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Supplement  
 

TABLES 

 

Table S1 Meteorological and soil measurements collected by sensors mounted on the eddy 

covariance towers at the desert and wetland sites. 

Meteorological measurements  

Air temperature  HMP45C212 temp./humidity probes inside radiation shields 

Air pressure  Licor LI-7500 CO2/H2O gas analyzer 

Wind speed and direction  Campbell Scientific CSAT3 sonic anemometers 

Net, photosynthetically active radiation  Kipp & Zonen net and PAR radiometers 

Precipitation  TE525 Tipping Bucket rain gauge 

  

Soil measurements  

Soil temperature  CS107B soil temperature probes 

Soil moisture  CS616-L soil water content reflectometers 

Soil heat flux at 5 cm depth CSHFT3 soil heat flux plates 
 

Notes:1.  All soil sensors were buried at 5cm depth within 1m of each tower; 2. Precipitation was only periodically 

monitored during the study period because of high spatial variability and rare measureable events. 



Table S2 Spearman rank correlation matrix of daily mean environmental parameters and mean 

CH4 fluxes from desert chambers (A.) and wetland chambers (B.) during the 2008-12 growing 

seasons. Bold indicates statistical significance at α=0.05. 

A. Desert chambers 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 

1.CH4 NEE 1           - 

2.Air pressure -0.16 1          - 

3.Air temperature -0.02 0.02 1         - 

4.Water vapour flux 0.07 -0.02 -0.20 1        - 

5.Air density -0.03 0.48 -0.78 0.02 1       - 

6.Soil thaw depth -0.01 -0.32 0.00 0.46 -0.29 1      - 

7.Net radiation -0.13 -0.04 0.06 -0.16 0.02 -0.43 1     - 

8.PAR -0.28 -0.07 0.20 -0.27 -0.08 -0.46 0.93 1    - 

9.Soil heat flux (5 cm) -0.14 -0.24 0.37 -0.20 -0.34 -0.09 0.65 0.71 1   - 

10.Soil moisture -0.20 0.06 -0.02 -0.27 0.07 -0.43 0.40 0.39 0.35 1  - 

11.Soil temperature 0.01 0.13 0.84 -0.26 -0.50 -0.36 0.21 0.38 0.41 0.16 1 - 

             

B. Wetland chambers            

1.CH4 NEE 1            

2.Air pressure -0.26 1           

3.Air temperature 0.08 -0.33 1          

4.Water vapour flux 0.36 -0.01 0.13 1         

5.Air density -0.12 0.69 -0.88 0.01 1        

6.Soil thaw depth 0.51 -0.48 -0.04 0.53 -0.11 1       

7.Net radiation -0.53 0.27 0.54 -0.38 -0.37 -0.61 1      

8.PAR -0.52 0.29 0.53 -0.41 -0.35 -0.66 0.99 1     

9.Soil heat flux (5 cm) -0.52 0.32 0.38 -0.52 -0.16 -0.58 0.80 0.81 1    

10.Soil moisture 0.34 0.25 0.06 -0.04 0.05 0.21 0.17 0.14 -0.03 1   

11.Soil temperature 0.22 0.06 0.47 -0.20 -0.35 -0.23 0.51 0.49 0.31 0.66 1  

12.Stream discharge 0.72 -0.20 0.05 0.53 -0.04 0.77 -0.43 -0.47 -0.51 0.50 0.23 1 



Table S3 Spearman rank correlation matrix of environmental factors and mean EC CH4 fluxes from wetland LI-7700 measurements 

during the 2012 growing season. Bold indicates statistical significance at α=0.05. 

  1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 
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 1. CH4 NEE 1              

2. Momentum flux 0.35 1             

3. Sensible heat flux 0.09 0.32 1            

4. Latent energy flux 0.22 0.40 0.59 1           

5. CO2 flux -0.71 -0.01 0.19 0.03 1          

6. Water vapour flux 0.21 0.39 0.59 1.00 0.03 1         

7. Friction velocity 0.36 0.99 0.30 0.39 0.00 0.39 1        
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8. Net radiation -0.38 0.20 0.73 0.49 0.60 0.49 0.18 1       

9. PAR 0.00 0.26 0.79 0.74 0.14 0.74 0.24 0.80 1      

10. Soil heat flux (5cm) 0.03 -0.11 0.11 0.25 -0.04 0.25 -0.15 0.29 0.33 1     

11. Soil moisture 0.09 0.46 0.37 0.38 0.31 0.37 0.52 0.26 0.21 -0.48 1    

12. Soil temperature 0.65 0.18 0.15 0.53 -0.58 0.53 0.17 -0.22 0.28 0.09 0.12 1   

13. Air pressure -0.36 -0.19 0.35 0.05 0.39 0.06 -0.22 0.54 0.44 0.47 -0.26 -0.21 1  

14. Air temperature 0.49 0.25 0.18 0.70 -0.43 0.70 0.27 -0.03 0.45 0.17 0.29 0.82 -0.27 1 



Table S4 Summary table of site mean CH4 fluxes (FCH4) measured in high-, low- and subarctic 

tundra (as defined by AMAP, 1998) for some portion of the northern growing season (May-

October). Fluxes organized by chamber and eddy covariance measurements and by terrestrial 

sites predominantly emitting or consuming CH4. All fluxes in mg CH4 m
-2

 d
-1

. 

Location Lat Lon 

LANDSCAPE / METHOD 

Reference Emission Sites Consumption Sites 

Chambers Eddy Cov. Chambers Eddy Cov. 
       

High Arctic       

Ellesmere I., CA 81°49’ -71° 20’ 0.2 1.3 -1.4  This study 

Ellesmere I., CA 77-82° -63-75   -0.9 – -0.3  1-2 

Zackenberg, GL 74°28’ -20° 34’ 71 – 202 40 – 90 -0.3  3-8 

Northern RU 72-73° 140-143° 0.1 – 78    9 

       

Low Arctic       

Lena Delta, RU 72°22’ 126° 30’ 16 – 55 19 – 30   10-13 

Tiski, RU 71°30’ 130° 00’ 23    14 

Barrow, US 71°17’ -156° 41’ 23 – 52 32   15-18 

Alaska, US 68-71° -148-158° 49 – 5    19,20 

Toolik, US 68°38’ -149° 38’ 5 – 78    21-26 

Yamal, RU 68°08’ 71° 42’ 58    27 

Northern RU 67-77° 40-179° 27  -0.5  11 

Vorkuta, RU 67°20’ 63° 44’ 5-83    28,29 

Daring Lake, CA 64°52’ -111° 35’ 62    30 

Bethel, US 60°45’ -161° 45’ 96 20   31,32 

Churchill, CA 58°45’ -94° 09’ 54    33 

Skan Bay, US 53° 39’ -167° 04’   -3  34 

       

Sub Arctic       

Indigirka, RU 70°49’ 147° 29’ 103 63   35,36 

Cherskii, RU 69°36’ 161° 20’ 165-281  -1  14,37,38 

Kaamanen, FI 69°08’ 27° 16’ 68 29   39,40 

Stordalen, SE 68°21’ 19° 02’ 10-203 28-38 -1  41-47 

Schefferville, CA 54°47’ -66° 49’ 30  -3  48,49 

James Bay, CA 51°31’ -80° 27’ 16-52    33,50 
 

1-Lamb et al., 2011 

2-Stewart et al., 2012 

3-Christensen et al., 2000 

4-Mastepanov et al., 2008 

5-Ström et al., 2012 

6-Joabsson and Christensen, 2001 

7-Tagesson et al., 2012 

8-Friborg et al., 2000 

9-Christensen et al., 1995 

10-Kutzbach et al., 2004 

11-Sachs et al., 2008 

12-Sachs et al., 2010 

13-Wille et all, 2008 

14-Nakano et al., 2000 

15-Lara et al., 2012 

16-Rhew et al., 2007 

17-Sturtevant et al., 2012 

18-von Fischer et al., 2010 

19-Morrissey and Livingston, 1992 

20-Sebacher et al., 1986 

21-King et al., 1998 

22-Moosavi & Crill, 1998 

23-Schimel, 1995 

24-Torn and Chapin, 1993 

25-Verville et al, 1998 

26-Oberbauer et al., 1998 

27-Heyer et al., 2002 

28-Berestovakaya et al., 2005 

29-Heikkinen et al., 2002a 

30-Wilson & Humphreys, 2012 

31-Bartlett et al., 1992 

32-Fan et al., 1992 

33-Roulet et al., 1994 

34-Whalen & Reeburgh, 1990 

35-Parmentier et al., 2011 

36-van Huissteden et al., 2005 

37-Merbold et al., 2009 

38-Corradi et al., 2005 

39-Hargreaves et al., 2001 

40-Heikkinen et al., 2002b 

41-Friborg et al., 1997 

42-Jackowicz-Korczynski et al., 2010 

43-Oquist and Svensson, 2002 

44-Ström et al., 2007 

45-Svensson and Rosswell, 1984 

46-Svensson et al., 1999 

47-Christensen et al., 1997 

48-Bubier, 1995 

49-Adamsen & King, 1993 

50-Moore et al., 1994 



 

Table S5 Concentrations (±1SD) of several chemicals downstream through the Skeleton Creek 

wetland complex. All chemicals are reported in mol L
-1

. 
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PF-1 0.00±0.00 40±1 4±1 205 1.0 67 0.08 3.1 

PF-2 0.00±0.01 45±9 11±2 - - - - - 

Skeleton 0.18±0.22 23±9 12±3 0.14±0.20 0.03±0.02 425±100 0.05±0.02 1.4±0.5 

Pond 11 0.04±0.02 25±8 14±2 0.20±0.66 0.03±0.02 389±13 0.04±0.02 2.2±0.6 

Stream-1 0.03±0.02 106±35 12±2 - - - - - 

Stream-2 0.00±0.00 69±21 12±2 - - - - - 

Wet-In 0.01±0.01 80±41 9±2 0.11±0.14 0.04±0.03 471±48 0.03±0.04 3.0±0.5 

Wet-Out 0.00±0.01 77±24 9±2 0.07±0.13 0.04±0.02 524±47 0.05±0.05 3.0±0.5 
WaterT: water temperature; NO3: dissolved nitrate; NH4: dissolved ammonium; DIN: dissolved inorganic nitrogen; 

TDN: total dissolved nitrogen; DOC: dissolved organic carbon; PN: particle-bound nitrogen; Ca
2+

: dissolved 

calcium 
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Figure S1 Photos of all chambers and enclosed vegetation, and EC towers and footprints at the 

desert and wetland sites. Photos taken during the growing season (photos by C. Emmerton). 

 

 

 

 



 

 

 

 

 
Figure S2 Diurnal organization of all half-hourly CH4 fluxes for the 2012 growing season at the 

wetland as measured by the EC tower. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S3 Soil temperatures at 5 cm depth during the growing seasons of 2008 to 2012 at the 

desert (upper) and wetland (lower) eddy covariance flux towers. 



 

Figure S4 Photograph of a soil core extracted from the approximate middle of the wetland in 

May 2011 during frozen conditions (left panel). Graph of loss of ignition values (550°C) by 

depth for 0.5 cm portions of the wetland core (right panel) (photo by C. Emmerton). 
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