimated sed/O"k suggests that applying model parameterizations outside
sonal nugget values range from#8x 10~5 (individual-site— of the climate and ecosystem conditions where the parameter

monthly VPRM parameters) through 0.775 (PFT-all-data pa_values were optimiz'ed can produce suspicious spatial struc-
rameters) to 0.884 (all-sites—all-data parameters), with unitUres such as the widespread flux of £X0 the atmosphere
of flux squared: (umol COM—2s1)2. Converted to stan- across the southeastern USA in Fid (bottom panel) and

dard deviation and integrated annually (g Ciyr—1) these Fig. 8. o ) .
nuggets are 21.0, 586, and 603. The 27 cross-validation sites (Fig, Table 2) generally

In units of standard deviation the annual integrated NEENave shorter observational records than the sites used for
error nugget of 21.0g Cn?yr-2 from the individual-site— VPRM parameterization. Repeating the cross-validation ex-
monthly VPRM parameters is essentially equal to the anPeriment with different, perhaps randomly selected subsets

nual total eddy covariance random observation error ofMight be auseful exercise. _ _ L
iZOng—Zyr—l estimated byRichardson and Hollinger In add|t|on,_ forest stand age ;mcen disturbance is a first
(2009. The 65 eddy covariance sites used for fitting include ©rder determinant of NEE magnitudeityak et al, 2003.

26 pairs that are within 10km of each other, so there are>tructurally, VPRM does not consider stand age (2gnd
many data points at small separation distances to quantify) @nd the work presented here does not attempt to assess
the nugget. disturbance history. For this reason, this work does not em-

At coarser spatial and temporal parameter estimation resPhasize integrated NEE magnitudes or attempt regional NEE

olutions (PFT—all-data, all-sites—all-data, etc.) the NEE error2dgregation. , , o
standard deviations of roughly 600 g CAyr—* calculated Likewise, the NEE residual magnitude statistical model
from the nuggets are of similar magnitude to the errors esderived here (Sec®.5) was fit using observed NEE resid-

timated from VPRM NEE and climate drivers (Fig3) for uals and observed climatic drivers. While estimating uncer-
high-productivity PFTs (e.g. forests, croplands). tainty directly from observed residuals is a strength of the
' approach, as with any regression these results cannot pro-

These results suggest that when VPRM is optimized to X ! : :
NEE observations at short temporal scales (order one montH{!C€ meaningful estimates where the driver variables depart
e range of values used for fitting.

the VPRM NEE nugget is dominated by eddy covariance ob
servation error — that is, under these conditions VPRM per-

4.4 NEE error covariance nugget
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5 Conclusions Energy under contract DE-AC02-05CH11231 as part of the Atmo-
spheric Radiation Measurement Program. Research at the Morgan
This work presents high-resolution diagnoses of NorthMonroe State Forest site was supported by the Office of Science
American NEE and NEE interannual variability accompa- (BER), US Department of Energy, grant no. DE-FG02-07ER64371.
nied by NEE error estimates, all derived from a simple light-  This work used eddy covariance data acquired by the FLUXNET
use efficiency-based land surface model (VPRM). Severafommunity and in particular by the_foIIO\_Ning networkg: Ameri-
different model optimization spatial and temporal resolutionsF!ux (US Department of Energy, Biological and Environmental
achieve similar fits when evaluated by total sum of square esearch, Termestrial Carbon Program (DE-FGO2-04ER63917

S i : d DE-FG02-04ER63911)), FluxNet-Canada (supported by
errors at cross-validation sites and penalized sum of square@lCAS NSERC, BIOCAP, Environment Canada, and NRCan)

grrors at th? mo‘?'e', parameterizgtion sites. Cross'yalid"‘_‘tio%reenGrass, LBA, NECC, USCCC. We acknowledge the financial
is useful for identifying parameterizations that overfit assim- gypport to the eddy covariance data harmonization provided by
ilated data, however. Cross-validation SSE eliminated two ofcarboEuropelP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute
seven parameterizations we considered for upscaling. Penajor Biogeochemistry, National Science Foundation, University
ized SSE from the parameterization sites eliminated anothesf Tuscia, Université Laval and Environment Canada and US
three. This sort of method to evaluate model parameter set®epartment of Energy and the database development and technical
is computationally inexpensive and would make a welcomesupport from Berkeley Water Center, Lawrence Berkeley National
addition to future flux diagnoses. Laboratory, Microsoft Research eScience, Oak Ridge National

Two of our model parameterizations achieved similar Labprgtory, University of California — Berkeley, University of
cross-validation SSE, but reached their NEE diagnosed"9"Ma-
throug_h starkly contrasting spatiz_il distribL_Jtions of_ NEE. Edited by: M. Williams
Modeling efforts that do not consider multiple spatial and
temporal parameterization resolutions risk missing the struc-
tural uncertainty that this equifinality reveals, and that radi-
cally different fluxes across space may not be readily distin-References
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