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Abstract. The combined application of the MBT (degree
of methylation) and CBT (degree of cyclization) indices,
based on the distribution of branched glycerol dialkyl glyc-
erol tetraethers (brGDGTs) in soils, has been proposed as
a paleoproxy to estimate mean annual temperature (MAT).
CBT quantifies the degree of cyclization of brGDGTs and
relates to soil pH. MBT and the simplified version MBT’
quantify the degree of methylation of brGDGTs and relate
to MAT and soil pH. However, other factors such as soil wa-
ter availability have also been suggested to influence MBT’
and possibly restrict the combined application of the MBT’
and CBT indices as a paleotemperature proxy. To assess the
effect of hydrological conditions on MBT’ and CBT, a set
of 23 Iberian Peninsula soil samples, covering a MAT range
from 10 to 18◦C and a mean annual precipitation (MAP)
range of 405 mm to 1455 mm, was analyzed. We found that
the CBT was indeed significantly correlated with soil pH in
our sample set. In contrast, MBT’ was not correlated with
MAT but had a significant correlation with the aridity index
(AI), a parameter related to water availability in soils. The AI
can explain 50 % of the variation of the MBT’, and 70 % of
the residuals of MAT estimated with the MBT/CBT proxy as
compared to instrumentally measured MAT. We propose that,
in arid settings, where water may be an ecologically limiting
factor, MBT’ is influenced by hydrological conditions rather
than temperature. Thus, our results suggest that the combi-

nation of MBT’ and CBT indices should be applied with
caution in paleotemperature reconstructions in soils from dry
subhumid to hyperarid environments.

1 Introduction

Reconstruction of past temperatures beyond the time period
covered by instrumental records is required to understand
the natural modes of climate variability. However, the recon-
struction of continental temperature is particularly challeng-
ing as there are few quantitative proxies. There are a number
of studies that have used microfossil assemblages based on
pollen, diatoms or chironomids preserved in lake sediments
to estimate past air or lake water temperatures (e.g., Colin-
vaux et al., 1996; Lotter et al., 1997; Kurek et al., 2009).
A molecular proxy initially developed to estimate past sea
surface temperatures has also been shown to be applicable in
lake settings, i.e., the long-chain alkenone unsaturation index
(e.g., Marlowe et al., 1984; Zink et al., 2001; Toney et al.,
2010). In addition, the glycerol dialkyl glycerol tetraethers
(GDGTs) have also been applied in marine as well as conti-
nental records for the same purpose (e.g., Powers et al., 2004,
2010; Blaga et al., 2009).

The GDGTs are cell membrane lipids of Archaea and Bac-
teria that are used in paleoenvironmental studies to track,
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Fig. 1. (a)Chemical structures of brGDGTs discussed in the text,(b) map of the study area with locations of surface soils and sample codes
used in this study; standard soil sample X-Ref appears underlined.

for example, changes in archaeal abundance or terrestrial or-
ganic matter input into aquatic systems, as well as for esti-
mating past water/air temperatures and soil pH. Two major
types of GDGTs are currently used – isoprenoidal (i) and
branched (br) – that differ in their alkyl chain structures.
iGDGTs are synthesized mainly by aquatic, mesophilic Ar-
chaea, while branched glycerol dialkyl glycerol tetraethers
(brGDGTs) have been predominantly found in terrestrial set-
tings such as peat bogs and soils (Weijers et al., 2006a),
but also in sedimentary settings receiving significant terres-
trial input (e.g., Hopmans et al., 2004). The glycerol stereo-
chemistry of the brGDGTs indicates a bacterial provenance
(Weijers et al., 2006b), and a brGDGT could be identified
in two cultures of Acidobacteria (Sinninghe Damsté et al.,
2011). However, brGDGTs are found in a wide range of en-
vironments, which can be interpreted as an indication that

brGDGTs may be synthesized by different phyla of Bacteria
(Sinninghe-Damsté et al., 2011).

The distribution of brGDGTs in soils has been put forward
as a means to estimate past continental mean annual temper-
atures (MATs) and pH (Weijers et al., 2007). The proxy is
derived from measuring two indices that calculate the degree
of methylation (MBT and its simplified form MBT’) and cy-
clization (CBT) of brGDGTs (Weijers et al. 2007; Peterse et
al., 2012), where

MBT = (Ia+ Ib + Ic)/(Ia+ Ib + Ic + IIa + IIb + IIc + IIIa + IIIb + IIIc), (1)

MBT′
= (Ia+Ib+Ic)/(Ia+Ib+Ic+IIa+IIb+IIc+IIIa), (2)

CBT = −Log((Ib + IIb)/(Ia+ IIa)). (3)

Biogeosciences, 11, 2571–2581, 2014 www.biogeosciences.net/11/2571/2014/
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Roman numerals refer to chemical structures in Fig. 1a. MBT
and MBT’ have been described to correlate with air tempera-
ture and soil pH, while CBT has been found to depend mainly
on soil pH. Thus, using the values of CBT and MBT’, one can
estimate MAT as follows (Peterse et al., 2012):

CBT = 3.33− 0.38× pH (n = 114;R2
= 0.70), (4)

MAT = 0.81− 5.67× CBT+ 31× MBT′ (n = 176;R2
= 0.59). (5)

The calibration equation to estimate MAT by Peterse et
al. (2012), based on MBT’ (Eq. 5), has a slightly lower cor-
relation coefficient than the original calibration by Weijers et
al. (2007) using MBT. The error of the calibration from both
studies is similar, being 5.0◦C in Peterse et al. (2012) and
4.8◦C in Weijers et al. (2007). However, the temperature es-
timates based on the calibration by Peterse et al. (2012) are
reported to be generally more consistent with instrumentally
measured temperatures.

The combination of the MBT or MBT’ and CBT indices
has been applied in a variety of marine and freshwater sites to
estimate continental MAT (e.g., Weijers et al., 2007; Rueda
et al., 2009; Peterse et al., 2012). In these applications the
underlying assumption is that brGDGTs in sediments have
an allochthonous origin, and the estimated temperatures cor-
respond to those from the nearby continental regions. How-
ever, there is circumstantial evidence that brGDGTs are also
biosynthesized within lake and ocean basins, not just in soils
(e.g., Sinninghe Damsté et al., 2009; Blaga et al., 2010; Tier-
ney et al., 2010; Fietz et al, 2011; Sun et al., 2011). Further-
more, the relatively large scatter in the original MAT cali-
bration data sets (Weijers et al., 2007; Peterse et al., 2012)
suggests that other parameters may influence brGDGT in-
dices besides air temperature and soil pH (e.g., Loomis et
al., 2011; Dirghangi et al. 2013; Wang et al., 2013). For in-
stance, brGDGT distributions in geothermally heated soils
and in a Spodosol in France were linked to oxygen availabil-
ity or moistness (Peterse et al., 2009a; Huguet et al., 2010a).
Two studies on surface soils from North America showed no
correlation between MBT values and MAT, but found a cor-
relation between MBT and mean annual precipitation (MAP)
when MAP< 200 mm (R2

= 0.75) (Peterse et al., 2009b) or
when MAP< 800 mm (Dirghangi et al., 2013). This was in-
terpreted as evidence that in arid regions MAP rather than
MAT may drive the MBT index variability (Peterse et al.,
2009b; Dirghangi et al. 2013). To evaluate further the ef-
fect of hydrological conditions on the MBT/CBT proxy, we
have analyzed soil samples from locations across the Iberian
Peninsula, which represents a range of mainly arid to subarid
settings with moderate differences in MATs.

2 Material and methods

2.1 Samples and sites’ environmental conditions

A suite of 23 surface soil samples was collected in Octo-
ber 2010 across the Iberian Peninsula (Fig. 1b). Each soil
sample was obtained from the combination of three subsam-
ples taken at least 4 m apart from each other and within a
10 m radius area. Subsamples were retrieved after removing
the litter and loose gravel if present, scooping the soil from a
depth of approximately 10 cm within a 20 cm× 20 cm square
surface area, and transferring it into an aluminum tray. The
soil samples were homogenized and air dried. A subsample
of 500 g was then sieved (2 mm mesh size) removing vegeta-
tion remains and small stones.

Sample sites display moderate differences in MAT (10–
18◦C), but cover a wide range of MAP (405–1455 mm)
(Fig. 1b, Table 1; Ninyerola et al., 2005). In the Iberian
Peninsula, the highest precipitation and cooler temperatures
occur generally in the northwest, especially at high eleva-
tion, while the driest and warmest areas are in the south-
east. A value of the aridity index (AI= MAP/mean annual
potential evapotranspiration) was calculated for each site us-
ing the approach proposed by the Consortium for Spatial In-
formation (CGIAR-CSI) based on UNEP (1997) criteria (Ta-
bles 1 and 2; Trabucco and Zomer, 2009). For each site, soil
moisture regimes were established according to Soil Survey
Staff (2010). In general, the eastern Iberian Peninsula is dom-
inated by soils developed on calcareous parent material or
with a significant accumulation of calcium carbonate within
the soil profile, while western soils are usually silicic, de-
veloped on magmatic or metamorphic rocks, or acidified by
leaching. Soils were classified according to the Soil Taxon-
omy System (Soil Survey Staff, 2010) at group level, as only
the surface mineral soil material was collected. The sample
set includes a wide range of soil types, belonging to 5 orders
and 14 groups, covering a wide range of parent materials, and
climatic and geographic conditions (Table 1).

2.2 Ancillary measurements

Total organic carbon (TOC) content was determined on finely
ground soil samples using a Thermo Flash 1112 elemental
analyzer in combustion mode with a Thermo Delta V Advan-
tage mass spectrometer as a detector via a Thermo Conflo III
interface, after Werner et al. (1999). A reference compound
IAEA 600 was used for external calibration, and to calculate
the TOC % standard deviation, which was±0.25.

Soil pH was measured in a soil : de-ionized water suspen-
sion (1: 5) by vigorous shaking the mixture for 1 min, and
leaving it to settle for 30 min. (Thomas, 1996). A triplicate
measurement was taken using a pH meter (GLP22, Crison
Instruments) after calibration of the electrode with standard
solutions at pH 4 and 7.

www.biogeosciences.net/11/2571/2014/ Biogeosciences, 11, 2571–2581, 2014
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Table 1.Sample code and coordinates, instrumentally measured mean annual temperature (MATim), instrumentally measured mean annual
precipitation (MAPim), aridity index (AI), instrumentally measured pH (pHim) and TOC (%). Soils were classified according to Soil Taxon-
omy (Soil Survey Staff, 2010) at group level. The calculated CBT and MBT’ values, as well as derived pH (pHest) and MAT (MATest), are
also included.

Sample Lat. Long. MATim MAPim AI pHim TOC Soil Group CBT MBT’ pHest MATest
(◦C) (mm) (%) (◦C)

AM 37.32 −4.62 16 509 0.50 8.7 3.7 Calcixerept 0.53 0.21 7.3 4.3
CA 42.26 −2.09 13 450 0.51 7.8 2.5 Torriorthent 0.29 0.08 7.9 1.6
CAR 42.49 −6.78 12 886 0.71 7.4 9.0 Endoaquoll 0.35 0.24 7.7 6.4
CAR-M 42.49 −6.79 12 948 0.73 6.8 3.6 Eutrudept 0.79 0.38 6.6 8.1
CAY 42.78 −2.99 11 471 0.94 6.4 10.3 Calcixeroll 1.08 0.36 5.8 5.8
CER 40.32 −5.93 12 866 0.64 4.8 18.3 Dystrudept n.d. 0.49 n.d. n.d.
CER-B 38.25 −4.25 15 771 0.45 6.4 2.3 Xerorthent 1.34 0.32 5.2 3.2
COV 43.30 −5.04 12 1455 0.97 6.7 6.3 Hapludoll 0.29 0.42 7.9 12.0
E 42.03 −0.53 14 494 0.45 8.4 5.8 Calcixerept 0.33 0.21 7.8 5.5
ER 43.27 −4.98 10 1443 1.13 5.1 6.1 Dystrudept 1.71 0.59 4.2 9.4
EST 41.07 −0.20 14 415 0.40 7.5 1.5 Torriorthent 0.85 0.09 6.4 −1.3
MA 39.41 −2.88 14 416 0.35 8.1 1.3 Calcixerept 0.64 0.16 7.0 2.2
MI 38.94 −4.34 14 532 0.38 6.2 2.7 Haploxeralf 1.31 0.35 5.2 4.2
MO 42.33 1.00 10 770 1.11 6.6 7.6 Haplustoll 0.63 0.34 7.0 7.8
OL 37.96 −6.28 16 776 0.51 6.2 2.6 Haplorexept 1.04 0.38 5.9 6.6
RE 41.85 −1.14 15 405 0.42 7.8 2.2 Haplogypsid 0.78 0.09 6.6 −0.9
SAL 40.62 −5.63 11 593 0.44 6.0 3.1 Haploxeralf 1.44 0.26 4.9 0.8
SAN 42.13 −6.71 10 1335 1.03 6.3 6.0 Dystrudept 1.10 0.38 5.8 6.4
SAN-C 42.13 −6.70 10 1335 0.89 5.7 4.6 Dystrudept 1.25 0.44 5.4 7.4
TA 40.65 −1.97 10 716 0.53 8.3 5.8 Calcixeroll 0.35 0.15 7.7 3.3
TO 40.55 −2.05 11 1002 0.53 8.3 7.8 Haploxeroll 0.23 0.18 8.1 4.9
ZA 37.04 −5.79 18 611 0.50 8.4 2.6 Haploxerept 0.59 0.14 7.1 1.9
ZO 37.49 −4.68 17 520 0.49 8.5 1.8 Xerarent 0.64 0.17 7.0 2.4

2.3 GDGT analysis

Samples of approximately 1 g of dry soil were spiked with
an internal standard (GR, Rethoré et al., 2007) and extracted
using a microwave (MARS 5-CEM) and dichloromethane
(DCM) : methanol (MeOH) (3: 1, v/v). The temperature of
the microwave vessels containing the soil aliquots was in-
creased to 70◦C over 5 min, held at 70◦C for 5 min and
then decreased to 30◦C. The organic extract was concen-
trated under a stream of nitrogen, and separated into three
fractions of different polarity according to the method in
Huguet et al. (2010b). In short, the lipid extract was eluted
in a column filled with activated silica usingn-hexane,
DCM and MeOH. The MeOH fraction, which contained the
GDGTs, was then evaporated under nitrogen, redissolved
in n-hexane :n-propanol (99: 1, v/v) and filtered through
0.45 µm PTFE (polytetrafluoroethylene) filters prior to anal-
ysis by high-performance liquid chromatography–mass spec-
trometry (HPLC-MS). The instrumental analysis was per-
formed using a Dionex P680 HPLC system coupled to
a Thermo Finnigan Quantum Discovery Max triple sec-
tor quadrupole MS with an atmospheric pressure chemi-
cal ionization (APCI) interface set in positive mode. Instru-
mental and chromatographic conditions were adapted from

Schouten et al. (2007), Escala et al. (2009) and Fietz et
al. (2011). Extracts were eluted using a Prevail Cyano col-
umn (2.1× 150 mm, 3 mm; Alltech) fitted with a guard col-
umn. The flow rate was set at 0.6 mL× min−1, and the
HPLC program was as follows: 98.5 % hexane and 1.5 %n-
propanol for 4 min, increasing the proportion ofn-propanol
to 5 % in 11 min, then to 10 % over 1 min and held constant
for 4 min, finally lowered to 1.5 % in 1 min and held con-
stant for a further 9 min prior to injecting the next sample.
The parameters of the APCI were set as follows to gen-
erate positive ion spectra: corona discharge 3 mA, vapor-
izer temperature 400◦C, sheath gas pressure 49 mTorr, aux-
iliary gas (N2) pressure 5 mTorr, and capillary temperature
200◦C. GDGTs were detected in selected ion monitoring
(SIM) mode of [M+H]+ ± 0.5 m/z units. Absolute abun-
dances of brGDGTs were quantified by comparison of the
corresponding peak areas with those of the internal standard
GR and correcting for the response factor (cf. Huguet et al.,
2006).

Samples were extracted and measured once. Due to low
abundances of brGDGTs IIIb and IIIc (Fig. 1a), we decided
to calculate the MBT’ rather than MBT index (Peterse et al.,
2012). The reproducibility of the measurement of MBT’ and
CBT was 0.006 and 0.022, respectively, obtained from the

Biogeosciences, 11, 2571–2581, 2014 www.biogeosciences.net/11/2571/2014/
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Table 2.Sample codes and coordinates, aridity index (AI), individual branched (br) GDGTs’ relative abundances (%) and concentrations of
total brGDGTs per total organic carbon (TOC). Abbreviation n.d. denotes not detected.

Sample Lat. Long. AI Branched GDGTs (%) brGDGTs
Ia Ib Ic IIa IIb IIc IIIa IIIb IIIc (µg gTOC−1)

AM 37.32 −4.62 0.50 10.1 6.3 3.4 31.9 6.1 n.d. 36.6 3.9 1.8 2.0
CA 42.26 −2.09 0.51 6.7 n.d. n.d. 27.0 17.5 n.d. 36.3 12.4 n.d. 1.3
CAR 42.49 −6.78 0.71 14.0 8.6 1.1 37.1 14.1 1.0 21.4 2.5 0.3 17.5
CAR-M 42.49 −6.79 0.73 31.0 6.2 0.4 43.1 5.8 n.d. 12.6 0.9 n.d. 4.4
CAY 42.78 −2.99 0.94 32.6 2.9 n.d. 42.4 3.3 n.d. 18.1 0.6 n.d. 7.0
CER 40.32 −5.93 0.64 49.5 n.d. n.d. 41.1 n.d. n.d. 9.4 n.d. n.d. 16.3
CER-B 38.25 −4.25 0.45 30.4 1.7 n.d. 47.7 1.8 n.d. 18.4 n.d. n.d. 7.9
COV 43.30 −5.04 0.97 21.0 14.3 5.6 33.2 13.2 1.4 9.7 1.5 n.d. 15.4
E 42.03 −0.53 0.45 13.2 7.0 0.8 36.3 16.4 n.d. 26.3 n.d. n.d. 3.2
ER 43.27 −4.98 1.13 57.3 1.8 n.d. 34.4 n.d. n.d. 6.5 n.d. n.d. 7.2
EST 41.07 −0.20 0.40 8.7 n.d. n.d. 42.7 7.3 n.d. 41.4 n.d. n.d. 2.3
MA 39.41 −2.88 0.35 11.9 4.4 n.d. 35.4 6.4 n.d. 41.9 n.d. n.d. 3.5
MI 38.94 −4.34 0.38 32.6 2.4 n.d. 47.0 1.4 n.d. 16.6 n.d. n.d. 3.5
MO 42.33 1.00 1.11 25.3 7.4 1.0 40.0 8.1 n.d. 17.2 1.0 n.d. 9.6
OL 37.96 −6.28 0.51 33.7 4.0 n.d. 48.1 3.4 n.d. 10.7 n.d. n.d. 9.9
RE 41.85 −1.14 0.42 8.6 n.d. n.d. 42.9 8.5 n.d. 36.6 3.5 n.d. 6.1
SAL 40.62 −5.63 0.44 25.2 1.2 n.d. 51.5 1.6 n.d. 20.5 n.d. n.d. 3.4
SAN 42.13 −6.71 1.03 34.3 3.1 0.4 44.7 3.2 n.d. 13.9 0.4 n.d. 10.8
SAN-C 42.13 −6.70 0.89 41.0 2.8 0.4 43.5 1.9 n.d. 10.1 0.3 n.d. 12.2
TA 40.65 −1.97 0.53 8.7 4.8 0.7 35.5 14.7 n.d. 33.0 2.2 0.2 3.5
TO 40.55 −2.05 0.53 10.0 6.5 0.4 32.1 18.3 2.0 26.9 3.8 n.d. 6.5
ZA 37.04 −5.79 0.50 10.4 3.4 n.d. 39.6 9.5 n.d. 34.5 2.6 n.d. 2.3
ZO 37.49 −4.68 0.49 11.33 5.2 n.d. 39.5 6.5 n.d. 36.0 1.4 n.d. 2.9

repeated analysis (six times) of a reference soil sample (sam-
ple X-Ref in Fig. 1b). The possibility of an apparent corre-
lation between the abundances of GDGTs with MBT’ and
CBT due to an increased analytical error at low abundances
was discarded after recalculating the MBT’ and CBT while
removing all peak areas below a threshold value. The origi-
nal and the recalculated MBT’ and CBT values did not reveal
substantial differences (i.e., their lineal correlation yielded
R2

= 0.96,R2
= 0.99, respectively).

Temperature residuals were calculated by subtracting
brGDGT-estimated values for MAT (i.e., MATest, using
MBT’/CBT) from instrumental values of MAT derived from
a climatic atlas (MATim; Table 1; see Ninyerola et al., 2005).
The residuals of pH values were calculated by subtracting
brGDGT estimates (i.e., pHest, using CBT) from soil pH
values measured in the laboratory with a pH meter (pHim).
Throughout the manuscript, the use of the subscript “est” de-
notes estimated values using GDGT indices, while the sub-
script “im” refers to values measured with instruments (Ta-
ble 1, Sect. 2.2).

3 Results and discussion

3.1 BrGDGT abundances and distribution

The concentrations of brGDGTs in the soils ranged between
1.3 µg g−1

TOC and 17.5 µg g−1
TOC (Table 2). The predominant

brGDGT is GDGT IIa, followed by IIIa and Ia (Table 2).
The brGDGTs IIIb and c, IIc as well as brGDGT Ic are only
present in minor amounts. In eight of the samples (35 % of
the total), none of these brGDGTs were detected (Table 2),
which is a similar percentage as reported in globally dis-
tributed soils (Peterse et al., 2012).

Samples with the highest absolute brGDGT abundances
were located in the northern Iberian Peninsula, the area with
the highest rainfall and cooler temperatures. Towards the
drier and warmer south, the brGDGT abundances gradu-
ally decreased (Table 2). The highest brGDGT abundance
was found in an Endoaquoll soil (sample code CAR, Ta-
bles 1 and 2), a relative singular soil with aquic moisture
regime, formed on an alluvial delta with a high TOC con-
tent (15.9 %), and relatively high MAPim in our data set
(886 mm; Tables 1 and 2). Soil types Hapludoll (one sam-
ple) and Dystrudept (four samples) also had relatively high
brGDGT abundances. These soils are also characterized by
high MAPim (866–1455 mm) and TOC contents that range
between 3.5 and 10 %. Therefore, our data suggest that

www.biogeosciences.net/11/2571/2014/ Biogeosciences, 11, 2571–2581, 2014
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Fig. 2. Linear regression plots of(a) measured soil pH (pHim) vs. CBT,(b) measured mean annual temperature (MATim; Ninyerola et al.,
2005) vs. CBT,(c) Mean annual precipitation (MAPim; Ninyerola et al., 2005) vs. CBT,(d) soil pHim vs. MBT’, (e) MAT im vs. MBT’,
and(f) MAPim vs. MBT’. Data compiled by Peterse et al. (2012) are plotted in grey and distinguished by symbols as follows: Weijers et
al. (2007) (+), Peterse et al. (2012) (♦), Bendle et al. (2010) (©) and Peterse et al. (2009b) (1). Data from this study are shown as black
circles (•). Linear regression lines, equations,R2, andp values are shown in grey for the Peterse et al. (2012) data set and in black for the
present study.

brGDGT abundance is partly controlled by both precipita-
tion and to a lower extent by TOC in agreement with previ-
ous studies. For instance, a positive correlation was found be-
tween soil water content and brGDGT abundances in marsh
soils of the Qinghai-Tibetan Plateau (Wang et al., 2013).
Soil water content was suggested to have a direct effect on
brGDGTs and/or an indirect effect on other factors such as
oxygen and TOC content (Wang et al., 2013). Water satura-
tion was also suggested to play a significant role for brGDGT
abundance in African soils (Loomis et al., 2011). BrGDGT
source organisms have been suggested to be heterotrophic
(e.g., Weijers et al., 2010; Huguet et al., 2012; Opperman
et al., 2012; Ayari et al., 2013), which could explain the
higher brGDGT abundances coupled to high TOC. Earlier
studies showed that brGDGT abundances are usually high in
water-saturated soils and peat bogs, thus potentially provid-
ing an ideal environment for brGDGT source organisms that
have been proposed to be anaerobic (Weijers et al., 2006).
However, so far, brGDGTs have been identified in only two
aerobic Acidobacteria species, suggesting that brGDGTs are

synthesized by a range of bacterial communities (Sinninghe
Damsté et al., 2011). Hence, the impact of soil redox condi-
tions on brGDGT abundance from diverse bacterial commu-
nities has yet to be ascertained.

Our data also indicated that pH is not a driving factor for
brGDGT abundance as, despite covering a pH range from
4.8 to 8.7, we did not observe an increase in brGDGTs with
lower pH. This contrasts with earlier findings (e.g Peterse et
al., 2010; Sinnghe-Damsté et al., 2011; Yang et al., 2011)
again suggesting that brGDGTs are produced by a range of
bacterial communities.

3.2 CBT and MBT’ relationship with pH and
temperature

In the soils studied, the CBT values range from 0.23 to 1.71
with an average of 0.81 (Table 1). Even though this is a re-
gional study, our CBT values span almost 70 % of the range
of values published in the global calibration set (Weijers et al.
2007). CBT values and pHim of the Iberian soils are linearly
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Fig. 3. Linear regression plots of(a) measured soil pH (pHim) vs.
estimated pH (pHest), (b) pHim vs. pHest residuals,(c) instrumen-
tally measured mean annual temperature (MATim) vs. estimated
MAT (MAT est), with an inset only for the 8–20◦C MAT im range
found in the samples from the Iberian Peninsula,(d) MAT im vs.
MATest residuals. Data compiled by Peterse et al. (2012) are plot-
ted in grey and distinguished by symbols as follows: Weijers et
al. (2007) (+), Peterse et al. (2012) (♦), Bendle et al. (2010) (©)

and Peterse et al. (2009b) (1). Data from this study are shown in
black (•). Linear regression lines and equations,R2, andp values
are shown in grey for the Peterse et al. (2012) data set and in black
for the present study. The dashed line is drawn for illustration pur-
poses to indicate a 1: 1 relationship.

correlated showing a similar slope (−0.33) to the one deter-
mined in global calibration data sets (−0.35, Weijers 2007;
Peterse 2012; Fig. 2a). However, CBT values are not cor-
related with MATim or MAPim (Fig. 2b and c). Our results
would then confirm the CBT relationship with pH. This is
in contrast to previous studies that suggested that the cali-
bration of soils above pH 7 needed to be revised (Loomis et
al. 2011; Weijers et al. 2007). We also observed a signifi-
cant correlation between pHim and MBT’ values (R2

= 0.71,
p < 0.0001), which is even higher than the one observed
in the global data set (Fig. 2d). As previous studies indi-
cated that the variation in the MBT index is mostly explained
by differences in soil pH and temperature (Weijers et al.,

2007), we further compared MBT’ of our samples to MATim
(Fig. 2e).

The range in MBT’ values in the Spanish data set is sim-
ilar to the one observed for the global data set (Peterse
et al., 2012) despite a much narrower range of MATim in
our Iberian samples (10–18◦C; Table 1 and Fig. 2e). How-
ever, the relative abundance of methyl brGDGTs increases
at higher temperatures in the Iberian samples. Thus, MBT’
and MATim show a weak but significant negative correlation
within the Spanish sample set (R2

= 0.21;p = 0.02) in con-
trast to the positive correlation between MBT and MAT ob-
served by Weijers et al. (2007) and Peterse et al. (2012) for a
global data set (Fig. 2e).

The MBT’/CBT values in the Iberian soils translate (us-
ing Eq. 5) to a MATest of −0.9 to 9.4◦C and an average of
4.7◦C (Table 1). These estimated values are lower than the
climatic atlas temperatures, which yields monthly air tem-
peratures in the sample sites from 3 to 23◦C and annual
mean values (i.e., MATim) from 10 to 18◦C. It is also note-
worthy that the residuals of MATest are not randomly dis-
tributed, since MBT’/CBT-derived temperatures consistently
underestimate MATim in the Iberian data set (Fig. 3d). This
deviation was observed previously in the global data set, but
it is more pronounced in the Iberian soils (Fig. 3d). Thus,
MBT’/CBT-derived temperatures (MATest) in 17 out of the
23 soil samples underestimate MATim by more than the 5◦C
proxy calibration error found by Peterse et al. (2012; Fig. 3c,
Table 1). For example, a soil sample close to the Zarracatín
lagoon in the south of Spain (sample code ZA, Table 2),
where monthly mean temperatures never fall below 11◦C
and MATim is 18◦C, has a MATest value of 1.9◦C (Table 1).
Even if we were to attempt a regional temperature calibra-
tion of the MBT’, the weak correlation between MBT’ and
MAT im (Fig. 2e) would result in an error much higher than
the 5◦C reported for the global data set (Peterse et al., 2012).
Moreover, local calibrations have already been proven not
to improve MBT’/CBT-based MAT accuracy (Peterse et al.,
2012).

These findings would suggest caution in the use of
the MBT’/CBT for paleotemperature reconstructions in the
Iberian Peninsula, and support previous studies that showed
that environmental parameters other than temperature may
control the distribution of brGDGTs (e.g., Weijers et al.,
2011; Peterse et al., 2012; Dirghangi et al., 2013; Loomis et
al., 2013). Some studies have attributed the lack of correla-
tion between MATim and MBT/CBT to factors such as veg-
etation change, soil type and changes in hydrologic regime
(e.g., Weijers et al., 2011; Dirghangi et al., 2013; Loomis et
al., 2013).

3.3 Potential control of hydrological conditions
on MBT’

We observe significant correlations between MAPim and
MBT’ ( R2

=0.55, p < 0.0001; Fig. 2f). This is similar to
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Fig. 4.Linear regression plots of(a) brGDGT concentration in soils
normalized to total organic carbon (TOC) vs. values of instrumen-
tally measured mean annual precipitation (MAPim) (b) brGDGT
concentration normalized to TOC vs. aridity index (AI),(c) MAPim
vs. estimated mean annual temperature (MATest) residuals and(d)
AI vs. MATest residuals,(e)AI vs. MBT’.

the observation from the global data set (Weijers et al. 2007;
Peterse et al. 2012) where the MBT/CBT vs. MAPim cor-
relation was interpreted as the result of covariation between
temperature and precipitation (Weijers et al. 2007). Indeed
in tropical sites higher precipitation is often associated with
higher temperatures, but in arid regions, such as the south-
ern Iberian Peninsula, the highest temperatures are usually
found in the driest areas, not the wettest. In fact, in the
Iberian soil data set we find a weak inverse correlation be-
tween MAPim and MATim (MAT im = −0.0004 MAPim+16,
R2

= 0.32, p = 0.017). Thus, our results suggest that site-
specific water availability may influence MBT’ in the Iberian
soils. This would be in agreement with previous studies
that also suggested an effect of either precipitation or wa-
ter content on the MBT in North American and Tibetan soils
(Dirghangi, 2013; Wang et al., 2013). Peterse et al. (2012)
also suggested an effect of precipitation on the MBT’ index
because the addition of temperate soil data to the global data

set increased the scatter of the original MBT/CBT calibra-
tion (Weijers et al., 2007). The global MBT’ values from Pe-
terse et al. (2012) show indeed a large scatter in the 8–20◦C
range (Fig. 3c inset), and theR2 of the MBT’ vs. MATim
correlation is only 0.09, much lower than theR2 of 0.58 ob-
served for the full−8 to 28◦C range of the global data set
(Fig. 3c). Therefore, MBT’ correlates poorly with MATim
in the temperate range, in which the Iberian Peninsula soil
samples fall (Fig. 3c), regardless of the study area, and this
should be taken into account in future regional studies.

Interestingly, the brGDGT abundances normalized to TOC
(Fig. 4a), the MBT’ (Fig. 2f), and the MATest residuals
(Fig. 4c) are significantly correlated with MAPim. This may
indicate that under water stress the brGDGT-producing or-
ganisms are less productive and may have to adapt their
membranes to water availability rather than temperature, re-
sulting in the observed underestimation of MAT (Fig. 3d).
Our data show that brGDGT abundances are lower under
dryer (Table 2) and potentially oxic conditions, as has been
shown in previous studies (e.g., Dirghangi et al., 2013; Wang
et al., 2013). The physiological influence of changes in hy-
drological conditions on the degree of methylation of the
brGDGTs is not yet known. It is possible that precipitation
has an indirect influence on MBT’ as the amount of precipi-
tation can affect soil pH due to increased leaching of calcium
and magnesium (Brady and Weil, 2002). Additionally, rain-
water has a slightly acidic pH of 5.7 due to the dissolution
of atmospheric CO2 (Brady and Weil, 2002). But no correla-
tion was observed between CBT (or pHim) and MAPim at the
investigated sites (Fig. 2c). Hence, a possible effect of pre-
cipitation on soil pH cannot explain the correlation between
MBT’ or MAT estresiduals and MAPim. Alternatively, as pre-
cipitation is only one expression of hydrological conditions
at a site, MBT’ may also be influenced by soil type, vegeta-
tion and water circulation through percolation and evapora-
tion.

Water availability is critical in semiarid soils affecting os-
motic status and abundance of microbial cells as well as
nutrient cycling (Bustamante et al., 2012, and references
therein). In order to better estimate water availability, we
used the aridity index (AI), a measure for moisture avail-
ability in soils excluding the specific impact of soil condi-
tion to adsorb and hold water (Trabucco and Zomer, 2009).
The AI is a ratio of MAP and mean annual potential evapo-
ration, and increases with more humid conditions (see Tra-
bucco and Zomer, 2009, for details). It was calculated for
each site using the approach followed by the Consortium
for Spatial Information (CGIAR-CSI) based on United Na-
tions Environment Programme (UNEP) criteria (Tables 1
and 2; Trabucco and Zomer, 2009). In the Iberian soils the
brGDGT abundance shows a weak, albeit significant corre-
lation with the AI (R2

= 0.30, p = 0.006; Fig. 4b), but the
AI has a much higher correlation with the MATest residu-
als (R2

= 0.71,p < 0.0001; Fig. 4d). In fact, the AI can ex-
plain 71 % of the variance in the residuals (Fig. 4d), and 53 %
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of the variance in the MBT’ index (MBT’= 0.38AI+ 002,
n = 22,R2

= 0.53,p < 0.001; Fig. 4e). MAPim also explains
55 % of the variance in the MBT’ index but only 60 % in the
MATest residuals (Fig. 4c). This suggests that it is the soil’s
capacity to retain water, or soil moisture, rather than just pre-
cipitation that drives MBT’ besides temperature and pH. Cor-
relations between the MBT’ and MAP have already been re-
ported (Huguet et al., 2010a; Loomis, 2011; Dirghangi et al.,
2013), but the validity of the correlation between MBT’ and
AI (Fig. 4e) has to be confirmed by analyzing brGDGTs in
a larger number of soils. As mentioned above, the AI cannot
explain all the variation observed in the MBT’ (only 53 %,
Fig. 4e), and other factors such as vegetation type or soil wa-
ter retention capacity that also affect water availability most
probably play a role. In fact vegetation type has already been
shown to affect the MATest values in North American soils
(Weijers et al., 2011).

Our results have significant implications for the interpreta-
tion of paleotemperature records derived from the combined
MBT’ and CBT indices. Based on our analysis, we urge cau-
tion in the application of the proxy in arid environments and
areas with an aridity index lower than 0.8, as we observe
that MATest accuracy in such locations is likely to be low,
and with an error larger than the one provided in the global
MBT’/CBT vs. MAT calibration (Peterse et al., 2012). The
exact hydrological threshold below which water availability
exerts a stronger control on the MBT’ index than tempera-
ture will have to be determined in future studies. We rec-
ommend that hydrological conditions should be evaluated
in conjunction with MBT’/CBT paleotemperatures in pale-
oreconstruction studies, for example through known paleo-
hydrological proxies such as compound-specificδD values,
whose analysis can even be carried out on the same lipid ex-
tracts (e.g. Sachse et al., 2012).

4 Conclusions

In soils from the Iberian Peninsula, the CBT index was
shown to co-vary with soil pH with sufficient accuracy to
confirm its use as a proxy for estimating paleo-soil pH in the
region. The MBT’ index was also shown to relate to soil pH,
but the expected relation between MBT’ and mean annual
air temperatures (MATim) was not apparent. Due to these re-
sults, the application of the combined MBT’ and CBT indices
to estimate air temperatures does not seem appropriate in the
Iberian Peninsula.

In contrast, the MBT’ index was coupled with instrumen-
tal mean annual precipitation (MAPim) and the aridity index
(a ratio of MAP and mean annual potential evaporation). We
thus argue that, under moisture shortage, MBT’ is not cou-
pled to temperature and is instead controlled by soil water
availability. The validity of the correlation between MBT’
and AI as well as the AI threshold below which MBT’ might
be biased needs to be contrasted in other soil types and study
areas. Nonetheless, we suggest that these findings should be

taken into account when interpreting MBT’/CBT climatic
records from arid areas.
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