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Abstract. The Cape Lookout cold-water coral area off the
coast of North Carolina forms the shallowest and northern-
most cold-water coral mound area on the Blake Plateau in
the NW Atlantic. Cold-water coral habitats near Cape Look-
out are occasionally bathed in the Gulf Stream, which is char-
acterised by oligotrophic warm water and strong surface cur-
rents. Here, we present the first insights into the mound distri-
bution and morphology, sedimentary environment and coral
cover and near-bed environmental conditions as recorded
by bottom landers from this coral area. The mounds oc-
cur between 320 and 550 m water depth and are charac-
terised by high acoustic backscatter indicating the presence
of hard structure. Three distinct mound morphologies were
observed: (1) a mound with a flattened top at 320 m, (2)
multi-summited mounds with a teardrop shape in the middle
part of the area and (3) a single mound at 540 m water depth.
Echosounder profiles show the presence of a strong reflector
underneath all mound structures that forms the base of the
mounds. This reflector cropped out at the downstream side of
the single mound and consists of carbonate slabs. Video anal-

ysis revealed that all mounds are covered byLophelia per-
tusaand that living colonies only occur close to the summits
of the SSW side of the mounds, which is the side that faces
the strongest currents. Off-mound areas were characterised
by low backscatter and sediment ripples, indicating the pres-
ence of relatively strong bottom currents. Two bottom lan-
ders were deployed amidst the coral mounds between De-
cember 2009 and May 2010. Both landers recorded promi-
nent events, characterised by large fluctuations in environ-
mental conditions near the seabed as well as in the overlying
water column. The period between December and April was
characterised by several events of increasing temperature and
salinity, coinciding with increased flow and near-bed acous-
tic backscatter. During these events temperature fluctuated
by up to 9◦C within a day, which is the largest temperature
variability as measured so far in a cold-water coral habitat.
Warm events, related to Gulf Stream meanders, had the du-
ration of roughly 1 week and the current during these events
was directed to the NNE. The consequences of such events
must be significant given the strong effects of temperature
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on the metabolism of cold-water corals. Furthermore, ele-
vated acoustic backscatter values and high mass fluxes were
also recorded during these events, indicating a second stres-
sor that may affect the corals. The abrasive nature of sand in
combination with strong currents might sand blast the corals.
We conclude that cold-water corals near Cape Lookout live
under extreme conditions that limit mound growth at present.

1 Introduction

Extensive studies on cold-water corals in the past decades in
both the West Atlantic (Reed, 1980, 2002; Paull et al., 2000;
Lumsden et al., 2007; Ross et al., 2007a) and the East At-
lantic (De Mol et al., 2002; Van Weering et al., 2003b; Hu-
venne et al., 2005; Roberts et al., 2006) have shown that cold-
water coral (CWC) habitats can have different appearances.
The most prominent forms are the kilometres long and wide
mounds of several 100 m height that occur along the Irish
continental margin (Belgica Mounds; Huvenne et al., 2005)
and Rockall Bank (Logachev Mounds; Kenyon et al., 2003;
Mienis et al., 2006), and genuine reef forms such as Sula
Ridge and Røst Reef (Mortensen et al., 1995; Freiwald et al.,
1997). More numerous are CWC habitats of smaller dimen-
sions that often have elongated shapes (or tails) and an orien-
tation parallel to the current direction. Clusters of such struc-
tures are found in Norway (Traena; Mortensen et al., 1995),
in the Irish Porcupine Seabight (Moira Mounds; Wheeler
et al., 2011), and on the UK continental margin (Darwin
Mounds; Masson et al., 2003; Huvenne et al., 2009a). This
form has been considered as early stages of mound for-
mation. Coral banks with comparable dimensions and mor-
phology have also been described from the West Atlantic
off North Carolina (Grasmueck et al., 2006b; Partyka et al.,
2007; Ross et al., 2007a; Davies et al., 2010).

Studies on the ecosystem of the large and prominent coral
mounds found on the Rockall and Porcupine slopes have
clearly demonstrated that these habitats promote biodiver-
sity, benthic biomass and carbon mineralisation (e.g. Jensen
et al., 1992; Henry et al., 2007; Van Oevelen et al., 2009).
Comparable studies on the living fauna and ecosystem func-
tioning of smaller coral habitats are fewer: for example of the
fish community of coral banks on the Blake Plateau (Ross
et al., 2007b, 2009) and the meiofauna and foraminifera on
the Darwin Mounds (Van Gaever et al., 2004; Hughes et
al., 2004). According to Ross and Quattrini (2007) coral
banks off North Carolina have a distinctive fish fauna with
a high species richness. No effect of topography was found
on the nematode meiofauna in the Darwin Mounds (Van-
reusel et al., 2010) although the coral skeletons promoted
the occurrence of specialised nematode genera in the Por-
cupine Seabight (Raes et al., 2006). Not only does the eco-
logical importance of clusters of small coral banks need
further exploration, but so also do the processes responsi-

ble for their origin, persistence and functioning (e.g. ero-
sion, deposition rates, particle supply). Deposition of sedi-
ment as a result of baffling by the corals is regarded as cru-
cial for the growth and maintenance of these structures on
the Irish continental slope (Dorschel et al., 2005; De Haas et
al., 2009;Wheeler et al., 2011). Such knowledge is important
in the process of acquiring protection for these vulnerable
habitats, most notably against bottom trawling. In the case of
the Darwin Mounds (Serpetti et al., 2013) and various reefs
in Norway, protection has already been imposed (De Santo
et al., 2007;www.fisheries.no), but in other cases this is
still pending. The CWC habitats off the southeastern United
States, including those studied here, were recently protected
by the inclusion in a Habitat Area of Particular Concern
(http://safmc.net/managed-areas/deepwater-coral-hapcs).

The main aim of this study is to describe and discuss the
mound distribution and morphology, sedimentary environ-
ment and near-bed environmental conditions in the coral area
near Cape Lookout (North Carolina, USA) and to assess its
suitability for cold-water corals and associated megafauna.
Here, we present observations and measurements made in
June 2010 on a cluster of coral mounds during a cruise with
RV Pelagia(Royal NIOZ, the Netherlands). As a follow-up
on earlier explorations by Ross and Quattrini (2007, 2009),
we made a detailed survey of the bathymetry with multi-
beam, collected data on the geological setting using penetrat-
ing echosounder and box cores, and made a gross analysis of
the mega- and fish fauna on the basis of recordings with a
tethered video system. Furthermore, near-bed environmental
conditions were recorded by long-term mooring deployments
(December 2009–June 2010).

Geological and oceanographic setting of the study area

The Cape Lookout CWC area is situated on the northern part
of the Blake Plateau (Fig. 1), which forms a continuation
of the Bahama Bank carbonate province (Pratt et al., 1964).
The Blake Plateau is a broad flat area, which is bounded in
the east by the very steep Blake Escarpment and the Blake–
Bahama basin. The Blake Plateau consists of a layer of more
than 14 km of sedimentary rocks deposited since the Cre-
taceous (Sheridan, 1976). At present, the Blake Plateau is
a sediment-starved region (Pinet et al., 1981; Pinet et al.,
1985) and sediments mainly consist of foraminiferal ooze
and pteropod fragments (Pratt et al., 1964; Pinet et al., 1985).
In general, material finer than silt is absent, and rippling in
the sediments as shown on bottom photographs implies that
considerable sorting, reworking and redeposition took place
(Gorsline, 1963; Pratt, 1963). Towards the shelf the sedi-
ment becomes enriched in quartz and the boundary between
the two sedimentological zones is characterised by deposits
rich in glauconite and phosphate (Gorsline, 1963). During
the Quaternary, sediment deposition and erosion were mainly
steered by the Gulf Stream. During sea-level lowstands the
Gulf Stream moved offshore, whilst at present, the pathway
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Fig. 1.Multibeam bathymetry map of the research area with 3.5 kHz
profiles, video transects, mooring and lander locations indicated.
Vector plots of displacement (ellipses) relative to the lander position
show the direction and magnitude of the transport of water. Inset
shows the general CWC areas that have been recorded in the West
Atlantic.

of the Gulf Stream is more inshore (Pratt, 1963; Pinet et al.,
1985; Hill et al., 2010).

Stetson (1962) described that numerous coral banks are
present at the northeastern portion of the Blake Plateau, and
in subsequent years many more CWC habitats have been
discovered (Neumann et al., 1977; Paull et al., 2000; Reed,
2002; Partyka et al., 2007; Ross et al., 2007a). This includes
the Cape Lookout coral mounds, which form the northern-
most CWC mounds on the Blake Plateau.

The CWC habitats on the Blake Plateau are occasionally
flushed by the Gulf Stream (Blake et al., 1994; Ross et al.,
2009), which is characterised by oligotrophic and warm wa-
ters with strong currents. The Gulf Stream is an important
agent of heat transport to the poles and flows from the Florida
Straits over the Blake Plateau (between 100 and 800 m wa-
ter depth) to Cape Hatteras as a meandering jet. Here, the
Gulf Stream separates from the coast and flows to the north-
east (Matsumoto et al., 2003). While flowing over the Blake
Plateau and the Cape Lookout coral mounds the Gulf Stream
meanders, causing relatively cool continental shelf waters to

be temporarily replaced by warmer Gulf Stream water (Bane
et al., 1981).

Biological production on the shelf is strongly influenced
by this interaction between the Gulf Stream and adjacent
shelf waters (Lee et al., 1991; Garciamoliner et al., 1994;
Ryan et al., 1999; Leterme et al., 2008). During meander-
ing, eddies are formed and shed off on both sides of the Gulf
Stream; those inshore of the Gulf Stream propagate north-
wards at an average speed of 0.4 m s−1. The inshore wavelike
meanders and eddies amplify north of the Strait of Florida
and downstream of the Charleston Bump, after which the
features dissipate more offshore between 33 and 36◦ N. Cy-
clonic cold core eddies occur when the meander of the Gulf
Stream is in an offshore position. They move to the north at
the same speed as the meander and have the same size (Bane
et al., 1981; Glenn et al., 1994). Upwelling in cold core ed-
dies uplifts the density structure of the front and transports
nutrients into the euphotic zone. It is suggested that phyto-
plankton and bacterioplankton production is strongly influ-
enced by the upwelling intrusion events, which might form
an important food source for the CWC habitats on the Blake
Plateau (Lee et al., 1991; Leterme et al., 2008).

2 Methods

2.1 Multibeam

An extensive bathymetric survey with a hull-mounted
Kongsberg EM 302 multibeam echosounder on the RVPela-
gia was conducted between 31 May and 4 June 2010. The
system consisted of a 30 kHz echosounder with an 1◦ open-
ing angle for the transmitter and a 2◦ angle for the receiver
and uses 135 beams with a maximum coverage sector of 150◦

(depth range 10–7000 m). This results in a swath width of
five times the water depth between 500 and 1000 m water
depth. The transmit fan is split into at maximum nine in-
dividual sectors that can be steered independently to com-
pensate for ship’s roll, pitch and yaw to get a best fit of the
ensonified line perpendicular to the ship’s track and thus a
uniform coverage of the sea bed. The motion of the ves-
sel was registered by a Kongsberg MRU-5 motion reference
unit and the ship position and heading was determined by
GPS. Data acquisition was conducted using the Kongsberg
Seafloor Information System software. The sound velocity
profile was calculated from salinity, pressure and temperature
data recorded by a Seabird 911+ CTD system immediately
prior to the survey. Bathymetric data were processed using
Neptune (Kongsberg) and CFloor (Geocap AS). Backscat-
ter maps of the research area were created using Fleder-
maus Geocoder which show the amount of backscatter as
greyscale. Regions with high backscatter are depicted as light
areas. The amount of backscatter depends on a variety of
factors like the angle of incidence (for which the data are
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compensated), the sediment composition and the roughness
of the seafloor.

2.2 Predictive habitat mapping

A regional-scale predictive habitat map was developed with
the aim of providing an indication of the relative suitability of
the southeast USA region forL. pertusa. Two models were
produced using the Maxent software (Phillips et al., 2006),
using default parameters following Davies et al. (2011; Max-
ent version 3.3.3k), an increasingly popular method for pre-
dicting suitable habitat for data-poor species in the deep
ocean (Davies et al., 2011; Yesson et al., 2012). The en-
vironmental variables utilised were initially partitioned into
broad groups (bathymetry, biological production, carbonate
chemistry, chemical, geological, oxygen, physical oceanog-
raphy, terrain variables and other), and one variable from
each group was retained for the production of the final model
based on highest training gains for models built from a single
variable following a similar approach presented by Yesson
et al. (2012) (full details of each variable source and gain
scores are provided in Supplement Table 1). Two models
were produced: the first incorporated a substrate type layer
constructed from point sample data (see Supplement Ta-
ble 1), whilst the second model was built without substrate
type as this layer greatly constrained the spatial extent of the
model due to poor data coverage. Species data were acquired
from previously published records collated by Davies and
Guinotte (2011). For the sediment-constrained model, 154
records were used to train the model and 65 for the produc-
tion of test statistics; 179 were used to train the non-sediment
model and 76 for test statistics.

2.3 Echosounder

Several 3.5 kHz penetrating echosounder lines were recorded
using the RVPelagiaechosounder system across and along
different mound structures to gain insight into the internal ge-
ometry of the mounds. This system consisted of an ORETech
3010 transceiver and a hull-mounted 12-transducer array.
The analogue data were digitised with a CodaOctopus
DA1000 system running the Coda Geosurvey software and
were processed using RadexPro with amplitude correction
and Stolt F-K migration.

2.4 Sediment sampling

Sediment samples were taken with a NIOZ-designed cylin-
drical box corer equipped with a stainless steel cylindrical
box of 50 cm in diameter and 55 cm in height and a trip valve
sealing the core after penetration. A camera system attached
to the frame allowed video-guided sampling. The surface of
each box core was photographed on recovery and a detailed
description of the species composition and sediment charac-
teristics was taken.

2.5 Moored equipment

Two benthic landers were deployed at Cape Lookout during
a cruise with the RVCape Hatteras(operated by Duke-UNC
Oceanographic Consortium) in December 2009. Both lan-
ders were successfully retrieved in June 2010 with the RV
Pelagiaand each lander obtained 6 months of near-bed en-
vironmental conditions. The ALBEX lander was deployed
in the northern part of the study area at the tail of a mound
cluster in 417 m of water at 34◦20.941′ N, 75◦46.756′ W. The
BOBO lander was positioned amidst a cluster of mounds at
480 m depth at 34◦12.680′ N, 75◦52.204′ W (Fig. 1).

The ALBEX lander consisted of an aluminium tripod
equipped with a 3-D (2 MHz) acoustic current meter (Nortek
Aquadopp), a CTD (Seabird SBE37), and a combined optical
backscatter sensor and fluorometer (Wetlabs FLNTU). All
instruments were mounted 2 m above the seafloor. The AL-
BEX lander additionally carried an upward-looking Acous-
tic Doppler Current Profiler (ADCP, Teledyne RDI 300 kHz)
that measured horizontal currents up to 170 m above bot-
tom for the entire period. The BOBO lander consisted of
an aluminium tripod that extended 4 m above bottom, cre-
ating a clear area underneath the lander for current ve-
locity and acoustic backscatter measurements, which were
measured by a downward-looking Teledyne RDI 1200 kHz
ADCP mounted at 2 m above bottom. For this deployment
the BOBO lander was equipped with an SBE 16+ CT sen-
sor mounted at 3 m above bottom, and a combined optical
backscatter sensor and fluorometer similar to the one on the
ALBEX. All equipment on both landers was programmed to
record at 15 min intervals.

Both landers were equipped with a Technicap PPS 4/3
sediment trap with a 0.05 m2 aperture. Sediment traps were
equipped with a rotating carousel of 12 bottles of 250 mL.
Each bottle collected material for 14 days, and samples were
preserved in a pH buffered HgCl2 solution in seawater, which
was collected from the deployment site. All samples were
split with a rotor splitter and two splits were freeze dried af-
ter which total matter was weighed and mass fluxes were cal-
culated. All sediment trap samples of the BOBO lander were
analysed for organic carbon, nitrogen content, pigment con-
tent and210Pb. Detailed descriptions of the methods can be
found in Mienis et al. (2012).

In addition to the landers, a mooring was deployed in De-
cember 2009 at a depth of 550 m at 34◦16.023′ N/75◦45.
9216′ W outside the CWC area. The mooring was composed
of a bottom weight (660 kg), two acoustic releases and a
Valeport current meter (160 m above bottom).

2.6 Tethered video imaging and analysis

Video recordings of the coral habitats in the Cape Lookout
CWC area were made using a tethered camera system at-
tached to the box corer frame. The camera system consisted
of a digital video camera (Sony™), hard disk, power supply,
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modem, lights, and a set of parallel green laser pointers set
30 cm apart (Oktopus™). Live video images were transferred
to the ship by the modem via the conductive core of the wire
holding the box corer frame. This connection enabled the
winch operator to keep the camera system at more or less
constant distance from the seafloor assisted by the distance
marks made by lasers. A total of eight video surveys were
made along transects in a SSW to NNE direction crossing
coral mounds that were visible on the multibeam map. The
length of each transect varied between 1.4 and 4.8 km and
started and ended in an off-mound position thereby covering
coral as well as non-coral habitats. The video records were
used to ground-truth both reef and sedimentary structures ob-
served on the multibeam data and echosounder profiles and
to make a gross description of the distribution of corals, in-
vertebrate epifauna and fishes in relation to these structures.
For the purpose of this study we have identified organisms
to higher taxonomic levels. Detailed analyses of the diver-
sity and abundance of invertebrates and fish species recorded
on the video will be presented elsewhere. The video quality
precluded in many cases rapid identification to species level.
The quality issue was the result of the extremely strong sur-
face currents in the Gulf Stream impeding manoeuvrability
of the vessel and operation of the tethered camera system.

To describe the fauna along each transect, transects were
initially divided into sections of 50 m length, and the pres-
ence/absence of groups of organisms in these sections
was noted. Fishes were enumerated with a distinction be-
tween cartilaginous (Chondrichthyes) and bony fishes (Os-
teichthyes). Simultaneously the predominant substratum in
each 50 m section was assigned to one of the following op-
erational categories: (1) soft sediment, (2) sediment partly to
densely covered with coral rubble and/or dead framework,
(3) well developed (3-D) but predominantly dead framework
with scattered live branches, (4) well developed framework
with coalescent live branches, (5) stones/hard rock. Video
sections in each transect were subsequently grouped accord-
ing to predominant substratum, and organism counts were
summed and averaged over the number of sections in each
group.

3 Results

3.1 Predictive habitat mapping

The predictive models revealed that the southern parts of
the eastern US slopes (Florida, Georgia and South Carolina
coasts) contained the majority of suitable habitat forL. per-
tusarelative to the north of North Carolina (Fig. 2). Both the
sediment-constrained (Fig. 2a) and non-sediment (Fig. 2b)
models performed well with high test AUC scores (0.951
and 0.942, respectively), low omission rates (8 and 7 %, re-
spectively) and high test gains (2.070 and 1.852, respec-
tively). The sediment-constrained model performed better

Fig. 2. Habitat suitability models forL. pertusain the southeastern
US shelf:(A) a model created using sediment type and(B) a model
without sediment incorporated. The larger area of the non-sediment
layer is a result of the limited sediment data available for the region.
Higher suitability values indicate that the area is more suitable for
coral occurrence but do not mean that corals will be found there as
there may be other variables constraining occurrence that are not
used in the model.

than the non-sediment constrained model even though the
contribution of the sediment layer was low (test gain 0.337
and AUC 0.690 for a model constructed of only sediment
type). Based on the regularised training gain, the most impor-
tant variable was depth for both models, followed by arag-
onite saturation and dissolved oxygen concentration. The
variable that decreased the gain the most when omitted,
and therefore contains information not present in other vari-
ables, was particulate organic carbon concentration for the
non-sediment constrained model and current speed for the
sediment-constrained model. However, sediment type de-
creased the gain by almost an equal amount.

3.2 Distribution of mounds and mound morphology

A total area of 750 km2 with a water depth ranging be-
tween 240 and 1540 m was mapped with the multibeam
echosounder (Figs. 1 and 3). Up to ten large (> 30 m high)
and several small CWC mound structures were observed be-
tween 320 and 550 m water depth. Mound structures were
characterised by high backscatter, which can be related to the
presence of living coral colonies and coral debris as was ob-
served in video images (bright areas in Fig. 3b). Off-mound
areas had low backscatter values (darker areas in Fig. 3b)
and are largely characterised by sandy sediment. Current rip-
ples were often observed in video images from off-mound ar-
eas, indicating high near-bed flow velocity. In the study area
three distinct mound morphologies were observed, which ap-
peared related to water depth and can be broadly grouped into
upper, mid and deep parts of the mound area. The shallowest
mound, which was present at 320 m water depth, had a flat-
tened top and was up to 40 m high (Fig. 4a). Mounds situated
in the intermediate part of the area were characterised by a
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Fig. 3. 3-D multibeam bathymetry(A) and backscatter map(B) of
the research area. Different mound morphologies were observed on
the shallow, mid and deep part of the mound area. Mounds are char-
acterised by high backscatter (bright areas).

teardrop shape and all had an erosional gulley at the SSW
(up-current) side and a sediment moat at the NNE (down-
current) side of the mound. These mounds had an irregular
and rugged topography with multiple summits that are up to
40 m high. All mounds in the intermediate part of the study
area are oriented in a SSW–NNE direction (Fig. 4b). The
deepest mound at 520 m water depth in the area had a dif-
ferent morphology and can be described as a single mound
of 0.5 km in diameter and up to 70 m high. The single mound
was characterised by very steep slopes and an erosional moat
at the NNE side (Fig. 4c).

Echosounder surveys crossing the different mound struc-
tures revealed that all mounds had a chaotic and almost trans-
parent internal acoustic facies pattern (Fig. 4). Beneath each
mound there was a strong reflector that formed the base
of the structures. On the down-current side of the deepest
mound this reflector cropped out at the surface and video
data showed that it was related to a hard substrate formed
by carbonate slabs (Figs. 4c and 6).

3.3 Video data analysis

The distribution of faunal groups within each classified habi-
tat type is summarised in Fig. 5, and the representative fea-
tures of each habitat are shown in Fig. 6. All transects started
and ended in off-mound habitat (Fig. 1), which in most cases

consisted of rippled sand with a coarse or gravelly charac-
ter and numerous burrows (possibly of squat lobsters). Box
cores taken in these off-mound habitats are characterised by
well-sorted foraminiferal sand with pteropod fragments. Sev-
eral of the mounds, i.e. transects 31, 39 and 45, were sur-
rounded by a moat that was also visible on the multibeam and
echosounder data (Figs. 3 and 4). Video recordings from the
elevated parts of mounds revealed predominantly dead coral
framework with occasional thickets of living coral (Fig. 6).
Live framework was most abundant on the upper (SSW)
slopes facing into the Gulf Stream current. In between the
coral thickets, patches of softer and finer sediment with coral
rubble were visible which was also observed in box corer
samples taken on top of the mound. These samples con-
sisted, down core, of sediment, coral (L. pertusa) and shell
debris characteristic of organic mound buildup. The deepest
mound (transect 45) had the most extensive patches of live
coral framework on its upstream side and also had a different
structure of the mound tail. Whilst the other mounds had tails
consisting of sediment mixed withL. pertusarubble, the tail
of transect 45 was bare of sediment exposing slabs of hard
ground (Fig. 6).

A common feature of all video transects was the presence
of large numbers of planktonic organisms near the bottom
such as euphausids and jellyfish. On several occasions the
view of the camera was blocked by euphausids that were at-
tracted by the lights of the camera upon arrival at the seafloor.
Transect 5 did not cross a mound as did the other transects.
There were marked differences with respect to distribution
of taxa including live coral framework between transects.
For example, anthozoans (Actinoscyphiasp.) and asteroids
(Brisingidae) were only widespread (and abundant) on the
shallowest transect 30 while this was the case for galatheids
(Munidasp.) on transect 39, and hydrocorals on transect 45.
Sponges were not abundant and were only observed on the
multi-summited mounds in the middle part of the area. Live
coral framework was only observed at the mound structures,
and was most common on transect 45 and least present on
transect 30. Transects also differed with respect to abundance
of fishes with the deepest transect 45 having highest number
of fishes per 50 m of video (Fig. 7). Average fish numbers
of the 50 m sections of the video surveys were not only rel-
atively high in the coral framework of transect 45 but also
across the mound tail with its exposed hard ground.

3.4 Overlying circulation

The 300 kHz upward-looking ADCP mounted on the AL-
BEX lander measured horizontal currents up to 170 m above
bottom. Velocities recorded before mid-April 2010 and af-
terwards had a different character (Fig. 9). Pulses of strong
NNE flow occurred in mid-December 2009, early January
2010, mid-February 2010 and early and mid-March 2010.
These pulses coincided with increasing water temperatures
of up to 15.8◦C. In early April a sustained SSW flow of
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0.4 m s−1 was present, whereas a weaker flow was observed
after mid-April and persisted until the recovery of the lan-
ders in June. Average current speed was 0.29 m s−1 to the
NNE and 0.13 m s−1 to the SSW, whereby a NNE flow was
slightly more common over the deployment time period. The
average vertical structure of the current varied with current

direction, with nearly constant vertical shear of the horizon-
tal current over the lower 100 m above bottom during NNE
flow and a 40 m thick bottom boundary layer overlain by ver-
tically homogeneous flow speed during SSW flow.

Elevated values of acoustic backscatter were observed in
December 2009, February 2010 and from mid-April to late
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May 2010 (Fig. 8). Furthermore, a daily migration is ob-
served in the acoustic backscatter. The location of these sig-
nals, well removed from the seafloor and the ocean surface,
the acoustic frequency (300 kHz) and the observed daily mi-
gration suggest zooplankton as the most likely signal source.

3.5 Near-bed environmental conditions

The records collected by the two bottom landers and moor-
ing are similar in appearance and display the same warm
events also recorded by the upward-looking ADCP. The lan-
der records before April 2010 were characterised by six pro-
nounced events consisting of peaks in temperature up to
15.2◦C and salinities rising to 36.05, coinciding with in-
creased flow and acoustic backscatter, which is likely related
to resuspension of sediments (Fig. 9). During these events the
current was directed to the NNE and bottom-water tempera-
tures increased by up to 9.5◦C within a day (5.8–15.2◦C;
Fig. 11c), while salinity rose from 34.87 to 36.05. These
warm-water events lasted roughly 1 week. Minimum tem-
peratures (5.56–8.33◦C) occurred in May 2011 when cur-
rents were relatively weak and directed to the SSW. The sim-

ilarity between measurements by the two landers indicates
that events are not local in scale but apply to the wider area
(Fig. 9). This is further substantiated by the match between
the lander temperature records and that obtained by the moor-
ing, deployed in 550 m water depth.

The fluorescence pattern records were similar on both lan-
der locations (Fig. 9), showing one prominent but short peak
in early March, on the onset of a warm event. Acoustic and
optical backscatter demonstrate different patterns. Acoustic
backscatter increases with each warm event (Fig. 10), whilst
optical backscatter only shows prominent peaks in Decem-
ber and February. High backscatter peaks correspond to high
mass fluxes as collected with the sediment trap (Fig. 11b and
f). The event in February completely filled a sediment trap
bottle on the ALBEX lander. During both periods of high
mass flux, organic carbon values and pigment concentrations
were low, as well as210Pb values, which indicates resuspen-
sion of aged or degraded material (Fig. 11d–f).

Vector plots of displacement show the transport direction
and magnitude of water at both lander locations during the
deployment period (Fig. 1). Directions of water transport at
both deployment sites have a mainly SSW–NNE orientation,
which corresponds with the elongation of the mound struc-
tures in the middle part of the area. Strongest currents have
an orientation in a NNE direction. The transport direction of
water at the ALBEX site is likely influenced by topographic
steering of water between the different summits of the mound
structure, as it was deployed on the down-current side of a
mound structure in the intermediate part of the research area.

4 Discussion

4.1 Mounds

The Cape Lookout CWC area is mainly characterised by
multi-summited CWC mounds that have a teardrop mor-
phology and are oriented in a SSW–NNE direction. Single-
mound structures were only observed in the shallowest and
deepest part of the mound area. All structures have an ero-
sional moat at their up-current site, indicating the presence
of a very strong NNE-directed current in the area, and a sedi-
ment tail at the down-current side of the mounds that mainly
consists of coral rubble. This same mound morphology was
described by Quattrini et al. (2012) for a large CWC mound
(Cape Fear Mound) located about 80 km southwest of the
Cape Lookout mounds. The impression that the mounds are
subject to a regime with strong currents is confirmed by the
presence of current ripples visible on video transects made
in off-mound areas, which were also observed during ear-
lier studies on the Blake Plateau (Pratt, 1963). Current rip-
ples had orientations that suggest a predominant NNE trans-
port direction, which can be related to the current direc-
tion of the Gulf Stream. The mounds were dominated by
the framework-forming scleractinian coralL. pertusa, whilst
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Fig. 5.

stylasterids were also found on the deepest single mound in
the area (Fig. 4c). Living CWC colonies were mainly ob-
served on the SSW sides of mounds. Similar mound struc-
tures have been found in the Florida Strait (Grasmueck et
al., 2006a; Correa et al., 2012), on the continental margin of
Norway (e.g. Stjernsund and Traena; Freiwald et al., 1997;
Tong et al., 2013) and Tisler Reef (Lavaleye et al., 2009; Gui-
hen et al., 2013). In all these areas elongated reef structures
and a strong uni-directional current are present. Several stud-
ies have indicated that near-bed currents and turbulence are
one of the most important factors influencing coral growth
(White et al., 2005; Dorschel et al., 2007; Duineveld et al.,
2007; Mienis et al., 2007; Davies et al., 2009). Strong cur-
rents will influence the (food) particle encounter rate, which
is highest at the current facing sides of the mounds in the
Cape Lookout area and elsewhere (Purser et al., 2010). Con-
sequently, mounds and reefs in these areas are likely growing
against the currents in a more horizontal manner creating rel-
atively low structures.

A distinct difference was observed not only in mound
morphology between the different depth zones with coral
mounds, but also in faunal abundance and diversity. Living
L. pertusacolonies were not observed on the shallowest sin-
gle mound, but were instead most frequent on the deepest

single mound. The frequency of occurrence of invertebrate
megafauna measured by absence/presence per 50 m strip did
not show a clear-cut relation with depth but was higher in
substrate types 3 and 4 (coral framework) than in substrate
types 1 and 2 representing bare sediment and coral rubble, re-
spectively (Wilcoxon matched pairs test,p < 0.05). A more
detailed analysis of the megafauna species abundances will
be published separately but our current provisional analy-
sis indicates that several transects have characteristic taxa,
e.g. brisingid starfishes on transect 30 and galatheoid crabs
on transect 39. Also fishes had a markedly uneven distribu-
tion with highest numbers on and around the deepest single
mound in the area (transect 45, Fig. 7). So despite the fact
that the major environmental perturbations (temperature, cur-
rent peaks) cover a wide scale encompassing all transects, the
fauna distribution suggest local variability most likely related
to conditions important for development of coral framework.

The reflection pattern acquired by echosounder profiles
of the mounds off Cape Lookout is similar to previously
published seismic data of mounds in the northeast Atlantic
(Akhmetzhanov et al., 2003; Van Weering et al., 2003a;
Mienis et al., 2006). They mainly show chaotic and trans-
parent reflection patterns (Popenoe, 1994), indicating that
the mound structures are completely made of cold-water
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corals and sediments that have been baffled within the coral
framework. Underneath the mounds a strong reflector was
observed that seems to form the base of all mounds near
Cape Lookout. This reflector cropped out behind the deep-
est mound in the area and video images showed the reflector
to be carbonate slabs. CWC mounds on the Blake Plateau
have developed in a generally erosional regime where pre-
Holocene to Cretaceous strata are often exposed (Pinet et
al., 1981, 1985; Popenoe, 1994). A similar cemented pave-
ment was also observed by Paull et al. (2000) at the seafloor
on the Florida–Hatteras slope. One of the requirements for
CWC growth is the presence of a stable substrate for settle-
ment. Mounds in the Porcupine Seabight and on the Rockall
Trough margins all seem to have initiated on top of a firm
ground (Van Rooij et al., 2003; Mienis et al., 2006; Huvenne
et al., 2009b). The distribution of the coral mounds near Cape
Lookout could be related to sites where the hard ground was
exposed during the initial settlement of cold-water corals.

Compared to CWC mounds on the Irish margin that can be
kilometres long and wide and up to 360 m high, the mounds
off Cape Lookout are relatively small. This can be either in-
terpreted as the initial phase of mound growth in the area or

Figure 8

dB

Fig. 8. Acoustic backscatter from the upward-looking ADCP on
ALBEX lander, expressed as backscatter strength in dB, following
Deines (1999). Orange colours mean more backscatter (e.g. caused
by zooplankton).

as an indication that corals are living under stressed condi-
tions, giving rise to a low rate of mound development. Mound
growth is mainly due to coral colonies that baffle sediment.
If coral growth is outpacing sedimentation, mound structures
can form but if the corals are frequently stressed and do not
outpace sedimentation then mounds will become relatively
limited in size (De Haas et al., 2009; Dorschel et al., 2009).

Retarded coral growth due to stressful conditions seems
the most plausible explanation for the small dimensions
of the Cape Lookout mounds. Firstly, there is evidence of
erosion in the form of moats and exposed hardrock. Sec-
ondly, coral ages seem to be higher than in eastern Atlantic
areas with mound development. Coral fragments collected
at mounds from the Blake Plateau were dated with ages
> 20 kyr and very recent datings of CWC fragments from the
Cape Lookout even show ages older than 123 kyr (L. Matos,
personal communication, 2014). This shows that cold-water
corals were already present before the Holocene as opposed
to coral reefs found on the Norwegian margin that show rapid
development during the Holocene (Freiwald et al., 1997;
Lopez Correa et al., 2012). Thirdly, the predictive models
(Fig. 2) also suggest that this is a stressful area for corals, as
the northern US shelf appears less suitable for coral growth
than further south along the Florida margin. Finally, the in
situ measurements by the landers showed recurring temper-
ature peaks which are outside the range frequently reported
for L. pertusa(see below) (Roberts et al., 2006; Davies et al.,
2011).

4.2 Environmental conditions

Cold-water corals off Cape Lookout live in an area that is
characterised by extreme environmental conditions, which
are mainly related to the occasional presence of the Gulf
Stream. A clear difference was observed in current velocities
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Fig. 9.Six-month records (December 2009–May 2010) from instruments mounted on ALBEX and BOBO benthic landers.(A) Temperature,
(B) salinity, (C) turbidity calculated from optical backscatter,(D) acoustic backscatter,(E) fluorescence in relative units,(F) current speed
at ALBEX deployment site at height of 2 m (black line) and at 40 m (grey line) above bottom,(G) current direction at ALBEX deployment
site. In(A–E) the ALBEX data are shown as black lines, and BOBO data as grey lines.

before and after April 2010. Before April 2010, several
strong pulses of NNE flow were observed, which coincided
with increasing temperatures and high near-bed acoustic
backscatter values. After mid-April 2010, current velocities
were much lower and minimum temperatures were observed.
Sea-surface temperature data obtained from satellite imagery
at the end of the first strong NNE pulse (Fig. 12) suggest
that the Gulf Stream was atop the mooring and mooring sites
during this time and presumably during other times of strong
NNE flow. The more-shoreward position of the Gulf Stream
at the lander locations at that time was due to a wavelike

Gulf Stream meander progressing towards the NE. The crest
of the meander was directly over the mooring site on 17 De-
cember 2009. Two SST images from March show the effect
of the transition from NNE to SSW flow (Fig. 12). A deflec-
tion (an almost right angle turn) of the Gulf Stream devel-
oped at the end of April, which we associate with a period
of stronger SSW flow (Fig. 12). It appears that this deflec-
tion moved slowly downstream, but the general location of
the Gulf Stream remained offshore of the mooring site from
this time until the end of the deployment. Other SST images
are consistent with the Gulf Stream remaining well offshore
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Figure 10

Fig. 10. Current speed and direction (stick plot), in combination with turbidity during 6-month deployment. The lowerx axis gives days
since 1 January 2009, while the upperx axis gives the true dates.

of Cape Lookout until the recovery of the moored instrumen-
tation (Fig. 12).

Regular coastward meanders of the Gulf Stream led to a
rapid rise in bottom water temperature of up to 9◦C and
salinity by up to 1.18, which are the largest temperature and
salinity variabilities so far measured directly within a CWC
habitat. The metabolic consequences of these pulses must be
significant given the strong effects of temperature on the res-
piration of cold-water corals and particularlyL. pertusa. For
example, a rise of almost 10◦C in temperature will lead to
a more than fivefold increase in coral respiration (Q10 = 5.4–
7.8) (Dodds et al., 2007). Prolonged periods of high temper-
atures will require an equivalent increase in food availability
to account for the increased basic demand of corals and other
benthic organisms in the region. Naumann et al. (2014) have

evaluated the effect of changing temperatures on the phys-
iology of the two most common framework-building coral
species. Their experiments showed that respiration and cal-
cification rates ofL. pertusawere less affected by changes in
temperature compared toMadrepora oculata. Furthermore,
L. pertusaneeded a shorter acclimation time, which might
be favourable in light of the large temperature fluctuations
as observed off Cape Lookout. Additionally, Brooke et al.
(2013) demonstrated thatL. pertusamay have a somewhat
higher temperature tolerance than was previously reported
with an upper lethal boundary near 15◦C (Brooke et al.,
2013). This might explain why onlyL. pertusawas com-
monly present on CWC mounds on the Blake Plateau (Neu-
mann et al., 1977; Paull et al., 2000; Reed et al., 2006; Quat-
trini et al., 2012). However, enhanced metabolic activity must
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be compensated for by energy intake. Therefore, particle sup-
ply and quality play an equally important role in the distribu-
tion of L. pertusa(Duineveld et al., 2004; White et al., 2005;
Mienis et al., 2007; Davies et al., 2009).

According to earlier studies vertical instabilities along the
westward boundary of meanders give rise to filaments and
eddies with associated nutrient entrainment and enhanced
plankton production (Lee et al., 1991; Garciamoliner et al.,
1994; Matrai et al., 1996; Ryan et al., 1999, 2001; Leterme et
al., 2008). In 6 months only a single fluorescence peak was
recorded (early March 2010) near the seabed that coincided
with a passing meander. Otherwise, no increase of fluores-
cence was observed during the warm-water events near the
seabed. This peak in fluorescence could be related to a spring
bloom that occurs in winter due to deep dense water mix-
ing (Leterme et al., 2008) or to shelf-break upwelling in re-
sponse to wind stress during unstratified periods (Ryan et al.,
1996). During many of the warm events the benthic commu-
nity could experience food stress due to enhanced metabolic
demands and the lack of fresh, high-quality food in the form
of phytodetritus. This may explain the box corer and video
observations showing relatively low proportions of live coral
and scarcity of epifauna, especially of large macrosponges
as compared to coral habitats in the E Atlantic (Rockall
Bank, Porcupine Seabight, Norwegian reefs) (Van Soest et
al., 2007). By contrast, CWC habitats in the eastern Atlantic

have a rich sponge fauna (Van Soest et al., 2007), as well as
some reefs in the western Atlantic, e.g. in the Jacksonville,
Cape Canaveral and Florida areas (Partyka et al., 2007).

Lack of phytodetritus could be compensated for by other
food sources. Cold-water corals can also feed on zooplankton
or nutrients derived from zooplankton (e.g. faeces) (Duin-
eveld et al., 2007; Kiriakoulakis et al., 2007; Becker et al.,
2009). Cold-water corals have been shown to capture live
prey (Hovland et al., 1999). The increased mid water column
acoustic backscatter values recorded by the lander ADCP
in the December, February, April to May time period, may
point to either greater abundance of scatterers (zooplankton)
or a change in the scatterers (e.g. different species). Further-
more, the view of the tethered camera was on several occa-
sions blocked by large numbers of euphausids attracted by
the light. It is possible that these could provide an alterna-
tive food source for corals and perhaps other benthic fauna.
Given the extreme nature of conditions at Cape Lookout, and
the differences with other coral habitats, food supply stud-
ies are particularly needed to provide further insight into the
tolerance and prospects of the local CWC communities.

Gulf Stream meanders coincided with current velocities of
up to 0.6 m s−1 and increased near-bed acoustic backscatter
at both lander locations. These increases indicate resuspen-
sion of relatively coarse particles, given that the current me-
ters on the landers are more sensitive to larger (160–320 µm)
particles (Mienis et al., 2012). The instantaneous increases
in the acoustic backscatter up to 35 m above the seafloor, at
the onset of warm events when the current speed increases
(Fig. 9), could represent local erosion of the seafloor in off-
mound areas and deposition of large amounts of sediment
on the coral mounds. Sediment in off-mound areas consists
of relatively coarse carbonate sand. This was also shown by
the large amounts of sediment that were collected in the sed-
iment trap as compared to other coral areas (Mienis, et al.
2009; Mienis, et al. 2012). The210Pb, organic carbon and
pigment data show that during resuspension events mainly
old or degraded material is being resuspended. Such erosion
and deposition could explain our observation of partly buried
and sediment-filled framework on top of the mounds. These
resuspension events, which last up to a week, might form
another stressor affecting coral growth. Although cold-water
corals can handle high sediment load for prolonged periods
(Brooke et al., 2009; Larsson et al., 2013), the abrasive nature
of sand in combination with strong currents can have a neg-
ative effect on living cold-water colonies that are present on
the Gulf Stream facing flanks of the mounds. Subsequently,
during these periods corals will likely not be able to feed at
an optimal or sufficient rate (Purser et al., 2010).
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Fig. 12.SST satellite images of sea-surface temperature distribution in the NW Atlantic on 17 December 2009, 9 and 20 March, 31 April and
8 May 2010 (http://marine.rutgers.edu/mrs/sat_data/). The position of the Gulf Stream and its influence on the study area off central North
Carolina is clearly visible.

5 Conclusions

Cold-water corals off Cape Lookout live under extreme en-
vironmental conditions that potentially limit coral and there-
fore mound growth. Largest temperature and salinity fluctu-
ations known so far for CWC areas were measured in the
Cape Lookout CWC habitat. These large temperature and
salinity variations are likely to influence the metabolism of

the cold-water corals and associated benthic species on the
mounds. Furthermore, corals regularly experience abrasive
sand storms that occur during each time the Gulf Stream en-
ters the area. Meandering of the Gulf Stream in and out of
the research area is the main driver of the near-bed processes
near Cape Lookout and influences the whole mound area
as events were observed at all lander and mooring stations.
Upwelling in cold core eddies and increased productivity in
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these eddies was not observed near the seabed. Only one ma-
jor fluorescence peak was observed, which might form a food
source for the species. Another additional food source might
be zooplankton or nutrients derived from zooplankton, which
were highly abundant during April and May 2010.

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/11/
2543/2014/bg-11-2543-2014-supplement.pdf.
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