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Abstract. This paper deals with the simulation of microbial
degradation of organic matter in soil within the pore space
at a microscopic scale. Pore space was analysed with micro-
computed tomography and described using a sphere network
coming from a geometrical modelling algorithm. The bio-
logical model was improved regarding previous work in or-
der to include the transformation of dissolved organic com-
pounds and diffusion processes. We tested our model using
experimental results of a simple substrate decomposition ex-
periment (fructose) within a simple medium (sand) in the
presence of different bacterial strains. Separate incubations
were carried out in microcosms using five different bacterial
communities at two different water potentials of−10 and
−100 cm of water. We calibrated the biological parameters
by means of experimental data obtained at high water con-
tent, and we tested the model without changing any parame-
ters at low water content. Same as for the experimental data,
our simulation results showed that the decrease in water con-
tent caused a decrease of mineralization rate. The model was
able to simulate the decrease of connectivity between sub-
strate and microorganism due the decrease of water content.

1 Introduction

It is increasingly recognized that accessibility is one of
the major factors governing soil organic matter decompo-
sition (Dungait et al., 2012). Indeed, soil microorganisms

live in a complex network of pores, resulting from the three-
dimensional arrangement of soil solid particles. This network
is more or less filled with air and water, variously inter-
connected and in which microorganisms as well as organic
resources are spatially heterogeneous (Chenu and Stotzky,
2002; Nunan et al., 2003, 2007; Young et al., 2008). Mi-
crobial degradation of soil organic matter is then expected
to depend on the accessibility of organic matter to microor-
ganisms at the microscale (i.e. on their spatial co-occurrence
or separation, and on the rates of diffusion of substrates and
enzymes, as well as on local favourable conditions for the
microorganisms).

Current models of soil organic matter dynamics, such as
CENTURY (Kelly et al.,1997) and RothC (Coleman et al.,
1997), do not take such microscale processes into account,
but they typically are process-oriented multi-compartmental
models that divide soil organic matter into conceptual pools
with distinct turnover times, assuming that a combination of
biochemical and physical properties controls decay (Man-
zoni and Porporato, 2009). Soil texture or clay content is
used in some models to modify decomposition processes, but
the majority of the models treat soil as homogeneous. These
models are capable of simulating soil organic matter dynam-
ics at long timescales (Smith et al., 1997), but they are limited
in their ability to predict short-term changes in soil organic
matter (SOM) degradation or to account for changes in soil
structure or moisture (Gottschalk et al., 2010; Falloon et al.,
2011). Mechanistic representation of small-scale processes is
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identified as one of the priorities to improve soil organic mat-
ter dynamics models (Manzoni and Porporato, 2009). Recent
modelling efforts have attempted to understand how micro-
bial processes such as decomposition or competition among
species are affected by diffusion in 1-D or 2-D homogeneous
porous media (Long and Or, 2009; Ingwersen et al., 2008).
A few recent studies have also simulated microbial degrada-
tion in structured environments. Gharasoo et al. (2012) have
developed a 2-D pore network model able to simulate the
biodegradation of a dissolved contaminant in a virtual pore
network according to different scenarios of microbial spatial
distributions. Resat et al. (2012) have built a model where
soluble substrate and enzyme kinetics were described with
continuous partial differential equations on a 3-D grid. The
pore distribution in aggregates was projected onto a con-
structed lattice grid where each grid unit was labelled with
a pore parameter, which defined it as solid or porous.

So far the spatial complexity of the pore network in real
soils has rarely been explicitly represented. Exceptions in-
clude recent work by Kravchenko et al. (2012), who used a 3-
D microscopic-based biophysical model to explore how man-
agement affects fungal colonization and interaction. This is
partly because it has been possible only recently to visualize
the soil pore network, using X-ray microtomography (Peth et
al., 2008; Mooney, 2002; Wildenschild and Sheppard, 2013)
and therefore obtain the data necessary to produce an explicit
description of the microscale structure of soil. Computed to-
mography images provide a first rough pore space represen-
tation by means of a set of voxels. However, the size of this
representation, typically up to 30 million of voxels, is too
high to be used effectively for simulating soil processes in
the pore space, and is restricted to relatively small volumes
of soil (Kravchenko et al., 2011). Using X-ray tomography
images as model input data, Monga et al. (2007) derived
from this a network of volume primitives to produce a ge-
ometrical representation of pore space in soil that had sim-
ilar properties (i.e. total pore volume, pore connectivity) to
those of real soil samples. Biological activity was incorpo-
rated and the decomposition of organic matter was simulated
at the microscale (Monga et al., 2008). The latter model did
not, however, take into account the diffusion of dissolved or-
ganic matter that we believe to be an important regulator of
microbial decomposition in soil.

The objective of the present paper is to test our modelling
approach, partly described in Monga et al. (2008, 2009) with
real data of soil structure and measurements of decomposi-
tion of dissolved organic matter. We introduced the diffusion
process into the graph-based approach using Fick’s laws to
simulate mass exchanges between pores. We used an experi-
mental system where it was possible to control and measure
variables that enabled us to test and parameterize our model
(soil pore space geometry together with biological variables).
Specifically, we experimentally quantified the effect of mois-
ture content within a soil structure on the microbial degra-
dation of fructose. We investigated the performance of the

model by testing its ability to reproduce (i) the water reten-
tion relationship for the microcosms and (ii) the consequence
of water distribution on the microorganisms respiration. We
compared the results of our 3-D modelling approach with
those obtained using a moisture limiting function from the
literature.

2 Material and methods

2.1 MOSAIC II model

As described in Monga et al. (2007) and Ngom et al. (2012),
we approximated the geometry of the pore space by a net-
work of volume primitives. To do so, we used a geometrical
algorithm based on Delaunay triangulation to calculate the
set of maximal spheres that describe the pore space geome-
try. Then we extracted a minimal set of the maximal spheres
in order to obtain a compact representation of the pore
space. A relational attributed valuated graph (“graph-based
approach”) was finally attached to the spheres (Monga et
al., 2007). LetG(t) = (Bi,Ai,Fi(t)) be the valuated graph,
where (Bi) denotes the set of nodes (spheres) of the graph,
(Ai) the set of arcs and (Fi(t)) the feature vector defining the
physical and biological parameters of the nodesi at a given
time t . We assumed that the pore space does not vary, and
therefore only the biological features and dissolved organic
matter (DOM) depend on time as detailed below.

In previous version of our model (Monga et al.,
2008), we modelled organic matter decomposition using an
offer–demand approach (Masse et al., 2007). We assumed
that, depending on the minimum values of the degradation
rate of solid organic matter or microbial growth rate (both
expressed in C units), one of these two kinetics was domi-
nating the decomposition rate. Here we extended the model
by including DOM, coming from the hydrolysis of solid or-
ganic matter as one intermediate compartment that is often
included in soil organic matter models (e.g. Garnier et al.,
2003). A geodesic distance was previously used to connect
DOM and microbial biomass located in different pores. The
geodesic distance led to an immediate availability of the sub-
strate for microorganisms if connecting paths exist. In this
new version of the model, we modified the organic matter
decomposition module in order to describe the production of
dissolved organic matter by hydrolysis of solid organic mat-
ter and introduce mechanistic diffusion of DOM in pores. As
in soils, DOM diffuses between microbial habitats, where it
is assimilated and mineralized. The microbial decomposition
simulation was processed by graph updating using time dis-
cretization as described in Monga et al. (2008).

Let Bk in G be a node attached to a volume primitive
(i.e. pore). The biological and physical featuresFk(t) that
describeBk are as follows:
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Figure 1: Biological model 

 

Fig. 1.Biological model.

– Fk(1)(t): mass of microbial biomass (MB) (gC),

– Fk(2)(t): mass of dissolved organic matter (DOM)
(gC),

– Fk(3)(t): mass of soil organic matter (SOM) (gC),

– Fk(4)(t): mass of fresh organic matter (FOM) (gC),

– Fk(5)(t): mass of inorganic carbon CO2 (gC),

– Fk(6)(t): presence of water or air,

– Fk(7)(t): volume of the sphere.

We described the microbial decomposition process with five
compartments (Fig. 1), namely MB (microbial biomass),
FOM (fresh organic matter), SOM (soil organic matter),
DOM (dissolved organic matter) and CO2 (mineralized or-
ganic matter). FOM and SOM are decomposed rapidly and
slowly, respectively. DOM comes from the hydrolysis of
SOM and FOM. DOM diffuses through water paths (water-
filled spheres) and is consumed by MB for its growth. We
hypothesized that MB does not move. Dead microorganisms
are recycled into SOM and DOM. MB respires by producing
inorganic carbon (CO2), as represented in Fig. 1.

The changes of the biological featuresFi(t) within a time
step1t in a water-filled sphereBi are expressed as follows:

Fi (1)(t + 1t) = Fi (1)(t) − ρFi (1)(t) (1)

1t − µFi (1)(t)1t +

(
ϑDOMFi (2)(t)

Kb × Fi(7)(t) + Fi (2)(t)

)
Fi (1)(t)1t,

Fi (2)(t + 1t) = Fi (2)(t) + pmµFi (1)(t) (2)

1t −

(
ϑDOMFi (2)(t)

Kb × Fi(6)(t) + Fi (2)(t)

)
Fi (1)(t)

1t + ϑSOMFi (3)(t)1t + ϑFOMFi (4)(t)1t,

Fi (3)(t + 1t) = Fi (3)(t) + (1− pm)µFi (1)(t) (3)

1t − ϑSOMFi (3)(t)1t,

Fi (4)(t + 1t) = Fi (4)(t) − ϑFOMFi (4)(t)1t, (4)

Fi (5)(t + 1t) = Fi (5)(t) + ρFi (1)(t)1t, (5)

whereρ is the relative respiration rate (d−1), µ the relative
mortality rate (d−1), pm the proportion of MB that returns to
DOM (the other fraction returns to SOM),ϑFOM andϑSOM
the relative decomposition rates of FOM and SOM respec-
tively (d−1), andϑDOM (d−1) and Kb (gC) the maximum
relative growth rate of MB and constant of half-saturation of
DOM by MB, respectively.

In MOSAIC II, the implementation of the diffusion pro-
cess of DOM within water-filled pore space by updating the
valuated graph representing the pore network was performed
according to classical diffusion scheme. Diffusion of DOM
between two connected water-filled pores (Bk, Bp) can be
expressed as the material exchangeδmkp:

δmkp =
−D

(
dk − dp

)
Skpδt

gkp

(6)

with

dk =
Fk (2)(t)

4
3πr3

k

(7)

dp =
Fp (2)(t)

4
3πr3

p

,

whereD denotes the molecular diffusion coefficient of DOM
in water (cm2 d−1), gkp corresponds to the distance between
the two water-filled pores (cm) (calculated as the distance be-
tween the centres of two neighbouring water-filled spheres),
dk anddp denote the DOM concentration within the water-
filled poresBk andBp (gC cm−3), respectively, andrk and
rp denote the radius of the poresBk andBp (cm).Skp is the
contact surface between the two water-filled pores (cm2).

The DOM mass variation due to diffusion can then be ex-
pressed as follows (first Fick law):

Fk(2)(t + 1t) = Fk(2)(t) + δmkp, (8)

Fp(2)(t + 1t) = Fp(2)(t) + δmkp. (9)

The mass transfer between water-filled poresBk andBp be-
tween timet andt+dt is calculated att . If the total estimated
mass transfer for poreBk, 1mk exceedsFk(2)(t), then the
available mass is distributed proportionally to the neighbour-
ing pores.

Equations (1)–(10) express the change of the biological
and biochemical vectors describing each of the water-filled
pores (graph node) within time step1t . These equations cor-
respond to the discrete version of a partial differential equa-
tion system (in 3-D space) and describe the biological model
MOSAIC II.
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The distribution of air and water in the sphere network was
performed by applying an algorithm based on the Young–
Laplace law in the sample border to determine spheres filled
with water according to water potential (Monga et al., 2008):

1p =
2σ cosθ

req
, (10)

with 1p the capillary pressure (m),req the equivalent max-
imum radius of water-filled pores (m) at1p, αg the contact
angle equal to 0, andσ the surface tension of water equal
to 0.0728 N m−1. According to the capillary pressure, the
spheresBi were either filled by water (Fi(6)(t) =1) or empty
(full of air, Fi(6)= 0). Then an iterative drainage algorithm
was used to drain the remaining water inside the sample if
it was connected to air pathway (Monga et al., 2008). A wa-
ter retention curve was predicted this way by calculating the
total volumetric water content as a function of pressure.

2.2 Biodegradation experiment

In order to test the model, we performed experiments in
which we monitored the mineralization of a simple soluble
substrate, fructose, by different single bacterial species in
sand microcosms. Sand was selected as a simplified variant
of soil architecture and because it does not add additional
SOM to the system. The 3-D structure of soil pore space of
the sand was obtained by X-ray microCT (described below).

A range of bacterial species with differing physiologi-
cal properties were selected: threeArthrobacterspecies re-
named as 3R, 7R, and 9R; and twoRhodococcusspecies re-
named as 5L and 6L. The different bacterial strains tested
were isolated from a soil and selected for their ability to
grow in a minimal medium amended with fructose in aer-
obic conditions (Coucheney, 2009). Microcosms consisted
in 60 g of dry sand, placed in an autoclavable glass jar.
Quartz sand of Fontainebleau (Prolabo), with 150–300 µm
grain size, was used after rinsing with deionized water and
drying in an oven for 1 h at 500◦C in order to oxidize
any remaining organic matter present. An amount of pure
bacterial cultures (Approx. 10∧6 cells) of each species was
inoculated in the sterile sand microcosms with a minimal
medium (1.28 % Na2HPO4–7H2O, 0.3 % KH2PO4, 0.05 %
NaCl, 0.1 % NH4Cl, 0.024 % MgSO4 and 0.001 % CaCl2;
Sambrook et al., 1989) containing fructose as a sole carbon
source (8 mg C/microcosm, i.e. 0.13 mg g−1 sand) in three
replicates. The minimal medium containing the bacterial sus-
pension was thoroughly mixed with the sand under sterile
conditions, disposed in a Petri dish and compacted at a fixed
density of 1.56 g cm−3. The amount of water was adjusted
in order to achieve two contrasting gravimetric water con-
tents of 0.216 and 0.087 g H2O g−1 sand (equivalent to water
potentials of−10 and−100 cm, respectively). The concen-
trations of fructose were 0.26 and 1.53 mg C cm−3 of water
for high and low water contents, respectively. The concentra-
tions of bacteria were 4.10−9 and 10−8 mg C cm−3 of water

for high and low water contents, respectively (we assumed
that one bacterium contains 5.10−14 mg C). Each microcosm
was then closed inside an air-tight jar and incubated for a
week at 25◦C. An aliquot of a few microlitres of the atmo-
sphere was taken daily and analysed by gas chromatography
(Agilent 3000A) in order to measure CO2 concentration in
the atmosphere of the jar. All measurements were replicated
three times.

2.3 Physical characterization of the sand

The water release curve of the sand was measured using pres-
sure plates (n = 3). The total porosity of the sand column cal-
culated from the water retention curve was 38 %. The sand
column was scanned with a high-resolution X-ray micro-
computed tomography machine (µSIMCT Equipment: SIM-
BIOS Centre University of Abertay Dundee, Scotland) at a
voxel resolution of 5 µm. For the numerical simulations, we
extracted an image of 500× 500× 500 voxels (i.e. 15 mm3)
from the total 3-D image, which was the largest sample we
could comfortably cope with given the memory requirements
and computing times. For the simulations we have done, on
a regular PC, a few hours (2–3 h) were necessary to run one
simulation with diffusion. A global threshold was used to
segment the CT images and identify the pore space within the
3-D samples. The threshold value was adjusted in order to fit
a porosity of 31 %. This was the porosity calculated from the
experimental water retention curve considering pores with
diameters larger than 5 µm (i.e. pores filled with water be-
tween−600 and 0 cm of water).

2.4 Simulating microbial decomposition by graph
updating with Mosaic II

As fructose is a soluble molecule and the sand was OM-free,
we assumed that initially only MB (microbial biomass) and
DOM (dissolved organic matter) were present within pores.
The DOM was initially spread in a homogeneous way within
the water-filled pores space with the same amount but with
different concentrations for each water content. The MB was
initially spread randomly within the water-filled pore space
also with the same amount but with higher concentration for
lower water content. At the start of the simulation, SOM and
CO2 were equal to zero. The duration of the microbial de-
composition simulation was 7 days. We assumed that oxygen
was not a limiting factor of biodegradation.

We emptied the spheres of their water according to the
drainage algorithm. For this, we calculated the radius thresh-
olds,r1 andr2, given by Young–Laplace law (Eq. 12) for the
two water potentials of the experiment, which were1p1 =

−10 cm (high water potential) and1p2 = −100 cm (low wa-
ter potential) as being respectively 145 µm and 14.5 µm. In
the following components of the simulation, we retained only
the water-filled pores.

Biogeosciences, 11, 2201–2209, 2014 www.biogeosciences.net/11/2201/2014/
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Table 1.Parameter values estimated by the calibration of MOSAIC II from carbon mineralization curves registered from incubation of each
species with fructose at high water content (whereϑDOM is the maximum growth rate,Kb is the constant of half-saturation,µ is the mortality,
ρ is the respiration,pm is the proportion of MB that returns to DOM) with their respective efficiency coefficients.

Species Parameters

ϑDOM Kb µ ρ pm EF
(day−1) (gCg−1) (day−1) (day−1) (%)

Arthrobactersp. 3R 17 0.0005 1.5 0.2 70 0.84
Arthrobactersp. 9R 9.6 0.001 0.5 0.2 55 0.91
Arthrobactersp. 7R 8 0.00014 1 0.3 20 0.98
Rhodococcussp. 6L 9 0.0005 0.22 0.45 20 0.8
Rhodococcussp. 5L 8.16 0.0007 0.4 0.25 55 0.94

Simulations were carried out in two steps. In the first step,
the five parameters of the model (ϑDOM, Kb, µ, ρ, pm) were
calibrated using the experimental CO2 mineralization curve
obtained at the high water potential of−10 cm (Table 1) for
each species. We used the same diffusion parameter for all
species. The parameter estimation was carried out by trial
and error.

In the second step, we tested the model with the data ob-
tained at low water potential of−100 cm. We kept the same
biological parameters obtained at the high water potential.
We assumed that the differences of mineralization between
both water contents came from the diffusion limitation due to
the lower soil moisture. We hypothesized that the physiology
of microorganisms (i.e. their maximal growth rate, constant
of half saturation or mortality rate) was not affected by the
decrease in moisture, because the water potential remained
too high to cause a physiological stress (Manzoni et al.,
2012). The bacteria are supposed to be attached to the solid
particles and are submitted to the same micro-environment
at−10 or−100 cm of water. Several studies have found that
diffusion limitation was the main factor explaining the de-
crease of respiration with soil moisture (e.g. Harms, 1996;
Dechesne et al., 2010; Moyano et al., 2013). A meta-analysis
by Manzoni et al. (2012) showed that moisture soil respira-
tion curves were not affected by microbial community com-
position, which they interpreted by other factors than micro-
bial physiology controlling respiration (i.e. solute diffusiv-
ity).

2.5 Simulating microbial decomposition with a simple
approach

We compared also our results with the results obtained from
a simpler approach. We simulated the effect of moisture on
degradation by using a simple moisture limitation function
instead of calculating the change in connected water path-
way with Mosaic II. The biological system of Fig. 1 was
simulated in one sphere of Mosaic II to remove the spatial
dimension. Parameters of step 1 were used to simulate the
lower water potential of−10 cm. We simulated the water po-
tential of −100 cm by using the limitation function used in

RothC and described in Jenkinson and Coleman (2008). The
microbial growth rate (µ) was multiplied by this limitation
function equal to 0.7 for the water content change from−10
to −100 cm (Fig. 5).

2.6 Statistics

The effectiveness of simulations was determined by calcu-
lating the efficiency coefficient (EF) for CO2 mineralization
curve of each bacterial species:

EF=

n∑
i=1

(Oi − O)2
−

n∑
i=1

(Si − O)2

n∑
i=1

(Oi − O)2
, (11)

wheren is the number of experimental observations of CO2;
Si and Oi are the simulated and observed values, respec-
tively; andO is the average ofn experimental values.

3 Results and discussion

3.1 Simulation of sand structure and water retention

Figure 2 shows 2-D sections of the CT images of the sand
microcosms and the segmented images (Fig. 2c) that were
used as the initial data to define the pore space and param-
eterize the physical model. Figures 3 and 4 present the re-
sulting minimal set of maximal spheres of the sand pore
space. We applied the drainage algorithm for the two ra-
dius thresholds, and we obtained different sphere networks
depending on water potential, which included 860 710 and
782 691 water-filled spheres for the high and low water po-
tentials respectively with a percentage of water in total pore
volume of 99 % and 24 %, respectively. We found 704 and
43 067 sets of connected spheres for high and low water
potentials, respectively, that occupied an average volume of
80 550 and 334 voxels, respectively. These results indicated
that although the numbers of water-filled spheres were not so
different between both water potentials, the connectivity was
strongly affected by the decrease of water content.
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Figure 2: View of a slice (1650x1650 pixels) of the CT image of the sand (a). View of a slice 

(400 x 400 pixels) extracted of the 3D image (b) and segmented image (c). In figures (a) and 

(b) the grey level intensity is proportional to the density of the material, while in the 

segmented image (c) the pore space is in black and the solid phase is in white. The porosity 

comprising pores ≥ 5 µm diameter is 31%. 
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Fig. 2. View of a slice (1650× 1650 pixels) of the CT image of the
sand(a). View of a slice (400× 400 pixels) extracted of the 3-D
image(b) and segmented image(c). In (a) and (b) the grey level
intensity is proportional to the density of the material, while in the
segmented image(c) the pore space is in black and the solid phase
is in white. The porosity comprising pores≥ 5 µm diameter is 31 %.

 

 

 

 

 

 

 

 

 

 

Figure 3: Perspective views of the sphere based pore space of the sand. The spheres whose 

radius were higher than 10 µm were displayed.  
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Fig. 3.Perspective views of the sphere-based pore space of the sand.
The spheres whose radii were higher than 10 µm were displayed.

Figure 5 shows the comparison of the measured water re-
tention curve of sand microcosms and the simulated water
distribution using the drainage algorithm. Curves are very
close except for pressures near zero where the model overes-
timated the water content compared to experimental data. In
Ngom et al. (2012), we showed that for large pores our model
calculated large spheres whose radius is close to the real ra-
dius of pores as well as smaller spheres located between the
pore wall and the large sphere. According to Young–Laplace
law, these smaller spheres remain water-saturated although
the equivalent pores, where they are located, should be full
of air. This result leads to an overestimation of water content
using our geometrical approach at these water pressures near
saturation.

3.2 Simulation of fructose mineralization in sand at two
matric potentials

All bacteria rapidly mineralized fructose, and the experimen-
tal results showed, for most bacteria, a slightly higher min-
eralization at the high water content compared to the one at
the lower water content (Fig. 6, day 2). At low water poten-
tials, bacteria are very unlikely affected by a direct physio-
logical effect of the matric potential. Direct adverse effects
on bacteria have been shown to occur at lower matric poten-
tials (Holden, 1997; Roberson and Firestone, 1992; Dech-
esne et al., 2010). It is more likely that the matric poten-

 

 

 

 

Figure 4: Details of the maximal spheres covering the pore space of the sand 
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Fig. 4. Details of the maximal spheres covering the pore space of
the sand.

 

Figure 5: Water retention curves of the sand obtained experimentally and with MOSAIC II 
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Fig. 5. Water retention curves of the sand obtained experimentally
and with MOSAIC II.

tial primarily affected mineralization through its control on
the substrate diffusion rate through water-filled pores as dis-
cussed by Moyano et al. (2013). When the water potential
and the water content are smaller, a poorer connection of the
water-filled pores is expected. Indeed, the water-filled pores
are the diffusion pathways for fructose towards the immobile
bacteria. Overall diffusion was presumably limited for the
lower water content because of reduced interaction between
bacteria and substrates.

Figure 7 shows the bacterial respiration simulated from
the best estimated parameter set, the associated measured
data performed at the high water content for bacteria 7R,
and the dynamic for each of the carbon pools of the model.
The model describes a rapid decrease of DOM, fructose be-
ing consumed within 3 days by the bacteria, a rapid increase
of the bacterial biomass and from 2 days its decrease due
to mortality. Accordingly, the amount of SOM progressively
increases, being fed by C from dead bacteria. This demon-
strates the importance of the different pools described by the
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Figure 6: Experimental (symbols) and simulated (line) results for the 5 bacterial species 

inoculated at high and low water contents with their respective efficiency coefficients. For the 

Fig. 6. Experimental (symbols) and simulated (line) results for the
five bacterial species inoculated at high and low water contents with
their respective efficiency coefficients. For the low water content,
simulations with 3-D Mosaic II and with a simpler approach using
the moisture function of RothC model are displayed.

model. The shape of the mineralization curve obtained from
the calibration at the high water potential was quite simi-
lar to the experimental ones, and the total amount of CO2
respired was close to the experimental results. The efficiency
coefficient between the simulated mineralized CO2 curve and
the measured one was 0.98. The calibrated parameters – i.e.
maximum growth rate, constant of half saturation, mortality
and respiration rate for each microbial species – are given
in Table 1. The maximal growth rate (ϑDOM) estimated be-
tween 8 and 17 day−1 was of the same order of magnitude as

 

 

 

 

Figure 7: Calibration of the model parameters from the CO2 measurements during the 

incubation at high water content, example of bacteria 7R. 
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Fig. 7.Calibration of the model parameters from the CO2 measure-
ments during the incubation at high water content, example of bac-
teria 7R.

those found in soil samples by Ingwersen et al. (2008) and by
Treves et al. (2003) (between 1.7 and 44 day−1). The mortal-
ity rate (µ) was estimated between 0.22 and 1.5 day−1. This
range is a little bit lower than the one found in soils by Blago-
datsky et al. (1998) (between 1.2 and 3.8 day−1). The res-
piration rate (ρ) estimated between 0.2 and 0.45 day−1 was
the same order of magnitude as those used by Gignoux et
al. (2001) (between 0.1 and 0.5 day−1). Most soil organic
matter decomposition models use assimilation yields, and
consequently very few respiration rate parameters are avail-
able in the literature for comparison with our results.

We compared the experimental carbon mineralization
curves with the ones calculated by simulation for each bac-
terial species for the lower water content (Fig. 6). As in
the experimental data, we found a lower mineralization for
the lower water content. The decrease of water potential led
to a lower water content and to another distribution of wa-
ter among spheres by the model. This new setting changed
the pathways of diffusion from fructose to microbial habi-
tats by extending their length and decreasing their number.
We found systematic lower efficiency coefficients for the low
water content compared to the high water content where pa-
rameter estimation had been done. The differences between
mineralization curves for high and low water contents were
also larger in the simulation than in the experiment (i.e. the
effects of water potential were more drastic). We found gen-
erally a longer delay for the starting point of the simulated
respiration curve compared to the experimental data, espe-
cially for the lower water content.

These discrepancies may come from an underestimation of
diffusion in the simulation. For example, we do not allow for
water films to exist in the simulations but have pores either
filled with water or drained. In soils, such water films can act
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as diffusion pathways and connect sites that appear separate
otherwise in the simulation. In addition, because of the res-
olution of 5 µm of the microCT scans, the pores of smaller
diameter cannot be visualized and hence are not accounted
for in the simulation with MOSAIC II. However, such pores
may contribute significantly to diffusion of the substrate, es-
pecially when the water content is low, where pores< 5 µm
represent a proportion of water-filled pores of 7 % (calcu-
lated from the water retention curve). We very likely under-
estimated the diffusion pathways. This limit is not intrinsic
to the MOSAIC II model but to its use with microCT images
having insufficient resolution regarding the processes stud-
ied.

The mineralization of fructose simulated with a simpler
approach using the moisture function of RothC also under-
estimated the experimental mineralization (Fig. 6). The effi-
ciency coefficients were higher for 3R, 5L, and 6L and lower
for 9R and 7R compared to those obtained using the 3-D
MOSAIC II approach. The moisture function proposed in the
literature, as the one used in RothC, gave similar trends as the
one explicitly calculated using our 3-D approach.

4 Conclusion and perspectives

The decomposition of soil organic matter is highly impacted
by water content, and poor accounting of this control by cur-
rent soil organic matter dynamics models is a major source
of uncertainty (Falloon et al., 2011). The soil water content
and energy state has both direct impacts on microbial physi-
ology, especially at extreme values, and indirect impacts via
the diffusion of oxygen and that of solutes like soluble car-
bon and nitrogen compounds (Moyano et al., 2013). These
processes affect the microbial decomposition kinetics. Cur-
rent compartment-based soil organic matter models use em-
pirical functions to describe the effect of limiting water con-
tent on decomposition rates (Moyano et al., 2012). In MO-
SAIC II, the explicit description of the 3-D interactions be-
tween decomposition actors and organic matter in an unsatu-
rated habitat reproduced, without using empirical functions,
the decrease of decomposition due to the decrease of water
content in a realistic way. We simulated explicitly and cal-
ibrated for the first time with real data the indirect impact
of changing water content on mineralization via the modi-
fication of connected water-filled pathways. Our modelling
exercise gave results as good as those obtained using a sim-
ple moisture function found in the literature. We anticipate
that, for more complex 3-D architectures, such as those of
soil compared to sand, the simulation using MOSAIC should
be superior. Two directions for improvement can be identi-
fied: (i) using CT images with a better spatial resolution, as
it is increasingly possible using new generationµCTs, in or-
der to describe and model the processes within micrometre-
scale pores; and (ii) describing better the water connectivity
at low water content in the model, accounting for water films.

In future studies more scenarios will be tested using more
complex systems (real soil and more complex bacterial com-
munity) and for different distances between degraders and
organic substrates.
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