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Abstract. The absorption and fluorescence properties of
chromophoric dissolved organic matter (CDOM) are re-
ported for the inner shelf, slope waters and outer shelf
regions of the eastern Bering Sea during the summer of
2008, when a warm, thermally stratified surface mixed
layer lay over a cold pool (< 2◦C) that occupied the en-
tire middle shelf. CDOM absorption at 355 nm (ag355)
and its spectral slope (S) in conjunction with excitation–
emission matrix (EEM) fluorescence and parallel factor
analysis (PARAFAC) revealed large variability in the char-
acteristics of CDOM in different regions of the Bering
Sea. PARAFAC analysis aided in the identification of three
humic-like (components one, two and five) and two protein-
like (a tyrosine-like component three, and a tryptophan-
like component four) components. In the extensive shelf re-
gion, average absorption coefficients at 355 nm (ag355, m−1)
and DOC concentrations (µM) were highest in the inner
shelf (0.342± 0.11 m−1, 92.67± 14.60 µM) and lower in
the middle (0.226± 0.05 m−1, 78.38± 10.64 µM) and outer
(0.185± 0.05 m−1, 79.24± 18.01 µM) shelves, respectively.
DOC concentrations, however were not significantly differ-
ent, suggesting CDOM sources and sinks to be uncoupled
from DOC. Mean spectral slopesS were elevated in the mid-
dle shelf (24.38± 2.25 µm−1) especially in the surface wa-
ters (26.87± 2.39 µm−1) indicating high rates of photodegra-
dation in the highly stratified surface mixed layer, which in-
tensified northwards in the northern middle shelf likely con-
tributing to greater light penetration and to phytoplankton
blooms at deeper depths. The fluorescent humic-like com-

ponents one, two, and five were most elevated in the inner
shelf most likely from riverine inputs. Along the produc-
tive “green belt” in the outer shelf/slope region, absorption
and fluorescence properties indicated the presence of fresh
and degraded autochthonous DOM. Near the Unimak Pass
region of the Aleutian Islands, low DOC andag355 (mean
66.99± 7.94 µM; 0.182± 0.05 m−1) and a highS (mean
25.95± 1.58 µm−1) suggested substantial photobleaching of
the Alaska Coastal Water, but high intensities of humic-like
and protein-like fluorescence suggested sources of fluores-
cent DOM from coastal runoff and glacier meltwaters dur-
ing the summer. The spectral slopeS vs. ag355 relationship
revealed terrestrial and oceanic end members along with in-
termediate water masses that were modeled using nonlinear
regression equations that could allow water mass differenti-
ation based on CDOM optical properties. Spectral slopeS

was negatively correlated (r2
= 0.79) with apparent oxygen

utilization (AOU) for waters extending from the middle shelf
into the deep Bering Sea indicating increasing microbial al-
teration of CDOM with depth. Although our data show that
the CDOM photochemical environment of the Bering Sea
is complex, our current information on its optical properties
will aid in better understanding of the biogeochemical role
of CDOM in carbon budgets in relation to the annual sea ice
and phytoplankton dynamics, and to improved algorithms of
ocean color remote sensing for this region.
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1 Introduction

The eastern Bering Sea is one of the most productive ma-
rine ecosystems in the world sustaining nearly half of the US
fish landings annually (Walsh and McRoy, 1986; Sigler et al.,
2010). However, there is now increasing evidence that the
ecosystem of the Bering Sea is sensitive to climate change
(Grebmeier et al., 2006; Overland and Stabeno, 2004). Since
waters entering the Arctic through the Bering Strait are modi-
fied as they cross the Bering Sea shelf, any changes in the dis-
solved organic matter (DOM) pool in the Bering Sea could
also impact the sensitive Arctic region, which plays an im-
portant role in global carbon cycling (Shaver et al., 1992;
Benner et al., 2004). Although Pacific origin waters flow-
ing through the Bering Sea and the Bering Strait have been
shown to influence dissolved organic carbon (DOC) concen-
trations and the optical properties of the colored or chro-
mophoric dissolved organic matter (CDOM) in the western
Arctic (Cooper et al., 2005; Gueguen et al., 2012), very lim-
ited information is available on the characteristics and prop-
erties of CDOM of the Bering Sea (Sasaki et al., 2001).

CDOM is an important component of DOM. Through its
absorption of UV and visible light, CDOM influences light
penetration and primary productivity in aquatic ecosystems,
plays a key role in photochemically induced transformations
in surface waters, and also protects organisms from UV dam-
age (Mopper and Kieber, 2002; Coble, 2007). Its absorp-
tion in the visible band has been shown to interfere with
satellite ocean color estimates of phytoplankton chlorophyll
(Chl) in aquatic systems including the eastern Bering Sea
and western Arctic Ocean (Siegel et al., 2002; Gregg and
Casey, 2004; D’Sa, 2008; Matsuoka et al., 2007; Naik et al.,
2013). CDOM can be produced in situ by biological pro-
duction (authochthonous, primarily microbial remineraliza-
tion of organic matter) or transported from terrestrial sources
(allochthonous) and removed by photochemical degradation
and microbial consumption or influenced by physical pro-
cesses such as circulation, upwelling or mixing (Hansell and
Carlson, 2002; D’Sa et al., 2006; Coble, 2007; Nelson and
Siegel, 2013). Its presence in the form of humic, fulvic, and
amino acids imparts characteristic absorption and fluores-
cence properties that can be used to characterize its composi-
tion and diagenetic state (Mopper and Schultz, 1993; Coble,
1996; Stedmon and Markager, 2005a; Blough and Del Vec-
chio, 2002; Nelson et al., 2010).

Absorption spectral indices such as spectral slopes have
been used to gain insights into source, composition and reac-
tivity of CDOM (Moran et al., 2000; Blough and Del Vec-
chio, 2002 and references therein). The photodegradation
of CDOM for example results in the loss of CDOM ab-
sorption and increases the spectral slope (Del Vecchio and
Blough, 2004; D’Sa and DiMarco, 2009). The use of spectral
slopes over narrow wavelength intervals, e.g., 275–295 nm
(S or S275−295) have been shown to provide information
on C(DOM) source, photooxidative degradation, molecular

size distribution, and microbial activity with steeper slopes
for example signifying lower molecular weight material and
vice-versa (Blough and Del Vecchio, 2002; Helms et al.,
2008). Shorter wavelength spectral slope parameters have
been found to be the best indicators of photodegradation with
increases in the spectral slopeS strongly correlating to appar-
ent removal of CDOM absorption (Granskog, 2012; Fichot
and Benner, 2012; Yamashita et al., 2013).

Fluorescence properties of CDOM in natural waters have
been studied using excitation-emission matrix (EEM) fluo-
rescence spectroscopy (Coble, 1996, 2007) wherein a three-
dimensional fluorescence intensity landscape is obtained
across a range of excitation (e.g., 250–450 nm) and emission
(e.g., 290–550 nm) wavelengths. The fluorescent constituents
of DOM are known to include humic substances and bound
or free amino acids, and the use of excitation-emission matri-
ces (EEMs) provides information on changes in CDOM re-
sulting from mixing, biological degradation, biological pro-
duction, and photobleaching, including its chemical compo-
sition and origin (Mopper and Schultz, 1993; Coble, 1996,
2007). The presence of protein-like substances generally im-
plies autochthonous production of CDOM or microbial ac-
tivity while humic-like material can indicate allochthonous
sources (Mopper and Schultz, 1993; Coble, 1996; Mayer et
al., 1999; Stedmon and Markager, 2005a, b; Yamashita et al.,
2008). Recent experiments however have shown that phyto-
plankton can directly contribute to the autochthonous pro-
duction of marine humic-like substances (Romera-Castillo
et al., 2010). The combination of EEMs with parallel fac-
tor analysis (PARAFAC) allows for the chemical identifi-
cation of fluorophores (Stedmon et al., 2003; Stedmon and
Markager, 2005a; Stedmon and Bro, 2008; Kowalczuk et al.,
2009; Singh et al., 2010). PARAFAC decomposes an EEM
data set into least-squares sum of several mathematically in-
dependent components to efficiently resolve and identify the
different classes of fluorophores in an environment. Recent
studies of EEMs and PARAFAC analysis in the Arctic have
identified various humic-like and protein-like fluorophores
that have been linked to the Bering Sea waters (Gueguen et
al., 2005, 2012).

The Bering Sea with its wide shallow shelf (∼ 500 km
wide), shelf break, deep basins and a dynamic ocean cir-
culation system has a highly complex ecosystem (Wang et
al., 2013). During winter, winds mix the water column of
the eastern Bering Sea to∼ 100 m. During spring–summer,
distinct hydrographic characteristics develop in the inner
(0–50 m depth), middle (50–100 m), and outer (100–200 m)
shelves/domains that are separated by physical structural
fronts or transitional zones (Schumacher and Stabeno, 1998).
The inner shelf or the Coastal Domain is well mixed due to
an overlapping upper wind-mixed layer and a lower tidally
mixed layer. A two-layered structure develops in the middle
shelf with an upper wind mixed and a lower tidally mixed
layer, while in the outer shelf the two layers are separated
by a region of gradually increasing density. The shelf has
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been further divided into northern and southern regions with
a demarcation at∼ 60◦ N (Stabeno et al., 2012a). Circula-
tion on the shelf is complicated with the Alaskan Stream
flowing along the Aleutian Peninsula and supplying some
of its water via Aleutian passes to the Bering Slope Current
(BSC), the Aleutian North Slope Current (ANSC), and the
Alaskan Coastal Water (ACW) or Alaskan Coastal Current
(ACC) (Fig. 1) (Coachman, 1986; Stabeno et al., 1999). On
the broad eastern shelf, currents are northwestward follow-
ing the topographic isobaths and the ACW, while along the
“green belt”, a highly productive habitat along the edge of
the continental shelf, mesoscale eddy motion promotes ex-
change of water between the shelf and the deep basin that
contributes to enhanced primary productivity (Stabeno and
Van Meurs, 1999; Wang et al., 2013). The seasonal advance,
retreat and extent of sea ice in the Bering Sea strongly influ-
ences the physical properties and the biological communities
of the region (Sigler et al., 2010; Stabeno et al., 2012a; Goes
et al., 2014). In fact, the areal extent and rate of retreat of
sea ice can determine the conditions that will develop over
the Bering Sea shelf in the following summer, such as the
formation of the cold pool associated with the winter wa-
ter over the middle shelf (Zhang et al., 2012; Stabeno et
al., 2012b). The cold pool or a region with bottom waters
with temperatures< 2◦C is tied to stratification which be-
gins in April/May. Waters overlying the cold pool become
progressively warmer further insulating the bottom layer and
preventing it from warming as the season progresses. Water
temperatures in the cold pool depend on winter sea ice con-
ditions as well as the temperature of the water column at the
onset of stratification. In cold years, with extensive sea ice
present through April, cold bottom temperatures usually re-
main below 2◦C throughout the summer and the strong den-
sity gradient that develops prevents the spring bloom from
settling to the benthic layer as in years when the cold pool is
absent (Goes et al., 2014). Sea ice extent is predicted to de-
crease under future climate scenario (Stabeno et al., 2012b)
with potential impacts on the biogeochemical processes of
the eastern Bering Sea.

In this study, we present results of an extensive set of
DOC, CDOM absorption and fluorescence measurements
obtained in various regions of the eastern Bering Sea in the
summer of 2008 when a cold pool was present over the en-
tire middle shelf. CDOM absorption coefficientsag355, and
spectral slopeS275−295 (orS), along with PARAFAC analysis
of EEM data are used to examine compositional distribution
and CDOM variation and linkages to hydrography, Chl, ap-
parent oxygen utilization (AOU) and DOC concentrations in
the eastern Bering Sea.

2 Data and methods

2.1 Field sampling

The data was collected as part of a NASA funded study
on the impacts of sea-ice changes on the bio-optical prop-
erties of the Bering Sea through participation on a Bering
Ecosystem Study-Bering Sea Integrated Ecosystem Research
Program (BEST-BSIERP) field campaign on board the US
Coast Guard Cutter Healy from 1–31 July 2008. CTD sta-
tions in general, were aligned along cross-shelf transects
that spanned the inner, middle, and outer shelf/slope re-
gions. The cruise track also included an alongshore, north–
south transect along the 70 m isobath within the middle
shelf (Fig. 1). Hydrographic data were collected with a Sea-
Bird SBE-911 plus CTD unit that recorded depth, temper-
ature, salinity along with dissolved oxygen and Chl fluo-
rescence at every station. The Sea-Bird SBE 43 dissolved
oxygen was calibrated using Winkler method while chloro-
phyll concentrations were obtained from a factory calibrated
Chelsea Aqua 3 fluorometer using the Sea-Bird software;
no additional calibration with discrete chlorophyll measure-
ments were conducted in this study. The Apparent Oxy-
gen Utilization (AOU) was calculated using the Ocean Data
Viewer (Schlitzer, 2004). Water samples were collected dur-
ing CTD casts from Niskin bottles attached to a carousel
rosette sampler generally at three depths (surface, mid-1, and
mid-2) for DOC, fluorescence, and absorption (plus addi-
tional depths for absorption) measurements. The mid-1 depth
corresponded to the Chl fluorescence maximum if present at
that station, and the mid-2 depth was below the Chl maxima
and where Chl fluorescence was low.

2.2 CDOM Absorption measurements

Water samples obtained from Niskin bottles were filtered im-
mediately through 0.2 µm nylon membrane filters under low
vacuum. Most samples were immediately analyzed on board
or stored at 4◦C in the dark, in acid cleaned, pre-combusted
amber bottles for laboratory analysis. After the filtered sam-
ples were allowed to reach ambient room temperature, ab-
sorbance measurements of CDOM (A(λ)) were obtained on a
World Precision Instruments (WPI) Ultrapath™ system from
190–722 nm using a path length of either 10 or 50 cm and
based on the absorbance observed between 400–500 nm. To
minimize differences in refractive index between sample and
reference which cause offsets in absorbance measurements
(D’Sa et al., 1999; D’Sa and DiMarco, 2009), a reference
salt solution was prepared using granular NaCl (Mallinck-
rodt) and Milli-Q water to closely match the seawater sam-
ples. Absorbance data were corrected over a 10 nm interval
of the measured absorbance at 700 nm from each wavelength
and theag(λ) (m−1) was calculated using the equation:

ag(λ) = 2.303×
A(λ)

l
. (1)
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Figure 1. Map of study area showing the station locations (blue circles) sampled during a cruise in July 2008. Depth contours (50, 100 and
250 m) demarcate the boundaries of the inner, middle and outer shelves. Cross-shelf (SL) transect and north–south 70 m line are shown and
discussed in text. General circulation patterns showing Alaska Coastal Water (ACW), the Aleutian North Slope Current (ANSC), and the
Bering Slope Current (BSC). The optical properties of the various regions sampled are also described in Tables 1 and 3.

Absorption coefficient at 355 nm (ag355) was used as a quan-
titative parameter of CDOM. The spectral slopes for the in-
tervals of 275–295 nm (S or S275−295) were calculated ac-
cording to Helms et al. (2008) (µm−1).

2.3 EEM measurements and PARAFAC model analysis

EEMs were recorded using a FluoroMax-4 (Jobin Yvon
Horiba) fluorometer by scanning the emission spectra from
290–550 nm at 5 nm intervals over excitation wavelengths
between 250–450 nm at 5 nm increments. The fluorescence
spectra were corrected for instrument bias using correction
files provided by the instrument manufacturer. Normaliza-
tion of fluorescence intensity was carried out according to
the method described in Singh et al. (2010). Re-absorption
and inner filter effects were minimal as the absorbance val-
ues were< 0.02 at 250 nm for the samples analyzed. Milli-Q
water blank EEMs were subtracted from the sample EEMs
to eliminate Raman peaks and then normalized to daily-
determined water Raman integrated area maximum fluores-
cence intensity (350 ex/395 em, 5 nm bandpass and reported
in equivalent water Raman units (R.U.).

The EEMs were modeled by PARAFAC using the DOM-
Fluor toolbox (Stedmon and Bro, 2008). The model was con-
strained by non-negativity and run for three to seven com-
ponents. Determination of the number of components (i.e.,
model validation) was done by split-half analysis using 174
EEMs, including analysis of residuals and loadings (Sted-
mon et al., 2003). Five components were identified for the
data set with some variability remaining in the residuals.
These five components captured the bulk features in the mea-
sured EEM as indicated by the low residual (difference be-
tween measured and modeled data; not shown) and the small
differences between the split-half and whole excitation and
emission loadings (Fig. 7-bottom right). Leverage and load-
ing technique (Stedmon and Bro, 2008) were used to identify
the outliers. PARAFAC analysis decomposed the EEMs into
individual components and the fluorescence of each compo-
nent was represented by the maximum fluorescence in R.U.

2.4 DOC measurements

Samples for DOC were collected from Niskin bottles and fil-
tered through precombusted GF/F filters, acidified (100 µL of

Biogeosciences, 11, 3225–3244, 2014 www.biogeosciences.net/11/3225/2014/



E. J. D’Sa et al.: Absorption and fluorescence properties of CDOM of the eastern Bering Sea 3229

2 N HCl was added to remove inorganic carbon) and stored
at 4◦C in acid cleaned, pre-combusted amber bottles with
Teflon lined caps for laboratory analysis. DOC measure-
ments were made on a Shimadzu TOC 5000A (with ASI-
5000A autosampler) that uses a high temperature combus-
tion method to convert carbon compounds to carbon dioxide
(CO2) (Benner and Strom, 1993; Sharp, 2002).

3 Results

3.1 CDOM absorption properties

3.1.1 Hydrography and CDOM absorption

The absorption properties of CDOM are examined in con-
junction with hydrography, Chl, AOU, and DOC concentra-
tions (Fig. 2, Table 1). Water masses in the Bering Sea up-
per layer are influenced by advection of water from the Pa-
cific Ocean, the hydrological cycle between the surface layer
and atmosphere, continental drainage and ice formation and
melting, while at intermediate and deep depths, the dominant
effects are water exchange with the Pacific Ocean and mix-
ing of water by currents (Luchin et al., 1999). Water masses
in the eastern Bering Sea during the summer could be di-
vided into three main groups with salinity< 31.3 for ice melt
and river water, 31.3–33 for the Bering shelf water, and 33–
35 for the deep Bering Sea (DBS) (Fig. 2a and b; Mathis et
al., 2010). A pronounced frontal zone divides the shelf wa-
ters from the deep basin (Fig. 3a and b); near the Unimak
Pass region as in other passes of the Aleutian Islands, verti-
cal mixing and continental runoff in the Gulf of Alaska and
from the Aleutian Islands reduces the salinity and tempera-
ture (Fig. 3a and b; Luchin et al., 1999). A front that separates
the well-mixed inner shelf from the two-layered middle shelf
that is generally located near the 50 m isobath can however
vary its position depending on wind, tidal strength, sea ice
advance/retreat and storm strength and timing (Schumacher
and Stabeno, 1998; Kachel et al., 2002). Thus an overlap
in the hydrographic and CDOM optical properties are likely
when considering the water masses associated with the dif-
ferent shelf regions based on bathymetry.

CDOM absorption at 355 nm (ag355) (mean
0.226± 0.072 m−1, n = 380) and DOC concentrations
(mean 79.72± 0.14.35 µM,n = 202) in the eastern Bering
Sea varied in the range 0.098–0.603 m−1 and 51.8–
148.90 µM, respectively, with the largest variability observed
over the inner shelf where terrestrial influences were high
(Fig. 2a). The relationship of the absorption coefficient
ag355 to salinity presented three mixing lines associated
with different water masses in the eastern Bering Sea
(Fig. 2a). For the inner shelf waters, a sharp decrease in
absorptionag355 (mean 0.342± 0.03 m−1) over a relatively
narrow range in salinity was observed (slope= −0.19,
r2

= 0.34, p < 0.001). A second mixing line trending at

lower salinity (∼ 31 to 29.7) was associated with sea ice
melt. A third mixing line extending from the middle shelf
(mean 0.226± 0.05 m−1), the outer shelf/slope (mean
0.185± 0.05 m−1) and the DBS (mean 0.150± 0.03 m−1)
revealed a decreasing trend of absorption with increasing
salinity (slope =−0.03, r2

= 0.18, p < 0.001). However,
ag355 in the deeper DBS waters (depth 1000–2500 m)
(0.146± 0.015 m−1) (Fig. 1, stations mn20, p14-4, np15,
and cn18; Fig. 2a, data within ellipse) was not significantly
different from the DBS waters above (depths 50–1000 m)
(0.145± 0.020 m−1) indicating a different trend with no loss
of CDOM with depth.

The spectral slope S (mean 24.066± 2.97 µm−1,
n = 380) varied over a large range (13.39–34.26 µm−1)
with the largest mean slope in the Unimak Pass (UP)
region (25.95± 1.58 µm−1) and lowest in the DBS
(18.09± 3.75 µm−1) (Table 1). Although meanS gen-
erally decreased from the inner to outer shelf/slope region
with increasing salinity (Table 1, Fig. 2b) there was a
large variability inS in the lower salinity waters. However,
for samples from the middle shelf to the DBS,S was
inversely correlated with salinity (slope =−2.78,r2

= 0.49,
p < 0.001). The spectral slopeS–ag355 relationship revealed
negative correlations for the different water masses that were
modeled using a nonlinear regression equation of the form
S = y0 +b/ag355 (Stedmon and Markager, 2001). Although
the spectral range for the determination ofS and the value
of the absorption coefficient used in this study differed from
that of Stedmon and Markager (2001), trends for terrestrial
and oceanic end members were similar (Fig. 2c) with
significant correlations (p < 0.0001) betweenS and ag355
for the inner shelf (r2

= 0.61, y0 = 19.80, b = 1.36; line 1),
the middle shelf (r2

= 0.60, y0 = 16.12, b = 1.81; line 2),
the UP region (r2

= 0.78, y0 = 20.22, b = 0.98; line 3) and
the ice meltwaters (r2

= 0.62, y0 = 19.31, b = 1.49; line 4).
There was a large scatter in theS–ag355 relationship for
the outer shelf and slope waters with most values however
being concentrated in a small range of absorption and slope
values (0.12–0.2 m−1; 20–24 µm−1). A surface value with
elevatedS was used to model the oceanic end member which
consisted mainly of subsurface and deep water samples and
is depicted by line 5 (y0 = 0.34,a = 2.65; not significant).

A minimum of AOU (∼ 95 µmol kg−1) was associated
with subsurface Chl maxima (S ∼ 23 µm−1) in the north-
ern middle shelf (ellipse 2; Figs. 2d and 4c) that also cor-
responded to some of the highestS values (ellipse 1) of sur-
face samples with low Chl (Fig. 3c and f). LowestS values
were also associated with waters of river origin or terrestrial
source such as the two samples obtained close to the Nuni-
vak and Pribilof Islands. A strong negative correlation was
observed between AOU andS (slope =−0.032,r2

= 0.79,
p < 0.001 for AOU> 0) for waters extending from the mid-
dle shelf into the deep slope Bering Sea waters (Fig. 2d).
The correlation improved (r2

= 0.85,p < 0.0001) when con-
sidering only the outer shelf, slope, and the DBS waters.
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Figure 2. Relationships between(a) salinity and CDOM absorption coefficients at 355 nm (ag355) (ellipse includes slope samples in the
deep Bering Sea at at depths> 1000 m),(b) salinity and spectral slope (S or S275−295), (c) ag355 andS, (d) Apparent Oxygen Utilization
(AOU) andS275−295, (ellipse 1 includes surface samples and ellipse 2 subsurface at Chl maxima in the northern middle shelf; NI and PI
represent Nunivak and Pribilof Islands, respectively)(e) chlorophyll (Chl) andag355, and(f) DOC andag355. The abbreviations MS, IS,
OS, SL, and UP represent the middle shelf, inner shelf, outer shelf, slope and Unimak Pass regions, respectively. DBS represents the deep
Bering Sea water with salinity in the range 33–35; the Bering Shelf water salinity ranged from 31.3–33 (dashed lines).

A strong negative correlation was also observed betweenS

and nitrate (r2
= 0.65,p < 0.001) and a weak but significant

negative correlation betweenag355 and nitrate (r2
= 0.21,

p < 0.001).
Excluding the inner shelf waters, a weak but significant

positive correlation was observed between Chl andag355

(Fig. 2e;r2
= 0.22, p < 0.001). Although there was a pos-

itive trend, DOC concentrations were not significantly corre-
lated toag355 (Fig. 2f) and to Chl (Fig. not shown) for the
different shelf regions.

Biogeosciences, 11, 3225–3244, 2014 www.biogeosciences.net/11/3225/2014/



E. J. D’Sa et al.: Absorption and fluorescence properties of CDOM of the eastern Bering Sea 3231

Table 1. Mean salinity, temperature, Chl fluorescence, DOC concentrations, CDOM absorption at 355 nm (ag355), and spectral slopeS or
S275−295 measured in different regions (IS-inner shelf, MS-middle shelf, OS-outer shelf, SL-slope, and UP-Unimak Pass) of the Bering Sea.
In the MS region, mean values of the properties at the surface, mid-1 and mid-2 depths are also given. Mean values of the properties in the
deep Bering Sea (DBS) with salinity in the range 33–35 are shown.

region Salinity Temp. Chl DOC ag355 S275−295
(◦C) (mg m−3) (µM) (m−1) (µm−1)

UP 32.12± 0.28 5.39± 5.35 0.45± 0.2 66.99± 7.94 0.182± 0.05 25.95± 1.58
IS 31.18± 0.27 3.51± 2.26 0.37± 0.4 92.67± 14.60 0.342± 0.11 24.63± 2.49
MS 31.67± 0.44 2.17± 3.25 0.62± 1.3 78.38± 10.64 0.226± 0.05 24.38± 2.25
MS-sur 31.23± 0.54 6.28± 0.98 0.26± 0.32 80.27± 13.78 0.201± 0.04 26.87± 2.39
MS-mid1 31.81± 0.24 0.81± 2.62 1.78± 2.47 77.32± 10.04 0.242± 0.05 23.72± 1.58
MS-mid2 31.92± 0.22 −0.37± 1.2 0.49± 0.77 78.93± 11.42 0.231± 0.03 23.27± 1.52
OS + SL 32.36± 0.52 3.99± 2.75 0.47± 0.73 79.24± 18.00 0.185± 0.05 23.48± 2.31
DBS 33.79± 0.59 2.81± 0.78 0.04± 0.0 – 0.150± 0.03 18.09± 3.75

3.1.2 Horizontal spatial variability

The spatial distribution of the absorption properties of
CDOM were examined in conjunction with temperature,
salinity, Chl and DOC concentrations for surface (Fig. 3a–f),
and mid-1 depth (Fig. 4a–f) located at the Chl maxima of the
eastern Bering Sea. Surface temperature was relatively high
(6–8◦C) except at the inner shelf and around the Nunivak
Islands where cooler waters extended westward and south-
ward into the middle shelf (Fig. 3a). In contrast, subsurface
waters were coldest in the northern (< −1◦C) and south-
ern middle shelf (< 2◦C) (Fig. 4a) revealing the presence of
a “cold pool”. Salinity in both surface and subsurface wa-
ters increased from inner shelf (31.18± 0.27), the middle
shelf (31.67± 0.44) to outer shelf/slope (32.36± 0.52) and
the UP region (32.12± 0.28) (Figs. 3b and 4b; Table 1). Sim-
ilar salinity ranges for the outer shelf/slope and UP regions
indicate the common source (Alaskan Stream) of these wa-
ters but lower salinity values of the ACW in the UP region
suggest dilution from coastal runoff such as from the Aleu-
tian Islands. A lens of low salinity (∼ 30.1) was observed
in surface waters in the middle shelf between∼ 60–62◦ N
(Fig. 3b).

Trends in surface and subsurface DOC values (Figs. 3d
and 4d) showed similarities to those of the water column
with elevated values in the inner shelf (92.67± 14.60 µM),
decreasing in the middle shelf (78.38± 10.64 µM) and
increasing in the productive outer shelf/slope region
(79.24± 18.00 µM) of the “green belt”. CDOM absorption
ag355 was relatively high in the inner shelf region around
the Nunivak Islands that extended out into the middle shelf
(Figs. 3e and 4e). These high CDOM (lowS) waters were
likely of terrestrial origin due to larger summer flow from
the Kuskokwim River. Outside of this high CDOM cold wa-
ter surface lens, CDOM decreased considerably and then in-
creased slightly at some stations in the outer shelf/slope wa-
ters. Surface spectral slopeS (Fig. 3f) was generally high
except at the mixed inner shelf. Strong summer stratification

coupled with increasing solar radiation likely contributed to
the enhanced photodegradation of these waters. Some of the
highestS values were observed in the surface waters along
the northernmost SL transect probably a consequence of late
ice melt, stronger stratification/reduced mixing and longer
exposure to solar radiation (Fig. 3f).

At the subsurface where the Chl maxima was located,
mid-1 depth Chl was low over the inner shelf but high in
the middle shelf with highest values recorded just below
the surface mixed layer in the northern region of the mid-
dle shelf (Fig. 4c). Values were also elevated at some outer
shelf stations located in the productive “green belt” region.
Subsurface CDOM absorption (Fig. 4e) was highest in the
inner shelf and generally elevated in the middle shelf and de-
creasing in the outer shelf. It was elevated at one station in
the slope region (station np15) where Chl was also elevated
and likely an algal bloom station (Fig. 4c). This station also
showed a low spectral slopeS suggesting recent CDOM pro-
duction (Stedmon et al., 2011). Subsurface spectral slopeS

was only slightly lower than surface waters over the inner
self (Figs. 3f and 4f), reflecting greater mixing in this re-
gion. Although surface Chl in the inner shelf was elevated
(Fig. 3c), subsurface spatial patterns of low Chl matched the
high CDOM distribution pattern suggesting light limitation
in the inner shelf. Outside the high CDOM region, subsurface
Chl was substantially higher suggesting that photobleached
surface CDOM allowed greater light penetration resulting in
the subsurface algal blooms.

Overall, in the middle shelf, subsurface spectral slopeS

(Fig. 4f) was significantly lower (23.72± 1.58 µm−1) than in
surface waters (26.87± 2.39 µm−1; p < 0.001). In the sub-
surface middle shelfS was higher in the southern middle
shelf (< 59◦ N) likely due to greater photodegradation asso-
ciated with earlier sea-ice retreat and mixing following sum-
mer storms.
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Figure 3. Spatial distributions of(a) temperature,(b) salinity, (c) Chl, (d) DOC, (e) ag355, and(f) S or S275−295 at surface (∼ 2 m depth)
over the study area.

3.1.3 Vertical variability along transects

Vertical distributions of temperature, salinity, Chl, DOC and
the absorption properties were examined along two transects,
the northernmost SL and the 70 m isobath north–south tran-
sect through the middle shelf (Figs. 1, 5 and 6). Hydrogra-
phy along the SL cross-shelf transect revealed a two-layer
density structure with a relatively warm surface mixed layer
(∼ 20 m) (Fig. 5a) of lower salinity with fresher waters over
the inner shelf and the eastern part of the transect (Fig. 5b).
The warm surface waters transitioned into a subsurface pool
of cold (< 0◦C) and more saline waters that has been at-
tributed to brine rejection (Stabeno et al., 2012a) (Fig. 5a–b).
Chl values along the transect (Fig. 5c) were very low at the
surface but increased in subsurface waters revealing the pres-
ence of a large subsurface algal bloom. DOC concentrations
were elevated in the inner shelf and generally decreased off-

shore (Fig. 5d). A patch of elevated DOC at the near-bottom
was in close proximity but not coincident with a high Chl
patch.ag355 was high in the inner shelf decreasing offshore
and was lowest in the surface waters (Fig. 5e). A lens of
low salinity surface waters with lowag355 (0.11 m−1) and
very highS (32.73 µm−1) (Fig. 5e and f;∼ 171◦ W), likely
a melt pond, suggested accelerated photodegradation of the
low CDOM melt water. Elevated values of CDOM were ob-
served at depths corresponding to the Chl maximum in the
subsurface waters suggesting an authochthonous source of
CDOM. Except within the inner shelf, some of the highest
S values were observed in the surface waters and coincident
with the warm surface mixed layer (Fig. 5f).

The north–south 70 m transect that extended through the
middle shelf revealed highly stratified warm surface wa-
ters (mean 6.28± 0.98◦C) overlying subsurface cold pool
waters (< 2◦C) that occupied the entire middle shelf with
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Figure 4. Spatial distributions of(a) temperature,(b) salinity,(c) Chl, (d) DOC,(e)ag355, and(f) S at mid-1 depths (∼ 28 m) corresponding
to the Chl maxima.

progressively colder waters along latitudinal gradients to the
north (mean 0.81± 2.62◦C at mid-1 depth) (Fig. 6a). The
density stratification was weaker in the southern part of the
shelf and appeared to be determined more by temperature
than by salinity (Fig. 6a and b). Salinity in the cold pool
also showed an increasing trend with highest salinity val-
ues in the northern middle shelf, likely due to brine rejec-
tion (Fig. 6b). Isopycnal patterns along the 70 m section also
suggest strong vertical mixing along the latitudinal transect
likely from storms as the sea ice retreated. Elevated Chl was
measured in the shallower subsurface (∼ 20 m) waters in the
southern part of the middle shelf (Fig. 6c), that was more in-
tense and in deeper (∼ 40 m) waters in the northern part of
the shelf. DOC concentrations showed no clear trends in dis-
tribution across the transect (Fig. 6d) while CDOM absorp-
tion ag355 showed trends along the isopycnals (Fig. 6e). In
contrast, the spectral slopeS was clearly higher in the warm

surface mixed layer than in the underlying cold pool waters
(Table 1). Within the cold pool, higherS in the southern shelf
suggests the increased exposure of these waters to solar radi-
ation and mixing of the water column as the sea ice retreated.

3.2 CDOM fluorescence properties

3.2.1 Fluorescence components from PARAFAC
analysis

PARAFAC analysis identified five major fluorescence com-
ponents from approximately 174 EEMs spectra of water sam-
ples from the eastern Bering Sea (Fig. 7; Table 2). The ex-
citation and emission loadings of each of the five compo-
nents identified using the PARAFAC model are shown in
Fig. 7 (bottom right panel). Component 1 (C1) has a primary
(and secondary) fluorescence peak at an excitation and emis-
sion wavelength of< 260(310)/410 nm. This component has
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Table 2.Description of the five components identified by PARAFAC analysis of EEMs fluorescence data in this study and their comparison
with previously identified components.

Comp. Excitation Emission Description References
maxima (nm) Maxima (nm)

C1 < 260(310) 410 Marine humic-like component Ma, C4b, C3c,C6d

Biological and/or microbial origin
C2 < 260(400) 475 Terrestrial humic-like Aa,C3b,C2c,C4e,C1f

C3 270 310 Tyrosine-like, protein-like Ba,C5c,C7d,C5e, C5f
C4 285 330 Tryptophan-like, protein-like Ta,C5b,C5e ,C3f

C5 360 455 Fulvic-like, present in all environments, Ca,C2b,C4c

autochthonous/terrestrial

a Coble (1996),b Stedmon et al. (2003),c Stedmon and Markager (2005b),d Yamashita et al. (2008),e Kowalczuk et al. (2009),f Guegen et
al. (2012).

 

 

 

 

 

  

 
Figure 5. Vertical section of(a) temperature,(b) salinity, (c) Chl, (d) DOC, (e) ag355, and(f) S275−295 along SL transect with overlain
contour lines of density.

been previously identified as “M” or marine humic-like com-
ponent and is of biological and/or microbial origin (Coble,
1996; Stedmon et al., 2003, 2005b; Yamashita et al., 2008).
It may result from biological activity and/or microbial re-
working of plankton-derived DOM (Yamashita et al., 2008)
and was found to be both sourced from land and produced
in the ocean (Murphy et al., 2008). The fluorescence peaks
of component 2 (C2) at excitation/emission wavelengths of
< 260 (400)/475 nm is similar to previously identified ter-
restrial humic-like material or “A” peak (Coble, 1996; Sted-

mon et al., 2003, 2005b; Gueguen et al., 2012; Walker et
al., 2009). Fluorescence of components 3 (C3) and 4 (C4)
are of proteinaceous origin, namely tyrosine and tryptophan.
Excitation/emission peaks of tyrosine-like fluorescence were
identified at 270/310 nm and for tryptophan-like fluorescence
at 285/330 nm (Stedmon et al., 2003, 2005b; Yamashita et al.,
2008; Kowalczuk et al., 2009; Gueguen et al., 2012) and are
similar to previously reported B- and T-peaks identified us-
ing “peak-picking” technique (Coble, 1996). Component 5
(C5) with excitation/emission wavelengths of 360/455 nm is
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Figure 6. Vertical section of(a) temperature,(b) salinity, (c) Chl, (d) DOC, (e) ag355, and(f) S275−295 along 70 m transect with overlain
contour lines of density.

similar to the previously reported “C” peak (Coble, 1996).
This fulvic-like fluorophore has been observed in all envi-
ronments that include terrestrial, coastal and oceanic waters
(Stedmon et al., 2003, 2005b, Murphy et al., 2008; Kowal-
czuk et al., 2009). The following section describes the dis-
tribution of five major types of fluorophores identified by
PARAFAC.

3.2.2 Fluorescent DOM components and hydrography

Firstly, the fluorescent DOM components are examined in
relation to salinity, temperature, CDOM absorption, and
slope S (Fig. 8). Although mean component concentra-
tions differed for the different regions (Table 3), the marine
humic-like component C1 was the most dominant fluo-
rophore (Table 3, Fig. 8a), while the protein-like tyrosine-
like component C3 plus the tryptophan-like component C4
formed the second most abundant group of fluorophores.
Within the low salinity waters (< 31.3), the fluorescence in-
tensities of sea ice meltwaters were lower than the river-
influenced inner shelf waters with humic-like material show-
ing decreasing but not significant trend with increasing salin-
ity. Humic-like components C1, C2 and C5 were generally
higher in the coldest waters decreasing with increasing tem-

perature from about−2 to 4◦C (Fig. 8b). These elevated lev-
els were mainly associated with< 2◦C waters of the cold
pool in the northern part of the middle shelf that gradually
decreased southwards. Fluorescence of protein-like compo-
nents C3 and C4 were quite variable revealing no partic-
ular trends with temperature. Mean component intensities
C1–C5 (0.54± 0.10, 0.30± 0.06, 0.37± 0.12, 0.19± 0.11,
and 0.26± 0.11 R.U., respectively) of the UP region in ad-
dition to being the highest of the study region, also con-
tained the highest relative percentage (21.9 %) of tyrosine-
like fluorophore (Table 3) indicative of more degraded amino
acid pool in the water column. These waters associated with
the ACW, which were generally constrained within a narrow
salinity (∼ 32–32.5) and temperature (∼ 5◦C) range (Fig. 8a
and b), had very low absorption that deviated from the gen-
eral trend of increasing fluorescence with increasing absorp-
tion (Fig. 8c; as represented by values within the ellipse).

Correlations between the humic-like fluorescence compo-
nents and absorption were significant (p < 0.0001) for the
middle shelf with the marine-like C1 component better cor-
related (r2

= 0.42), than the C2 (r2
= 0.38) and C5 (r2

=

0.40) components. However, the protein-like fluorophores
were not correlated withag355 (Fig. 8c). All the humic-like
components were negatively correlated with spectral slope
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Figure 7.Spectral characteristics of the five fluorescent components
(C1, C2, C3, C4, and C5) identified by PARAFAC. Figures show
the EEMs plots of individual components in Raman Units (R.U.) of
intensity. Excitation and emission loadings derived from the five-
component PARAFAC model using split-half validation technique
(bottom right). Dashed, colored solid and black lines represent the
excitation and emission loadings of the two split halves and the
whole data set, respectively. Positions of their maxima are given
in Table 2.

S in the middle shelf (Fig. 8d) with C1 showing the largest
negative but significant trend (slope =−0.015, r2

= 0.42,
p < 0.0001). TheS correlations with protein-like compo-
nents however were not significant although a slight negative
trend can be observed (Fig. 8d).

3.2.3 Horizontal spatial variability

Surface spatial patterns of variability in humic-like compo-
nents C1, C2, and C5 revealed similar patterns of distri-
bution, being highest in the inner shelf and in the UP re-
gion and generally decreasing towards the middle and outer
shelves (mean 0.45± 0.13, 0.24± 0.07, 0.12± 0.05 R.U.,
and 0.28± 0.0.06, 0.15± 0.02, 0.09± 0.02 R.U., within the
inner and middle shelves, respectively) (Table 3) (Fig. 9a,
b and e). These values correspond to 41.2, 21.9, 11.6 %,
and 37.7, 19.9, 11.5 %, respectively of the total fluorophores
in the two shelves. Similar relative concentrations of these
components were observed in the outer shelf/slope region
of the Bering Sea (Table 3). Patterns of protein-like com-

 

 

 

 

 

Figure 8. Relationships between(a) salinity (b) temperature,(c)
ag355, and(d) S275−295 and the fluorescence components C1, C2,
C3, C4, and C5. Triangles are for data from the middle and outer
shelf/slope, x for the inner shelf (IS), and + for the Unimak Pass
(UP) region.

ponents however differed from the humic-like components
and at different locations (Fig. 9c and d). The tyrosine-like
component C3 was more elevated in the inner shelf region
(0.14± 0.06 R.U.) while the tryptophan-like component C4
was elevated (0.16± 0.05 R.U.) in the outer shelf/slope re-
gion forming 13.1 and 22.1 %, respectively of the more de-
graded and fresher fraction of the amino acid pool in the two
regions. However, the tryptophan-like C4 component which
represents the fresher fraction of the amino-acids in DOM
was more elevated within the productive cold pool of the
middle shelf than the inner shelf. Highest values of protein-
like C3 and C4 fluorophores were however in the UP region
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Table 3. Mean of the five fluorescence components identified by the PARAFAC model in the different regions (IS-inner shelf, MS-middle
shelf, OS + SL-outer shelf/slope, UP-Unimak Pass) of the Bering Sea. In addition, in the middle shelf mean values of fluorescence compo-
nents at surface (MS-s), mid-1 (MS-1) and mid-2 (MS-2) depths are also shown. Percentage compositions of the components are given for
each of the regions.

region C1 C2 C3 C4 C5 % C1 % C2 % C3 % C4 % C5

UP 0.54± 0.1 0.30± 0.06 0.37± 0.12 0.19± 0.11 0.26± 0.11 32.5 18.1 21.9 11.7 15.8
IS 0.45± 0.13 0.24± 0.07 0.14± 0.06 0.13± 0.03 0.12± 0.05 41.2 21.9 13.1 12.3 11.6
MS 0.28± 0.06 0.15± 0.02 0.10± 0.03 0.13± 0.04 0.09± 0.02 37.7 19.9 13.5 17.3 11.5
MS-s 0.24± 0.07 0.14± 0.03 0.09± 0.03 0.11± 0.02 0.06± 0.02 37.2 20.9 15.2 16.5 10.1
MS-1 0.31± 0.06 0.16± 0.03 0.11± 0.03 0.14± 0.04 0.10± 0.01 37.4 19.6 13.4 17.7 11.7
MS-2 0.31± 0.07 0.16± 0.04 0.11± 0.06 0.14± 0.05 0.10± 0.04 37.5 19.6 13.5 16.9 12.5
OS + SL 0.23± 0.23 0.14± 0.02 0.12± 0.03 0.16± 0.05 0.08± 0.07 32.2 18.9 16.1 22.1 10.6

 

 

 

 

 

Figure 9. Spatial distributions of(a–e)fluorescence components C1–C5, of surface waters.
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suggesting the presence of both fresh and degraded amino
acids in the region (Table 3).

3.2.4 Vertical variability along transects

The cross-shelf vertical variability of the fluorescent compo-
nents along the northern-most SL transect show clear differ-
ences between the humic-like and protein-like components
(Fig. 10a–e). The distribution of the humic-like components
C1, C2, and C5 (Fig. 10a, b, and e) generally showed a pat-
tern of decreasing intensity from the inner shelf into the mid-
dle shelf while lower intensities of the humic-like compo-
nents in the surface mixed layer in comparison to the un-
derlying cold pool suggested photodegradation of these fluo-
rophores. The protein-like components C3 and C4 while ele-
vated in the inner shelf showed a more complex pattern off-
shore (Fig. 10c and d). AOU was found to be elevated within
the high salinity cold bottom waters (Fig. 10f) High nega-
tive AOU values were observed at depths corresponding to
elevated Chl concentrations (Figs. 10f and 5c).

Along the 70 m line, contrasting patterns were ob-
served between the humic-like and protein-like components
(Fig. 11a–e). The humic-like components C1, C2, and C5
revealed clear distinction in component intensity between
the surface mixed layer and the subsurface cold pool wa-
ters through most of the middle shelf. Transitions in tem-
perature or salinity (Fig. 6a and b) along the transect within
the cold pool appeared to coincide with patterns of vary-
ing humic-like component intensities (Fig. 11a, b and e)
suggesting strong linkages between the physical properties
and the humic-like fluorescence components. In the case of
the protein-like components C3 and C4, there were no clear
trends within the cold pool or the surface mixed layer al-
though the C4 tyrosine-like component appeared elevated at
the subsurface Chl maximum suggesting the presence of in-
creased fresh organic material (Fig. 11c and d). AOU was
negative along the surface mixed layer along the whole tran-
sect that decreased further in the northern shelf at depth cor-
responding to the Chl maxima (Fig. 11f). AOU within the
cold pool was overall positive increasing northwards show-
ing variation along the vertical isopycnals.

4 Discussion

4.1 DOM characteristics in the eastern Bering Sea and
the cold pool region

Patterns of absorption and fluorescence observed in the east-
ern Bering Sea suggest a combination of both allochthonous
and authochthonous origins of CDOM. The values of absorp-
tion coefficients (e.g.,ag355) observed in the eastern Bering
Sea were generally lower than those reported for the west-
ern Arctic Ocean shelf region influenced by the McKenzie
River (Gueguen et al., 2005) and comparable to values (∼ 0.2
to 0.3 m−1) reported for the shelf break region of the mid-

Atlantic Bight (Del Vecchio and Blough, 2004). The DOC
concentrations were similar to those reported for the summer
in the Chukchi Sea shelf (77± 12 µM) (Shen et al., 2012).

Although the salinity–ag355 relationship shows three
broad trends (Fig. 2a), variations within each of the shelf re-
gions are observed such as in the outer shelf/slope and the
DBS waters where there is no significant difference inag355
between the DBS waters at depths> and< 1000 m indicat-
ing no loss of CDOM with depth in this region. Overall, the
spectral slopeS was negatively correlated with salinity which
could be attributed to differences in water masses and/or to
enhanced photodegradation of CDOM in the highly strati-
fied low salinity surface ice meltwaters, and is in contrast
to river-dominated systems whereS increases with increas-
ing salinity (Fichot and Benner, 2012). The inverse signif-
icant relation betweenS and salinity suggest a strong link-
age between the CDOM optical property and hydrography
and could be used as a tracer of water mass especially in the
DBS. S was also low at the inner shelf and stations located
near the various islands in the eastern Bering Sea suggest-
ing higher molecular weight and greater aromaticity of the
dissolved material.

The inverse spectral slopeS–ag355 relationship (Fig. 2c)
distinguished the different water masses in the eastern Bering
Sea that were modeled using nonlinear regression equations
with the terrestrial and oceanic end members showing similar
patterns to that developed for the Greenland and North Sea
(Stedmon and Markager, 2001). The model for the middle
shelf (line 2, Fig. 2c) which lies between the terrestrial and
oceanic model trends more towards the inner shelf model re-
flecting the terrestrial influence associated with strong win-
ter mixing of the water masses; a larger gradient in theS–
ag355 relationship appears to be due to enhanced photooxi-
dation of surface waters and mixing with the outer shelf wa-
ters. The outer shelf/slope waters which extends over a large
region of the eastern Bering shelf and includes the produc-
tive green belt region and the St. Paul and Pribilof Islands
shows a broad scatter in theS-ag355 property relationship
which is however weighted towards the oceanic end mem-
ber. The UP region model (line 3, Fig. 2c) at lowag355
appeared to show oceanic properties but exhibited terrestrial
trends with increasing absorption likely reflecting the influ-
ence of enhanced runoff from the Aleutian Islands during the
summer. The sea ice water mass showed a trend similar to
the inner shelf that was however shifted upwards indicating
higher photodegration of these waters. These results indicate
that theS-ag355 behavior could be used to differentiate the
water masses based on the CDOM optical properties in the
eastern Bering Sea.

High inverse correlation between AOU an indicator of
microbial remineralization andS (r2

= 0.79) with ag355
not significantly different in the deep Bering Sea waters
(> 1000 m) from the waters above, strongly suggests oxida-
tion of organic matter that is of increasingly higher molecu-
lar weight with depth/age of the water mass (Nelson et al.,
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Figure 10.Vertical section of(a–e)fluorescence components C1–C5, and(f) AOU along the SL transect.

 

 

 

 

 

Figure 11.Vertical section of(a–e)fluorescence components C1–C5, and(f) AOU along the 70 m transect.
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2010; Helms et al., 2008). A strong relationship betweenS

and nitrate (r2
= 0.63) also supports the link between the

CDOM optical properties and the microbial remineralization
of likely more refractory organic material with depth/age.
The high AOU values in the deep slope Bering Sea waters
also indicate these waters to be even older than previously
reported for the northern Pacific (Nelson et al., 2010) with
likely more refractory DOM material. Elevated AOU values
in the northern middle shelf waters (Figs. 10f and 11f) cor-
responded to elevated salinity in the cold pool, lowS and
slightly elevatedag355 (Figs. 5e, f and 6e, f) likely the ef-
fects of brine rejection during ice formation in winter and the
subsequent remineralization of the organic matter in these
waters (Dittmar, 2004; Granskog et al., 2012; Matsuoka et
al., 2012). Elevated negative AOUs (Figs. 10f and 11f) were
also observed in the northern middle shelf corresponding to
elevated Chl that contributed to excess oxygen by primary
production.

Significant correlations between CDOM absorption and
humic-like fluorescence components (Fig. 8c) as well as in-
verse relationships between spectral slopeS and the humic-
like fluorescence components in the middle shelf suggest
similar influences on the chromophoric and humic-like flu-
orescence DOM. However, lack of relationship between
CDOM absorption properties and protein-like fluorescence
components indicate these components may not contribute
much to the chromophoric pool especially in the middle shelf
waters.

In the cold northern middle shelf (> 60◦ N) high sub-
surface phytoplankton biomass and corresponding elevated
absorption that decreased in the southern middle shelf
(Fig. 4c and e) strongly suggests autochthonous production
of CDOM. In the highly productive section between∼ 60–
62◦ N, the protein-like component C3 (tyrosine-like, more
degraded amino acids) was lower while tryptophan like com-
ponent C4 (fresh amino acids) was higher further support-
ing the likelihood of autochthonous production of fresh, la-
bile CDOM. In the southern middle shelf (< 59◦ N) patterns
of ag355 andS were more complex; elevatedag355 and
tryptophan-like C4 were observed at depths corresponding
to elevated Chl (Figs. 4c, e and 11d) suggesting that fresh
CDOM may be contributing to the DOM pool. The relative
intensities of the components were similar at surface and
subsurface depths (Table 3) suggesting that the typical flu-
orescence composition of the middle shelf is maintained in
spite its extensive area and the variability in the sinks and
sources of the CDOM. Similar humic-like and protein-like
fluorophores have been identified in the western Arctic with
a humic fluorophore linked to Pacific waters (Gueguen et al.,
2012).

The presence of an extensive cold pool and the strong
stratification that prevailed during the summer of 2008 had
a strong influence on the optical properties of CDOM in
the eastern Bering Sea. This was evident in the comparison
of surface and subsurface waters where meanag355 of sur-

face mixed layer was on average 17.1 % lower andS 12.7 %
higher than the subsurface cold pool waters. Similarly, pho-
todegradation also affected the fluorescent components. In
the surface mixed layer waters, humic-like fluorophores C1,
C2, and C5 experienced an average loss of∼ 22.5, 12.5,
and 40.0 % respectively of their fluorescent intensities. The
earlier ice retreat coupled with greater solar insolation and
mixing due to summer storms likely initiated earlier pho-
todegradation of surface mixed layer in the middle shelf
south of 59◦ N as indicated by the more elevatedS values
across the water column. Although, the protein-like C3 and
C4 were lower by 18.2 and 21.4 %, respectively in the sur-
face mixed layer, patterns of distribution suggested that the
differences were more related to increases in the protein-like
fluorophores associated with in situ production of these flu-
orophores. Except along the inner shelf, much of the eastern
Bering Sea surface waters appeared to be impacted by pho-
todegradation as indicated by lowerag355 and increasedS.
Elevated values of CDOM absorption, DOC and fluorescence
observed at some locations along the 70 m transect suggest
that CDOM could also be released from the shelf sediments
(Boss et al., 2001). Bering Sea shelf sediments have been
found to be a net source of DOC to the Arctic Ocean (Cooper
et al., 2005) suggesting that strong tides and powerful storms
that occur in the Bering Sea could introduce CDOM/DOM
into the water column, which can then transported to the Arc-
tic.

Between 59–60◦ N, surface waters of the middle shelf ap-
peared to be influenced by a lens of cooler and lower salin-
ity waters of the inner shelf with elevatedag355 and lower
S (Figs. 3 and 6). However, north of 60◦ the water column
was well delineated with lowerag355, higherS in the sur-
face mixed layer and lowerS within the cold pool waters due
to reduced mixing (greater surface stratification) of the wa-
ter column. Photochemical degradation can be a major sink
of CDOM and can change the DOM pool to low molecular
weight, biologically labile compounds (Mopper and Kieber,
2002). The lower fluorescence intensities observed in surface
layer of oceanic waters have been attributed to photochemi-
cal degradation, which also acts as a sink of the humic-like
compounds (Jorgensen et al., 2011). The seasonal sea ice dy-
namics coupled with summer storms, and solar insolation
appeared to have strongly influenced the CDOM photoox-
idative state of the waters in the eastern Bering Sea. Further,
higher rates of photobleaching and thus lower light attenu-
ation (Naik et al., 2013) could have contributed to greater
light penetration resulting in massive phytoplankton blooms
at greater depths of the northern middle shelf.

4.2 DOM characteristics in the UP region

The Unimak Pass, a relatively shallow (< 80 m) and nar-
row (∼ 30 km) pass acts as a conduit for a portion of the
Alaska Coastal Waters (ACW) into the eastern Bering Sea
(Stabeno et al., 1999). Hydrographic properties measured at
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stations along the pass and on the Bering shelf side of the
Unimak Island show the salinity (32.12) and temperature
(5.39◦C) characteristics of the ACW which flows along the
shelf and extends∼ 1000 km along the Gulf of Alaska. Ab-
sorption and fluorescence properties show unique signatures
that deviated from the general trend in the eastern Bering Sea.
Low ag355 and highS observed in the region was likely due
to greater photodegradation of the ACW as it flows along
the Alaskan coast. Relatively low values of DOC, Chl and
ag355 but high fluorescent components indicate additional
source such as from glacial meltwaters to the ACW. Fluo-
rescent component intensities were highest for the UP re-
gion and were decoupled from absorption suggesting dif-
ferent sources and or behavior of the absorbing and fluo-
rescing substances. Similar non-linear relationships between
ag355 and fluorescence have been reported for the Middle
Atlantic Bight (Del Vecchio and Blough, 2004). Further, the
more degraded protein-like tyrosine C3 component was the
most dominant component (21.9 %) after the C1 marine-
like component (32.5 %) with the fresher tryptophan-like C4
component forming the lowest by percentage (11.7 %) in
the study region (Table 3). Such signatures from marine-
like and tyrosine-like fluorophores were also observed in the
Sea of Okhotsk and the northwestern North Pacific Ocean
(Yamashita et al., 2010) suggesting that these two compo-
nents may form an important fraction of the fluorescent pool
in the Pacific waters. Coastal runoff from glacial meltwa-
ter including many small rivers that empty into the Gulf of
Alaska and eventually mix with the ACW as it flows along
the Gulf of Alaska could also contribute to the higher con-
centrations of humic- and protein-like components in the UP
region. Previous studies have indicated that glaciated water-
sheds in the Gulf of Alaska could be an important source
of labile organic matter to the marine environment (Hood
et al., 2009); such watersheds containing elevated levels of
both tyrosine and tryptophan-like fluorophores (Fellman et
al., 2010) could contribute to the ACW. Climatically driven
changes in glacier melt in the Aleutian Island chain and along
the Gulf of Alaska which generally have high runoff rates
(Arendt et al., 2002; Hood et al., 2009) could potentially alter
DOM composition of the ACW and thus the waters entering
the eastern Bering Sea.

4.3 DOM characteristics in the inner shelf region

The inner shelf which is delineated by a front along the 40–
50 m isobath has a generally well-mixed water column as
a result of strong tidal and wind mixing events in the sum-
mer. Waters along the inner shelf are influenced by increased
coastal runoff and discharge during spring and summer from
rivers such as the Kuskokwim and Yukon resulting in the
highest CDOM and DOC concentrations in the study region
(Table 1). Discharge from the Kuskokwim would likely be
similar to the Yukon where maximum DOC concentrations
and CDOM absorption were observed during the spring flush

(Spencer et al., 2008). The intensity of the five fluorescent
components in particular C1 were also the highest but vari-
able in the inner shelf (Table 3). Variability in bothag355
andS with sharp gradients in salinity and temperature along
with mixing of the inner shelf waters with the northwestward
flowing ACW results in a more complex DOM optical struc-
ture.

4.4 DOM characteristics in the outer shelf/slope region

Waters in the outer shelf/slope with more elevated temper-
atures and salinity (Fig. 3a and b) were associated with
the Bering Slope Current (BSC) that flows along the outer
shelf/slope bathymetry in a northwest direction (Schumacher
and Stabeno, 1998). The flow is also characterized by mean-
ders or eddies and episodic on-shelf flow that replenish nutri-
ents onto the shelf (Stabeno and Van Meurs, 1999) resulting
in a region of high and sustained productivity also known
as the “green belt”. Generallyag355 andS in both the sur-
face and subsurface depths of the outermost slope stations
were similar to the UP region (Figs. 3e, f and 4e, f) sug-
gesting similarities in source waters (Alaska Stream/Alaska
Coastal Water). However there were exceptions to these pat-
terns, (e.g., ls1–6 (surface) and np15 (33 m depth)) where
elevated Chl fluorescence and DOC corresponded to ele-
vated ag355 and low slopeS, a further indication of au-
thochthonous CDOM (Stedmon et al., 2011). These find-
ings are also supported by the elevated concentrations of the
protein-like fluorophores, wherein, the tryptophan like C4
component that represents fresher DOM is elevated while
the tyrosine fluorophore C3 is low (Fig. 9c and d). At sta-
tion mn20 for example, slightly elevated Chl fluorescence
and DOC corresponded to highag355 and relatively lower
S but equally elevated C3 and C4 suggesting the presence
of both degraded and fresh DOM at this location. Further,
the more elevated marine humic-like C1 component (and low
C2 and C5) suggests a strong marine source of this CDOM.
During 2008, the stations in the green belt region had higher
algal biomass comprising ofP. pouchettiand cryptophytes
that were photo-physiologically stressed, as well as diatoms
that appeared to be remnants of the spring bloom (Goes et
al., 2014) supporting bacterial mediation of CDOM related
to these species (Carlson et al., 1999).

5 Conclusions

The eastern Bering Sea encompasses a highly complex phys-
ical, biological and photochemical environment. Absorp-
tion and fluorescence spectroscopy coupled with PARAFAC
analysis of CDOM revealed both autochthonous and al-
lochthonous sources whose distribution patterns and dynam-
ics, appeared to be strongly influenced by the presence of
the cold pool. Absorption properties (absorption coefficients
and spectral slope) and PARAFAC derived components of

www.biogeosciences.net/11/3225/2014/ Biogeosciences, 11, 3225–3244, 2014



3242 E. J. D’Sa et al.: Absorption and fluorescence properties of CDOM of the eastern Bering Sea

CDOM, in conjunction with the hydrography provided im-
portant insights into the sinks and sources of CDOM in the
middle shelf. A larger cold pool during the summer of 2008
likely resulted in reduced mixing of the water column as a
consequence of which CDOM in the surface mixed layer ex-
perienced enhanced photodegradation of the absorbing and
humic-like fluorescence fraction of DOM. However, DOC
did not significantly decrease between the surface and sub-
surface waters likely due to enhanced autochthonous pro-
duction (e.g., protein-like amino acids) or due to the humic-
like and absorbing components forming only a small frac-
tion of the DOM pool. Previous studies have shown that the
extent of the cold pool strongly influences the phytoplank-
ton and zooplankton community in the eastern Bering Sea.
More intense stratification and CDOM photodegradation of
the surface mixed layer associated with a larger cold pool
may have allowed light penetration to greater depths into the
cold pool, where aided by nutrient availability, massive phy-
toplankton blooms resulted at greater depths in the northern
middle shelf. With climate change potentially impacting the
extent of the cold pool, changes in CDOM could impact the
light field and consequently the primary production and as-
sociated trophic links in the eastern Bering Sea. CDOM op-
tical properties were also variable across the other regions
(inner shelf, Unimak Pass and outer shelf/slope regions) re-
vealing strong linkages to climate sensitive parameters such
as circulation, coastal runoff and productivity in each of the
regions. Climate change impacts associated with these fac-
tors could thus potentially change the CDOM characteristics
of the eastern Bering Sea.
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