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Abstract. The recent development of REDD+ mechanisms
requires reliable estimation of carbon stocks, especially in
tropical forests that are particularly threatened by global
changes. Even though tree height is a crucial variable for
computing aboveground forest biomass (AGB), it is rarely
measured in large-scale forest censuses because it requires
extra effort. Therefore, tree height has to be predicted with
height models.

The height and diameter of all trees over 10 cm in diame-
ter were measured in 33 half-hectare plots and 9 one-hectare
plots throughout northern French Guiana, an area with sub-
stantial climate and environmental gradients. We compared
four different model shapes and found that the Michaelis–
Menten shape was most appropriate for the tree biomass pre-
diction. Model parameter values were significantly different
from one forest plot to another, and this leads to large errors
in biomass estimates.

Variables from the forest stand structure explained a suf-
ficient part of plot-to-plot variations of the height model pa-
rameters to improve the quality of the AGB predictions. In
the forest stands dominated by small trees, the trees were
found to have rapid height growth for small diameters. In
forest stands dominated by larger trees, the trees were found
to have the greatest heights for large diameters. The above-
ground biomass estimation uncertainty of the forest plots was
reduced by the use of the forest structure-based height model.
It demonstrated the feasibility and the importance of height
modeling in tropical forests for carbon mapping. When the
tree heights are not measured in an inventory, they can be pre-
dicted with a height–diameter model and incorporating forest
structure descriptors may improve the predictions.

1 Introduction

Tropical forests are an important and dynamic stock of car-
bon on earth; they account for 40 % of the carbon stored
in the earth’s vegetation (Gibbs et al., 2007). Accurate es-
timates of aboveground biomass (AGB) for tropical forests
are needed to assess the spatial and temporal variation of
these carbon stocks (Houghton et al., 2001). The AGB es-
timations have direct applications to forest management in
light of the recent developments in the carbon market and
REDD+ (IPCC, 2000; Gibbs et al., 2007). Though consider-
able plot measurements are occurring, models used to pre-
dict biomass are often rough and need further improvements
to lower biases and uncertainties (Houghton et al., 2001;
Chave et al., 2005). Today, AGB spatial extrapolation meth-
ods mostly rely on remote sensing data (Asner et al., 2010;
Saatchi et al., 2011; Baccini et al., 2012). While very promis-
ing, these methods still require calibration points from well-
known forest plot inventories (Lucas et al., 2002).

Forest census plots typically consist of various measure-
ments of properties of all the individual trees encountered on
a given surface. The diameters at breast height (DBH) are
always measured, generally starting at 10 cm. Depending on
the inventory effort, additional information such as a tree’s
height or species may be recorded. The AGB of a forest plot
is the sum of the AGB of the trees belonging to this plot.

Tree AGB models use biological variables describing
a tree to predict its individual AGB (Brown et al., 1989;
Brown, 1997; Araujo et al., 1999). The widely used models
use the tree DBH, the tree height, and the tree wood density,
or wood specific gravity (WSG), to predict the tree’s biomass
(Chave et al., 2005). Among these variables, the DBH is
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measured in the field, and the effect of WSG on the plot AGB
estimation is unclear for some authors (Molto et al., 2012).

Thus, for AGB prediction, tree height is a key variable that
is generally not measured. Therefore, it must be predicted. In
boreal forests, classical height models predict a tree height
from its DBH for a given species (Sharma and Parton, 2007).
However, the biodiversity of tropical regions prevents the use
of height models that include a species effect. In the past, var-
ious large-scale height–DBH model shapes have been pro-
posed (Huang et al., 1992), but their applications to large-
scale tropical forests are rare (Brown et al., 1989; Feldpausch
et al., 2011). The general objective of this paper is to explore
the possibility of including additional information, such as
forest stand structure structure and environmental variables,
into the height–DBH model in order to build a flexible model
that can be used for AGB estimations in different landscape
contexts.

We used a data set from French Guiana consisting of 42
forest plots. These plot inventories are suitable for AGB as-
sessments (IPCC, 2000). Measures include the tree’s DBH
measured above 10 cm, height, and species. The plots are sit-
uated in the northern part of French Guiana and were cho-
sen to represent the contrasted landscape of the region (Ferry
et al., 2010; Baraloto et al., 2011; Gond et al., 2011). More
specifically, we asked the following questions:

1. Which height–DBH model shape is both robust and
convenient to use?

2. Do the height–DBH model parameters vary between
sites? If so, do these variations affect the AGB predic-
tions?

3. Can the forest plot stand structures and forest local en-
vironment explain the variability of the height–DBH
model coefficients?

To reach the objective of creating a height–DBH model
for AGB predictions, height models were evaluated on their
ability to replace measured heights in the forest plot for AGB
predictions. We used a tree AGB model set in French Guiana.
The AGB model used tree height, tree DBH and tree WSG to
predict tree fresh AGB. It allowed for uncertainty from height
and WSG predictions propagation through a Monte Carlo
sampling process (Molto et al., 2012). To evaluate the per-
formance of a height-DBH model, we predicted the AGBs of
the trees using -1 measured height and -2 predicted heights.
The degradation of the precision of the AGB prediction be-
tween -1 and -2 gave us a measure of the performance of the
height-DBH model.

2 Material and methods

2.1 French Guiana

The study was conducted in French Guiana. The climate of
the region is equatorial, with two main seasons: a dry season
from August to mid-November and a rainy season from De-
cember to April (often interrupted by a short drier period in
March; Wagner et al., 2011). The relief comprises a hill sys-
tem within a dense hydrographic network. Rainforests cover
almost all the study area.

2.2 Forest plots

Inventory data came from two projects recently conducted
in French Guiana. The sampled plots are typical from
the Guiana Shield forests (Terborgh, and Andresen, 1998).
Dominant plant families include Lecythidacea (Eschweil-
era), Caesalpinaceae Caesalpiniaceae (Eperua), Chrysobal-
anaceae (Licania) and Sapotaceae. The tree species richness
(DBH ≥ 10 cm) ranges from 130 to 200 species per hectare
(ter Steege et al., 2000). A description of the forest plots is
available in Supplement S2. These data represent a total of
9467 trees.

– Inventories from the AMALIN project (Baraloto et al.,
2011): 33 plots spread in various landscapes and to-
pographical contexts (ridges, plateaus, and lowlands).
DBHs and tree heights were measured by a team of
trained experts. The plots were divided into two sub-
plots (details inBaraloto et al., 2011) and represent a 0.1
hectare area (trees with DBH≥ 10cm) nested in a 0.5
hectare area (trees with DBH≥ 20cm).

– Inventories from the BRIDGE project (Baraloto et al.,
2010): 9 one-hectare plots where trees with DBH≥ 10
were measured for DBHs and heights. Heights were
measured with laser range finders or ropes when a
climber could approach the tops of the trees.

2.3 Forest plot descriptors

2.3.1 Descriptors of the forest structure

We chose variables commonly used by foresters to describe
the stand DBH structure: the basal area (in m2 per hectare)
and the relative frequencies of four classes of stem size (be-
tween 10 cm and 20 cm, 20 cm and 40 cm, 40 cm and 60 cm,
and above 60 cm). These descriptors were computed from
DBH census data only; thus, they are always available in
standard forest inventories. Because they sum up to 1 in each
forest plot, the relative frequencies of classes of stem size are
not linearly independent. In order to have a variable matrix
xj of full rank (Eq. 8), we dropped the proportion of stems
between 20 and 40 cm (Hastie et al., 2009)
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2.3.2 Descriptors of the environment

We chose to work with mainstream, widely available en-
vironmental variables. Four of these were computed from
a digital terrain model (DTM) with 90 m-sided squared cells
(NASA SRTM missions). (i) The drained area measures the
surface of the hydraulic basin that flows through a cell. A low
value indicates cells located close to the limit of two basins,
whereas higher values indicate cells located downstream. (ii)
The hydraulic altitude was computed from the third-order hy-
draulic system. The hydraulic altitude of a cell is its altitude
above the closest stream of its hydraulic basin. Lower values
(including 0) indicate that the forest plot is located in a poten-
tially temporarily flooded area, while higher values indicate
that the forest plot is located at a top-hill area. (iii) The slope
of each cell was computed with a 180 m 2-cell lag. (iv) The
terrain ruggedness index (TRI) was computed with a 20-cell
lag (1800 m) to catch the difference between flat and more
mountainous landscapes. Two environmental variables were
computed from the NASA TRMM rainfall data. One was the
annual average rainfall in the last 10 years (in mm); the other
was a dry season index (DSI), computed as the average num-
ber of months with rainfall below 100 mm (Wagner et al.,
2012). The DSI quantifies the length of the annual hydraulic
stress for trees. All maps and geographical information were
computed with SAGA (Bock et al., 2004).

2.4 Height–DBH model shapes

M1 (log-linear, Eq.1) is a height–DBH model that has al-
ready been used for height–DBH modeling (Nogueira et al.,
2008). Classically, the error term was additive normal, but
we used a multiplicative lognormal to better address het-
eroscedasticity. The model may give negative values for
DBH lower than 1, but this is not a problem since the DBH
is larger than 10 in standard forest inventories. The model
has no horizontal asymptote, but due to the log function, the
increase in large DBH values is extremely slow.{

Hi = (α + β × logDBHi)εi

εi ∼ LN(0,σ 2)
(1)

M2 (log-log, Eq.2) is a model that is frequently used in forest
ecology (Brown et al., 1989; Feldpausch et al., 2011). How-
ever, the existence of factors limiting tree growth in height
but not in DBH may lead to questions about its basic assump-
tions. This model is known for overestimating the height of
the large trees (Feldpausch et al., 2011).{

Hi = exp(α + β × logDBHi)εi

εi ∼ LN(0,σ 2)
(2)

M3 (simplified Weibull, Eq.3) is a non-linear model that
is common in height–DBH relationship modeling (Fang and
Bailey, 1998; Feldpausch et al., 2011). Its shape presents an
oblique asymptote with slopeα/β at (0,0) and a horizontal

Figure 1. The four model shapes (black lines) adjusted in two very
different forest plots. The grey points represent data.

asymptoteH = α when the DBH is large.{
Hi = α (1− exp(−DBHi/β))εi

εi ∼ LN(0,σ 2)
(3)

M4 (Michaelis–Menten, Eq.4) is a non-linear model, while
very common in chemistry, that has rarely been employed to
model height–DBH relationships (Huang et al., 1992). How-
ever, it presents all the required features: positive and increas-
ing, with an oblique tangent line with slopeβ = α/γ in (0,0)

and a horizontal asymptoteH = α when the DBH is large.{
Hi =

α×DBHi

γ+DBHi
εi

εi ∼ LN(0,σ 2)
(4)

The model was re-arranged as follows to ease the parameter
inference:{

Hi =
1

1
α
+

1
β×DBHi

εi

εi ∼ LN(0,σ 2).
(5)

All models have three parameters: two for the shape and
one for the variance of the error term. In order to mech-
anistically increase the model uncertainty with height and
DBH, the error term was modeled by a lognormal distribu-
tion. Keeping in mind that our objective was biomass predic-
tion, each height–DBH observation was weighted by a proxy
wi of the biomass of each single tree (Eq.6).

wi = DBH2
i × Hi (6)

In each plot, the weightswi were normalized so their sum is
the number of observations.

The models M1 to M4 were calibrated for each forest plot.
The four model shapes are represented in Fig. 1. Parame-
ter estimations were conducted using Markov chain Monte
Carlo (MCMC) methods (see Supplement S1). After discard-
ing a burn-in sample and a thinning of the chains, 1000 sam-
ples of the posterior distribution of each parameter were kept
(for M4, the posterior distribution of the parameters are pre-
sented in Fig. 2). The models inferred independently in each
forest plot are referred to as the “site-specific” height–DBH
model.
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Figure 2. Posterior distribution of theα, β, andσ coefficients of the model M4:Hi = 1/(1/α + 1(β × DBHi)εi , εi ∼ LN(0,σ2). The last
panel presents the predicted height distribution of a tree with a DBH of 50 cm.

2.5 Height–DBH model shape selection

The AGB of each plot was computed. The AGB of a forest
plot is the sum of the AGB of the trees from this plot divided
by the surface of the plot, in Mg ha−1. The tree AGB model
predicts the mass of a tree from its DBH, height, and WSG7.
Uncertainties from height predictions, WSG predictions, and
tree AGB model parameters are propagated through Monte
Carlo samples of their respective distributions (Molto et al.,
2012).{

logAGBi = β0 + β1 logDBHi + β2 logHi + β3 logWSGi + εi

εi ∼ N(0,σ 2)
(7)

Two different definitions of the heightHi of a treei were
used: field-measured heights and predicted heights. When
the AGB of a tree was predicted (Eq. 7) with a heightHi

predicted from one of the four height models, Monte Carlo
samples of the predicted heightHi were generated from the

posterior samples of the parameters and error term of the
height–DBH model.

The forest plot AGB distributions obtained from each
height prediction were compared with the AGB distributions
obtained from measured heights using the root mean squared
error (RMSE) (Fig. 3). The selected height–DBH model was
thereafter noted M*. In addition, the selected model M* was
calibrated on the entire data set without site effect. This
model was called “regional” model.

2.6 Environment and forest structure effect on the
height model parameters

2.6.1 Model definition

A new model was built based on the selected model M*.
The shape parametersα andβ were replaced by a log-linear
combination of the variablesxj describing the forest plotsp
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Figure 3. Box plots of the mean RMSE of the AGB predictions in
42 forest plots with tree heights predicted by four different mod-
els: log-linear (M1), log-log (M2), Weibull (M3), and Michaelis–
Menten (M4).

(Eq. 8). The parameterσ was now unique, and we did not
try to explain its plot-to-plot variation for identifiability rea-
sons. The variablesxj were scaled so the coefficients of the
log-linear combination could be compared to each other.

We used the exponential function to constrain the values of
the parametersαp andβp to be positive. In models M2, M3,
and M4, the coefficientsα andβ are positive for physical rea-
sons: the height is a positive value and the height increases
with the DBH. In the model M1, theα parameter is not nec-
essarily positive. The observations were weighted as before
(Eq. 6). For algorithm details of the estimation ofθα, Iα, θβ ,
andIβ , see Supplement S1.

αp = exp

(
θα,0 +

∑
j

iα,j θα,jxj,p

)
βp = exp

(
θβ,0 +

∑
j

iβ,j θβ,jxj,p

) (8)

We used the method set by Kuo and Mallick (1998) to select
the variablesxj to be integrated in the final model. During
parameter inference (see Supplement S1), an indicatoriα,j

(respectivelyiβ,j ) associated with each variablexj for the
parameterα (respectivelyβ) can take two values: 1 indicates
that the variable is kept in the model, and 0 indicates that the
variable is not kept in the model (Eq. 7). Thanks to the indica-

tors, the MCMC algorithm explored different combinations
of variables.

To decide whether a variablexj was kept in the model or
not, we computed its percentage of presence in the explored
models. This percentage was computed as the mean of the
MCMC chain values of the indicatoriα,j (respectivelyiβ,j )
after a burn-in removal and a thinning.

Usually, this percentage had the shape of a plateau fol-
lowed by a rapid decrease. We aimed to keep the variables
with a percent of selection close to the value of the plateau.
The selected variables implicated in the replacement ofα and
β were not necessarily the same (Fig.4).

2.6.2 Variable selection

Because the environment has an obvious effect on the for-
est structure, we could not consider the structural and en-
vironmental variables in a single step. Thus, we first re-
placed theα andβ coefficients by a linear combination of
the stand structure variables only. The structural variables
were selected using the method described above. The result-
ing model was called “stand structure model” (Fig.4, panels
1 and 3). Then, the environmental variables were added to the
previous stand structure model. The variable selection pro-
cedure was run again, selecting the environmental variables
only. In other words, an environmental variable was selected
only if it caught variance that was not caught by the formerly
selected structural variables (Fig.4, panels 2 and 4).

As for the comparison of the model shapes, the heights
predicted with the stand structure model and the environ-
ment model were used to compute the AGB of the plots. In
its ability to predict height to predict AGB, the best model
including structure and eventually environmental variables is
a compromise between the regional model (worst case) and
the site-specific model (best case). The comparison of the
AGB prediction RMSE allowed for quantification of how the
variables describing the forest plots improved the regional
model and how far the performances were from the site-
specific model.

3 Results

3.1 Model shape selection

Overall, we found thatα andβ coefficients were different
from one site to another (Fig.2 for model M4), showing
that the height–DBH relationship varied between locations.
The posterior distributions of both parametersα andβ were
somehow correlated (r = −0.81), suggesting that the forest
properties they catch are not independent. Using theα, β,
andσ coefficients of the site-specific M* model, the heights
were predicted with each model in each forest plot for a tree
of 50 cm DBH (Fig.2).
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Figure 4. Variable selection. The bars represent the % of presence
of the variables in the model, computed from the posterior values
of the indicatorsiα,j andiβ,j (Eq. 8). The dotted lines indicate, in
each selection process, which cut-off limit is chosen for the accep-
tance of a variable in the definitive models. The grey bar indicates
the variables kept in the definitive model. The stand structure vari-
ables (first and third panels) were selected first. Then, keeping the
selected structural variables, environmental variables were added to
improve the model (second and last panels). Prop_X_Y – propor-
tion of stems between X and Y cm, BA – basal Area, TRI_20 –
terrain ruggedness index.

For the four model shapes, the 95 % CI of the RMSE dis-
tributions completely overlap (Fig.3): we found no signifi-
cant differences between the four shapes in terms of biomass
prediction. We decided to focus on model M4 for two main
reasons: (1) it has biologically meaningful coefficients (con-
trary to M1 and M2), and (2) it is easier to manipulate than
M3 and its exponential function.

Table 1. Median and 95 % confidence interval (CI) of the effects
of structural variables and environmental variables on coefficients
α andβ of model M4 (Eq. 5, Eq. 7, Fig. 4).

Variablej
θα,j θβ,j

Median and 95 % CI Median and 95 % CI

Intercept 3.785[3.755,3.802] 0.595[0.553,0.634]
Basal area −0.017[−0.027,−0.008]
Prop_10–20 −0.135[−0.146,−0.12] 0.11[0.098,0.136]
Prop_40–60 −0.023[−0.036,−0.004]
Prop_60+ 0.044[0.032,0.055]
Slope 0.025[0.015,0.036]
Rainfall −0.028[−0.048,−0.008] 0.051[0.023,0.081]
log_area_drain −0.04[−0.048,−0.033]

3.2 Environmental and structural variable selection

The selected structure variables explaining the observed vari-
ation ofα were the basal area (negative effect), the propor-
tion of small stems (strong negative effect), and the propor-
tion of medium stems (negative effect). In addition, the slope
(positive effect) and the rainfall (negative effect) were se-
lected among the environmental variables (Fig.4, Table1).
The selected structural variables involved in the replacement
of β were the proportion of small stems (strong positive ef-
fect) and the proportion of bigger stems (positive effect). The
rainfall (positive effect) and the drained area (negative ef-
fect) were selected from the environmental variables (Fig.4,
Table1) to complete the structural variables. The variables
selected for the replacement ofα andβ are not shared. All
the selected parameters excluded zero from their 95 % con-
fidence interval. The highest values were obtained for the
proportion of small stems, highlighting its great explicative
power. Environmental variables had very weak effects.

3.3 AGB prediction

The RMSE of the model including structural and/or envi-
ronmental variables was larger than the RMSE of the site-
specific model and smaller than the RMSE of the universal
model (Fig.5). The RMSE of the model including environ-
mental variables did not differ from the RMSE of the model
using structural variables only (Fig.5).

4 Discussion

Using a data set from diverse neotropical forests from French
Guiana, we modeled the height–DBH relation using the
Michaelis–Menten equation. The height–DBH relation var-
ied between locations, which affected the AGB estimations.
We then demonstrated that part of the height–DBH relation
variability could be explained by variables issued from the
forest structure and somewhat from descriptors of the local
environment.
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Figure 5. Box plots of the mean RMSE of the AGB predictions in
42 forest plots with tree heights predicted by four different height–
DBH models: site-specific, universal, based on structural variables
only, and based on structural variables completed with environmen-
tal variables.

4.1 Model choice and parameter values in the
site-specific model

The four models were not significantly different from each
other in terms of predicting height and therefore predicting
AGB (Figs.1, 3). We believe that our particular data weight-
ing (Eq. 6) was responsible for this closeness. It suggested
that, with this weighting, one can use any of these four mod-
els to predict heights and then predict biomass.

We also emphasize that the Michaelis–Menten model
mathematical form is easy to handle as it has no exponen-
tial function. Though the exponential model has been used
in the past, Feldpausch et al. (2012) found that the Weibull
model was the most appropriate for biomass prediction (they
did not consider the Michaelis–Menten model). We thus con-
clude that asymptotic models should be preferred.

Any comparison with published allometric models is of-
ten difficult because most studies do not report the error pa-
rameter of their fitted models. Given that the height is often
log-transformed (e.g., Feldpausch et al., 2011) to achieve lin-
earity, the back-transformation requires the application of a
correction factor. To take this into account, a simulated error
term needs to be added to each log-scale model prediction
before transforming back to the arithmetic scale.

The α andβ model parameters differed largely between
forest plots (Fig.2). This demonstrates that the height–DBH
relationship was not the same in each plot, leading to con-
trasting height–DBH relationships and contrasting AGB val-
ues.

Theα parameters represented the value of the horizontal
asymptote for the largest DBH. This value was highly corre-
lated with the maximum observed height in each forest plot
(α = 1.06× Hmax, R2

= 0.98, RSE= 6.7).
This result has important practical consequences. While

it is not reasonable to measure the height of all trees in
large-scale inventories, it could be feasible to measure the
10 higher trees or so to get the maximum height of a forest
plot. Moreover, the maximum height of a forest plot is a di-
rect output from lidar measurements. In either of these cases,
the α parameter will not be predicted from environmental
variables but will be estimated more or less directly. If the
α parameter is known, the construction of the height–DBH
model is more simple, straightforward and precise because it
depends only on findingβ.

Theβ parameter represented the slope of the oblique tan-
gent in [0, 0]. The largerβ is, the faster the trees reach the
asymptote.β values showed less variation thanα between
forest plots (Fig.2). This suggests that the parameter could
be inferred at the region level, with no site effect on its value.
However, because some plot-to-plot differences remained,
we decided to test the forest structure and environmental ef-
fect on this parameter. If one aims to build a height–DBH
model estimatingα as suggested above, one could consider
using a constantβ parameter for simplicity.

4.2 Stand structure variables

The competition for light between trees has been identified
as a major driver of the tree height trajectory (Clark, 1996;
Guariguata and Ostertag, 2001; Luyssaert et al., 2008).

The proportion of small trees (10–20 cm DBH) has
a strong positive effect onβ together with a strong nega-
tive effect onα. In a forest patch with a high density of
small trees, the tree competition causes trees to grow faster
in height (Hummel, 2000). The small positive effect of the
proportion of biggest trees (more than 60 cm DBH) onβ also
suggests that the presence of a large tree, limiting the light re-
source, also causes the smaller trees to grow faster in height.

www.biogeosciences.net/11/3121/2014/ Biogeosciences, 11, 3121–3130, 2014
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4.3 Environmental variables

Because the environment has an obvious effect on the forest
structure (Baraloto et al., 2011), we decoupled in time the
inclusion of structural and environmental variables in the fi-
nal model. The negative effect of rainfall onα is unexpected.
Rainfall, which is related to the water availability, has largely
been described as a positive driver of forest height (Koch
et al., 2004; Ryan et al., 2006). The negative effect of the
drained area onβ indicates that the trees grow more slowly
in height in a seasonally flooded or waterlogged terrain. This
is explained by (1) a greater light availability (Ferry et al.,
2010) that is in turn linked to higher turnover rates (Made-
laine et al., 2007; Ferry et al., 2010) and (2) higher mechani-
cal constraints due to the lower soil stability in flooded areas
(Gale and Barfod, 1999; Gale and Hall, 2001). The trade-
offs between the variables inα andβ replacements, between
α andβ replacements and the low values of the model pa-
rameters means that that we should consider the highlighted
patterns carefully.

4.4 Perspectives

In this study, we showed that part of the variability of the
height–DBH relationship was successfully explained by the
forest stand structure, expressed as the proportion of small
trees (10–20 cm DBH). While basal area and rainfall were the
most important variables at world scale (Feldpausch et al.,
2011), we did not find them crucial at the regional scale in
French Guiana. Our study did not include any soil effects
on the height–DBH relationship, though we interpreted the
effect of highly drained areas as a possible indicator of soil
instability. If available, information on soil parameters (such
as physical properties or chemical composition) can improve
the predictions of height (Aiba and Kitayama, 1999; Quesada
et al., 2009; Feldpausch et al., 2011).

Tree species is known to be an important determinant of
tree height (Poorter et al., 2005). However, tropical forests
have such a high diversity (up to 200 species ha−1; ter Steege
et al., 2000) that individual species allometries cannot be
inferred. Moreover, the use of a species-specific model for
height prediction requires the species to be identified during
the forest inventories. We wanted our method to be suitable
for large-scale, quick inventories with no detailed species de-
termination. Thus, we did not to include the tree species as a
height predictor.

To go further, sophisticated models could be developed in-
corporating more information at the tree level. For example,
if the botanical information is available, a trait-based model
may provide substantial improvement. The functional traits
have proven to catch information on species biological prop-
erties that may be related to the height–DBH relationship
(Baraloto et al., 2010; Hérault et al., 2011).

The model can now be used to predict the coefficients of
a height–DBH model for the entire region of French Guiana.

The new AGB estimates using the new predicted height will
help us understand the spatial patterns of AGB variations and
produce more accurate carbon stock estimates.

The Supplement related to this article is available online
at doi:10.5194/bg-11-3121-2014-supplement.
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