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Abstract. Spatial pattern information of carbon density in
forest ecosystem including forest litter carbon (FLC) plays an
important role in evaluating carbon sequestration potentials.
The spatial variation of FLC density in the typical subtropical
forests in southeastern China was investigated using Moran’s
I, geostatistics and a geographical information system (GIS).
A total of 839 forest litter samples were collected based on a
12 km (south–north)× 6 km (east–west) grid system in Zhe-
jiang province. Forest litter carbon density values were very
variable, ranging from 10.2 kg ha−1 to 8841.3 kg ha−1, with
an average of 1786.7 kg ha−1. The aboveground biomass had
the strongest positive correlation with FLC density, followed
by forest age and elevation. Global Moran’s I revealed that
FLC density had significant positive spatial autocorrelation.
Clear spatial patterns were observed using local Moran’s I. A
spherical model was chosen to fit the experimental semivari-
ogram. The moderate “nugget-to-sill” (0.536) value revealed
that both natural and anthropogenic factors played a key role
in spatial heterogeneity of FLC density. High FLC density
values were mainly distributed in northwestern and western
part of Zhejiang province, which were related to adopting
long-term policy of forest conservation in these areas, while
Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal ar-
eas had low FLC density due to low forest coverage and in-
tensive management of economic forests. These spatial pat-
terns were in line with the spatial-cluster map described by
local Moran’s I. Therefore, Moran’s I, combined with geo-

statistics and GIS, could be used to study spatial patterns of
environmental variables related to forest ecosystem.

1 Introduction

Forest litter is the dead organic matter produced by above-
ground plants in forest ecosystems, (Wang et al., 1989). It
is one of the most important components of carbon and nu-
trient cycling, and regulates soil microclimate by forming a
buffering interface between the soil surface and the atmo-
sphere (Sayer, 2006). Zhou et al. (2000) reported that the
carbon storage in forest litter should not be neglected as it is
the third largest carbon pool in forest ecosystem. Generally
the annual nutrients released from litter decomposition could
meet 69–87 % of total nutrients required for forest growth
(Waring and Schlesinger, 1985). The amount of litter on the
forest floor also affects soil nutrient status, soil water content,
soil temperature, and pH (Sayer, 2006).

Global warming is now becoming a major concern in
China and worldwide. Carbon sequestration is considered
as an effective approach to deal with the increasing carbon
dioxide (CO2) concentration in atmosphere. Compared to the
engineering technology (Matysek et al., 2005), forests as a
cost-effective carbon sink play an important role by absorb-
ing CO2 (Stern 2007). The Kyoto Protocol report under the
United Nations Framework Convention on Climate Change
(UNFCCC) requires that parties estimate the carbon stock
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not only in aboveground and belowground biomass, but also
in litter and soil, separately (Takahashi et al., 2010).

Soil organic carbon, biomass carbon (aboveground and be-
lowground biomass carbon), forest litter carbon, dead stand-
ing tree and fallen log (coarse woody debris) carbon were the
four main carbon types in forest ecosystem (Lu et al., 2012).
The forest litter (fallen leaves, twig, flower and fruit) forms
a specific carbon pool, playing an important role between
soil organic carbon and biomass carbon. It is influenced by
forest types, site conditions and forest management options.
Generally, forest litter with coniferous species accumulates
a thicker organic layer than that with broad-leaved species
(Berg and McClaugherty 2003). Compared to intensive man-
agement, moso bamboo forests have more litter fall under
conventional management (Fu et al., 2014). Natural and an-
thropogenic disturbances, such as typhoons, ice storm and
non-commercial thinning operations, result in an increase in
the dead organic matter stock (Harmon et al., 1986; Xu et al.,
2013).

Since the 1990s, the forest litter carbon (FLC) content has
been sampled and measured based on traditional forest inven-
tory system or long-term experimental forest plots (Matthew
et al, 2011; Chang et al., 2007, Zhou et al., 2008), but little
is known about the spatial distribution of FLC density at re-
gional scale. This is now important as such information can
be used to understand the forest resource status and variation,
and guide sustainable development of forest.

Accurate assessment of the spatial patterns and stocks of
forest litter carbon, especially at national and sub-national
scales, is an indispensable step when evaluating sequestra-
tion potentials (Liu et al., 2011). To acquire accurate esti-
mates of forest litter carbon, reliable data sets providing in-
formation on forest types of sites within the entire region
are required, as FLC density varies from place to place, con-
trolled by a series of environmental factors at different spa-
tial scales (Sainju et al., 2008; Wang et al., 2009). Over the
last 30 years, geostatistical methods like semivariogram and
kriging have been successfully used to investigate the spatial
variability of continuously varying environmental parame-
ters and to incorporate this information into mapping process
(Burrough and McDonnell, 1998). Geostatistics combined
with other spatial statistics in exploratory spatial data anal-
ysis (ESDA) can identify and describe the locations, magni-
tudes and shapes of statistically significant patterns in a study
area. Spatial-cluster analysis played an important part in the
ESDA and in the construction of spatial models (Jacquez,
2007). Compared to Getis’s G index (Getis and Ord, 1992),
Geary’s C index (Geary, 1954) and Tango’s C index (Tango,
1995), the Moran’s I (Anselin, 1995) seems to be a very pop-
ular method in spatial-cluster analysis in recent studies. To
better understand the FLC reservoir, it is necessary to up-
date regional FLC information with intensive sampling and
to apply spatial analysis methods to produce an integrated
distribution map. The main objectives of this study were (a)
to characterize the spatial variability of FLC density in sub-

tropical forest in eastern China and (b) to analyze the spatial
patterns of FLC density and the corresponding environmen-
tal factors.

2 Materials and methods

2.1 Study area and sampling site description

This study was carried out in a typical subtropical region of
Zhejiang province, China (Fig. 1). Zhejiang covers an area
of 101 800 km2 (118◦01′ to 123◦10′ E, 27◦06′ to 31◦11′ N),
with a population of 54.4 million. It has a subtropical marine
monsoon climate with an average annual rainfall of 1490 mm
and mean annual temperature of 16.5◦C. The main soil type
is red soil (Ferralic Cambisol; FAO 2006). From southwest
to northeast, the elevation gradually decreases from 1603 m
to 10 m. The total area of forest is approximately 58 442 km2,
accounting for 57.4 % of total land area in Zhejiang province
(Zhejiang Forestry Bureau, 2006). The main forest types in-
clude evergreen broad-leaved forest, bamboo and other types
(such as economic forest) (Yuan et al., 2009).

In 2010, a total of 839 forest litter samples were col-
lected from fixed forest plots based on a 12 km (south–
north)× 6 km (east–west) grid system (Fig. 1). Each sam-
ple was the composite of at least three sub-samples of a
100 cm× 100 cm plot randomly distributed in the fixed for-
est plots. The longitudes and latitudes of the sampling points
were recorded using a portable global positioning system
(GPS) receiver. The distribution of sample locations in the
study area is shown in Fig. 1. Meanwhile, the basic informa-
tion such as forest type, forest age, elevation, grass and bush
coverage, and so on was also investigated in order to better
understand the spatial variation of forest litter carbon density.

2.2 Forest litter treatment

Forest litter samples were transported to the laboratory and
then dried in the oven at a temperature of 105◦C. All the
samples were grounded, and 0.5 g per sample was taken for
laboratory analysis. The content of forest litter carbon was
determined by organic element analyzer (Vario Max CN).
Forest litter carbon density was calculated using the follow-
ing formula:

Y = 10 000× a × X/3, (1)

Z = b × Y, (2)

whereY represents the dry weight of forest litter on unit
area of forest (in kg ha−1), a represents the percentage of dry
weight,X is the total fresh weight of three sub-samples (in
kg), b is the carbon content determined by organic element
analyzer,Z is forest litter carbon density (in kg ha−1).
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Fig. 1 Location of the study area and samples 

 
 
 

 

Fig. 1.Location of the study area and samples.

2.3 Spatial autocorrelation analyses

Moran’s I is a commonly used indicator of spatial autocor-
relation. In this study, global Moran’s I (Moran 1950) was
used as the first measure of spatial autocorrelation. Its val-
ues range from−1 to 1. The value “1” means perfect posi-
tive spatial autocorrelation (high values or low values cluster
together), while “−1” suggests perfect negative spatial auto-
correlation (a checkerboard pattern), and “0” implies perfect
spatial randomness (Tu and Xia, 2008).

While global Moran’s I quantifies the spatial autocorre-
lation as a whole, the local indicators of spatial association
(LISA) measure the degree of spatial autocorrelation at each
specific location (Anselin, 1995) by using local Moran’s I.
It is also good for identifying local spatial cluster patterns
and spatial outliers (Harries, 2006). Local Moran’s I index
(Levine, 2004) can be expressed as

Ii =
zi − z̄

σ 2

n∑
j=1,j 6=i

[
Wij (zj − z̄)

]
, (3)

wherez̄ is the mean value ofz with the sample number of
n; zi is the value of the variable at locationi; zj is the value
at other locations (wherej 6= i); σ 2 is the variance ofz; and
Wij is a distance weighting betweenzi andzj , which can be
defined as the inverse of the distance. The weightWij can
also be determined using a distance band: samples within a
distance band are given the same weight, while those outside
the distance band are given the weight of 0.

The results of local Moran’s I index can be standardized,
so its significance level can be tested based on an assump-
tion of a normal distribution (Levine 2004). When using lo-
cal Moran’s I index to analyze the spatial pattern, the re-
sults were affected by the definition of weight function, data
transformation, and existence of extreme values (Zhang et
al. 2008). These factors were taken into consideration in or-
der to obtain reliable and stable results. For the definition of
weight function, the best distance band was obtained based

on the largest global Moran’s I value, indicating the strongest
spatial autocorrelation of FLC density. In this study, this dis-
tance band was 36 km, which was further used to study spa-
tial clusters. Given the non-normality of the data, a Box–Cox
transformation (Box and Cox, 1962) was used to define the
appropriate exponent to use for transforming the data to a
normal distribution. The transformed data can also eliminate
the effect of extreme values on the spatial clusters analysis.

A high positive local Moran’s I value implies the target
value is similar to its neighborhood, and then the locations
are spatial clusters, which include high–high clusters (high
values in a high value neighborhood) and low–low clusters
(low values in a low value neighborhood). Meanwhile, a high
negative local Moran’s I value implies a potential spatial out-
lier, which is obviously different from the values of its sur-
rounding locations. Spatial outliers include high–low (a high
value in a low value neighborhood) and low–high (a low
value in a high value neighborhood) outliers.

2.4 Geostatistics analysis

Geostatistics uses the techniques of variogram (or semivar-
iogram) to measure the spatial variability of a regionalized
variable, and provides the input parameters for the spatial in-
terpolation of kriging (Goovaerts, 1997; Webster and Oliver,
2001). The semivariogram can be expressed as

γ (h) =
1

2
E[z(x) − z(x + h)]2. (4)

The usual computing equation for the variogram is

γ (h) =
1

2N(h)

N(h)∑
i=1

[z(xi) − z(xi + h)]2, (5)

whereγ (h) is the semivariance at a given distanceh; z(xi)

is the value of the variableZ at location ofxi , h is the lag
distance, andN(h) is the number of pairs of sample points
separated byh.

With the increase of distance, if the variogram stabilizes, it
reaches a sill (C + C0). The distance at which the variogram
reaches the sill is called the range (a). Beyond this distance,
data are considered to be independent. Discontinuities at the
variogram origin could be present; such an unstructured com-
ponent of variation ath = 0 is known as nugget effect (C0),
which may be due to sampling errors and short-scale vari-
ability (Pilar et al., 2006).

A variogram plot is obtained by calculating values of the
variogram at different lag distances. These values are usually
fitted with a theoretical model, such as spherical and expo-
nential models. The fitted model provides information about
the spatial structure as well as the input parameters for krig-
ing.

Among the estimation methods, kriging is the most pop-
ular one, which “is a collection of generalized linear regres-
sion techniques for minimizing and estimating variance de-
fined from a prior model for a covariance” (Olea, 1991). It is
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a type of weighted moving average:

ẑ(x0) =

n∑
i=1

λiz(xi), (6)

where ẑ(x0) is the value to be estimated at the location of
x0; z(xi) is the known value at the sampling sitexi , and
λi is a weighting coefficient. There aren sites within the
search neighborhood aroundx0 used for the estimation, and
the magnitude ofn will depend on the size of the moving
search window and user definition.

The kriging estimates can be mapped, to reveal the overall
trend of the data (Burgos et al., 2006). Maps provide use-
ful visual displays of the spatial variability and can be used
to represent and summarize environmental variables (Good-
child et al., 1993).

2.5 Data analysis with computer software

In the linear geostatistics method, a normal distribution for
the studied variable is desired (Webster and Oliver, 2001). In
this study, a statistical test of the Kolmogorov–Smirnov (K–
S) method together with skewness and kurtosis values was
applied to evaluate the normality of data sets. Box–Cox trans-
formation was performed by SAS software (version 9.1).

The descriptive parameters were calculated using SPSS®

for windows (version 18.0). Global Moran’s I and local
Moran’s I values were measured using software GeoDa (ver-
sion 0.95i, Spatial Analysis Laboratory, 2007). The geostatis-
tical analysis was carried out with VARIOWIN (version2.2).
All maps were produced using GIS software ArcMap® (ver-
sion 9.2).

3 Results and discussion

3.1 Spatial symbol map of forest litter carbon density

A point-symbol map of FLC density for the study area is
shown in Fig. 2 (n = 839). The majority of FLC density val-
ues ranged from 1000.0 to 3000.0 kg ha−1. Some high FLC
density values were observed on the north-western and west-
ern parts of the study area, which were probably related to
the adopting long-term policy of forest conservation in these
areas. Low values were located in the middle part of Zhe-
jiang province. This is mainly related to the intensive man-
agement by man, as the main forest type is economic forests,
such as moso bamboo (Phyllostachys pubescens, Mazel ex
Houzeau de Lehaie), Chinese chestnut (Castanea mollis-
sima) and hickory (Carya cathayensisSarg) forests. Inten-
sive management referring to deep plow, annual fertilization,
complete clearing of ground vegetation is carried out in order
to improve fruit production. There were a number of scat-
tered high FLC density values surrounded by relatively low
values or low FLC density values surrounded by high values
on the map, indicating the presence of spatial outliers.
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Fig. 2 Symbol map of FLC density values in Zhejiang province 
 
 

Fig. 2.Symbol map of FLC density values in Zhejiang province

3.2 Descriptive statistics for forest litter carbon
density

The commonly used descriptive parameters were calculated
(Table 1). Forest litter carbon density values were very vari-
able, ranging from 10.2 kg ha−1 to 8841.3 kg ha−1, with an
average of 1786.7 kg ha−1. The average FLC density value
was much lower than that calculated by Fang and Chen
(2001) and Li et al. (2011). This was mainly related to the
forest age in Zhejiang province, as most of forest trees were
planted after 1978 (Zhang et al., 2012). The maximum and
95 % percentile of the data were much higher than the up-
per quartile (75 %), indicating positive skewed distribution,
which was confirmed by the large positive skewness (1.76)
and kurtosis (5.40) values. The CV value is the most dis-
criminating factor for describing variability; when CV is less
than 10 %, it shows small variability; while CV is more than
90 %, it shows extensive variability (Zhang et al., 2007). In
our study, the CV value of FLC density was 66.69 %, indi-
cating moderate variability in Zhejiang province.

Histograms of FLC density with a normal distribution
curve are shown in Fig. 2. The raw data have a long tail
towards higher FLC density values (Fig. 3a). Other stud-
ies have also shown that environmental variables are often
skewed from a normal distribution towards positive values
because of the relatively smaller percentage of high values
(Chang et al., 2003). The Box–Cox transformed data show a
normal distribution (Fig. 3b). This is confirmed by the K–S
p value (> 0.05). Therefore, transformed data were used for
geostatistical analysis.
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Table 1.Descriptive statistics∗ of forest litter carbon density (kg ha−1).

Min 5 % 25 % Median 75 % 95 % Max Mean SD CV (%) Skew Kurt K–Sp

10.2 325.4 1045.2 1601.1 2207.8 5578.4 8841.3 1786.7 1191.6 66.69 1.76 (0.02) 5.40 (0.34) 0.00 (0.053)

∗ Min, minimum; Max, maximum; SD, standard deviation; CV, coefficient of variation; Skew, skewness, Kurt, kurtosis; K–Sp , significance level of Kolmogorov–Smirnov test for
normality.
Skew, Kurt and K–Sp values in brackets were calculated after Box–Cox transformation.
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Fig. 3 Histograms of FLC density: (a) raw data; (b) Box-Cox transformed data 
 
 
 
 
 

Fig. 3. Histograms of FLC density:(a) raw data and(b) Box–Cox
transformed data.

3.3 The environmental factors related to forest litter
carbon density

Spearman correlation coefficients between FLC density and
other environmental factors were calculated (Table 2). Pos-
itive and significant correlations between FLC density and
elevation, shrub coverage, average shrub height, forest age,
and aboveground biomass were found, while negative and

Table 2.Spearman correlation coefficients between forest litter car-
bon density and other variables.

Variablesa r

Elevation 0.188b

Slope aspect −0.072a

Slope position −0.185b

Shrub coverage 0.077a

Average shrub height 0.196b

Herb coverage −0.156b

Average herb height 0.034
Forest age 0.223b

Aboveground biomass 0.306b

a Correlation is significant at the 0.01 level.
b Correlation is significant at the 0.05 level.

significant correlations between FLC density and slope as-
pect, slope position, and herb coverage were observed.

Zhang et al. (2013) reported that the FLC density values
increased with the increasing elevation in subtropical forest
in China. In contrast, other studies indicated that FLC density
decreased with the increasing elevation in forests of China
(Ling et al., 2009) due to large elevation difference. The ver-
tical distribution of FLC density was mainly influenced by
the variation of the combination of water and heat (Cao et
al., 2010).The positive correlation between FLC density and
elevation in this study was probably related to the specific ge-
ographical location of Zhejiang province in China (Fig. 1). It
has relatively low elevations, high rainfall and moderate an-
nual temperature, which are suitable for plant growth across
the whole area.

The aboveground biomass had the strongest correlation
with FLC density, indicating that the aboveground vegetation
was the main source of forest litter carbon. The FLC den-
sity values in typical forest types were studied (Fig. 4). The
broad-leaved forest had the highest FLC density, followed by
mixed coniferous broad-leaved forest and coniferous forest.
This finding was in line with another study (Huang et al.,
2005). Meanwhile, moso bamboo forest and economic forest
had relatively low FLC density values. This was due to the
intensive management in the moso bamboo and economic
forests, as local farmers cleared the forest litter.

www.biogeosciences.net/11/2401/2014/ Biogeosciences, 11, 2401–2409, 2014
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Fig. 4 FLC density under typical forest types in Zhejiang province: 1. Broad-leaved forest; 2. 
Mixed coniferous broad-leaved forest; 3. Coniferous forest; 4. Moso bamboo forest; 5. 
Economic forest. Different letters mean significantly different at 0.05 level.  

Fig. 4.FLC density under typical forest types in Zhejiang province:
(1) broad-leaved forest, (2) mixed coniferous broad-leaved forest,
(3) coniferous forest, (4) moso bamboo forest, and (5) economic
forest. Different letters mean significantly different at 0.05 level.

3.4 Spatial-cluster and spatial-outlier analyses

GIS mapping techniques can help to identify spatial patterns
visually, but not statistically (Zhang et al., 2008). The gen-
eral spatial variations identified visually based on raw data
in Fig. 2 can be statistically supported using local Moran’s I
testing. The results of the global Moran’s I and LISA analysis
are illustrated in Fig. 5. Significant positive spatial autocor-
relation (Moran’s I = 0.112,p < 0.05) was observed for FLC
density, revealing the existence of potential spatial patterns
in their spatial distribution (Fu et al., 2010).

A large high–high spatial cluster was observed in the
north-western part of Zhejiang province, mainly on the
Tianmu Mountain area, which is famous as the main natural
conservation area in China. Relative small high–high spatial-
cluster areas were located in the southwest to northeast di-
rection across the Zhejiang province, while some low–low
spatial clusters were found in the middle part and southeast-
ern coastal area of study area. Most of the high–low outliers
were close to the low–low area, as these samples had much
higher FLC density values than those in the neighborhood.
On the other hand, the low–high outliers were mainly located
closely to the high–high spatial-cluster area. It should be no-
ticed that the local Moran’s I index is sensitive to outliers (Fu
et al., 2011). A total of 33 spatial outliers were detected.

3.5 Semivariance analysis and spatial distribution

To stabilize the spatial variance, the transformed data, ex-
cluding the spatial outliers, were used. There was no evident
anisotropy in the variogram for Box–Cox transformed data,
implying that the FLC density values varied similarly in all
directions of the study area and the semivariance depended
only on the distance between samples (Andronikov et al.,
2000). The best fitted variogram model for FLC density was
a spherical model (Fig. 6). The range value was 42.43 km,
indicating that current sampling density was enough to study
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Fig. 5 Spatial clusters and spatial outliers map of FLC density 

 

Fig. 5.Spatial clusters and spatial outliers map of FLC density.
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Fig. 6 Empirical semivariogram(dots) and the fitted model (line) of Box-Cox transformed 
data 

Fig. 6. Empirical semivariogram (dots) and the fitted model (line)
of Box–Cox transformed data.

the spatial structure of FLC density in Zhejiang province. But
more samples were necessary to reveal local spatial variation
of FLC density in forest, using complex geostatistical analy-
sis such as regression kriging (Li 2010). The “nugget-to-sill”
value was 0.536. As a rough guideline, the variable is con-
sidered to have a strong spatial dependence if the “nugget-
to-sill” value is< 0.25, a moderate spatial dependence if this
ratio is between 0.25 and 0.75, and a weak spatial depen-
dence if the ratio is> 0.75 (Cambardella et al., 1994). Vari-
ables that are strongly spatially dependent are controlled by
intrinsic factors such as soil texture, while weak spatial de-
pendence may be controlled by extrinsic factors such as land
management (Sadeghi et al., 2006). The variable in this study
was moderately spatially dependent, indicating that both in-
trinsic and extrinsic factors influence the spatial dependence
of FLC density.

Biogeosciences, 11, 2401–2409, 2014 www.biogeosciences.net/11/2401/2014/
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Fig. 7 Spatial distribution map of FLC density. 

 

Fig. 7.Spatial distribution map of FLC density.

For the spatial interpolation, a cell size of 0.5 km× 0.5 km
was chosen to divide the study area into a grid system of 712
columns (E–W direction) and 843 rows (N–S direction). The
number of search neighborhood was set to 18, as no clear
improvement was found when more values were used. The
chosen cell size was regarded as being effective to show the
spatial patterns of the variable. The Box–Cox transformed
data were used for interpolation, and the corresponding krig-
ing method is called trans-Gaussian kriging (Cressie, 1993).
The results are shown in Fig. 7.

In the northwestern part of Zhejiang province, the FLC
density values ranged from 2600 to 3855 kg ha−1, which
were much higher than other areas, while the FLC density
was very low in the northern part of study area, as this area is
called Hang-Jia-Hu (HJH) Plain with little forest. According
to the Zhejiang forest inventory report (2006), the forest area
only accounted for 9.18 % of the HJH Plain area. In the mid-
dle part of Zhejiang province (Jin-Qu Basin), the FLC values
ranged from 479 to 2000 kg ha−1. The relatively low FLC
values were mainly due to the land management in this area.
Jin-Qu Basin is the main commercial grain base. The main
forest type is economic forest, which is influenced by human
activities. The relatively high FLC values in the Wenzhou–
Taizhou boundary were related to the Yandang Mountains,
which is a famous tourist area. The forest is well protected in
this area, while low FLC values were located in the coastal
part of southern Zhejiang. The low forest biomass, due to ty-
phoon, climate and human disturbance, resulted in the low
forest litter (Huang et al., 2005). These high and low value
patterns were in line with the above spatial clusters revealed
by local Moran’s.

4 Conclusions

The average FLC density was 1786.7 kg ha−1 in this study.
Elevation, forest age and aboveground vegetation were sig-
nificantly correlated with FLC density. Compared to other
typical subtropical forest types, broad-leaved forest had the
highest average FLC density, while economical forest had the
lowest FLC density. Forest management played an important
role in the carbon storage of forest litter.

Moderate spatial dependency was found for FLC density.
The spatial variation of FLC density was related to natural
and anthropogenic factors. The spatial patterns were in line
with the spatial clusters. The methodology used in this study
could provide guidance for studying spatial patterns of envi-
ronmental variables in forest ecosystem.
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