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Abstract. Monitoring the isotopic composition (δ13CDOC) of
dissolved organic carbon (DOC) during flood events can be
helpful for locating DOC sources in catchments and quanti-
fying their relative contribution to stream DOC flux. High-
resolution (< hourly basis)δ13CDOC data were obtained dur-
ing six successive storm events occurring during the high-
flow period in a small headwater catchment in western
France. Intra-stormδ13CDOC values exhibit a marked tem-
poral variability, with some storms showing large variations
(> 2 ‰), and others yielding a very restricted range of val-
ues (< 1 ‰). Comparison of these results with previously
published data shows that the range of intra-stormδ13CDOC
values closely reflects the temporal and spatial variation in
δ13CDOC observed in the riparian soils of this catchment
during the same period. Usingδ13CDOC data in conjunction
with hydrometric monitoring and an end-member mixing ap-
proach (EMMA), we show that (i) > 80 % of the stream DOC
flux flows through the most superficial soil horizons of the
riparian domain and (ii) the riparian soil DOC flux is com-
prised of DOC coming ultimately from both riparian and
upland domains. Based on itsδ13C fingerprint, we find that
the upland DOC contribution decreases from ca. 30 % of the
stream DOC flux at the beginning of the high-flow period
to < 10 % later in this period. Overall, upland domains con-
tribute significantly to stream DOC export, but act as a size-
limited reservoir, whereas soils in the wetland domains act
as a near-infinite reservoir. Through this study, we show that

δ13CDOC provides a powerful tool for tracing DOC sources
and DOC transport mechanisms in headwater catchments,
having a high-resolution assessment of temporal and spatial
variability.

1 Introduction

Despite the significant importance of dissolved organic car-
bon (DOC) in aquatic ecosystems, the processes controlling
DOC delivery to stream waters at the catchment scale are
still poorly understood (van Verseveld et al., 2008; Pacific
et al., 2010; Laudon et al., 2011). In headwater catchments,
stream DOC is mainly controlled by allochthonous inputs
(Aitkenhead et al., 1999; Billett et al., 2006), with most of the
export occurring during snowmelt or rainfall-induced storm
events (Hinton et al., 1997; Laudon et al., 2004; Inamdar et
al., 2006; Dalzell et al., 2007; Raymond and Saiers, 2010).
In upland snow-dominated catchments, stream DOC concen-
trations are commonly found to peak prior to peak discharge,
followed by a rapid decrease in concentrations as snowmelt
continues (i.e. Hornberger et al., 1994; Boyer et al., 1997).
The resulting hysteresis relationship between stream water
discharge and stream DOC concentration has been used to
suggest that (i) riparian zones close to the stream network
are the dominant DOC sources at the catchment scale and
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(ii) the DOC transfer mechanism can be regarded as the
flushing of a size-limited DOC pool located in these zones
(Boyer et al., 1997; Hornberger et al., 1994). Similar hys-
teresis has been observed in streams draining rain-dominated
catchments (e.g. Hood et al., 2006; Inamdar and Mitchell,
2006; Inamdar et al., 2006) leading to the emergence of an
alternative interpretation whereby the DOC flushing process
would also affect upland soils, the latter, rather than the ripar-
ian soils, being the host of the size-limited DOC pool causing
the observed hysteresis (Sanderman et al., 2009; Pacific et al.,
2010). To date, however, little direct evidence has been found
for the involvement of such a DOC-limited upland reservoir
in the stream DOC budget, and this alternative interpretation
thus remains a matter of debate.

One way to resolve this issue would be to make use of
an absolute tracer to distinguish between riparian-derived
DOC and upland-derived DOC, and to monitor it in stream
water, along with stream discharge and groundwater level.
Among the different potential tracers, the stable carbon iso-
topes (δ13C) appear particularly promising because of the
dominance of aerobic conditions in the well-drained soils of
upland domains. Indeed the aerobic decomposition of the soil
organic matter (SOM) results in an enrichment of the heav-
ier isotope (13C) of the remaining SOM as the lighter12C is
more often involved in decomposition reactions (e.g. Wynn
et al., 2006). By contrast, the dominance of anoxic condi-
tions in riparian soils limits the decomposition processes and
consequently the enrichment in13C of the riparian SOM.
Therefore, theδ13C values of SOM in wetland soils can be
expected to be lower than in upland soils. Considering that
changes in theδ13CSOM are generally fully transmitted to soil
DOC (Ziegler and Brisco, 2004; Amiotte-Suchet et al., 2007;
Sanderman et al., 2009; Lambert et al., 2011), we can infer
that the predicted spatial variation ofδ13C values for SOM
should also apply to DOC, thus allowing the use ofδ13C to
distinguish between upland and wetland DOC sources.

However, the use of carbon isotopes for this purpose is
fraught with difficulties. First, theδ13CSOM values gener-
ally increase with soil depth (Wynn et al., 2006; Boström
et al., 2007; Sanderman et al., 2009; Lambert et al., 2011).
Thus, the highδ13C values expected to be characteristic of
upland DOC may overlap with that of deep wetland DOC.
Second, seasonal changes in DOC sources and DOC produc-
tion mechanisms can lead to seasonal changes in the isotopic
composition of wetland DOC. For example, the release of
microbial DOC may explain the DOC peaks observed in wet-
land soils after dry summers (Kalbitz et al., 2000). As soil
micro-organisms tend to be13C-enriched by ca. 2 ‰ com-
pared to SOM (Potthoff et al., 2003; Schwartz et al., 2007),
such a mechanism could temporarily increase theδ13C of
the wetland DOC. Finally, to be able to supply the stream,
the upland DOC component must be transported through-
out the riparian domains, which occupy the interface between
streams and upland zones. Consequently, isotopic mixing be-
tween wetland-derived and upland-derived DOC is expected

to occur in riparian zones, thus leading to a possible scram-
bling of the isotopic signal.

One way to overcome these different pitfalls is to thor-
oughly monitor the spatial and temporal variability of the
δ13CDOC values in the wetland domain, along with the sea-
sonal changes in the hydrological status of the soil and water
table depth. This approach has been carried out with a one-
year hydrochemical monitoring in the wetland zone of the
Kervidy-Naizin catchment, a lowland, rain-dominated agri-
cultural catchment located in western France (Lambert et al.,
2013). The results evidenced a strong vertical and temporal
variability of theδ13C values of the soil DOC, which could
be used to demonstrate the input in this wetland of an upland
DOC component. In the present study, we seek to investigate
how the spatial and temporal variability of theδ13CDOC val-
ues observed at the scale of the wetland soil profile is trans-
posed to the stream. For this purpose, DOC concentrations
andδ13CDOC values were monitored in the stream during six
successive storm events occurring over the same hydrolog-
ical year covered by our first study (Lambert et al., 2013).
In parallel, NO3, SO4 and DOC concentrations during storm
events are used to deconvolve the contributing water fluxes
by the end-member mixing approach (EMMA). Using this
database, we want to address three issues:

1. What constraints can be obtained from the monitoring
of δ13C variations during storm events relative to the
spatial location of DOC sources and to the nature of
DOC transport mechanisms in this catchment?

2. What is the proportion of upland DOC in the stream
during storm events, and does this proportion vary in
relation to the succession of storm events?

3. Can carbon isotopes be used as a robust and universal
tool suitable for locating DOC sources in landscapes,
and what are the prerequisites for applying such an ap-
proach?

2 Materials and methods

2.1 Pedologic and hydrological context

The Kervidy-Naizin catchment is a 4.9 km2 lowland catch-
ment located in central Brittany, north-western France
(Fig. 1), which belongs to the French network of long-
term Environmental Research Observatories (ORE). Numer-
ous hydrological and biogeochemical studies have led to an
improved knowledge of water pathways during both ”base-
flow” and ”storm-flow” periods (Mérot et al., 1995; Durand
and Torres, 1996; Dia et al., 2000; Molénat et al., 2008) and
of the processes governing the production and transfer of
DOC in this catchment (Morel et al., 2009; Lambert et al.,
2011; 2013). The climate is temperate oceanic, with mean
annual (1993–2011) precipitation, runoff and temperature of
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Figure 1. (a)Location and geomorphic map of the Kervidy-Naizin
experimental catchment (Brittany, France). Also shown are the sites
where the instruments used in this study are installed. Grey areas
located along the stream channel network indicate the maximum
extent of the interaction zone between the organo-mineral horizon
of the soils and the upper layer of the groundwater.(b) Piezome-
ter transect in Kerolland site.(c) Location in the soil profile of the
soil water samples previously analysed and discussed by Lambert
et al. (2013). Names of soil horizons in bracket refer to the IUSS
Working Group WRB (2006) classification.

814 mm, 328 mm and 10.7◦C, respectively. Rainfall events
rarely exceed 20 mm per day, and 80 % of rainfall events have
an intensity of less than 4 mm per hour. The high-flow pe-
riod generally lasts from December to April, with maximum
discharges (1000–1200 L s−1) occurring during February–
March. Due to the small volume of water stored in the schist
bedrock, the stream usually dries out from the end of August
to the beginning of November.

The elevation of the catchment area ranges between 93
and 135 m above sea level, with gentle slope gradients of
less than 5 %. The bedrock is made up of fissured and frac-
tured Brioverian schists, and is covered by an unconsolidated
weathered layer whose thickness ranges from a few metres to
30 m depending on the position in the catchment. The soils
at Kervidy-Naizin are silty loams, with depths ranging from
0.5 to 1.5 m, and are classified as Luvisols (IUSS Working
Group WRB, 2006). Typically, the soil system can be sub-
divided into two domains: (i) an upland domain composed
of well-drained soils where the water table remains always
a few metres below the soil surface and (ii) a riparian wet-

land domain consisting of highly hydromorphic soils where
the water table usually reaches the soil surface during the
wet season. The extent of the riparian wetland area is highly
variable, ranging from 5 to 20 % of the total catchment sur-
face area depending of the hydroclimatic conditions (Crave
and Gascuel-Odoux, 1997). Soils in the riparian domain con-
sists of an upper 10 cm thick Ah horizon overlying a 20 cm
thick E horizon, which itself overlies a > 50 cm thick Bg hori-
zon (Curmi et al., 1998). The soil organic carbon (SOC) con-
tent exhibit two superimposed spatial gradients, including a
strong decrease with depth coupled to a progressive decline
with increasing distance to the stream (Morel et al., 2009).

Ninety percent of the catchment area is used for intensive
agriculture, mainly pasture, maize and cereals for dairy pro-
duction and pig breeding. The downward continuous leakage
of excess NO3 brought about by agriculture has caused heavy
nitrate pollution in groundwater (up to 80 mg L−1), leading
to high NO3 concentrations in stream water during base-flow
periods when groundwater dominates stream flow (Molé-
nat et al., 2002, 2008). During high-flow periods, however,
stream NO3 concentrations decrease as high-NO3 ground-
water flux becomes diluted by lower-NO3 soil and rain wa-
ters (e.g. Mérot et al., 1995). This specificity of agricultural
catchments regarding stream NO3 dynamics greatly differs
from non-agricultural catchments, typically forested catch-
ment. In these relatively pristine catchments, no or very lit-
tle NO3 is transferred to groundwater and the soils are the
natural main reservoir of NO3 at the catchment scale. Conse-
quently, NO3 concentrations in streams draining these catch-
ments are typically low during base flow and increase with
increasing discharge (e.g. Peterson et al., 2001; Buffam et
al., 2001).

The Kervidy-Naizin catchment displays three hydrologi-
cal and hydrochemical periods during the water year (Molé-
nat et al., 2008). First, after the dry summer, the water table
starts to rise in the riparian zone but remains deep in the up-
land domain (period A). Second, as precipitation increases,
the water table rises in the upland domain resulting in the
establishment of a hydrological connection between ripar-
ian and upland domains and the subsequent increase of up-
land groundwater flow towards the riparian zone (period B).
Third, in late spring and during summer, upland groundwater
flow decreases progressively resulting in a gradual air-drying
of wetland soils (period C).

Using DOC, NO3, SO4 and also Cl, previous studies iden-
tified four types of water contributing to storm flow in the
Kervidy-Naizin catchment, namely, (i) rainwater (Rw), (ii)
DOC-rich shallow riparian groundwater (SRGw, between
0 and 30 cm depth), (iii) NO3-rich hillslope groundwater
(HGw, between 0.3 and 6 m) and (iv) NO3-poor deep (> 6 m)
groundwater (DGw), the latter two types being the only water
types present during base-flow conditions (Mérot et al., 1995;
Durand and Torres, 1996; Molénat et al., 2002; Morel et al.,
2009). The difference between NO3-rich shallow groundwa-
ter in the upland domain and NO3-poor deep groundwater
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Figure 2. Sketch illustrating:(a) spatial variability ofδ13CSOCval-
ues for soil organic carbon from the riparian wetland domain to the
hillslope domains of the Kervidy-Naizin catchment. Dashed lines
represent the water table level along the upland–wetland transect
during periods A and B. Grey arrows represent the transfer of13C-
enriched DOC from upland soils to wetland soils ; and(b) seasonal
variations of theδ13CDOC values in riparian wetland soils in phase
with water table fluctuations. Grey arrows illustrate the mixing be-
tween wetland DOC and upland DOC in riparian soils during period
B. The gradual decrease in the arrow size symbolises the decrease
of upland DOC inputs. Data from Lambert et al. (2011, 2013).

can be explained by the fact that the latter comes from frac-
tured unweathered bedrock containing pyrite, thus giving it a
distinct low-NO3 and high-SO4 signature (Dia et al., 2000).

2.2 Previous carbon isotopic data

In addition to a concentration gradient (Morel et al., 2009),
the stable carbon isotopic composition of SOC (δ13CSOC)

also exhibits vertical and horizontal gradients (Lambert et
al., 2011, 2013; Fig. 2a). Indeed, theδ13CSOC values de-
crease from the uppermost soil layer (0–10 cm) to the deeper
horizons (50–60 cm), by 1 ‰ in the wetland zones and by
3.5 ‰ in the upland domain. In addition, theδ13CSOC values
are on average lighter in the riparian area (from−29.8 ‰ to

−28.9 ‰) compared to those in the upland domains (from
−27.0 ‰ to−23.5 ‰).

As pointed out in the introduction, theδ13CDOC values in
wetland soils display a strong spatial and temporal variation
along with seasonal changes in the hydrological regime of
the catchment (Lambert et al., 2013; Fig. 2b). During period
A, theδ13CDOC values shifted to lighter values, ranging from
−29.8 to−28.9 ‰, from the surface to deeper soil horizon in
the wetland domain. During the wet period B, a strong iso-
topic differentiation of progressively decreasing amplitude
was observed between the deeper13C-enriched Bg horizon
and the surface Ah and E horizons (Fig. 2b). Finally, dur-
ing period C, theδ13CDOC values once again became homo-
geneous at the scale of the soil profile. As shown by Lam-
bert et al. (2013), the increase and vertical differentiation of
δ13CDOC occurring during period B in the wetland soils pro-
vides evidence for the input in these soils of an13C-enriched
DOC component produced in the upland soils. Moreover, the
gradual decreasing amplitude of theδ13CDOC values in ripar-
ian soils meanwhile provides evidence for the depletion of
the upland DOC pool during the wet period.

2.3 Field instrumentation and water sampling

Water table was continuously monitored (every 15 min) on
the Kervidy-Naizin catchment using pressure sensors in
piezometers (PK1 to PK4) installed along a 600 m long tran-
sect (Kerolland transect; see Fig. 1). Rainfall amounts were
continuously monitored at hourly intervals using a weather
station located ca. 1400 m away from the catchment outlet.
Stream discharge was recorded every minute with an auto-
matic gauge station located at the outlet of the catchment.
The beginning and end of a given storm event are determined
by an increase and a decrease of the stream discharge of
> 1 L s−1 in 10 min at the stage recorder, respectively. With
this method, the storm flow generally ceases prior to the re-
turn to “purely” base-flow conditions regarding DOC con-
centrations, implying that some of the data referred to here as
base-flow DOC could in fact correspond to storm-flow condi-
tions recorded by the receding limb of the storm hydrograph.
Six storm events were sampled between 11 November 2010
and 19 February 2011, i.e. during a time interval correspond-
ing to the end of hydrological period A and the first half
of hydrological period B. Stream water samples were col-
lected using a refrigerated (4◦C) automatic sampler (Sigma
900 Max) installed at the outlet of the catchment (Fig. 1).
Sampling frequency during the monitored storm events var-
ied from one sample every 30 min to one sample every hour,
depending on the hydrograph variations. In addition to this
high-frequency sampling, a daily sampling of stream wa-
ter was performed manually at the outlet of the catchment.
All water samples were collected in pre-cleaned acid-washed
polyethylene bottles. Daily samples were filtered directly on
site whereas storm samples were kept at 4◦C, and then trans-
ported in the dark to the laboratory for filtration. Filtration
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Figure 3. (a)Record of hourly discharge and daily rainfall and(b) record of hourly water table levels in the wetland (PK1) and upland (PK4)
domains during the investigated periods. Monitored storm events are indicated by numbers.

was performed successively to a mesh size of < 0.7 µm us-
ing GF/F filters, then to < 0.2 µm using cellulose acetate fil-
ters (Millex-GV, EMD Millipore). All filters (on-site and in-
laboratory) were cleaned twice before use: first with 200 mL
of deionized water, and then with a few mL of the sample
itself.

2.4 Analytical procedures

Dissolved organic carbon concentrations were determined
using a Shimadzu TOC-5050A total carbon analyser. Accu-
racy of DOC measurements is±5%, based on repeated mea-
surements of standard solutions (K-phthalate). Major anions
(Cl−, NO−

3 and SO−

4 ) were measured by ion chromatography
(Dionex DX-120), with an accuracy of±2.5 %.

All δ13CDOC values were determined at the Stable Isotope
Laboratory of the PEGASE Joint Research Unit of the INRA
in Saint-Gilles, France. Up to one litre of raw water was col-
lected in-stream and in-soil. After a filtration at 0.2 µm, and
an acidification by adding 1 mL of 1N HCl to remove all
traces of inorganic carbon, the water samples were frozen
and freeze-dried.

Theδ13CDOC values of the freeze-dried samples were de-
termined using an elemental analyser (EA-CE 1500 NA,
Carlo Erba) interfaced with an isotope ratio mass spectrome-
ter (IRMS) (VG Isoprime). Tin capsules were used for sam-
ple loading. Theδ13C values are expressed as the relative de-
viations between the measured13C /12C ratio (Rsample) and
the 13C /12C ratio of the international standard Vienna Pee
Dee Belemnite (V-PDB) (Rstandard), as follows:

δ13C(‰) = [(Rsample/Rstandard) − 1] × 1000, (1)

whereR =
13C/12C. International standards were also mea-

sured: (i) USGS 24 (δ13C= −16.5± 0.1 ‰ (n = 36)) and (ii)
ANU sucrose (δ13C = −10.5± 0.1 ‰ (n = 53)). The accu-
racy of measuredδ13C values is better than±0.2 ‰, based
on repeated measurements of samples and standards.

2.5 End-member mixing approach (EMMA)

The EMMA is a widely used method in catchment hydrol-
ogy studies for estimating the relative proportion of waters
of different geographical origins contributing to stream dis-
charge (Christophersen et al., 1990; Hinton et al., 1998; Kat-
suyama et al., 2001; Inamdar and Mitchell, 2006). This ap-
proach is based on a conservative mixing model where the
stream water is regarded as a mixture of water components
coming from different end-members or water reservoirs with
contrasted and stable chemical compositions. This method
has been used successfully in the Kervidy-Naizin catchment
(Durand and Torres, 1996; Morel et al., 2009). Since four
end-members are assumed to contribute to storm flow in
this catchment, three chemical tracers are required. As in
Morel et al. (2009), we used DOC, SO4 and NO3 due to the
strong variability of these tracers between the different wa-
ter mass bodies. Concentrations used by Morel et al. (2009)
were applied for the rainwater and deep groundwater end-
members, as their chemical composition is temporally stable
in this catchment. For the DOC-rich SRGw and NO3-rich
shallow hillslope groundwater end-members (HGw), tempo-
ral variations were taken into account by considering chemi-
cal data obtained during the course of the study by Lambert
et al. (2013).
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3 Results

3.1 Hydrology

The first three months of hydrological year 2010–2011 (i.e.
from September to November 2010) were relatively wet,
with a total precipitation of 356 mm vs. 251 mm on average
for the same period over the last 10 years. The heavy rainfall
events at the beginning of October 2010 caused a rise of the
water table in the riparian domain (PK1), which marked the
beginning of hydrological period A. Hydrological period B
started on 13 November 2010, when a 50 mm rainfall event
caused a rise of the water table in the upland domains (PK4).
This period ended in April 2011, when the water table started
to fall in the riparian domain, highlighting the beginning of
hydrological period C. As can be seen, the Kervidy-Naizin
catchment reacts quickly to rainfall, with most storm water
being discharged within a day after the rainfall event. More-
over, the water table, both in the riparian and uphill domains,
reacts quickly to rainfall in the same way as the stream dis-
charge. Note that the hydraulic gradient between riparian and
upland domains was constant from storm events no. 2 to 4.
The six monitored storm events took place during hydrolog-
ical period B, except for storm event no. 1 which occurred

during hydrological period A. Peak discharge values were
low to moderate for all events (90 to 170 L s−1), except for
storm event no. 3 whose peak discharge reached 430 L s−1.

3.2 Concentration data

DOC concentrations in the stream varied from 2.5 to
21.5 mg L−1 during the study period (Fig. 4a). Due to a
rapid response to rainfall, the maximum DOC concentra-
tions are reached during storm events, and mostly captured
by hourly sampling, while the minimum DOC concentrations
occurred during inter-storm periods, and mostly captured by
a daily sampling. During storm events, the DOC concentra-
tion vs. discharge relationships (Fig. 4b) revealed a slight
anti-clockwise hysteresis, with higher DOC concentrations
on the descending limb of the hydrograph as compared with
the ascending limb, a feature that was already apparent in the
eight storm events monitored in 2006 by Morel et al. (2009).
As pointed out by these authors, this indicates that water en-
tering the stream during the early part of the storm has lower
DOC concentrations than water entering the stream after the
peak discharge.

The in-stream NO3 and SO4 concentrations were inversely
and positively correlated with discharge, respectively (Sup-
plement Fig. S1). In addition, the SO4 concentrations contin-
uously decreased from the beginning to the end of the study
period during base flow accompanied by a decrease in con-
centration variability during storm events. In the case of NO3,
their concentrations were lower during hydrological period
A than during hydrological periods B and C. During the lat-
ter two periods, NO3 concentrations measured after the ces-
sation of rainfall were generally identical to pre-storm con-
centrations. The whole data set of stream chemistry during
storms can be found in Supplement Table 1.

3.3 Carbon isotopic data

In contrast to DOC concentrations which showed a system-
atic increase with increasing discharge, the carbon isotopic
composition of DOC displayed a strong intra-storm vari-
ability (Fig. 5). More specifically, whileδ13CDOC varied by
ca. 2 ‰ (from−29 to−27 ‰) during storm events no. 2 and
no. 3, the isotopic variations were reduced to 1 ‰ or less
during the four remaining monitored storm events. The min-
imum variation was observed during storm event no. 5 with
nearly constant intra-stormδ13CDOC. The magnitude of vari-
ations in intra-stormδ13CDOC values was not correlated with
the magnitude of variations in intra-storm DOC concentra-
tion, or with the magnitude of variations of stream discharge.
By contrast, theδ13CDOC values were systematically lower
on the ascending limb of the hydrograph than on the descend-
ing limb, the minimum values being observed either during
the ascending limb or at the time of maximum discharge.
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Figure 5. Changes in stream DOC concentrations, streamδ13CDOC values and stream discharge during the six investigated storm events.

3.4 Hydrograph separation results

The mixing diagrams (Fig. 6) show that the stream chem-
istry was generally within the field defined by the four iden-
tified end-members. The results from storm event no. 1 were
difficult to interpret, because some of the data points fell
outside the end-member field in the SO4 vs. NO3 diagram.
This feature is most likely due to high-frequency variations
of NO3 concentration in the riparian wetland soils during the
rewetting period (Molénat et al.,2008), variability which is
probably not captured satisfactorily by the bi-weekly sam-
pling frequency used in the study of Lambert et al. (2013).
Such a hypothesis is consistent with the stream NO3 chemo-
graph showing that hydrological period A was characterized
by a strong temporal variability of in-stream nitrate concen-
trations (Fig. S1).

The results of the hydrograph separations (Fig. 7) show
that (i) the contribution of DGw and HGw was fairly constant
during the six newly investigated storm events and (ii) the
major contribution during the peak discharge came from the
SRGw. Furthermore, the proportional contribution of SRGw
seems to increase with the magnitude of storm events

4 Discussion

4.1 Linking soil and stream DOC

Data from this study provide evidence for a strong tempo-
ral change in the variability of intra-stormδ13CDOC values,
with a much larger range of values for storm events occur-
ring soon after the transition between hydrological periods A
and B (events no. 2 to 4) than those occurring before (event
no. 1) or long after (events no. 5 and 6) (Fig. 5). Figure 8
shows that this temporal variability is similar, both in terms
of amplitude and absolute values, to the temporal variation
of δ13CDOC taking place in soils of the Mercy wetland zone
during the same period. This feature is consistent with what
is known about storm-flow generation at this site. Previous
studies (e.g. Durand and Torres, 1996; Morel et al., 2009;
Lambert et al., 2011) have indeed established that storm-flow
generation is dominated successively by (i) an overland flow
above the saturated wetland soil horizons; (ii) a subsurface
flow through the uppermost Ah horizon of wetland soils; (iii)
a subsurface return flow from shallow hillslope groundwa-
ter flowing through deeper Bg horizon of wetland soils; and
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Figure 6. End-member mixing diagrams for the six investigated storm events:(a) NO3 versus DOC;(b) SO4 versus DOC;(c) SO4 versus
NO3. Data from event no. 1 on 11 November 2010 shown as solid grey circles. Rw: rain water; DGw: deep groundwater; SRGw: shallow
riparian groundwater; HGw: hillslope groundwater. Filled areas for SRGw and HGw delimit the changes in concentration observed for these
two end-members during the study period. Data source: Lambert et al. (2013); Lambert, unpublished data.

finally (iv) when base-flow conditions are restored, a sub-
surface return flow involving a mixture of shallow hillslope
groundwater and deep (< 6 m) groundwater flowing through
the Bg part of the wetland soil profile. Thus, the fact that the
intra-storm isotopic variability mimics the spatial and tempo-
ral of δ13C variation in the riparian zones is fully consistent
with the storm-flow generation pattern, and confirms the cur-
rently accepted view that the source of DOC in stream drain-
ing headwater catchments is allochthonous, at least during
the wet season (Boyer et al., 1996; Hagedorn et al., 2000;
Inamdar et al., 2006; Sanderman et al., 2009).

However, a more detailed comparison between intra-
stormδ13CDOC values and temporal changes in riparian soil
δ13CDOC values reveals some inconsistencies (Figs. 7 and 8).
During storm events no. 2 and no. 3, theδ13CDOC values
observed at peak flow turned out to be significantly lower
than the correspondingδ13CDOC values in wetland soil Ah
horizons, even though groundwater from these horizons con-
tributed predominantly to stream flow at that time. Similarly,
theδ13CDOC values at the end of storm events no. 1, 3 and 6
were higher than theδ13CDOC values found in groundwater
flowing through the Bg horizon, while this horizon was cal-

culated to provide most of the stream water at that time of
the storms.

Most likely, these inconsistencies indicate that the Mercy
site is not strictly representative of the riparian zone system
over the entire catchment. Indeed, lateral variations in the
δ13CDOC in riparian soil horizons may occur at the catchment
scale. As already mentioned, the increase inδ13CDOC values
at the transition between hydrological periods A and B in the
Mercy soils is related to the input into these soils of an iso-
topically heavier DOC component derived from upland areas
(Fig. 2b) caused by the activation of a hydrological connec-
tivity developed across the riparian–upland continuum (Lam-
bert et al., 2013). In this typical scenario of catchments de-
veloped on impermeable basement rocks (McGlynn and Mc-
Donnell, 2003; Bishop et al., 2004; Hood et al., 2006; Pacific
et al., 2010), spatial variations in the isotopic composition of
riparian DOC are to be expected provided that (i) the hydro-
logical connectivity across the riparian–upland continuum is
spatially discontinuous and (ii) the flux of isotopically heav-
ier DOC coming from upland areas varies from one riparian
zone to another.

We have no data to assess the variability of the hydro-
logical connectivity across the riparian–upland continuum at
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Stream

Figure 7. Examples of end-member mixing analysis used to determine the contributing waters during storm events no. 3 and no. 4.
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the Kervidy-Naizin catchment scale, nor that of the flux of
upland DOC. However, we know that the groundwater rise
in upland areas is not uniform over the entire catchment,
but more pronounced in its central part at the location of
the Mercy site than in areas further upstream with steeper
slopes (Molénat et al., 2008). In these latter zones, the up-
land groundwater only rarely reach the uppermost organic-
rich soil horizons, so we can infer that the ratio of upland to
riparian DOC should be lower in these zones as compared
to the central flat part of the catchment. This would lead to
spatial variations in the isotopic signature of the soil DOC
flux entering the stream network during storm events, which
could account for the differences between the present storm
δ13CDOC values and the Mercy wetland soil data.

Figure 9. (a) The four identified hydrological flow path and DOC
reservoirs at the riparian soil–stream interface and(b) Contribution
of each hydrological flow paths to the total storm DOC flux as calcu-
lated using the NO3, DOC, and SO4 concentrations and the EMMA
method. Note that DOC in wetland soil horizons is basically a mix-
ture of wetland-borne and upland-borne DOC.

4.2 Hydrological flow paths and DOC transport
mechanisms at the soil–stream interface

Using the EMMA results, the relative contribution of each ri-
parian soil horizons to the stream DOC flux can be estimated
for all six storms events (Fig. 9a), bearing in mind that (i) the
riparian soil horizons contain both “autochthonous” riparian
DOC and “allochthonous” upland DOC and (ii) the Mercy
zone is not strictly representative of the entire riparian do-
main across the catchment. Thus we estimated that the SRGw
flowing through the uppermost Ah horizons contributed be-
tween 78 and 89 % of the total DOC exported by the stream
(Fig. 9b). This result is consistent with the 65–90 % contri-
bution calculated by Morel et al. (2009) from the EMMA-
based decomposition of eight successive storm events in this
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same catchment during hydrological year 2005–2006. This
suggests that the DOC-rich Ah horizon reservoir in the ripar-
ian zone is the main contributor of the total stream DOC flux
during storm events.

In addition to EMMA results, an isotopic mixing model
usingδ13CDOC values for storm events can be used to iden-
tify through which of the two wetland soil horizons (shal-
low Ah horizon and deep Bg horizon) is the soil DOC usu-
ally transferred to the stream, assuming that the Mercy wet-
land soils are representative of all the Kervidy-Naizin wet-
land soils. In fact, this assumption appears to be valid only
for storm no. 4. Indeed, this storm is the only one of the six
analysed storms for which the temporal variations in stream
δ13CDOC were bracketed by theδ13CDOC values in the Ah
and Bg soil horizons at the corresponding time (Fig. 8). More
specifically, theδ13CDOC values obtained at that time in the
Mercy soils can be taken as possible end-member values for
the storm DOC. Assumingδ13CDOC values of−28.7 and
−27.9 ‰ for the DOC circulating in the Ah and Bg soil hori-
zons, respectively, we can calculate that the Ah horizon con-
tribute 61 % of the total DOC flux. This is significantly lower
than the proportion obtained using the EMMA method for
this same storm event (85 %). However, the isotopic decom-
position approach is extremely sensitive to the isotopic com-
position chosen for the soil DOC end-members. For exam-
ple, increasing theδ13CDOC values of the Ah horizon end-
member by 0.1 ‰ would increase this proportion from 61 %
to 70 %, a result which is within the 65–90 % range obtained
for the 14 Kervidy-Naizin storm events decomposed so far
using the EMMA method (Morel et al., 2009; this study).
Thus, the new results confirm the dominant contribution of
DOC circulating through the uppermost horizons of the ri-
parian soils of this catchment to the DOC fluxes exported
during storm events.

4.3 Riparian versus upland origin of stream DOC

As pointed out in the introduction, the transport of DOC
from soil to stream is not simply the result of the flush-
ing of the DOC generated in the riparian soils, but it can
also result from the mobilization of DOC produced in up-
land soils (McGlynn and McDonnell, 2003; Sanderman et
al. 2009; Pacific et al., 2010). This scenario was first pro-
posed for mountainous catchments (McGlynn and McDon-
nell, 2003; Bishop et al., 2004; Hood et al., 2006; Sanderman
et al., 2009; Pacific et al., 2010) and was recently extended to
lowland catchments (Lambert et al., 2013). In this scenario,
a hydrological connectivity needs to be developed across the
upland–riparian–stream continuum to allow transport of up-
land DOC to the stream network. However, no study has so
far attempted to quantify the contribution of each source to
the total DOC flux exported by streams, or to evaluate how
the relative contribution of each source evolves through time.

For the first time, the isotopic data obtained at the Kervidy-
Naizin catchment provide the possibility of quantifying the

Figure 10. (a) Sketch illustrating the opportunity offered by sta-
ble carbon isotopes to quantify the relative contribution of riparian
and upland DOC sources and(b) estimated relative contribution of
riparian and upland DOC sources to stream DOC flux.

relative contributions of wetland and upland sources to the
stream DOC flux at the catchment scale. This estimation
is possible because of the difference in theδ13CDOC val-
ues between these two DOC sources which can be used to
estimate their respective contributions by means of a two-
end-members isotopic mass-balance mixing (Fig. 10a). For
this purpose, theδ13C values for both wetland-derived and
upland-derived DOC soils were estimated from those of
water-extractable DOC obtained on the uppermost soil hori-
zons (0–15 cm) collected along the Kerolland transect (data
in Supplement Table 2). The estimatedδ13CDOC values of
the wetland- and upland-derived DOC were−28.6± 0.1 ‰
(n = 1) and−24.9± 0.7 ‰ (n = 3), respectively. The esti-
matedδ13CDOC for wetland soils corresponds to the aver-
age value of wetland-borne DOC (Supplement Table 2). Al-
though the value of theδ13CDOC of the upland DOC is not
precisely known, the potential internal variability deduced
for this reservoir (±0.7 ‰) is much lower than the external
variation between theδ13CSOC of wetland and upland soils.
Figure 10b presents the results for storm events no. 2 to 5,
while storm event 1 is excluded from the calculation because
the deep water table in the upland domain during the rewet-
ting period prevented the transfer of any upland DOC to the
stream. Due to the uncertainties on the true isotopic compo-
sition of upland DOC, our calculations should not be con-
sidered as the absolute contribution of upland soils. How-
ever, the results clearly show that the contributions of upland-
derived DOC reached maxima during storm events no. 2 and
3, estimated at 27± 5 % and 19± 4 % of the total DOC flux
exported at the catchment outlet, respectively, and then de-
creased during storm events no. 4 to 6 where it represents
less than 10 % of the total DOC flux.

Thus, although it appears that upland DOC significantly
contributes to DOC export during storm flows – especially at
the beginning of hydrological period B – the riparian wetland
zones remain by far the dominant DOC sources. Also, the
relative contribution of upland DOC sources was decreasing
during hydrological period B (Fig. 10b). Interestingly, this
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decrease occurred for storm events whose maximum peak
flow values were comparable (e.g. events no. 2, 4 and 5) and
while the water table was still high in the upland domains
(Fig. 3). This suggests that the DOC reservoir in these do-
mains is rapidly depleted or flushed during the course of the
rainy season. The seasonal depletion of the upland DOC pool
in the Kervidy-Naizin catchment was also apparent in the
δ13CDOC records in Mercy soil solutions, withδ13CDOC val-
ues decreasing gradually during period B despite the fact that
the hydrological connectivity remained elevated (Fig. 2b;
Lambert et al., 2013). A similar behaviour has been observed
in a coastal catchment in California (Sanderman et al., 2008,
2009). In this catchment, the seasonal depletion of the hills-
lope DOC reservoir is accompanied by a change in the radio-
carbon ages of the DOC, indicative of a shift from recent to
aged SOM sources. Certain authors consider that this shift to-
wards aged SOM sources for DOC, which occurs along with
depletion of the hillslope domain, is due to plant productiv-
ity that is insufficiently rapid to meet the microbial demand
for organic substrate, thus leading to solubilization of older
organic matter sources by the microbial community (Zogg
et al., 1997; Andrews et al., 2000). In the present case, we
do not have the necessary data to elucidate the precise cause
of the observed rapid flush of the hillslope DOC component.
This evidently remains an open question for future work.

Unlike upland soils, wetland soils in headwater catch-
ments developed on impervious bedrock appear to behave
as a near-infinite DOC source pool (e.g. Hinton et al., 1998;
McGlynn and McDonnell, 2003; Sanderman et al., 2008,
2009; Pacific et al., 2010). For the Kervidy-Naizin catch-
ment, the constancy of DOC concentrations in the riparian
soils observed by Morel et al. (2009) despite the continuous
succession of storm events and the lack of seasonal exhaus-
tion of the DOC store built up in the riparian soils during
an entire hydrological year reported by Lambert et al. (2013)
support this conclusion. This lack of seasonal depletion of
the wetland DOC source pool is likely due to the signifi-
cantly higher organic carbon contents in the wetland soils,
which accumulate significantly more organic matter that the
surrounding cultivated uplands. Taken together, all these re-
sults suggest that DOC is primarily transport-limited in the
Kervidy-Naizin catchment, given the dominant role of shal-
low riparian DOC-sources in contributing the major part of
the exported DOC.

4.4 Carbon isotopes: a reliable tool for locating DOC
sources and studying DOC transport processes in
landscapes?

The results of this study indicate that carbon stable isotopes
provide a reliable tool for locating DOC sources in the land-
scape and unravelling the DOC transport pathways from the
soil profile to the stream. The quantification of DOC trans-
port processes was based on the high-resolution monitoring
of the temporal and spatial evolution of theδ13CDOC values

during storm events and in soil solutions. Importantly, these
results could not have been obtained without detailed previ-
ous studies involving high-frequency (bi-weekly) and contin-
uous monitoring of the isotopic composition of DOC in soil
waters, as well as SOM in the soil profile, and continuous
monitoring of the water table movements across the stream–
wetland–upland continuum (Lambert et al., 2013). All these
constraints concerning the type, frequency and location of
the data are necessary preconditions for interpreting the iso-
topic signal and implementing the carbon isotopic tool for
tracing sources and transport mechanisms of DOC in catch-
ments.

Two questions arise at this stage: (1) Is it possible that
the wetland–upland isotopic continuum observed at Kervidy-
Naizin is found in other headwater catchments, thus allowing
the implementation of the carbon isotope tool with the same
efficiency as in the present case? (2) Why is it so important
to determine the ultimate source of DOC in the landscape?

We can probably answer positively to the first question. As
mentioned above, the wetland–upland gradient observed at
Kervidy-Naizin (δ13CSOCvarying from−29.4 ‰ in the wet-
land to−26.4 ‰ in the upland domains) may be explained
by the difference in the conditions of degradation of soil or-
ganic matter between the water-saturated anaerobic wetland
areas and the better drained, more aerobic upland domains.
Insofar as this difference in organic matter degradation con-
ditions is expected to occur in all headwater catchments de-
veloped on impervious basement rocks, we can reasonably
assume that the wetland–upland isotopic gradient will be re-
produced elsewhere. Indeed, a comparable isotopic gradient
was observed in the Urseren valley in Switzerland, where a
variation of 2 ‰ has been reported between wetland organic
matter (δ13C = −28.6 ‰) and upland organic matter (δ13C
= −26.6 ‰) (Schaub and Alewell, 2009). This similarity be-
tween the two situations is particularly noteworthy, since the
physiographic and land-use settings are markedly different,
i.e. cultivated lowland soils in the case of Kervidy-Naizin,
and forested/pastured alpine soils in the Urseren valley. This
comparison clearly indicates that we should consider it fea-
sible to transpose the approach developed at Kervidy-Naizin
to other catchments with similar final results.

Regarding the importance of identifying DOC sources in
landscape, we can see at least two important issues. The first
concerns water quality protection and the well-known role of
dissolved organic matter as a vector for micropollutants such
as metals and pesticides (e.g. Graber et al., 2001; Williams et
al., 2006; Grybos et al., 2007; Pédrot et al., 2008; Du Laing
et al., 2009; Thevenot et al., 2009; Taghavi et al., 2010).
The challenge faced here concerns agricultural catchments,
where cultivated fields on the slopes are likely to receive sur-
face loading of heavy metals and/or pesticides due to agri-
cultural practices. Given the role of dissolved organic matter
in controlling the mobility of micropollutants, we anticipate
that these substances might become a threat for downstream
ecosystems if the upland domains to which they are applied
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become hydrologically connected to the stream network. In
this way, the micropollutants would form soluble complexes
with organic molecules, thus leading to their transfer down-
stream. Determining the fraction of stream dissolved organic
matter likely to come from upland areas using carbon iso-
topes would enable us, in this case, to quantify the potential
risk of water contamination by agricultural pollutants.

The second issue concerns testing the hypotheses that have
been proposed for the transfer of DOC in the landscape
and the factors controlling the pathways and efficiency of
this transfer. Based upon catchment-scale topography anal-
ysis and measurements of stream and groundwater DOC, it
has been suggested that temporal and spatial changes in the
hydrological connectivity between upland and wetland do-
mains could be one of the dominant factors, and that the
maximum DOC export occurs in areas combining both large
DOC sources with high stream–wetland–upland hydraulic
conductivity (e.g. McGlynn and McDonnell, 2003; Pacific
et al., 2010). Carbon isotopes are expected to provide a valu-
able tool to test this hypothesis at the catchment and upland
scales, since regions characterized by high hydrological con-
nectivity between stream, wetland and upland areas should
yield DOC with a carbon isotope composition more enriched
in 13C than regions showing a low hydrological conductivity
along this continuum. Carbon isotopes should therefore pro-
vide direct evidence of a mixing process than can occur in
riparian zones between wetland- and upland-derived DOC,
while allowing the unravelling of DOC pathways at the soil–
stream interface.

5 Conclusions

Using the carbon isotopic composition of DOC sampled
at the outlet of a small lowland agricultural catchment in
western France during six successive storm events between
November 2010 and February 2011, we were able to recon-
struct the transfer pathway of DOC in this catchment and
locate the ultimate sources of DOC in the landscape. This
was achieved by comparison with previously published iso-
topic composition of DOC in the soils of this catchment. We
showed that the observed temporal change in the range of
intra-stormδ13C values closely reflected the temporal change
of δ13C values observed in soils of the riparian zone of the
catchment over the same period. Combining the carbon iso-
topic data with hydrometric monitoring results and an end-
member mixing analysis based on DOC, SO4 and NO3 con-
centrations, we showed that (i) more than 80 % of the DOC
flux transiting through the outlet of the basin has passed via
the uppermost organo-mineral soil horizons of the riparian
domain and (ii) this flux is composed of DOC derived ulti-
mately from both riparian and upland source regions. More-
over, we found that the proportion of upland DOC compo-
nent decreased rapidly after the rise in water table in the up-
land domains of the catchment, corresponding to ca. 20–30 %

of the total DOC flux exported at the outlet of the catchment
during storms events taking place soon after the water table
rise. This proportion decreased to less than 10 % of the total
DOC flux for storm events occurring later on in the hydrolog-
ical year. These results indicate that (i) upland domains can
be significant contributors of stream DOC flux in headwater
catchments and (ii) wetland domains represent more sustain-
able sources of DOC than upland regions, the DOC-source
pool of the latter being rapidly depleted during the course of
the rainy season.

Through this study, we demonstrate that the isotopic com-
position of DOC is a powerful tool for tracing DOC sources
and DOC transport mechanisms in headwater catchments if
measured at high-resolution. At the same time, to produce
accurate results, this tool requires an accurate knowledge of
the temporal and spatial variability of the isotopic signatures
of all potential DOC sources in the catchment. Providing that
this condition is met, the carbon isotopic tool can be used to
quantify the proportions of DOC coming from different ar-
eas of supply. This approach may be of great importance in
achieving a better understanding and improved modelling of
DOC transport processes in catchments.

The Supplement related to this article is available online
at doi:10.5194/bg-11-3043-2014-supplement.
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