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Abstract. Now that regional circulation patterns can be rea-
sonably well reproduced by ocean circulation models, sig-
nificant effort is being directed toward incorporating com-
plex food webs into these models, many of which now rou-
tinely include multiple phytoplankton (P) and zooplankton
(Z) compartments. This study quantitatively assesses how the
number of phytoplankton and zooplankton compartments af-
fects the ability of a lower-trophic-level ecosystem model to
reproduce and predict observed patterns in surface chloro-
phyll and particulate organic carbon. Five ecosystem model
variants are implemented in a one-dimensional assimilative
(variational adjoint) model testbed in the Mid-Atlantic Bight.
The five models are identical except for variations in the
level of complexity included in the lower trophic levels,
which range from a simple 1P1Z food web to a considerably
more complex 3P2Z food web. The five models assimilated
satellite-derived chlorophyll and particulate organic carbon
concentrations at four continental shelf sites, and the result-
ing optimal parameters were tested at five independent sites
in a cross-validation experiment. Although all five models
showed improvements in model–data misfits after assimila-
tion, overall the moderately complex 2P2Z model was asso-
ciated with the highest model skill. Additional experiments
were conducted in which 20 % random noise was added to
the satellite data prior to assimilation. The 1P and 2P models
successfully reproduced nearly identical optimal parameters
regardless of whether or not noise was added to the assimi-
lated data, suggesting that random noise inherent in satellite-
derived data does not pose a significant problem to the as-
similation of satellite data into these models. However, the
most complex model tested (3P2Z) was sensitive to the level
of random noise added to the data prior to assimilation, high-

lighting the potential danger of over-tuning inherent in such
complex models.

1 Introduction

In spite of recent advances in marine ecosystem modeling
that now allow for the incorporation of multiple plankton
functional types and/or size classes (e.g., Follows et al.,
2007; Kishi et al., 2007; Salihoglu and Hofmann, 2007), it
remains ambiguous as to whether models with additional
plankton compartments necessarily perform better than mod-
els characterized by relatively simple structures. Although
the use of a single plankton compartment may fail to re-
solve key processes in a given ecosystem (e.g., Ward et al.,
2013), the inclusion of additional complexity in plankton
structure comes with a substantial cost: significant uncertain-
ties will inevitably be associated with the additional state
variables and required parameters (Anderson, 2005; Flynn,
2005). Hence these trade-offs in model structure selection
pose a challenging question: how does one determine how
many phytoplankton and zooplankton compartments need to
be included in a given application of a lower trophic model?

Multiple model comparison studies have helped improve
our understanding of the trade-offs of increasing ecosystem
model complexity, yet many of these studies have not directly
isolated the effects of increasing plankton complexity (e.g.,
Baird and Suthers, 2010; Costanza and Sklar, 1985; Fulton
et al., 2003; Hannah et al., 2010; Paudel and Jawitz, 2012;
Raick et al., 2006). For example, a recent community data
assimilative modeling comparison exercise (Friedrichs et al.,
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2007) revealed that ecosystem models with multiple phyto-
plankton (P) state variables were quantitatively more skill-
ful (in terms of reproducing observations of chlorophyll, pri-
mary production, export and nitrate at multiple sites) than
models with single P compartments. However, the 12 mod-
els participating in the Friedrichs et al. (2007) comparison
study varied in many different ways, including nutrient limi-
tations, variable elemental compositions and zooplankton (Z)
state variables, making it difficult to determine why certain
models performed better than others. Lehmann et al. (2009)
compared two models with different numbers of plankton
compartments (1P1Z with 2P1Z) and concluded that the ad-
ditional phytoplankton state variable improved model skill.
However, in this case it was not completely clear whether the
improvement was due to the additional phytoplankton com-
partment or was caused by other differences in the structures
of the two models such as the variable carbon : nitrogen ra-
tio included in the more complex model. Likewise, Hash-
ioka et al. (2012) evaluated the role of functional groups
in four global ecosystem models. Although differences in
model performance were found, these were largely attributed
to variations in underlying governing mechanisms, and not
necessarily to differences in the numbers and specific char-
acteristics of each model’s phytoplankton functional types.

In contrast to these previous efforts that compared mod-
els that varied in many ways based on different assumptions
made by different investigators, Bagniewski et al. (2011)
compared the relative skill of three models that differed only
in their formulations for fast-sinking diatom aggregates and
cysts. Although none of their models could be rejected based
on misfit with available observations, the inclusion of export
by diatom aggregation was found to be a process that signif-
icantly improved model–data fit. In the study presented here,
the focus is on the inter-model differences induced solely
by variations in the assumed phytoplankton and zooplankton
structures. In other words, the five ecosystem models tested
in this study are identical except for variations in the level
of complexity included in the P and Z compartments, and
range from a simple 1P1Z to a considerably more complex
3P2Z food web. To further simplify the comparison, func-
tional types were not considered, but instead, the multiple P
and Z only account for size class differences.

Here relative model skill is defined as how well the models
represent observations over a specified range of conditions,
or, more practically, how well the models fit the data (Jolliff
et al., 2009; Stow et al., 2009, Friedrichs et al., 2009). Since
ecosystem model performance is very sensitive to the arbi-
trary choice of ecological parameter values (Rykiel, 1996),
it is critical to rigorously optimize the parameter values of
individual models prior to comparing their relative skill in
order to insure that innate differences in model structures are
being compared, rather than the degree of subjective tuning
(Friedrichs et al., 2006). Thus in this analysis each of the five
models was parameterized in a 1-D assimilative framework,
and parameters were optimized through the assimilation of

satellite-derived data. In this way, all five models were com-
pared at their optimum skill. In addition, because all models
were forced with identical physics, the difference in model
performance was only a function of the varying P and Z food
web structures.

The objective of this study is not to identify a model
with the highest possible skill in this particular region of
the ocean, but rather the goal is to determine how varying
the number of plankton variables within a given model af-
fects model performance. In other words, this study exam-
ines how model skill, specifically skill in reproducing surface
chlorophyll and particulate organic carbon concentrations, is
affected by manipulating the complexity of the planktonic
food web without altering other underlying formulations and
assumptions in the model.

2 Methods

2.1 Ecosystem models

In this study five nitrogen-based marine ecosystem mod-
els were compared. All are nitrogen–phytoplankton–
zooplankton–detritus (NPZD)-type models incorporating
identical biogeochemical processes (as described in Fennel
et al. 2006), with the only difference between models be-
ing the number of phytoplankton and zooplankton groups:
1P1Z, 2P1Z, 2P2Z and 3P1Z and 3P2Z food webs. The most
complex 3P2Z model includes three P compartments (pico-,
nano- and micro-phytoplankton) with three corresponding
chlorophyll state variables and two Z compartments (micro-
and meso-zooplankton). In the simplest 1P1Z model, the sin-
gle P and Z compartments represent an average of three phy-
toplankton size classes and micro-zooplankton, respectively.
In the 2P models, one phytoplankton compartment represents
the micro-phytoplankton and one represents an average of
pico- plus nano-phytoplankton. The key parameters that dif-
ferentiate P size classes include maximum chlorophyll-to-
carbon ratios, nutrient half-saturation constants, maximum
growth rates and sinking rates, whereas Z compartments
vary in grazing rates and food preference. Both micro- and
meso-zooplankton were assumed to graze on all phytoplank-
ton size classes but with varying grazing rates. This allowed
micro-zooplankton to prefer pico- and nano-phytoplankton,
whereas meso-zooplankton preferred micro-phytoplankton.
A summarized list of critical parameters for the various
plankton state variables is provided in Table 1 and the bio-
logical equations are provided in the Appendix.

Each of the five marine ecosystem models were embedded
in a 1-D (vertical) physical model that contains standard pa-
rameterizations for vertical advection, diffusion and sinking
particles that have been thoroughly described in a number
of other 1-D modeling studies (Friedrichs et al., 2007; Ward
et al., 2010; Xiao and Friedrichs, 2014). Initial and bottom
boundary conditions for the model state variables were set
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Table 1.Key parameters that differentiate the phytoplankton (P) and zooplankton (Z) size classes.

Parameter Symbol P size class∗ 1P1Z 2P1Z 2P2Z 3P1Z 3P2Z

Maximum Chl : C ratio θmax_SP Small 0.05 0.03 0.03 0.03 0.03
((mg Chl)(mg C)−1) θmax_MP Medium 0.05 0.05

θmax_LP Large 0.06 0.06 0.06 0.06

Half saturation for NO3 uptake kNO3_SP Small 0.5 1.0 1.0 1.0 1.0
(mmol N m−3) kNO3_MP Medium 1.5 1.5

kNO3_LP Large 1.5 1.5 2.0 2.0

P maximum growth rate µmax_SP Small 1.0 1.8 1.8 1.5 1.5
(d−1) µmax_MP Medium 1.2 1.2

µmax_LP Large 1.0 1.0 1.0 1.0

P sinking rate [d−1] wSP Small 0.1 0.1 0.1 0.1 0.1
wMP Medium 0.2 0.2
wLP Large 0.4 0.4 0.4 0.4

Micro-Z grazing rate gSP_SZ Small 0.6 0.8 1.2 0.4 1.0
(d−1) gMP_SZ Medium 0.8 0.6

gLP_SZ Large 1.2 0.4 1.0 0.2

Meso-Z grazing rate gSP_LZ Small 0.4 0.2
(d−1) gMP_LZ Medium 0.6

gLP_LZ Large 1.2 1.0

Micro-Z basal metabolism rate (d−1) lBM_SZ 0.1 0.1 0.1 0.1 0.1

Meso-Z basal metabolism rate (d−1) lBM_LZ 0.1 0.1

∗ The three size classes represent pico-, nano- and micro-phytoplankton (small, medium and large).

the same as in Xiao and Friedrichs (2014), i.e., provided by a
corresponding three-dimensional (3-D) 1P1Z model imple-
mentation (Hofmann et al., 2008; 2011). Models with two
size classes were initialized as one-half of the 3-D 1P1Z con-
centrations, and models with three size classes were initial-
ized as one-third of these concentrations. Sensitivity experi-
ments demonstrated that the 1-D models were not sensitive
to these initial size fractionation ratios. In all experiments,
carbon was derived by converting nitrogen (N) to carbon (C)
via a constant Redfield C : N ratio and model estimates of
particulate organic carbon (POC) were computed as the sum
of all phytoplankton, zooplankton and detritus. All five mod-
els were run from 1 January 2004 through 31 December 2004
with a time step of 1 h.

2.2 Satellite-derived data

Based on the results of Xiao and Friedrichs (2014), three
types of daily 9km data were derived from the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) and assimilated into
the five models described above (Table 2): size-fractionated
chlorophyll a (Pan et al., 2010), total chlorophylla (com-
puted as the sum of the size-fractionated chlorophyll) and
particulate organic carbon (Stramska and Stramski, 2005).
Although these satellite data were all derived using empir-
ical or semi-analytical algorithms, they have demonstrated

considerable success in their agreement with in situ data. The
uncertainty associated with these size-differentiated chloro-
phyll and POC concentrations has been estimated to be 35 %
(Pan et al., 2010; Stramska and Stramski, 2005).

Satellite-derived size-fractionated chlorophyll consists of
three types of size-fractionated chlorophyll: large chloro-
phyll (ChlL), medium chlorophyll (ChlM) and small chloro-
phyll (ChlS), representing chlorophyll produced by micro-
phytoplankton, nano-phytoplankton and pico-phytoplankton,
respectively. When comparing the models with two phy-
toplankton components to these satellite data, the chloro-
phyll attributed to the large phytoplankton component was
compared to ChlL, and the chlorophyll attributed to the
small phytoplankton component was compared to the sum
of ChlS + ChlM. When comparing the model with one phy-
toplankton component to these satellite data, the modeled
chlorophyll was compared to the sum of all three types of
chlorophyll.

2.3 Data assimilation framework

The specifics of the optimization implementation are well
documented in Xiao and Friedrichs (2014), and thus only a
brief description of the key properties of the variational ad-
joint data assimilative framework is provided here.
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Table 2. Number of observations (N), mean and standard deviation (σ ) of the satellite-derived chlorophyll concentrations (small, medium,
large and total; mg Chl m−3) and POC data (mg C m−3) at each site.

Chlorophyll

ChlS ChlM ChlL Total Chl POC

N mean σ mean σ mean σ mean σ N mean σ

N1 108 0.03 0.02 0.38 0.30 0.22 0.23 0.63 0.52 119 134 48
N2 90 0.03 0.01 0.28 0.36 0.16 0.31 0.48 0.67 94 112 78
S1 122 0.04 0.02 0.40 0.33 0.24 0.25 0.68 0.57 124 140 54
S2 121 0.03 0.02 0.30 0.26 0.16 0.17 0.49 0.43 124 109 48
CV1 116 0.03 0.02 0.33 0.41 0.21 0.40 0.57 0.81 123 124 52
CV2 104 0.03 0.01 0.28 0.30 0.16 0.27 0.46 0.56 111 100 52
CV3 94 0.03 0.01 0.20 0.15 0.11 0.12 0.33 0.27 100 95 52
CV4 108 0.04 0.03 0.84 0.74 0.57 0.72 1.46 1.44 118 219 66
CV5 120 0.04 0.02 0.56 0.42 0.33 0.28 0.93 0.68 100 95 52

The variational adjoint method is a nonlinear, weighted
least-squares optimization method that minimizes the misfit
between the model estimates and the observational data by
optimizing a subset of model parameters (e.g., Lawson et al.,
1995, 1996). The choice of parameters for optimization de-
pends strongly on the data available for optimization. When
size-differentiated chlorophyll and particulate organic car-
bon data are available for assimilation, Xiao and Friedrichs
(2014) determined that successful assimilation results are ob-
tained as long as data from multiple sites are assimilated,
and the subset of parameters to be optimized includes max-
imum chlorophyll : carbon (Chl : C) ratios, maximum phy-
toplankton growth rates and zooplankton basal metabolism
rates. Because each optimized parameter is size specific (that
is, each phytoplankton size class has a distinct Chl : C ratio
and growth rate) and each zooplankton size class has a dis-
tinct basal metabolism rate (Table 1), the number of opti-
mized parameters increases with increasing model complex-
ity. For the five models tested here, 3, 5, 6, 7 and 8 parameters
are optimized, respectively.

In this methodology the model–data misfit, otherwise
known as the “cost function” (J ), is minimized, where

J =
1

M

K∑
k=1

M∑
m=1

1

Nkm · σ 2
km

Nkm∑
j=1

(ajkm − âjkm)2, (1)

wherea represents the modeled equivalents to the observa-
tions (̂a); M is the number of data types, for whichM = 2, 3
or 4 depending on the number of P size classes resolved by
the model;K is the number of sites;Nkm is the number of
observations at sitek for data typem; andσkm is the standard
deviation of theNkm observations (Table 2). In this way, the
cost function provides an estimate of the ratio between the
model–data differences and the differences between the data
and the mean of the data, i.e.,σ 2

km.
After the cost function is computed from an a priori for-

ward model run, the adjoint code (Giering and Kaminski,

1998) computes the gradients of the cost function and passes
the information to an optimization procedure (Gilbert and
Lemaréchal, 1989), which determines how each optimized
parameter value should be modified in order to reduce the
magnitude of the cost function. The new parameter values are
then used in another forward model run, the new cost func-
tion is computed, and the optimization procedure is repeated.
These iterations continue until the specified convergence cri-
terion is satisfied.

Following the recommendations of Xiao and Friedrichs
(2014), both particulate organic carbon and size-
differentiated chlorophyll were assimilated. Although
this previous study found that POC estimates were not sig-
nificantly improved as a result of the assimilation, the POC
assimilation played a critical role in preventing significant
deterioration of other state variables (zooplankton, detritus)
that are included as components of POC. Thus the cost that
was minimized by the optimization routine consists of the
sum of these two components:

Size_cost= SizeChl_cost+ POC_cost, (2)

where SizeChl_cost represents that portion of the cost due
to the model–data misfits of size-differentiated chlorophyll,
and POC_cost represents the portion of the cost due to the
POC model–data misfits. For the 1P model, SizeChl_cost
is computed for total chlorophyll (ChlS + ChlM + ChlL)
and thusM = 2 in Eq. (1) (i.e., one data type is total
ChlS + ChlM + ChlL and one is POC.) For the 2P models,
SizeChl_cost is computed as the sum of two separate com-
ponents: ChlS + ChlM and ChlL. In this caseM = 3 (data
types are ChlS + ChlM, ChlL and POC.) Finally, for the 3P
models, SizeChl_cost includes misfits for ChlS, ChlM and
ChlL separately, and four data types are assimilated (M = 4:
ChlS, ChlM, ChlL and POC.)

As a result of the nonlinearities in the cost function formu-
lation (Eq. 1), SizeChl_cost is not comparable across models
with different numbers of phytoplankton variables, and thus
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Size_cost is not an appropriate metric for comparing the rela-
tive skill of all five models. Thus it is also critical to compute
and compare the total cost (Total_cost) from the misfits in
total chlorophyll and POC for the five models:

Total_cost= TotChl_cost+ POC_cost, (3)

where TotChl_cost represents the model–data misfits in total
chlorophyll concentration. (Note that Total_cost = Size_cost
for the model with a single phytoplankton size class, since in
this case the size-fractionated chlorophyll is identical to the
total chlorophyll.) In this way, although for four of the five
models Total_cost does not precisely correspond to the cost
that is minimized through the optimization process, it pro-
vides a standard metric that can be used to rigorously com-
pare the relative skill of all five ecosystem models.

2.4 Model implementation and assimilation
experiments

The five ecosystem models were implemented in the frame-
work described above at nine locations (Fig. 1) in the Mid-
Atlantic Bight (MAB). Four of these sites were designated
as “data assimilation” (DA) sites, since these are the loca-
tions at which data were assimilated. Two sites were selected
on the inner shelf, and two were chosen just seaward of the
shelf break, with two of the sites being located in the north-
ern portion of the MAB and two in the southern portion. The
remaining five sites were designated as “cross-validation”
(CV) sites, since these were sites where the optimal param-
eters derived from assimilating data at the DA sites were in-
dependently tested. These sites were spread throughout the
northern, central and southern MAB, with some sites located
in shallow shelf waters, and other sites located off the shelf in
deep (> 2000 m) waters. Three experiments were conducted
at these nine sites, and are described in more detail below.

– Experiment 1: each model was implemented in a for-
ward model run at all nine sites, and a priori cost func-
tions (both Size_cost and Total_cost) from these pre-
assimilation simulations were computed.

– Experiment 2: POC data and size-fractionated chloro-
phyll data from the four DA sites were assimilated into
each of the five models to determine a single best-fit
set of parameter values for these four sites. The result-
ing cost functions (both Size_cost and Total_cost) were
computed both at the four DA sites, as well as at the five
CV sites.

– Experiment 3: to determine the robustness of the opti-
mal parameters determined in experiment 2 and the sen-
sitivity of these parameter values to uncertainties asso-
ciated with the satellite-derived products, normally dis-
tributed random noise with a maximum amplitude of
20 % was added to the size-fractionated chlorophyll and
POC data from the four DA sites prior to assimilation.

Figure 1. Locations of the nine study sites in the Mid-Atlantic
Bight. The red crosses represent the four data assimilation (DA)
sites, and the black pluses the five cross-validation (CV) sites.

The resulting optimal parameter values were compared
to those determined in experiment 2. Cost functions for
the four DA and five CV sites were computed as mis-
fits between the simulations using these new optimal
parameter values and the noisy data.

3 Results

3.1 Experiment 1: a priori simulation

All five a priori surface chlorophyll simulations from the five
different models were comparable at most of the nine sites, in
particular at the northern sites such as N1, N2, CV1 and CV2
(Fig. 2a). More variability between models was found at the
southern sites and offshore sites. For example, the model es-
timates of the peak chlorophyll during the fall bloom ranged
from 2 mg Chl m−3 (the 2P1Z model) to> 5 mg Chl m−3 (the
3P2Z model) at the CV5 site. The 1P1Z model stood out from
the other four models in that it tended to produce slightly
higher chlorophyll concentrations at most of the sites, while
it still gave similar estimates on the bloom timing to the other
models (Fig. 2a).

In terms of size fractions (not shown), the simulations gen-
erated by the 2P and the 3P models also resembled one an-
other at most sites. For example, ChlL concentrations re-
mained low at all nine sites (< 10 % of total chlorophyll) for
most of the year except during the spring and fall blooms. For
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Figure 2. Time series of total surface chlorophyll from the satellite-derived data (open black circles) and the(a) a priori and(b) a posteriori
simulations (lines) at the nine study sites for the five ecosystem models.

the 3P models, model estimates of ChlM were also consid-
erably lower than ChlS throughout the year at all nine sites.
For all 2P and 3P models, ChlS was the dominant chlorophyll
component throughout most of the year.

Although all models failed to capture some key features of
the surface chlorophyll distributions (Fig. 2a) such as bloom
timing (e.g., at site DA_S1) and magnitude (e.g., at site
DA_N2), in general, all five models fit the satellite-derived
surface total chlorophyll and POC distributions similarly
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well. The general consistency in the five model simulations
resulted in the a priori cost functions of the five models being
relatively comparable. At both the DA sites (Table 3) and the
CV sites (Table 4) the a priori Total_cost was highest for the
simplest 1P1Z model, primarily as a result of an overestimate
of surface chlorophyll at the DA_S2 site and the offshore
CV3 site (Fig. 2a). The 3P models performed only slightly
better, as they significantly overestimated chlorophyll at the
CV5 site near Cape Hatteras (Fig. 2a). In terms of reproduc-
ing the size fractionation data (Size_cost), the 2P models per-
formed best, regardless of whether or not they included a sec-
ond zooplankton component (Tables 3, 4). In terms of the 3P
models, the model with the second zooplankton component
produced slightly lower a priori Size_costs.

3.2 Experiment 2: assimilation of satellite-derived data

3.2.1 Experiment 2 results at data assimilation (DA)
sites

The assimilation of size-differentiated chlorophyll and POC
data at the four DA sites resulted in significant reductions
in Size_cost (Table 3), indicating successful optimizations
for all five models. Improvements in model–data misfit were
most substantial at the two southern stations (DA_S1 and
DA_S2) (Fig. 2b). As expected from the previous results of
Xiao and Friedrichs (2014), this reduction in Size_cost was
accomplished primarily through improvements in chloro-
phyll model–data fit (Fig. 3a and b). The assimilation par-
ticularly improved model–data misfit for the smallest size
class of chlorophyll for all five models. The 2Z models also
produced improved model–data fits for other size classes of
chlorophyll, but this was not the case for the 1Z models.

Although Size_cost cannot be used to quantitatively com-
pare the skill of all five models (see Sect. 2.3), it is still
a useful metric for comparison of models with the same
numbers of phytoplankton variables. Somewhat surprisingly,
Size_cost was lower (and percent reduction in cost much
greater) for models with only one zooplankton size class than
for those with two zooplankton size classes. This effect was
stronger for the more complex 3P models than for the 2P
models (Table 3).

In order to compare models with different phytoplankton
structures, Total_cost was computed to represent the model–
data misfits of total chlorophyll and POC (Table 3, Fig. 3c).
After assimilation, Total_cost decreased for all models (mean
decrease of∼ 30 %), which was only slightly smaller than the
analogous decrease of Size_cost (mean decrease of∼ 40 %).
The lowest a posteriori costs were found with the simplest
1P and 2P models, and the highest cost was obtained using
the most complex 3P2Z model. The decrease in cost function
was attained almost entirely through the decrease in chloro-
phyll cost (mean decrease of∼ 55 %).

Optimal parameters generated by the five models were all
well constrained (Fig. 4a). Out of the 29 optimized parame-
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2P models,(b) Size_cost for the 3P models and(c) Total_cost for
all five models. The three bars (from left to right) for each model
represent the costs obtained for experiment 1 (a priori cost), exper-
iment 2 (a posteriori cost) and experiment 3 (a posteriori case with
noise), respectively. Colors represent the various components (total
chlorophyll, size-fractionated chlorophyll and POC) of these costs.

ters for the 5 models, only 7 of these represented a change
of greater than 50 %. Both 2Z models showed only minor
changes in parameter values, whereas the three 1Z models all
had at least one parameter that changed by more than 50 %.
The large changes in parameter values for these 1Z models
are consistent with the largest reductions in costs for these
models, as discussed above. However, the 2P2Z model fit
the total chlorophyll data (Total_cost = 11.2) nearly as well
as the 2P1Z model (Total_cost = 10.8), despite much smaller
changes to the a priori parameter values. Specifically, the su-
perior fit of the 2P1Z model was obtained only when the
maximum Chl : C ratio for micro-phytoplankton was unre-
alistically reduced by an order of magnitude.

Among the three types of optimized parameters, the max-
imum phytoplankton growth rate was adjusted the least by
the optimization, suggesting that these parameters were ini-
tialized near their optimal values. Greater variations in op-
timal values were found with the other parameters, without
any clear patterns forming as a function of model structure.

3.2.2 Experiment 2 results at cross-validation (CV) sites

By definition, the data assimilation improved model skill
at the DA sites (Table 3) where the data were assimilated;
however a more robust test of the optimization is to evalu-
ate the optimized models against data at the CV sites (Ta-
ble 4) where no data were assimilated (Gregg et al., 2009).
When the optimal parameter sets obtained from assimilat-
ing the data at the DA sites were applied to another five
nearby sites (CV sites in Fig. 1), Size_cost was reduced for
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Table 3.Cost functions (Size_cost and Total_cost) computed at the four DA sites in experiment 2, using initial parameter values (i.e., a priori
cost) and optimal parameter values obtained from the assimilation of satellite-derived size-fractionated chlorophyll and POC data at the four
DA sites (i.e., a posteriori cost).

Model
Size_cost Total_cost

a priori a posteriori % a priori a posteriori %
cost cost change cost cost change

1P1Z 22.0 11.6 −47 % 22.0 11.6 −47 %
2P1Z 15.1 9.4 −37 % 13.3 10.8 −19 %
2P2Z 14.9 10.9 −26 % 12.8 11.2 −12 %
3P1Z 22.8 8.5 −63 % 20.0 12.4 −38 %
3P2Z 19.5 13.9 −29 % 20.1 15.8 −21 %

Table 4.Cost functions (Size_cost and Total_cost) computed at the five independent CV sites in experiment 2, using initial parameter values
(i.e., a priori cost) and optimal parameter values obtained from the assimilation of satellite-derived size-fractionated chlorophyll and POC
data at the four DA sites (i.e., a posteriori cost).

Model
Size_cost Total_cost

a priori a posteriori % a priori a posteriori %
cost cost change cost cost change

1P1Z 36.4 21.0 −42 % 36.4 21.0 − 42%
2P1Z 17.2 17.2 0 % 18.9 21.3 +13 %
2P2Z 17.3 14.0 −19 % 27.2 15.3 −43 %
3P1Z 23.7 13.5 −43 % 32.7 22.2 −32 %
3P2Z 19.4 16.0 −17 % 34.7 20.4 −41 %

all models except the 2P1Z model (Table 4, Fig. 5a, b). The
greatest reductions in Size_cost at the CV sites occurred for
the 3P1Z and 1P1Z models (∼ 40 %), which was equivalent
to the reductions in Size_cost generated by these models at
the DA sites. Significant, but smaller, reductions also oc-
curred for the 2P2Z and 3P2Z models (∼ 20 %, Table 4). All
five models showed an increase in the POC cost; however the
improvement in model–data fit for size-fractionated chloro-
phyll, particularly for the smallest chlorophyll size class,
more than compensated for the deterioration in POC model–
data misfit in all cases except for the 2P1Z model (Fig. 5a
and b).

Applying the optimal parameters from the DA sites to sim-
ulations at the CV sites also generated significant improve-
ments in the total chlorophyll cost for each of the five mod-
els (Fig. 5c). This decrease in total chlorophyll cost was again
substantially larger than the increase in POC cost for all mod-
els except the 2P1Z model, and thus the overall Total_cost
also decreased for four of the five models (Table 4). The lack
of improvement for the 2P1Z model is at least partially due
to the fact that using the a priori parameter values with the
2P1Z model generated an a priori simulation that fit the data
at the five CV sites very well (Fig. 5c). In fact the a priori
Total_cost for the 2P1Z model was lower than the a poste-
riori Total_cost of the 1P and 3P models (Table 4, Fig. 5c).
Overall, the intermediately complex 2P2Z model produced

the lowest Total_cost when using the parameters optimized
for the DA sites at the CV sites.

3.3 Experiment 3: assimilation of perturbed data

3.3.1 Experiment 3 results at data assimilation (DA)
sites

The a priori costs for experiment 3 were computed as the dif-
ference between the a priori simulations and the noisy data,
and were only very slightly different (< 1 %) from the a pri-
ori costs for experiment 2, which were computed as the dif-
ference between the a priori simulations and the actual data.

When the noisy data were assimilated into the models at
the four DA sites in experiment 3, the optimization process
generated very similar parameters to those generated in ex-
periment 2 for the 1P, 2P and 3P1Z models (Fig. 4). Thus the
addition of random noise did not significantly affect the op-
timization process for these simpler models, and as a result
the a posteriori Size_costs resulting from the assimilation of
the noisy data were almost identical to those generated by
assimilating the actual data (Fig. 3).

In contrast, the optimal parameters generated in exper-
iment 3 for the most complex 3P2Z model were signif-
icantly different from those in experiment 2 (Fig. 4b).
For example, the optimal value for the maximum Chl : C
ratio for pico-phytoplankton in the 3P2Z model was
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Figure 4. Optimized parameter values normalized to a priori values
obtained(a) by assimilating POC and size-fractionated data at the
four DA sites (experiment 2), and(b) by assimilating satellite data
to which 20 % random noise has been added (experiment 3).
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Figure 5. Cost functions at the five CV sites:(a) Size_cost for the
2P models,(b) Size_cost for the 3P models and(c) Total_cost for
all five models. The three bars (from left to right) for each model
represent the costs obtained for experiment 1 (a priori cost), exper-
iment 2 (a posteriori cost) and experiment 3 (a posteriori case with
noise), respectively. Colors represent the various components (total
chlorophyll, size-fractionated chlorophyll and POC) of these costs.

6.1× 10−13 mg Chl mg C−1 compared to a value of 0.023
generated when assimilating the actual satellite-derived data.
As a result, this new set of optimal parameter values (Fig. 4b)
resulted in a significantly different Size_cost (∼ 35 % de-
crease). This decrease in the 3P2Z Size_cost was caused by

a substantial reduction in the cost components of ChlS and
ChlM, whereas the contribution of ChlL and POC remained
nearly unchanged (Fig. 3b).

3.3.2 Experiment 3 results at cross-validation (CV) sites

The costs at the CV sites for the 1P, 2P and 3P1Z models
were nearly identical for experiments 2 and 3 (Fig. 5). This
was true despite some significant changes in the optimized
parameter values for the 3P1Z model (Fig. 4): for example,
the zooplankton basal metabolism rate was twice as high in
experiment 3 compared to experiment 2. As was the case at
the DA sites, the 3P2Z a posteriori costs were much more
sensitive to the noise added to the data prior to assimilation.
Although the a posteriori 3P2Z Size_cost decreased for the
ChlS and ChlM components, the a posteriori Total_cost in-
creased due to a significant deterioration in the model–data
fit for POC.

In summary, the addition of noise to the assimilated data
had almost no effect on the cost functions for the simpler
models, but significantly affected the costs of the most com-
plex (3P2Z) model. Although the 3P2Z model showed im-
provement in model–data misfit at the DA sites with the ad-
dition of noise prior to assimilation, it was attained at the
expense of unreasonable optimized parameter values and an
increase in the Total_cost at the independent cross-validation
sites.

4 Discussion and conclusions

In this study, five lower-trophic-level ecosystem models with
varying food web complexities were rigorously compared in
order to determine how the number of phytoplankton and
zooplankton compartments affects the ability of a lower-
trophic-level model to reproduce observed patterns in surface
chlorophyll and particulate organic carbon. All five models
were embedded in a 1-D assimilative model framework with
identical physics and biogeochemical formulations, and thus
the differences in the model simulations were only a result
of variations in the complexity of the planktonic food web
structure.

As expected based on previous studies assimilating
satellite-derived data fields into marine ecosystem models
(Fan and Lv, 2009; Friedrichs, 2002; Garcia-Gorriz et al.,
2003; Hemmings et al., 2004; Tjiputra et al., 2007), all mod-
els tested here showed improvement in model skill after the
assimilation of the satellite-derived fields and resulting opti-
mization of the plankton-related parameters. Whereas prior
to assimilation the five models varied somewhat in their abil-
ity to fit the satellite-derived data fields, after assimilation the
models produced total chlorophyll and POC fields at the as-
similation sites that matched the satellite data nearly equally
well. However, even after assimilation, all five models still
had difficulty reproducing the seasonal cycle of this system.

www.biogeosciences.net/11/3015/2014/ Biogeosciences, 11, 3015–3030, 2014



3024 Y. Xiao and M. A. M. Friedrichs: Effects of increasing the complexity of planktonic food web models

This is most likely due to issues related to the physical fields
obtained from the 3-D simulation used to force these models.

Interestingly, the a posteriori parameters optimized for
these five models were very different for the different mod-
els. In particular, the models with a single zooplankton size
class were only able to reproduce the assimilated data us-
ing extremely low zooplankton basal metabolism rates, or
extremely low maximum Chl : C ratios, whereas the mod-
els with two zooplankton size classes were able to reproduce
the POC and chlorophyll observations using realistic rates
and ratios. Ultimately, the parameters optimized for the two-
phytoplankton, two-zooplankton (2P2Z) model were most
similar to our best-guess a priori initial parameter values.

The improvements in model skill for all five models were
not limited to the four specific sites where the data were as-
similated. Rather, a cross-validation analysis demonstrated
that the parameters optimized for these four sites within the
MAB improved the simulations at a number of other sites
throughout the region, giving us confidence in the portabil-
ity of these optimized parameter values and optimism for
the potential success of using these parameters in a three-
dimensional simulation of the US eastern continental shelf
(McDonald et al., 2012). Although almost all models showed
some degree of improvement at these other MAB sites, once
again the model characterized by intermediate complexity
(i.e., 2P2Z) performed best. The other models were able to
fit the data at the assimilation sites equally as well as the
2P2Z model; however, they typically did so by using unreal-
istic parameter values which were not portable to other areas
of the MAB.

Intriguing results were also obtained when random noise
was added to the satellite-derived data prior to assimilation.
The addition of the noise perturbation had almost no effect
on the values of the optimized parameters for the simplest
four models, suggesting that the optimization process was
robust for these models, even when significant noise was
present in the assimilated data. However, when these per-
turbed data were assimilated into the most complex model
(the 3P2Z model), substantially different optimal parameter
values were obtained. For certain parameters (e.g., the maxi-
mum Chl : C ratio for pico-phytoplankton), the difference be-
tween the optimized parameter values obtained by assimilat-
ing the actual data versus those obtained by assimilating the
noisy data was more than 10 orders of magnitude. Although
the new parameter values obtained by assimilating the noisy
data improved the model–data fit at the specific sites where
the data were assimilated, the unrealistic parameter values
deteriorated the model performance at other sites within the
MAB. In essence, unlike the simpler models, the most com-
plex model had enough flexibility that it was actually able
to fit the additional noise artificially added to the data. Al-
though this “over-tuning” actually improved the model–data
fit at the sites where the noisy data were assimilated, this is
a dangerous outcome, as the model–data fit was degraded at

other locations within the MAB where data were not avail-
able for assimilation.

This over-tuning issue for complex models has been al-
luded to in previous studies. For example, Friedrichs et
al. (2006) assimilated data during three seasons of the year,
and cross-validated the resulting optimal parameters against
the data in the remaining season. Their cross-validation ex-
periments showed that complex models with too many un-
constrained parameters might be able to fit the assimilated
data extremely well (the more free parameters, the better the
fit to the assimilated data), yet these complex models would
have poor predictive ability (the more free parameters, the
worse the fit to independent, unassimilated data).

Another difficulty with complex models is that they are
usually governed by such a large number of parameters (the
number of parameters that must be specified in a given
ecosystem model generally increases by as much as the
square of the number of state variables; Denman, 2003), that
it is very difficult to identify the best-fit set of parameters.
When hand-tuning such models, there are simply too many
different parameters to adequately test all parameter combi-
nations. When applying an automated parameter optimiza-
tion method such as the variational adjoint method to com-
plex models with multiple unconstrained parameters, the cost
function has a tendency to get stuck in suboptimal “local
minima”, and as a result the absolute global cost function
minimum and the true “best-fit” set of parameters can poten-
tially never be identified. In fact, this is exactly what occurred
in the present study for the most complex 3P2Z model. The
a posteriori cost function was highest for this model, despite
the presumably increased flexibility that this model had to
fit the data, because the cost function became stuck in a lo-
cal minimum. However, when artificial noise was added to
the data prior to assimilation, an alternate local cost function
minimum was identified, which, somewhat surprisingly, was
smaller than the one identified when the true data were assim-
ilated. The problem of complex models becoming stuck in
local cost function minima has also been discussed by other
authors. For example, Ward et al. (2010) demonstrated that
when too many unconstrained parameters were optimized,
the cost function often became trapped in a local minimum;
however, reducing the number of optimized parameters par-
tially eliminated this problem.

Our conclusion that an intermediate complexity model
is the most ideally suited for regional ecosystem studies
is consistent with results from earlier studies using other
types of models without the formal parameter optimiza-
tion techniques employed here. For example, an early study
by Costanza and Sklar (1985) rated 87 models in wetland
and shallow water bodies in terms of 3 indices: articula-
tion (the complexity of the model), accuracy (goodness of
fit of the model to the data) and effectiveness (trade-off be-
tween complexity and accuracy). They concluded that al-
though the accuracy seemed to increase with articulation, the
maximum effectiveness was found at an intermediate level of
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complexity. Fulton et al. (2003) found a similar humped re-
lationship between model complexity and performance when
examining end-to-end (nutrient to fisheries) models, demon-
strating that the best performance was produced by the model
with intermediate complexity. Another model comparison
study was conducted by Raick et al. (2006), in which three
simplified pelagic ecosystem models with 16, 9 and 4 state
variables, respectively, were assessed according to their abil-
ity to reproduce simulations from performance of a complex
model with 19 state variables. The study found that although
the simplest model (4 state variables) was able to capture the
key features demonstrated by the complex model, the model
with intermediate complexity (9 state variables) most closely
reproduced the output from the full 19 state-variable model.

In summary, the study presented here provides additional
evidence that lower-trophic-level food web models of inter-
mediate complexity (e.g., containing two phytoplankton and
two zooplankton compartments) are most likely to be able
to provide best estimates of chlorophyll and carbon concen-
trations on regional scales such as the US eastern continen-
tal shelf. Simple models with only a single zooplankton size
class may be able to reproduce observed data fields, but typ-
ically can only do so using unrealistic parameters that are
not portable throughout the region. However, more complex
models have difficulty finding cost minima and have issues
with over-tuning and artificially fitting data noise, making
them potentially unsuitable for extrapolating to locations and
times where/when data may not be available for assimilation.
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Appendix A: Model equations

The equations for each of the five models are included be-
low for reference. State variables are defined as follows:
P, total phytoplankton; Z, total zooplankton; SD, small de-
tritus; LD, large detritus; NO3, nitrate; NH4, ammonium;
Chl, chlorophyll; SP, small phytoplankton; MP, medium phy-
toplankton; LP, large phytoplankton; SZ, small zooplank-
ton; LZ, large zooplankton; SChl, small chlorophyll; MChl,
medium chlorophyll; and LChl, large chlorophyll. Parameter
values, except for those specifically noted in text and Table 1,
are provided in Fennel et al. (2006, 2008). As an example,
generic functional formulations are listed below for SP and
SZ, but analogous formulations hold for the medium (MP,
MZ), large (LP, LZ) and single (P, Z) size classes.

Functional formulations (example for SP, SZ)

gSP_SZ= gmax_SP_SZ
SP2

kP+ SP2

ρSChl =
θmax_SPµSP· SP

αI · SChl

fSP(I ) =
αI√

µ2
max_SP+ α2I2

LNO3_SP=

(
NO3

kNO3_SP+ NO3

)(
1+

NH4

kNH4

)−1

LNH4 =
NH4

kNH4 + NH4

µSP= µmax_SPfSP(I )(LNO3_SP+ LNH4)

µSP_NO3= µmax_SPfSP(I )LNO3_SP

µSP_NH4= µmax_SPfSP(I )LNH4

1P1Z (includes P, Z)

∂P

∂t
= µPP− gP_ZZ − mPP− τ(SD+ P)P− wP

∂P

dz

∂Z

∂t
= gP_ZβZ − lBM_ZZ − lE

P2

kP+ P2
βZ − mZZ2

∂SD

∂t
= gP_Z(1− β)Z + mZZ2

+ mPP− τ(SD+ P)SD

− rSDSD− wSD
∂SD

∂z

∂LD

∂t
= τ(SD+ P)2

− rLDLD − wLD
∂LD

∂z

∂NO3

∂t
= −µP_NO3P+ nNH4

∂NH4

∂t
= −µP_NH4P− nNH4+ lBM_ZZ + lE

P2

kP+ P2
βZ

+ rSDSD+ rLDLD

∂Chl

∂t
= ρChlµPChl− gP_ZZ

Chl

P
− mPChl− τ(SD+ P)Chl

2P1Z (includes SP, LP, Z)

∂SP

∂t
= µSPSP−gSP_ZZ−mPSP−τ(SD+P)SP−wSP

∂SP

dz

∂LP

∂t
= µLPLP−gLP_ZZ−mPLP−τ(SD+P)LP−wLP

∂LP

dz

∂Z

∂t
= (gSP_Z+gLP_Z)βZ−lBM_ZZ−lE

P2

kP+P2
βZ−mZZ2

∂SD

∂t
= (gSP_Z+ gLP_Z)(1− β)Z + mZZ2

+ mPP

− τ(SD+ P)SD− rSDSD− wSD
∂SD

∂z

∂LD

∂t
= τ(SD+ P)2

− rLDLD − wLD
∂LD

∂z

∂NO3

∂t
= −µSP_NO3SP− µLP_NO3LP+ nNH4

∂NH4

∂t
= −µSP_NH4SP− µLP_NH4LP− nNH4+ lBM_ZZ

+ lE
P2

kP+ P2
βZ + rSDSD+ rLDLD

∂SChl

∂t
= ρSChlµSPSChl− gSP_ZZ

SChl

SP
− mPSChl

− τ(SD+ P)SChl

∂LChl

∂t
= ρLChlµLPLChl − gLP_ZZ

LChl

LP
− mPLChl

− τ(SD+ P)LChl

2P2Z (includes SP, LP, SZ, LZ)

∂SP

∂t
= µSPSP− gSP_SZSZ− gSP_LZLZ − mPSP

− τ(SD+ P)SP− wSP
∂SP

dz

∂LP

∂t
= µLPLP− gLP_SZSZ− gLP_LZLZ − mPLP

− τ(SD+ P)LP− wLP
∂LP

dz

∂SZ

∂t
= (gSP_SZ+ gLP_SZ)βSZ− lBM_SZSZ− lE

P2

kP+ P2
βSZ

− mZSZ2

∂LZ

∂t
= (gSP_LZ+ gLP_LZ)βLZ − lBM_LZLZ − lE

P2

kP+ P2
βLZ

− mZLZ2

∂SD

∂t
= (gSP_SZ+ gLP_SZ)(1− β)SZ

+ (gSP_LZ+ gLP_LZ)(1− β)LZ + mZSZ2
+ mZLZ2

+ mPP− τ(SD+ P)SD− rSDSD− wSD
∂SD

∂z
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∂LD

∂t
= τ(SD+ P)2

− rLDLD − wLD
∂LD

∂z

∂NO3

∂t
= −µSP_NO3P− µLP_NO3P+ nNH4

∂NH4

∂t
= −µSP_NH4P− µLP_NH4P− nNH4+ lBM_SZSZ

+ lBM_LZLZ + lE
P2

kP+ P2
βZ + rSDSD+ rLDLD

∂SChl

∂t
= ρSChlµSPSChl− gSP_SZSZ

SChl

SP
− gSP_LZLZ

SChl

SP
− mPSChl− τ(SD+ P)SChl

∂LChl

∂t
= ρLChlµLPLChl − gLP_SZSZ

LChl

LP
− gLP_LZLZ

LChl

LP
− mPLChl − τ(SD+ P)LChl

3P1Z (includes SP, MP, LP, Z)

∂SP

∂t
= µSPSP− gSP_ZZ − mPSP− τ(SD+ P)SP

− wSP
∂SP

dz

∂MP

∂t
= µMPMP− gMP_ZZ − mPMP− τ(SD+ P)MP

− wMP
∂MP

dz

∂LP

∂t
= µLPLP− gLP_ZZ − mPLP− τ(SD+ P)LP

− wLP
∂LP

dz

∂Z

∂t
= (gSP_Z+ gMP_Z+ gLP_Z)βZ − lBM_ZZ

− lE
P2

kP+ P2
βZ − mZZ2

∂SD

∂t
= (gSP_Z+ gMP_Z+ gLP_Z)(1− β)Z + mZZ2

+ mPP

− τ(SD+ P)SD− rSDSD

− wSD
∂SD

∂z

∂LD

∂t
= τ(SD+ P)2

− rLDLD − wLD
∂LD

∂z

∂NO3

∂t
= −µSP_NO3P− µMP_NO3P− µLP_NO3P+ nNH4

∂NH4

∂t
= −µSP_NH4P− µMP_NH4P− µLP_NH4P− nNH4

+ lBM_ZZ + lE
P2

kP+ P2
βZ + rSDSD+ rLDLD

∂SChl

∂t
= ρSChlµSPSChl− gSP_ZZ

SChl

SP
− mPSChl

− τ(SD+ P)SChl

∂MChl

∂t
= ρMChl µMPMChl − gMP_ZZ

MChl

MP
− mPMChl

− τ(SD+ P)MChl

∂LChl

∂t
= ρLChlµLPLChl − gLP_ZZ

LChl

LP
− mPLChl

− τ(SD+ P)LChl

3P2Z (includes SP, MP, LP, SZ, LZ)

∂SP

∂t
= µSPSP− gSP_SZSZ− gSP_LZLZ − mPSP

− τ(SD+ P)SP− wSP
∂SP

dz

∂MP

∂t
= µMPMP− gMP_SZSZ− gMP_LZLZ − mPMP

− τ(SD+ P)MP− wMP
∂MP

dz

∂LP

∂t
= µLPLP− gLP_SZSZ− gLP_LZLZ − mPLP

− τ(SD+ P)LP− wLP
∂LP

dz

∂SZ

∂t
= (gSP_SZ+ gMP_SZ+ gLP_SZ)βSZ− lBM_SZSZ

− lE
P2

kP+ P2
βSZ− mZSZ2

∂LZ

∂t
= (gSP_LZ+ gMP_LZ + gLP_LZ)βLZ − lBM_LZLZ

− lE
P2

kP+ P2
βLZ − mZLZ2

∂SD

∂t
= (gSP_SZ+ gMP_SZ+ gLP_SZ)(1− β)SZ

+ (gSP_LZ+ gMP_LZ + gLP_LZ)(1− β)LZ

+ mZSZ2
+ mZLZ2

+ mPP− τ(SD+ P)SD

− rSDSD− wSD
∂SD

∂z

∂LD

∂t
= τ(SD+ P)2

− rLDLD − wLD
∂LD

∂z

∂NO3

∂t
= −µSP_NO3P− µMP_NO3P− µLP_NO3P+ nNH4

∂NH4

∂t
= −µSP_NH4P− µMP_NH4P− µLP_NH4P− nNH4

+ lBM_SZSZ+ lBM_LZLZ + lE
P2

kP+ P2
βZ + rSDSD

+ rLDLD

∂SChl

∂t
= ρSChlµSPSChl− gSP_SZSZ

SChl

SP
− gSP_LZLZ

SChl

SP
− mPSChl− τ(SD+ P)SChl

www.biogeosciences.net/11/3015/2014/ Biogeosciences, 11, 3015–3030, 2014



3028 Y. Xiao and M. A. M. Friedrichs: Effects of increasing the complexity of planktonic food web models

∂MChl

∂t
= ρMChl µMPMChl − gMP_SZSZ

SChl

MP

− gMP_LZLZ
MChl

MP
− mPMChl − τ(SD+ P)MChl

∂LChl

∂t
= ρLChlµLPLChl − gLP_SZSZ

LChl

LP
− gLP_LZLZ

LChl

LP
− mPLChl − τ(SD+ P)LChl
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