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Abstract. Rising atmospheric CO2 concentrations may alter
the nitrogen (N) content of ecosystems by changing N inputs
and N losses, but responses vary in field experiments, possi-
bly because multiple mechanisms are at play. We measured N
fixation and N losses in a subtropical oak woodland exposed
to 11 years of elevated atmospheric CO2 concentrations. We
also explored the role of herbivory, carbon limitation, and
competition for light or nutrients in shaping the response of N
fixation to elevated CO2. Elevated CO2 did not significantly
alter gaseous N losses, but lower recovery and deeper dis-
tribution in the soil of a long-term15N tracer indicated that
elevated CO2 increased leaching losses. Elevated CO2 had no
effect on nonsymbiotic N fixation, and had a transient effect
on symbiotic N fixation by the dominant legume. Elevated
CO2 tended to reduce soil and plant concentrations of iron,
molybdenum, phosphorus, and vanadium, nutrients essential
for N fixation. Competition for nutrients and herbivory likely
contributed to the declining response of N fixation to ele-
vated CO2. These results indicate that positive responses of
N fixation to elevated CO2 may be transient and that chronic
exposure to elevated CO2 can increase N leaching. Models
that assume increased fixation or reduced N losses with el-

evated CO2 may overestimate future N accumulation in the
biosphere.

1 Introduction

Nitrogen (N) is the element most frequently limiting to plant
growth (LeBauer and Treseder, 2008). Nitrogen inputs and
losses from terrestrial ecosystems determine ecosystem N
pool size, and in turn influence the potential for carbon (C)
uptake when plant growth is N limited. Carbon uptake and
storage are thus sensitive to the balance of N inputs and
losses (Pepper et al., 2007; Gerber et al., 2010; Esser et al.,
2011). Here, we synthesize the effects of 11 years of chronic
exposure to increased CO2 concentrations on N inputs and
losses from a subtropical oak woodland.

Nitrogen fixation is the major biological pathway through
which the biosphere accumulates N. Nitrogen fixation has a
high demand for reducing power to break the triple covalent
bond shared by the two atoms in the N2 molecule (Benemann
and Valentine, 1972). Symbioses between bacteria capable
of N fixation and photosynthetic organisms have evolved

Published by Copernicus Publications on behalf of the European Geosciences Union.



3324 B. A. Hungate et al.: Nitrogen inputs and losses in response to chronic CO2 exposure

multiple times, likely an adaptive pairing because of the high
energetic cost of N fixation and N being frequently limit-
ing to plant growth (Sprent, 1985). Increased photosynthe-
sis with rising concentrations of atmospheric CO2 has been
postulated to shunt more labile C from the plant to bacte-
rial root symbionts, increasing rates of N fixation. In some
cases, elevated CO2 has been found to disproportionately in-
crease the growth of N-fixing plants (Norby and Sigal, 1989;
Arnone and Gordon, 1990; Hartwig et al., 2000; Soussana
and Hartwig, 1996; Zanetti et al., 1996; Hebeisen et al., 1997;
Feng et al., 2004) and increase N fixation, though this poten-
tial is not always realized under field conditions (Schäppi and
Korner, 1997; Arnone, 1999; Hoosbeek et al., 2011).

Some symbiotic (i.e., free-living) heterotrophic bacteria
can also fix N. Elevated CO2 can increase the amount of
C that plants produce belowground through root growth,
turnover, and exudation (Drake et al., 2011; Hagedorn et al.,
2013; Lagomarsino et al., 2013) and thereby alleviate C lim-
itation of nonsymbiotic N fixation. This may explain why
elevated atmospheric CO2 has been found to stimulate non-
symbiotic N fixation by soil bacteria in a salt marsh (Dakora
and Drake, 2000) and a rice paddy soil (Hoque et al., 2001).
However, in a temperate pine forest and desert soil, elevated
CO2 had no effect on nonsymbiotic N2 fixation (Hofmockel
and Schlesinger, 2007; Billings et al., 2003). Thus, effects of
elevated CO2 on nonsymbiotic N2 fixation are equivocal.

N-fixing organisms require high concentrations of iron
(Fe), phosphate (P), and molybdenum (Mo), or in some in-
stances vanadium (V) (Williams, 2002). (Smith, 1992). Re-
sponses of N-fixation to elevated CO2 can be limited by
availability of these nutrients (Niklaus et al., 1998;Jin et al.,
2012). The response of N fixation to elevated CO2 across
multiple studies was only significant when non-N nutrients
were added as fertilizer; without nutrient amendments, the
effect of CO2 on N fixation was negligible and not significant
(van Groenigen et al., 2006). Elevated CO2 often increases
plant growth and element accumulation (Luo et al., 2006),
including in the subtropical woodland studied here (Duval et
al., 2013). Therefore, increased element uptake by non-fixing
plants could restrict nutrient availability for N-fixing organ-
isms, potentially limiting their response to elevated CO2.

Because of the high energy requirements of N fixation,
shading by the canopy can limit the growth of N-fixing plants
(Gutschick, 1987; Vitousek et al., 2002). Therefore, if el-
evated CO2 promotes growth of the dominant species, en-
hancing its leaf area, the growth of N-fixing plants could be
suppressed. Herbivory could also influence the response of
N-fixing plants to elevated CO2. Herbivores often prefer the
tissue of N-fixing plants to that of other plants because N-
fixing plants have a higher protein content than non-fixing
plants (Ritchie and Tilman, 1995; Hulme, 1994, 1996). For
this reason, factors promoting the growth of N-fixing plants
could in turn stimulate selective herbivory.

With the exception of episodic losses during disturbance,
N losses from terrestrial ecosystems occur primarily as

gaseous products of nitrification and denitrification (NO,
N2O, and N2) and through leaching of NO−3 and organic
N. Elevated CO2 can alter N losses if input of labile C to
the rhizosphere enhances denitrification rates (Smart et al.,
1997; Robinson and Conroy, 1999; Baggs et al., 2003a, b),
or by altering soil water content because of reduced evap-
otranspiration (Hungate et al., 1997a; Arnone and Bohlen,
1998; Robinson and Conroy, 1999). Elevated CO2 could also
reduce ammonium availability to nitrifiers, suppressing ni-
trification and N losses through gaseous fluxes (Hungate et
al., 1997b) and NO−3 leaching (Torbert et al., 1998). Across
studies conducted to date, elevated CO2 has been found to
increase N2O efflux from terrestrial ecosystems (van Groeni-
gen et al., 2011); effects on N leaching have not been synthe-
sized.

During the first 6 years of the experimental treatment of
the subtropical woodland studied here, elevated CO2 in-
creased N2 fixation during the first year of treatment, but the
response subsequently disappeared (Hungate et al., 2004).
Here, we extend this record to include symbiotic N2 fixa-
tion during the full 11 years of the CO2 experiment, and we
also assess responses of nonsymbiotic N2 fixation to elevated
CO2. We also investigate possible mechanisms shaping the
responses to CO2, testing the hypotheses that selective her-
bivory, light competition, and changes in nutrient availability
modulate the response of N2 fixation to elevated CO2. We
also report new data on rates of N gas losses and tracer15N
recovery in deep soil to assess effects of CO2 on N leaching.

2 Materials and methods

2.1 Site description

This work was conducted at the Smithsonian Environmen-
tal Research Center’s elevated CO2 experiment at Kennedy
Space Center, Cape Canaveral, Florida, USA (28◦38′ N,
80◦42′ W). The experiment consisted of 16 open-top cham-
bers, each 2.5 m high with an octagonal surface area of
9.42 m2. Eight chambers were maintained at ambient atmo-
spheric CO2 concentrations and eight chambers were main-
tained at approximately 350 µL L−1 above ambient atmo-
spheric CO2 concentration. The soils at the site were acidic
Spodosols (Arenic Haplohumods and Spodic Quartzipsam-
ments). The vegetation was Florida coastal scrub oak pal-
metto (Dijkstra et al., 2002; Johnson et al., 2003; Seiler et al.,
2009), dominated by three oaks (Quercus myrtifolia, Q. gem-
inata, andQ. chapmanii) and several less abundant species,
including saw palmetto (Seranoa repens), shiny blueberry
(Vaccinium myrsinites), rusty Lyonia (Lyonia ferruginea),
and tarflower (Befaria racemosa). A native vine, Elliott’s
milkpea (Galactia elliottii) constituted only 1 % of above-
ground productivity (Hungate et al., 2004) but is important
for its ability to fix nitrogen.
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2.2 Symbiotic N2 fixation by Galactia elliottii

We estimatedG. elliottii annual aboveground production as
the annual flux ofG. elliottii mass collected in litter traps
(Stiling et al., 1999, 2002, 2009). Litter ofG. elliottii was
sorted and measured separately beginning in 1999; in 1997
and 1998,G. elliottii litter fall was measured together with
other “non-oak” species. As described previously (Hungate
et al., 2004), for 1997 and 1998, we estimated thatG. elliot-
tii litter constituted 68 % of the non-oak litter. This estimate
is the average of the proportion ofG. elliottii litter mass in
in the total non-oak litter fraction as measured from 1999 to
2002 (63 %) and the estimated proportion ofG. elliottii litter
mass in 1997 and 1998 based on a mixing model using N
concentration inG. elliottii litter (high in nitrogen percent-
age) versus other species (lower in nitrogen percentage); this
mixing model yielded an estimate of 73 %.

We measured N2 fixation rates using isotope dilution. A
nitrogen-15 tracer was added on 19 June 1998 (0.18 g N m−2

(NH4)2 SO4 99.9 atom %15N). To the extent thatG. elliot-
tii fixes N2 via symbiotic bacterial fixation from the atmo-
sphere,G. elliottii leaves will be lower inδ15N than oak
leaves, whose N is derived from the soil, directly increased
by theδ15N value of the added tracer. The proportion of N in
G. elliottii that was derived from N2 fixation (pf) was calcu-
lated using the standard model for15N dilution (Shearer and
Kohl 1986), where the15N signature of unlabeledG. elliottii
is the atmospheric end member:

pf = (δ15NO − δ15NG)/(δ15NO − δ15NGo), (1)

where the subscriptO refers to the dominant oak (Q. myrtifo-
lia); G to the N-fixer,G. elliottii, after adding the15N tracer;
andGo to G. elliottii before adding the15N tracer. This cal-
culation relaxes the common assumption that theδ15N value
of N obtained by fixation is equal to theδ15N of atmospheric
N2; it therefore accounts for biological fractionation during
N2 fixation (Yoneyama et al., 1986) and provides a more
precise estimate of the end member of the mixing model.
Theδ15N value ofG. elliottii prior to label application was
−2.2 ‰. A second assumption of this method is that the ref-
erence plant (Q. myrtifolia) obtains its N from the soil rather
than from N fixation. Departures from this assumption will
cause the mixing model to underestimate the proportion of N
derived from fixation, unlikely to be a serious error at our site
because the mixing model indicated thatG. elliottii obtained
nearly all its N from fixation. The isotope dilution method
also requires that theδ15N tracer is sufficiently strong for the
δ15N value of the reference plant to remain distinct from the
atmospheric source. This was the case throughout the exper-
iment: the averageδ15N in oak leaves was 131.0± 5.3 ‰.
By the final harvest, this value declined to 84.3± 4.2 ‰, still
clearly distinct from the N2-fixer value (−2.2 ‰), providing
sufficient resolution in the mixing model such that the stan-
dard deviation for the proportion of N derived from fixation
(pf) was 0.012. The isotope dilution method also assumes

that G. elliottii, if it takes up N from the soil, accesses ap-
proximately the same soil N available to the reference plant.
Evidence suggests that this assumption is reasonable, as both
fine roots (67± 13 %) andG. elliottii nodules (74± 9 %)
were concentrated in the top 30 cm of soil.

We measured N concentration andδ15N in G. elliottii fo-
liage and senesced litter on an elemental analyzer inline with
an isotope-ratio mass spectrometer. Total N2 fixation was cal-
culated as the product ofG. elliottii biomass production, N
concentration, and the proportion of N derived from fixa-
tion. To calculatepf using Eq. 1, we usedδ15N values from
senesced leaves because they were gathered in litter traps and
therefore captured an integrative sample ofG. elliottii tissue
at the plot scale (Stiling et al., 2009). For N concentration, we
used the percentage of N in green leaves to avoid underesti-
mating N2 fixation due to retranslocation during senescence.

We measured nodule biomass by handpicking soil from
cores taken in July 2007 (0–100 cm) (Hungate et al., 2013b;
Day et al., 2013). Nodules were washed free of sand, oven
dried, and weighed. For comparison, we also report here data
obtained during the first year of the experiment (Hungate et
al., 1999), when we measured nodule mass and number in
buried columns of C-horizon sand placed in the top 15 cm
of soil. The earlier assay using ingrowth cores captures new
nodule growth, whereas the cores at the final harvest mea-
sure the standing crop of nodules. Though not directly com-
parable, both assess responses of N2-fixing nodules to the
elevated-CO2 treatment and thus are presented together here.

2.3 Herbivory

From 2000 to 2006, litter of the oaks and ofG. elliottii was
scored for damage by insect herbivores and sorted, counted,
and weighed separately by species and insect damage cat-
egory as described previously (Stiling et al., 1999, 2003,
2009). The rate of litterfall of herbivore-damaged leaves,L

(g m−2 year−1), was determined for each species as the to-
tal mass of damaged litter divided by the area of the lit-
ter traps in each chamber. Live green leaves of all species
were also sampled during the experiment in order to de-
termine the average mass of an undamaged green leaf for
each species. Seven plants were randomly chosen for each of
the three oak species in September 2004. Fifty leaves were
sampled haphazardly over the entire canopy of each plant.
For G. elliottii, total aboveground biomass was sampled in
1/6th of each chamber in September 1999, separated into
leaves and stems, and the leaves were counted. For all four
species, leaves were dried in a ventilated oven at 70◦C for
72 h and weighed, and the average leaf mass was calculated.
We used these measurements to estimate the amount of tissue
consumed by insect herbivores. For each species, we multi-
plied the number of damaged leaves collected in the litter
traps (# leaves m−2 year−1) by the average mass of a green
leaf of that species (g leaf−1) to determine the production
of all the leaves of which insects consumed at least a part,
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P, (g m−2 year−1). Note that this differs from total leaf pro-
duction in that P only includes leaves that were damaged
by insect herbivores. We then calculated herbivore consump-
tion (C) as the difference ofP − L. Our use of green leaf
mass in calculatingC is justified because herbivore dam-
age often causes early leaf abscission (Faeth et al., 1981;
Williams and Whitham, 1986; Stiling and Simberloff, 1989,
2002, 2003). Finally, we calculated total leaf production as
the total number of leaves in litterfall multiplied by aver-
age green mass and then calculated the proportion of total
leaf production that was consumed by herbivores, for each
species, asCdivided by total leaf production.

2.4 Soil micronutrient analyses

In July 2005, October 2006, and July 2007, soil was collected
from the A (0–10 cm) and E (10–30 cm) horizons. Samples
were collected from five locations within each chamber. In
2007 we also analyzed samples from the E2 horizon (30–
60 cm). The cores from each plot were composited, yielding
one A and E sample for each plot for 2005 and 2006, and one
A, E, and E2 sample in 2007. We sampled foliage ofG. elli-
otii, collecting fully exposed and expanded leaves from five
plants per plot in May 2003 and in July 2007. Leaves were
oven dried at 60◦C. Total ecosystem element mass data for
2007 were reported previously (Duval et al., 2014); here, they
are shown as separate components (plant and soil), together
with data from 2003, 2005, and 2006.

Soils were air dried and passed through a 2 mm sieve. Soil-
available Mo, Fe, and V concentrations were determined af-
ter ammonium oxalate extraction (Liu et al., 1996), and soil-
available P was determined by extraction with NaOH (Carter,
1993). Extracts were filtered, diluted 10 times, suspended in
10 mL of 0.32 M trace metal grade HNO3, and analyzed by
Inductively coupled plasma mass spectrometry (ICP-MS) as
described below.

For 2007, plant samples were dried at 60◦C and∼ 750 mg
was ashed at 600◦C. Five hundred milligrams ofG. elliottii
leaves was run through a MARS microwave digester using
EPA protocol 3052x, consisting of a 30 min cycle at 200◦C
with 9 mL of HNO3, 3 mL of HCl, and 2 mL of HF. All
reagents were trace-metal-grade concentrated acids. The re-
sulting solutions were dried on a hot plate and resuspended
in 10 mL of 0.32 M trace-metal-grade HNO3 prior to ICP-
MS analysis.

Element concentrations were determined on a Thermo X
Series quadrupole ICP-MS at the Keck Isotope Biogeochem-
istry Laboratory, Arizona State University, Tempe, Arizona,
and a Thermo X2 Series quadrupole ICP-MS at the Iso-
tope Geochemistry Laboratory, Northern Arizona University,
Flagstaff, Arizona. In these analyses, we used the standard
references cody shale (SCo-1) for soils and peach (NIST
1547) and apple leaves (NIST 1515) for plants. In the ICP-
MS analysis, we had> 90 % recovery of all elements mea-
sured.

2.5 Acetylene reduction for nonsymbiotic N2 fixation

We measured acetylene reduction to ethylene in soil incuba-
tions to estimate N2 fixation by free-living soil heterotrophs.
Soil samples were collected in January and March 2006. At
each date, five cores (4 cm diameter x 15 cm deep) were col-
lected from each chamber, shipped overnight to Florida In-
ternational University (Miami, Florida), composited for each
plot, and sieved through a 2 mm sieve. Soils were composited
by treatment and 3 g subsamples were filled into 20 mL glass
vials (n = 4–5). In January 2006, the experimental design in-
cluded two levels of glucose addition (0 and 324 µg C g−1

soil) and two levels of soil moisture (3 % and 10 % volumet-
ric). In March 2006, the experimental design included three
levels of glucose addition (0, 6.7, and 34.4 µg C g−1 soil) and
two levels of phosphorus addition (0 and 6.5 µg P g−1 soil).
For both experiments, treatments were crossed in a fully fac-
torial design withn = 4 for January andn = 5 for March.
Acetylene (1 mL) was added to each vial, and the vials were
sealed and incubated for 6 h at room temperature. Headspace
samples were analyzed via gas chromatography for ethylene
production using an HP5890 gas chromatograph equipped
with a flame ionization detector.

2.6 Nitrous oxide and nitrogen oxide gas fluxes

We measured soil production of nitrous oxide (N2O) and ni-
tric oxide (NOx) using static chambers (Hutchinson and Liv-
ingston, 1993) during 2005–2007. For N2O, headspace sam-
ples were collected in syringes and analyzed by gas chro-
matography. For NOx, the static chamber was plumbed to
a chemiluminescent detector and the computer that logged
real-time [NOx]. Chambers (1.8 L) were constructed from a
10.2 cm diameter PVC pipe closed with a PVC cap. The bot-
tom 3 cm of each chamber was tapered to allow the cham-
ber to slide smoothly into PVC rings of similar diameter in-
stalled in each plot in 2004. Once the chamber was in place,
headspace air (15 mL) was sampled through a rubber septum
(fixed to the top of each chamber) using a 20 mL nylon sy-
ringe equipped with a nylon stopcock and a 23-gauge needle.
Three subsequent headspace samples were taken at 15 min
intervals. Syringes were maintained under pressure using a
rubber band until analysis, within 12 h of sample collec-
tion. Samples were analyzed on a gas chromatograph system
(Shimadzu) with Haysep-Q60/80- and Porapack-Q60/80-
packed columns and equipped with an electron capture de-
vice to determine N2O concentrations. Field fluxes were cal-
culated using linear regression of concentrations over time.
The flux rates were expressed as µg N2O-N m−2 d−1.

2.7 Tracer 15N distribution and recovery in deep soils

During the final harvest of the experiment in 2007, each plot
was cored to the water table or to a depth of 3 m (whichever
was deeper). Core depth averaged 260.6 cm (SEM 13.5),

Biogeosciences, 11, 3323–3337, 2014 www.biogeosciences.net/11/3323/2014/



B. A. Hungate et al.: Nitrogen inputs and losses in response to chronic CO2 exposure 3327

not significantly different between the CO2 treatments (P =

0.90; t test). We modeled the depth distribution of tracer15N
using the function

Y = 1− βd ,

whered is depth,Y is the cumulative proportion of tracer15N
recovered up to depthd, andβ is a fitted parameter (Gale and
Grigal, 1987). We used Microsoft Excel’s Solver function to
find the values ofβ, minimizing the sum of squares of the
errors inY between measured and modeled values for each
plot. We used at test to determine if elevated CO2 altered
β and used nonlinear regression to explore relationships be-
tween the vertical distribution of recovered15N and total15N
recovery at the ecosystem scale (mg15N m−2).

2.8 Statistical analyses

We used analysis of variance (ANOVA) to test for effects of
elevated CO2, using repeated measures to test for effects of
time and interactions between CO2 and time, and split-plot
ANOVA to test for differences among soil depths. When nec-
essary, data were log-transformed (N2 fixation, soil element
concentrations) to meet assumptions of ANOVA. For nodule
biomass in 1996 and 1997, we used a Kruskal–Wallis test be-
cause data did not meet assumptions of ANOVA and values
of zero precluded log-transformation. We used anα threshold
of 0.10. We omitted one data point from the analysis of foliar
Mo of G. elliottii in 2007 based on a Grubb’s outlier test;
omitting the data point did not influence the significance of
any statistical comparison. We used simple and multiple lin-
ear regressions to explore relationships between N2 fixation
and possible drivers. We also used ANOVA for the acety-
lene reduction assay to test effects of CO2, glucose, and wa-
ter (in January 2006) or phosphorus (March 2006) on rates
of N2 fixation by free-living soil microorganisms. We note
that compositing soils from plots by CO2 treatment com-
promised the independence of replicates within CO2 treat-
ments. The absence of any significant effects of CO2 on non-
symbiotic N2 fixation (see below) provides some protection
from the dangers of false inference caused by pseudorepli-
cation (Hurlbert, 1984). We assessed effects of N2 fixation
as a function of time since disturbance by calculating time
since disturbance as the number of years that had elapsed be-
tween the date of the measurement and the most recent dis-
turbance, whether by fire at the beginning of the experiment
or by hurricane in September 2004 (Hungate et al., 2013a).
We expressed the effect of elevated CO2 on N2 fixation as the
absolute difference between elevated and ambient CO2 plots.

Table 1.Proportion of N derived from fixation and N concentration
in Galactia elliottii during 11 years of exposure to elevated CO2
and results from repeated measures ANOVAs for effects of time,
elevated CO2, and their interaction.

Year pFixation %N

Ambient Elevated Ambient Elevated

1996 1.37± 0.16 1.20± 0.08
1997 2.20± 0.16 2.33± 0.16
1998 0.911± 0.026 0.910± 0.026 2.13± 0.10 1.86± 0.10
1999 0.939± 0.008 0.918± 0.005 1.86± 0.12 1.48± 0.05
2000 0.932± 0.006 0.875± 0.017 1.99± 0.14 1.95± 0.08
2001 0.953± 0.008 0.924± 0.025 2.13± 0.10 1.83± 0.07
2002 0.941± 0.009 0.88± 0.012 2.26± 0.13 1.70± 0.12
2003 0.965± 0.006 0.958± 0.009 1.98± 0.05 1.75± 0.07
2004 0.964± 0.008 0.908± 0.046 1.94± 0.06 1.79± 0.09
2005 0.992± 0.004 0.99± 0.008 1.92± 0.04 1.75± 0.08
2006 0.991± 0.008 0.998± 0.001 2.05± 0.05 1.64± 0.14
2007 0.994± 0.002 0.987± 0.004 1.76± 0.09 2.12± 0.11

CO2 0.005 0.006
Time 0.018 < 0.001

CO2 × Time 0.453 0.002

3 Results

3.1 N2 fixation by G. elliottii

N2 fixation by Galactia elliottii varied over time (P <

0.001), with high rates in 1998 and low rates in 2000 and
2005 (Fig. 1). Elevated CO2 increased N2 fixation byG. el-
liottii during the first six months of experimental treatment
(Fig. 1a and as reported in Hungate et al., 1999). However,
by the third year of exposure to elevated, CO2, N2 fixation
was not different between the two treatments (CO2 × time
interaction,P = 0.070). Subsequently (years 5–7), elevated
CO2 suppressedG. elliottii N2 fixation. Rates equalized
again by year 9 (2005). Accumulated over the 11-year ex-
posure period,G. elliottii fixed 3.92± 0.50 g N m−2 year−1

in the ambient CO2 treatment compared to 3.51± 0.71 g
N m−2 year−1 in the elevated-CO2 treatment, a nonsignif-
icant difference (repeated measures ANOVA,P = 0.376).
The effect of elevated CO2 dissipated with time since dis-
turbance (Fig. 1b).

G. elliottii derived nearly all of its foliar N from fixation,
increasing from 92 % in 1998 to 100 % from 2005 to 2007
(Table 1). Given the small range of variation in reliance on at-
mospheric N2, temporal changes in N2 fixation (Fig. 1) were
driven by effects of time and treatment on the productivity of
G. elliottii. Nevertheless, the proportion of N derived from
the atmosphere byG. elliottii was sensitive to temporal vari-
ation and to the CO2 treatment. Across all years, elevated
CO2 reduced the reliance ofG. elliottii on N from the at-
mosphere, though the effect was small, from an average of
96.9 % for the ambient CO2 treatment to 94.7 % for the ele-
vated treatment. Foliar nitrogen percentage ofG. elliotti was
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Figure 1. Rate of N2 fixation (a) and effect of elevated CO2 on N2
fixation as a function of time since disturbance(b) for Galactia el-
liottii during 11 years of experimental exposure to increased carbon
dioxide concentrations. For panel(a) Values are means± standard
error of the mean (n = 8) for the ambient (open circles) and elevated
(filled circles) CO2 treatments. For panel(b), values are differences
of means for each year of the experiment.

lower in the elevated-CO2 treatment (Table 1), an effect that
varied over time. During the first year of the experiment,
elevated CO2 stimulated nodule biomass (effect of CO2 in
1996,P = 0.062), but elevated CO2 had no effect on nodule
mass at final harvest (Fig. 2, Table 2), a pattern similar to that
found for N2 fixation.

N2 fixation byG. elliottii (g N m−2 year−1) was positively
correlated withG. elliottii foliar N concentration, negatively
correlated with the total mass of the oak leaves, negatively
correlated with herbivory, and unrelated to leaf area index
(Table 3). Therefore, as the dominant plants grew larger, N2
fixation declined, suggesting competition. The absence of
any relationship with leaf area index argues against compe-
tition for light. N2 fixation also declined as foliar nitrogen
percentage declined, which can indicate limitation by non-
N nutrients (Rogers et al., 2009). Finally, high proportional
consumption ofG. elliottii tissue was associated with lower
rates of N2 fixation, suggesting some control of N2 fixation
by herbivory (Table 3).

Table 2. Nodule mass (g m−2) recovered in soil cores at the final
harvest in 2007. P values from split-plot ANOVA are shown in the
last three rows.

Depth Ambient Elevated

0–10 cm 108± 56 66± 29
10–30 cm 70± 62 71± 60
30–60 cm 122± 98 35± 35
60–100 cm 32± 13 10± 5
0–100 cm 332± 143 182± 108

CO2 0.416
Depth 0.498
CO2 × Depth 0.812

Table 3. Multiple regression of rates of N2 fixation
(g N m−2 year−1) as a function of foliar N concentration in
G. elliottii (g g−1

× 100 %), herbivory (% of leaf production con-
sumed), leaf area index (m2 m−2), and total oak biomass (kg m−2).
The overall regression is significant (F4,103= 8.543; P < 0.001;
adjustedr2

= 0.22).

Effect Coefficient± SE P

Constant 0.0467± 0.1682 0.782
N concentration 0.1594± 0.0583 0.007
Ln(Herbivory) −0.0549± 0.0147 < 0.001
Leaf area index −0.0194± 0.0474 0.683
Oak Biomass −0.0233± 0.0104 0.027

3.2 Soil-extractable micronutrient concentrations

Concentrations of soil-extractable Fe, Mo, and V declined
from 2005 to 2007 (Fig. 3, Table 4). Elevated CO2 signifi-
cantly reduced soil-extractable concentrations of Mo and V,
and tended to reduce Fe. Some assays of soil P availability
collected during the experiment indicated that elevated CO2
reduced soil P availability (ion exchangeable P in 1997, ex-
tractable P in 2001), though this effect was not apparent at
the final harvest (Fig. 4). Reductions in soil element avail-
ability under elevated CO2 corresponded with reduced fo-
liar concentrations inG. elliottii: elevated CO2 reduced fo-
liar concentrations of Fe in 2003 and 2007 (repeated mea-
sures ANOVA (RMA),P = 0.013), and, for 2003, Mo (Hun-
gate et al., 2004), although foliar P was not affected in either
year (Fig. 5; RMA,P = 0.886). However, the rate of N2 fixa-
tion was not related to soil-extractable nutrient concentration
(data not shown,P > 0.10 for all regressions).

3.3 Herbivory

Herbivores in this subtropical woodland consumed a higher
percentage ofG. elliottii leaf production (24.0± 1.8 %) than
of oak leaf production (14.1± 0.6 %,P < 0.001, Fig. 6). The
percentage consumed ofG. elliottii was not affected by the

Biogeosciences, 11, 3323–3337, 2014 www.biogeosciences.net/11/3323/2014/



B. A. Hungate et al.: Nitrogen inputs and losses in response to chronic CO2 exposure 3329

Table 4.Effect of elevated CO2, time, and soil depth on extractable nutrient concentrations for the last three years of the experiment (2005,
2006, and 2007). Values are P values from repeated measures, split-plot ANOVAs testing for the main effect of CO2 treatment, repeated
measures effect of the year, and split-plot effect of the depth, as well as all interactions. All data were log-transformed before analysis.

Element CO2 Year Depth CO2 × CO2 × Year× CO2 ×

year depth depth Y × D

Fe 0.223 < 0.001 0.056 0.731 0.720 0.035 0.417
Mo 0.024 < 0.001 0.012 0.150 0.674 0.088 0.796
V 0.010 < 0.001 < 0.001 0.376 0.209 0.036 0.844

Figure 2. Mass ofG. elliottii nodules recovered in the top 10 cm
of soil in 1996 (from ingrowth soil cores) and in 2007 (from intact
cores). Values are means± standard errors.

elevated-CO2 treatment (P = 0.443), nor did it vary signif-
icantly from year to year (P = 0.700; no interactions were
significant in the repeated measures ANOVA;P > 0.30 for
all).

3.4 Nonsymbiotic N2 fixation

Elevated CO2 had no effect on acetylene reduction in soil
laboratory incubations (Tables 5 and 6). Acetylene reduc-
tion was also unresponsive to phosphorus addition or soil
water content. Acetylene reduction increased with glucose
addition, consistent with carbon limitation of heterotrophic
nonsymbiotic N2 fixation in these soils.

3.5 Nitrous oxide and nitric oxide fluxes

Across all measurements conducted during the CO2 en-
richment experiment, N2O efflux averaged 0.346 mg N2O-
N m−2 d−1 for the ambient CO2 treatment and 0.377 mg
N2O-N m−2 d−1 for the elevated-CO2 treatment, a nonsignif-
icant difference of 0.035 mg N2O-N m−2 d−1 (5 and 9 %
confidence limits,−0.070 and 0.132). Scaled to the entire
11-year period and assuming that N2O constitutes 10 % of
the total N losses in denitrification (with 90 % as N2 pro-
duction), our best estimate is that elevated CO2 increased

Figure 3. Soil-extractable Fe, Mo, and V concentrations for 0–
10 cm (left three panels) and 10–30 cm (right three panels) soil
depths over the last three years of the experiment. Values are
means± standard error of the mean. Units are µg g−1 soil (for Fe)
and ng g−1 soil (for Mo and V).

losses of N2O-N by 1.4 g N m−2 , though this difference (el-
evated – ambient) is not significant, with 5 and 95 % confi-
dence limits that span zero (−2.9 to 5.3). Across all mea-
surements, NOx losses averaged 0.075 mg N m−2 d−1 for
the ambient CO2 treatment and were somewhat lower for
the elevated-CO2 treatment at 0.027 mg N m−2 d−1, a differ-
ence between elevated and ambient treatments of−0.047 mg
N m−2 d−1 (5 and 95 % confidence limits,−0.116 to
−0.002 mg N m−2 d−1). Scaled to the entire 11-year period,
the elevated-CO2-treated plots lost 0.20 g N m−2 less NOx
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Table 5. Rates of acetylene reduction (µmol C2H2 g−1 h−1) as a proxy for nonsymbiotic N2 fixation, measured in soils from the ambient-
and elevated-CO2 treatments from laboratory incubations with added glucose and either added water (January 2006) or added phosphorus
(March 2006). Values are means± standard errors of the mean (n = 4, January 2006;n = 5, March 2006).

Glucose Ambient CO2 Elevated CO2 Ambient CO2 Elevated CO2
µg g−1

Jan 2006 3 % H2O 10 % H2O
0 21.5± 3.2 23.8± 3.0 20.4± 2.3 21.8± 2.5

324 27.4± 1.4 25.8± 4.7 32.4± 3.2 30.0± 4.5

Mar 2006 0 P 6.5 P
0 36.0± 1.7 37.7± 4.1 37.2± 4.2 37.5± 1.6

6.7 42.0± 3.8 42.7± 4.5 34.6± 1.2 36.0± 2.7
34.4 42.4± 3.1 44.9± 3.1 43.6± 3.5 41.0± 2.8

Table 6.P values from ANOVAs testing the effects of chronic CO2
exposure and short-term additions of glucose, water, and phospho-
rus on acetylene reduction. Columns under each date show P val-
ues for main effects and interactions tested on that date, H2O for
January and phosphorus for March (note: the first P value in each
column is a main effect).

Jan 2006 Mar 2006

CO2 0.964 CO2 0.727
Glucose < 0.001 Glucose 0.011
CO2 × glucose 0.329 CO2 × glucose 0.816
H2O 0.351 P 0.151
H2O× CO2 0.773 P× CO2 0.670
H2O× glucose 0.071 P× glucose 0.604
H2O× CO2 × glucose 1.000 P× CO2 × glucose 0.673

compared to the controls (5 % and 95 % confidence limits,
0.01 to 0.47). If these rates are typical for N2O and NOx
losses over the experiment, the elevated-CO2-treated plots
lost 1.2 g N m−2 more N in gaseous fluxes compared to the
ambient CO2 treatment, but this difference was not signifi-
cant (−3.3 to 5.3; 5 and 95 % confidence limits).

3.6 15 N tracer recovery and distribution as an indicator
of N leaching

Nitrogen movement from the O and A horizons into deeper
soil (> 15 cm) was measured directly during the first 3 years
of the experiment using resin lysimeters (Johnson et al.,
2001), with a tendency for CO2 to reduce vertical N move-
ment. Yet whole-system recovery and distribution of the15N
tracer were consistent with increased15N losses via leach-
ing in the elevated-CO2 treatment. Elevated CO2 reduced to-
tal 15N recovery (Hungate et al., 2013), and of15N that re-
mained in mineral soil, more was found deeper in the pro-
file in the elevated-CO2 treatment as indicated by a higher
β value (β = 0.81± 0.01 for ambient CO2 and 0.89± 0.03
for elevated CO2, P = 0.03). These findings were associ-
ated such that reduced15N recovery occurred in plots where

Figure 4. Effect of elevated-CO2 concentration on available P in
soils over time using two methods, extractable soil P (open tri-
angles) and ion-exchange resins (filled circles). Values are the ef-
fect size of elevated CO2, expressed as a percentage:(E − A)/A ×

100 %. Bars denote 5 and 95 % confidence limits. (Data from 1997
to 2001 were calculated from raw data reported in Johnson et
al., 2001, 2003.).

the recovered15N was distributed deeper in the soil profile
(Fig. 7). Thus, elevated CO2 reduced15N recovery and pro-
moted15N movement down the soil profile, consistent with
increased N leaching losses.

4 Discussion

4.1 Effects of CO2 on processes regulating ecosystem N
accumulation

Findings reported here explain the absence of any stimula-
tion of N accumulation in response to 11 years of exposure
of this subtropical oak woodland to elevated carbon diox-
ide concentration (Hungate et al., 2013b). Elevated atmo-
spheric CO2 either elicited no response in processes favoring
N accumulation (nonsymbiotic N2 fixation) or caused only
a transient and quantitatively negligible response (symbiotic
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Figure 5. Effects of elevated CO2 concentration on Mo, Fe, and P
concentrations in leaves ofG. elliottii sampled in 2003 and 2007
(values for Mo and Fe from 2003 are from Hungate et al., 2004).

N2 fixation). Reduced gaseous N losses from the elevated-
CO2-treated plots were observed for NOx, but NOx was a
minor component of the ecosystem N budget such that the
changes observed were insufficient to promote N accumu-
lation. Moreover, the reduced15N recovery and pattern of
greater15N recovery deep in the soil indicates that elevated
CO2 enhanced leaching losses of N. Our results indicate that
processes promoting N loss were more responsive to elevated
CO2 than were processes promoting N accumulation.

Figure 6. Percent of leaf productivity consumed by herbivores for
the N2-fixing vine, G. elliottii, and for the three co-dominant oak
species in the ambient- and elevated-CO2-treated plots.

Figure 7. Recovery of added tracer15N as a function of its depth
distribution. Higherβ values indicate relatively more15N in deeper
soil layers, whereas lowβ values indicate concentration of15N at
the soil surface.

4.2 Effects of CO2 on N2 fixation

N2 fixation by the leguminous vine,G. elliottii, was only
temporarily responsive to the CO2 treatment (Fig. 1). Growth
and N2 fixation in N2-fixing plants can respond positively
to elevated CO2 (Cernusak et al., 2011), but in many cases
these responses are absent, e.g., N-fixers in temperate grass-
lands (Garten et al., 2008; Zhang et al., 2011),Alnus(Tem-
perton et al., 2003; Millett et al., 2012), and ocean cyanobac-
teria (Czerny et al., 2009; Law et al., 2012). Chronic CO2
exposure was found to reduce cyanobacterial abundance in
desert crusts (Steven, 2012). Our finding that nonsymbiotic
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N2 fixation in soil was also insensitive to the CO2 treatment
is consistent with observations in other forest ecosystems
(Hofmockel and Schlesinger, 2007). In general, responses
appear to be more muted under field conditions in long-term
experiments than in short-term (van Groenigen et al., 2006;
Leuzinger et al., 2011), so our finding that elevated CO2 did
not increase N2 fixation is not unusual. Nitrogen availabil-
ity, light limitation, herbivory, and non-N nutrient limitation
are plausible explanations for the absence of a significant re-
sponse of N2 fixation after the first year of the experiment.

4.3 Nitrogen availability

Increased N availability is well known to reduce N2 fixation
(Streeter, 1988), as uptake of N from the soil is energeti-
cally favorable to fixation. In the scrub oak ecosystem stud-
ied here, elevated CO2 increased plant N uptake from soil, in
part by enhanced turnover of soil organic matter (Carney et
al., 2007; Langley et al., 2009; Hungate et al., 2013b). The
slight reduction in the reliance ofG. elliottii on atmospheric
N in response to elevated CO2 (Fig. 1, Table 1) is consistent
with a CO2-stimulation of soil N availability. N2 fixation can
decline with shading during canopy development, yet in this
system leaf area index was not a significant predictor of N2
fixation (Table 3), possibly because the N2-fixers are vines,
capable of climbing rapidly to the top of the short canopy to
alleviate light limitation (Kurina and Vitousek, 1999). On the
other hand, the negative relationship between N2 fixation and
total oak biomass (Table 3) suggests competition for other
resources between the oaks and the N2-fixing vine, possibly
competition for nutrients.

4.4 Non-N nutrients

When supplied with sufficient non-N nutrients, N2-fixing
plants will increase nodule biomass and rates of N2 fixation
(van Groenigen et al., 2006; Rogers et al., 2009), while at
the same time maintaining foliar N concentration in response
to elevated CO2. Under nutrient-limiting conditions, foliar N
declines, nodule growth diminishes, and rates of N2 fixation
are depressed (Rogers et al., 2009), a pattern consistent with
the positive correlation between foliar N concentration and
N2 fixation shown here (Table 3).

The responses of N2 fixation and growth of N-fixing plants
to elevated CO2 may depend on availability of non-N nutri-
ents. In our system, there was some evidence that the avail-
ability of soil P declined, particularly during the first 6 years
of the experiment (Fig. 4, and see Johnson et al., 2001, 2003,
a response also observed in a rice–wheat rotation, see Ma et
al., 2007). However, reduced P availability is not a univer-
sal response to increased CO2 concentration (Dijkstra et al.,
2012; Khan et al., 2008, 2010). Other elements critical for N2
fixation such as Mo, Fe, and V either declined significantly in
soil and in foliage or showed a tendency to decline (Figs. 3,
5), suggesting their role in modulating the response of N2

fixation to elevated CO2. Natali et al., 2009 found that total
soil metal content increased in the surface soils of a loblolly
pine and sweetgum plantations, though total metal concen-
tration may be a poor indicator of extractable metal concen-
tration and metal availability to plants. Foliar concentrations
of most metal elements were substantially lower at this scrub
oak site compared to the loblolly pine and sweetgum planta-
tions (Natali et al., 2009) (Duval et al., 2014). Sandy texture
and low pH are two soil properties typically associated with
low metal availability because sandy soils have low ion ex-
change capacity and because metal availability is very sensi-
tive to pH (Vlek and Lindsay, 1977; Sposito, 1984; Goldberg
et al., 1996; Kabata-Pendias, 2001). Thus, compared to other
ecosystems, this subtropical woodland may be more likely to
exhibit micronutrient limitation of ecosystem processes, such
as N2 fixation.

Several experiments have demonstrated the importance of
P availability for the responses of N2 fixation to elevated
CO2: the stimulation of growth and N2 fixation by elevated
CO2 was higher with P addition for clover (Edwards et al.,
2006), Azolla (Cheng et al., 2010), soybean (Lam et al.,
2012), chickpea, and field pea (Jin et al., 2012). The CO2-
stimulation of N-fixer growth and N2 fixation in several
grasslands experiments was higher with P addition compared
to controls without supplemental P (Niklaus et al., 1998;
Grunzweig and Korner, 2003). In general, with supplemen-
tal nutrients added, elevated CO2 often increases N2 fixation
(Lee et al., 2003; Otera et al., 2011), but in experiments with-
out exogenous nutrient addition, N2 fixation is generally not
responsive to elevated CO2 (van Groenigen et al., 2006).

4.5 Herbivory

Herbivory has been postulated to reduce N2 fixation in
ecosystems because of preferential feeding on the more nutri-
tious tissue of N2-fixers compared to other plants (Vitousek
and Howarth, 1991). This hypothesis is consistent with our
finding that herbivores in this subtropical woodland con-
sumed a larger proportion ofG. elliottii leaf production than
leaf production of oaks (Fig. 6). Herbivory could also limit
the response of N2 fixation to environmental change, if graz-
ing on the tissue of N2-fixers increases. Increasing herbivore
pressure on the dominant N2-fixing vine in our experiment
was associated with reduced rates of N2 fixation (Table 3),
which supports this idea. Elevated CO2 decreased the propor-
tion of leaves with herbivore damage in this scrub oak wood-
land (Stiling and Cornelissen, 2007), as has been found in
other systems (Lindroth, 2010; Robinson et al., 2012). Insect
herbivores often respond to reduced leaf nitrogen concentra-
tion by consuming more leaf tissue (Stiling et al., 2003). In
the scrub oak woodland studied here, this response resulted
in no effect of elevated CO2 on the proportion of N-fixer leaf
production consumed by herbivory (Fig. 6).
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4.6 C limitation of nonsymbiotic N2 fixation

Our finding that acetylene reduction increased with glucose
addition suggests C limitation of heterotrophic N2 fixation in
soil (Tables 5 and 6), as has been found previously (Billings
et al., 2003). Neither P addition nor altered soil water content
influenced rates of acetylene reduction, indicating that these
factors were not limiting to soil N2 fixation.

4.7 Temporal dynamics

Evidence for a single, dominating mechanism underlying the
response of N2 fixation to elevated CO2 was weak in our ex-
periment, possibly because the process is limited by multiple
factors whose influences shift over time. The experimental
site was struck by a hurricane in 2004 (Li et al., 2007a, b),
a disturbance that preceded the high soil nutrient concentra-
tions observed in 2005, which subsequently declined in 2006
and 2007 (Fig. 3). This disturbance also preceded a large pos-
itive response of oak production to elevated CO2 found both
above- and belowground (Day et al., 2013; Hungate et al.,
2013a), as well as the disappearance of the CO2 suppression
of G. elliottii growth and N2 fixation (Fig. 1). Consistent
with this, the positive correlation between foliar Mo concen-
tration and N2 fixation rates found in the two years before the
hurricane (Hungate et al., 2004) was no longer apparent by
the final harvest (regression between foliar [Mo] and N2 fix-
ation for 2007,r2

= 0.138;P = 0.638). Yet, rates of N2 fix-
ation were low after the hurricane disturbance in both treat-
ments (Fig. 1), and there was no association between soil-
extractable micronutrient availability and rates of N2 fixation
during the period 2005–2007; therefore, the availability of
micronutrients, if they played a role, were not the only factor
limiting N2 fixation at this time.

The temporal variation in the response of N2 fixation, in
particular the finding that initially strong positive responses
dissipate with time (Leuzinger et al., 2011), may be a gen-
eral feature of global change experiments. While elevated
CO2 can stimulate N2 fixation in some species and under
some conditions, responses in many field studies are far more
muted (van Groenigen et al., 2006) consistent with findings
reported here. Thus, increased N2 fixation is not a certain
outcome of rising atmospheric CO2 concentrations.

4.8 N Losses

N fixation is the major biological process mediating N inputs
to terrestrial ecosystems, but N losses through gaseous and
leaching pathways exert an equally important influence on
total N pool size. Our finding that elevated CO2 had no sig-
nificant effect on N2O production in this subtropical wood-
land is consistent with several past studies finding no effect
of CO2 on N2O production (Mosier et al., 2002;Phillips et
al., 2001), though increased N2O production has been de-
tected in others (Hagedorn et al., 2000; Ineson et al., 1998;

Kammann et al., 2008; Lam et al., 2010; Smith et al., 2010).
On average, elevated CO2 tends to increase soil N2O emis-
sions by around 20 % (van Groenigen et al., 2011), a larger
stimulation than the nonsignificant increase of 8 % we ob-
served in this subtropical woodland. The trend for elevated
CO2 to reduce NOx losses from this subtropical woodland
indicates that NOx losses were likely not the major path-
way of increased N loss from this system in response to el-
evated CO2. By contrast, the concurrence of reduced tracer
15N recovery (Hungate et al., 2013b) and deeper distribution
of tracer15N throughout the soil profile (Fig. 7) supports the
notion that elevated CO2 stimulated N leaching in this exper-
iment. Increased leaching with elevated CO2 has been ob-
served (Korner and Arnone, 1992) and may be caused by a
combination of increased plant water-use efficiency result-
ing in greater downward water flux through the soil profile
(Jackson et al., 1998), along with increased turnover of soil
organic matter in response to rising CO2 (Drake et al., 2011;
Hungate et al., 2013b). Some experiments have documented
reduced N leaching with elevated CO2 (Johnson et al., 2004),
so our finding of increased leaching is likely not universal.
Furthermore, during the first three years of this experiment,
we found no effect of elevated CO2 on vertical movement
of N from the surface to deeper soil layers (Johnson et al.,
2001). The use of the15N tracer to integrate the cumula-
tive effects of elevated CO2 on nitrogen losses in this exper-
iment may be both more temporally integrative and sensitive
to changes in the ecosystem-scale distribution and retention
of N in response to elevated CO2.

4.9 Summary

Eleven years of chronic exposure to increased CO2 concen-
trations elicited disequilibrium in the N cycle, with increased
rates of internal N transformations, no change in N inputs,
and increased N losses. Elevated CO2 accelerated the rate
of soil N mineralization (Langley et al., 2009; McKinley et
al., 2009), which likely contributed to increased N uptake by
plants (Hungate et al., 2013). Nitrogen losses also increased,
with increased turnover of N through plant tissues, as evi-
denced by the increased15N dilution in plants (Hungate et
al., 2013) along with no change in net plant N capital (Hun-
gate et al., 2013). Elevated CO2 also appeared to enhance N
losses at the scale of the soil profile: the pattern of lower15N
recovery in plots exhibiting greater downward movement of
15N in the soil profile suggests increased leaching. Thus, pro-
cesses that make nutrients available to plants can also pro-
mote nutrient losses. Finally, we found no evidence that el-
evated CO2 enhanced N inputs via N2 fixation. Together,
these results describe an ecosystem in which more rapid cy-
cling of N with elevated CO2 is unlikely to be sustained.
These empirical findings contrast with model projections in
which elevated CO2 enhances N2 fixation and reduces leach-
ing (Thornley and Cannell, 2000). Given the strong influence
of N cycling and N accumulation on the C cycle, the changes
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in N cycling reported here, if general, would tend to dampen
the biosphere’s capacity to assimilate and store C in the face
of rising atmospheric CO2 concentrations (Thornton et al.,
2007; Churkina et al., 2009; Arneth et al., 2010; Zaehle and
Dalmonech, 2011).

Acknowledgements.Funding for this long-term experiment was
provided by the US Department of Energy (DE-FG-02-95ER61993,
and DE-SC0008260) and the US National Science Foundation
(DEB-9873715, DEB-0092642, and DEB-0445324, and an NSF
IGERT fellowship to B. D. Duval), with technical and infrastructure
support from the National Aeronautics and Space Administra-
tion and the Kennedy Space Center. The Thermo X Series 2
quadrupole ICPMS at NAU was supported through funds from
the Arizona Technology Research and Innovation Fund (to M. E.
Ketterer). We thank Bert Drake for the vision to establish and over-
see the experiment, and David Johnson, Tom Powell, Troy Seiler
and Hans Anderson for their commitment to its upkeep and success.

Edited by: M. Williams

References

Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S.,
Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O’Donnell,
D., Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeo-
chemical feedbacks in the climate system, Nat. Geosci., 3, 525–
532, 2010.

Arnone, J. A.: Symbiotic N2 fixation in a high Alpine grassland:
effects of four growing seasons of elevated CO2, Funct. Ecol.,
13, 383–387, 1999.

Arnone, J. A. and Bohlen, P. J.: Stimulated N2O flux from intact
grassland monoliths after two growing seasons under elevated
atmospheric CO2, Oecologia, 116, 331–335, 1998.

Arnone III, J. A., and Gordon, J. C.: Effect of nodulation, nitro-
gen fixation, and carbon dioxide enrichment on the physiology,
growth, and dry mass allocation of seedlings of Alnus rubra
BONG, New Phytol., 116, 55–66, 1990.

Baggs, E. M., Richter, M., Cadisch, G., and Hartwig, U. A.: Denitri-
fication in grass swards is increased under elevated atmospheric
CO2, Soil Biol. Biochem., 35, 729–732, 2003a.

Baggs, E. M., Richter, M., Hartwig, U. A., and Cadisch, G.: Nitrous
oxide emissions from grass swards during the eighth year of el-
evated atmospheric pCO2 (Swiss FACE), Glob. Change Biol., 9,
1214–1222, 2003b.

Benemann, J. R. and Valentine, R. C.: The pathways of nitrogen
fixation, Adv. Microb. Physiol., 8, 59–104, 1972.

Billings, S. A., Schaeffer, S. M., and Evans, R. D.: Nitrogen fixa-
tion by biological soil crusts and heterotrophic bacteria in an in-
tact Mojave Desert ecosystem with elevated CO2 and added soil
carbon, Soil Biol. Biochem., 35, 643–649, 2003.

Carney, K. M., Hungate, B. A., Drake, B. G., and Megonigal, J.
P.: Altered soil microbial community at elevated CO2 leads to
loss of soil carbon, Proc. Natl. Acad. Sci. USA, 104, 4990–4995,
2007.

Carter, M.: Soil Sampling and Methods of Analysis, Lewis Publish-
ing, Bocan Raton, Florida, 1993.

Cernusak, L. A., Winter, K., Martinez, C., Correa, E., Aranda,
J., Garcia, M., Jaramillo, C., and Turner, B. L.: Responses of
Legume Versus Nonlegume Tropical Tree Seedlings to Elevated
CO2 Concentration, Plant Physiol., 157, 372–385, 2011.

Cheng, W., Sakai, H., Matsushima, M., Yagi, K., and Hasegawa, T.:
Response of the floating aquatic fernAzolla filiculoidesto ele-
vated CO2, temperature, and phosphorus levels, Hydrobiologia,
656, 5–14, 2010.

Churkina, G., Brovkin, V., von Bloh, W., Trusilova, K., Jung, M.,
and Dentener, F.: Synergy of rising nitrogen depositions and
atmospheric CO2 on land carbon uptake moderately off-
sets global warming, Global Biogeochem. Cy., 23, GB4027,
doi:10.1029/2008gb003291, 2009.

Czerny, J., Barcelos e Ramos, J., and Riebesell, U.: Influence of el-
evated CO2 concentrations on cell division and nitrogen fixation
rates in the bloom-forming cyanobacteriumNodularia spumi-
gena, Biogeosciences, 6, 1865–1875, doi:10.5194/bg-6-1865-
2009, 2009.

Dakora, F. D. and Drake, B. G.: Elevated CO2 stimulates associative
N2 fixation in a C-3 plant of the Chesapeake Bay wetland, Plant
Cell Environ., 23, 943–953, 2000.

Day, F. P., Schroeder, R. E., Stover, D. B., Brown, A. L. P., Butnor, J.
R., Dilustro, J., Hungate, B. A., Dijkstra, P., Duval, B. D., Seiler,
T. J., Drake, B. G., and Hinkle, C. R.: The effects of 11 year of
CO2 enrichment on roots in a Florida scrub-oak ecosystem, New
Phytologist, 200, 778–787, 2013.

Dijkstra, F. A., Pendall, E., Morgan, J. A., Blumenthal, D. M., Car-
rillo, Y., LeCain, D. R., Follett, R. F., and Williams, D. G.: Cli-
mate change alters stoichiometry of phosphorus and nitrogen in
a semiarid grassland, New Phytologist, 196, 807–815, 2012.

Dijkstra, P., Hymus, G., Colavito, D., Vieglais, D. A., Cundari,
C. M., Johnson, D. P., Hungate, B. A., Hinkle, C. R., and
Drake, B. G.: Elevated atmospheric CO2 stimulates above-
ground biomass in a fire-regenerated scrub-oak ecosystem, Glob.
Change Biol., 8, 90–103, 2002.

Drake, J. E., Gallet-Budynek, A., Hofmockel, K. S., Bernhardt, E.
S., Billings, S. A., Jackson, R. B., Johnsen, K. S., Lichter, J.,
McCarthy, H. R., McCormack, M. L., Moore, D. J. P., Oren,
R., Palmroth, S., Phillips, R. P., Pippen, J. S., Pritchard, S. G.,
Treseder, K. K., Schlesinger, W. H., DeLucia, E. H., and Finzi,
A. C.: Increases in the flux of carbon belowground stimulate ni-
trogen uptake and sustain the long-term enhancement of forest
productivity under elevated CO2, Ecol. Lett., 14, 349–357, 2011.

Duval, B. D., Dijkstra, P., Drake, B. G., Johnson, D. W., Ket-
terer, M. E., Megonigal, J. P., and Hungate, B. A.: Ele-
ment Pool Changes within a Scrub-Oak Ecosystem after 11
Years of Exposure to Elevated CO2, Plos One, 8, e64386,
doi:10.1371/journal.pone.0064386, 2013.

Duval, B. D., Natali, S. M., and Hungate, B. A.: What constitutes
plant available molybdenum in sandy acidic soils?, Communica-
tions in soil and plant analysis, in press, 2014.

Edwards, E. J., McCaffery, S., and Evans, J. R.: Phosphorus avail-
ability and elevated CO2 affect biological nitrogen fixation and
nutrient fluxes in a clover-dominated sward, New Phytol, 169,
157–167, 2006.

Esser, G., Kattge, J., and Sakalli, A.: Feedback of carbon and nitro-
gen cycles enhances carbon sequestration in the terrestrial bio-
sphere, Glob. Change Biol., 17, 819–842, 2011.

Biogeosciences, 11, 3323–3337, 2014 www.biogeosciences.net/11/3323/2014/

http://dx.doi.org/10.1029/2008gb003291
http://dx.doi.org/10.5194/bg-6-1865-2009
http://dx.doi.org/10.5194/bg-6-1865-2009
http://dx.doi.org/10.1371/journal.pone.0064386


B. A. Hungate et al.: Nitrogen inputs and losses in response to chronic CO2 exposure 3335

Faeth, S. H., Connor, E. F., and Simberloff, D.: Early leaf abscis-
sion – a neglected source of mortality for folivores, American
Natural., 117, 409–415, 1981.

Feng, Z., Dyckmans, J., and Flessa, H.: Effects of elevated car-
bon dioxide concentration on growth and N2 fixation of young
Robinia pseudoacacia, Tree Physiology, 24, 323–330, 2004.

Gale, M. R. and Grigal, D. F.: Vertical root distributions of northern
tree species in relation to successional status, Canadian Journal
of Forest Research-Revue Canadienne De Recherche Forestiere,
17, 829–834, 1987.

Garten, C. T., Jr., Classen, A. T., Norby, R. J., Brice, D. J., Weltzin,
J. F., and Souza, L.: Role of N2-fixation in constructed old-field
communities under different regimes of CO2, temperature, and
water availability, Ecosystems, 11, 125–137, 2008.

Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W., and
Shevliakova, E.: Nitrogen cycling and feedbacks in a global
dynamic land model, Global Biogeochem. Cy., 24, GB1001,
doi:10.1029/2008gb003336, 2010.

Goldberg, S., Forster, H. S., and Godfrey, C. L.: Molybdenum ad-
sorption on oxides, clay minerals, and soils, Soil Sci. Soc. Am.
J., 60, 425–432, 1996.

Grunzweig, J. M. and Korner, C.: Differential phosphorus and ni-
trogen effects drive species and community responses to ele-
vated CO2 in semi-arid grassland, Functional Ecol., 17, 766–777,
2003.

Gutschick, V. P.: A functional biology of crop plants, A functional
biology of crop plants, 230 pp., 1987.

Hagedorn, F., Bucher, J. B., Tarjan, D., Rusert, P., and Bucher-
Wallin, I.: Responses of N fluxes and pools to elevated atmo-
spheric CO2 in model forest ecosystems with acidic and calcare-
ous soils, Plant Soil, 224, 273–286, 2000.

Hagedorn, F., Hiltbrunner, D., Streit, K., Ekblad, A., Lindahl, B.,
Miltner, A., Frey, B., Handa, I. T., and Haettenschwiler, S.: Nine
years of CO2 enrichment at the alpine treeline stimulates soil
respiration but does not alter soil microbial communities, Soil
Biol. Biochem., 57, 390–400, 2013.

Hartwig, U. A., Luscher, A., Daepp, M., Blum, H., Soussana, J. F.,
and Nosberger, J.: Due to symbiotic N2 fixation, five years of
elevated atmospheric pCO2 had no effect on the N concentration
of plant litter in fertile, mixed grassland, Plant Soil, 224, 43–50,
2000.

Hebeisen, T., Luscher, A., and Nosberger, J.: Effects of elevated
atmospheric CO2 and nitrogen fertilisation on yield ofTrifolium
repensand Lolium perenne, Ac. Oecol.-Int. J. Ecol., 18, 277–
284, 1997.

Hofmockel, K. S. and Schlesinger, W. H.: Carbon dioxide effects on
heterotrophic dinitrogen fixation in a temperate pine forest, Soil
Sci. Soc. Am. J., 71, 140–144, 2007.

Hoosbeek, M. R., Lukac, M., Velthorst, E., Smith, A. R., and God-
bold, D. L.: Free atmospheric CO2 enrichment increased above
ground biomass but did not affect symbiotic N2-fixation and soil
carbon dynamics in a mixed deciduous stand in Wales, Biogeo-
sciences, 8, 353–364, doi:10.5194/bg-8-353-2011, 2011.

Hoque, M., Inubushi, K., Miura, S., Kobayashi, K., Kim, H.-Y.,
Okada, M., and Yabashi, S.: Biological dinitrogen fixation and
soil microbial biomass carbon as influenced by free-air carbon
dioxide enrichment (FACE) at three levels of nitrogen fertiliza-
tion in a paddy field, Biol. Fertil. Soils, 34, 453–459, 2001.

Hulme, P. E.: Seedling herbivory in grassland – relative impact
of vertebrate and invertebrate herbivores, J. Ecol., 82, 873–880,
1994.

Hulme, P. E.: Herbivores and the performance of grassland plants: A
comparison of arthropod, mollusc and rodent herbivory, J. Ecol.,
84, 43–51, 1996.

Hungate, B. A., Chapin, F. S., Zhong, H., Holland, E. A., and Field,
C. B.: Stimulation of grassland nitrogen cycling under carbon
dioxide enrichment, Oecologia, 109, 149–153, 1997a.

Hungate, B. A., Lund, C. P., Pearson, H. L., and Chapin, F. S.: Ele-
vated CO2 and nutrient addition alter soil N cycling and N trace
gas fluxes with early season wet-up in a California annual grass-
land, Biogeochemistry, 37, 89–109, 1997b.

Hungate, B. A., Dijkstra, P., Johnson, D. W., Hinkle, C. R., and
Drake, B. G.: Elevated CO2 increases nitrogen fixation and de-
creases soil nitrogen mineralization in Florida scrub oak, Glob.
Change Biol., 5, 781–789, 1999.

Hungate, B. A., Stiling, P. D., Dijkstra, P., Johnson, D. W., Ket-
terer, M. E., Hymus, G. J., Hinkle, C. R., and Drake, B. G.:
CO2 elicits long-term decline in nitrogen fixation, Science, 304,
1291–1291, 2004.

Hungate, B. A., Day, F. P., Dijkstra, P., Duval, B. D., Hinkle, C. R.,
Langley, J. A., Megonigal, J. P., Stiling, P. M., Johnon, D. W., and
Drake, B. G.: Fire, hurricane and carbon dioxide: effects on net
primary production of a subtropical woodland, New Phytologist,
200, 767–777, 2013a.

Hungate, B. A., Dijkstra, P., Wu, Z., Duval, B. D., Day, F. P., John-
son, D. W., Megonigal, J. P., Brown, A. L. P., and Garland, J. L.:
Cumulative response of ecosystem carbon and nitrogen stocks to
chronic CO2 exposure in a subtropical oak woodland, New Phy-
tologist, 200, 753–766, 2013b.

Hurlbert, S. H.: Pseudoreplication and the design of ecological field
experiments, Ecol. Monogr., 54, 187–211, 1984.

Hutchinson, G. L. and Livingston, G. P.: Use of chamber systems
to measure trace gas fluxes, Agricultural Ecosystem Effects on
Trace Gases and Global Climate Change, edited by: Harper, L.
A., Mosier, A. R., Duxbury, J. M., Rolston, D. E., Peterson, G.
A., Baenziger, P. S., Luxmoore, R. J., and Kral, D. M., 63–78,
1993.

Ineson, P., Coward, P. A., and Hartwig, U. A.: Soil gas fluxes of
N2O, CH4 and CO2 beneath Lolium perenne under elevated
CO2: The Swiss free air carbon dioxide enrichment experiment,
Plant Soil, 198, 89–95, 1998.

Jin, J., Tang, C., Armstrong, R., and Sale, P.: Phosphorus supply
enhances the response of legumes to elevated CO2 (FACE) in a
phosphorus-deficient vertisol, Plant Soil, 358, 86–99, 2012.

Johnson, D. W., Hungate, B. A., Dijkstra, P., Hymus, G., and Drake,
B.: Effects of elevated carbon dioxide on soils in a Florida scrub
oak ecosystem, J. Environ. Qual., 30, 501–507, 2001.

Johnson, D. W., Hungate, B. A., Dijkstra, P., Hymus, G., Hinkle,
C. R., Stiling, P., and Drake, B. G.: The effects of elevated CO2
on nutrient distribution in a fire-adapted scrub oak forest, Ecol.
Applicat., 13, 1388–1399, 2003.

Johnson, D. W., Cheng, W., Joslin, J. D., Norby, R. J., Edwards, N.
T., and Todd, D. E.: Effects of elevated CO2 on nutrient cycling
in a sweetgum plantation, Biogeochemistry, 69, 379–403, 2004.

Kabata-Pendias, A.: Trace elements in soils and plants, CRC Press,
Boca Raton, FL, USA, 2001.

www.biogeosciences.net/11/3323/2014/ Biogeosciences, 11, 3323–3337, 2014

http://dx.doi.org/10.1029/2008gb003336
http://dx.doi.org/10.5194/bg-8-353-2011


3336 B. A. Hungate et al.: Nitrogen inputs and losses in response to chronic CO2 exposure

Kammann, C., Mueller, C., Gruenhage, L., and Jaeger, H.-J.: El-
evated CO2 stimulates N2O emissions in permanent grassland,
Soil Biol. Biochem., 40, 2194–2205, 2008.

Khan, F. N., Lukac, M., Turner, G., and Godbold, D. L.: Ele-
vated atmospheric CO2 changes phosphorus fractions in soils
under a short rotation poplar plantation (EuroFACE), Soil Biol.
Biochem., 40, 1716–1723, 2008.

Khan, F. N., Lukac, M., Miglietta, F., Khalid, M., and Godbold, D.
L.: Tree exposure to elevated CO2 increases availability of soil
phosphorus, Pakistan J. Botany, 43, 907–916, 2010.

Korner, C. and Arnone, J. A.: Responses to elevated carbon-dioxide
in artificial tropical ecosystems, Science, 257, 1672–1675, 1992.

Kurina, L. M. and Vitousek, P. M.: Controls over the accumulation
and decline of a nitrogen-fixing lichen, Stereocaulon vulcani, on
young Hawaiian lava flows, J. Ecol., 87, 784–799, 1999.

Lagomarsino, A., Lukac, M., Godbold, D. L., Marinari, S., and De
Angelis, P.: Drivers of increased soil respiration in a poplar cop-
pice exposed to elevated CO2, Plant Soil, 362, 93–106, 2013.

Lam, S., Norton, R., Lin, E., Armstrong, R., and Chen, D.: Soil
gas fluxes of N2O, CO2 and CH4 under elevated carbon dioxide
under wheat in northern China, Proceedings of the 19th World
Congress of Soil Science: Soil solutions for a changing world,
Brisbane, Australia, 1–6 August 2010, Congress Symposium 4:
Greenhouse gases from soils, 216–219, 2010.

Lam, S. K., Hao, X., Lin, E., Han, X., Norton, R., Mosier, A. R., Se-
neweera, S., and Chen, D.: Effect of elevated carbon dioxide on
growth and nitrogen fixation of two soybean cultivars in northern
China, Biol. Fertil. Soils, 48, 603–606, 2012.

Langley, J. A., McKinley, D. C., Wolf, A. A., Hungate, B. A., Drake,
B. G., and Megonigal, J. P.: Priming depletes soil carbon and
releases nitrogen in a scrub-oak ecosystem exposed to elevated
CO2, Soil Biol. Biochem., 41, 54–60, 2009.

Law, C. S., Breitbarth, E., Hoffmann, L. J., McGraw, C. M., Lan-
glois, R. J., LaRoche, J., Marriner, A., and Safi, K. A.: No stimu-
lation of nitrogen fixation by non-filamentous diazotrophs under
elevated CO2 in the South Pacific, Glob. Change Biol., 18, 3004–
3014, 2012.

LeBauer, D. S. and Treseder, K. K.: Nitrogen limitation of net
primary productivity in terrestrial ecosystems is globally dis-
tributed, Ecology, 89, 371–379, 2008.

Lee, T. D., Tjoelker, M. G., Reich, P. B., and Russelle, M. P.: Con-
trasting growth response of an N2-fixing and non-fixing forb to
elevated CO2: dependence on soil N supply, Plant Soil, 255, 475–
486, 2003.

Leuzinger, S., Luo, Y., Beier, C., Dieleman, W., Vicca, S., and Ko-
erner, C.: Do global change experiments overestimate impacts on
terrestrial ecosystems?, Trends Ecol. Evolut., 26, 236–241, 2011.

Li, J., Johnson, D. P., Dijkstra, P., Hungate, B. A., Hinkle, C. R.,
and Drake, B. G.: Elevated CO2 mitigates the adverse effects
of drought on daytime net ecosystem CO2 exchange and photo-
synthesis in a Florida scrub-oak ecosystem, Photosynthetica, 45,
51–58, 2007a.

Li, J. H., Powell, T. L., Seiler, T. J., Johnson, D. P., Anderson, H.
P., Bracho, R., Hungate, B. A., Hinkle, C. R., and Drake, B. G.:
Impacts of Hurricane Frances on Florida scrub-oak ecosystem
processes: defoliation, net CO2 exchange and interactions with
elevated CO2, Glob. Change Biol., 13, 1101–1113, 2007b.

Lindroth, R. L.: Impacts of Elevated Atmospheric CO2 and O3
on Forests: Phytochemistry, Trophic Interactions, and Ecosystem
Dynamics, J. Chem. Ecol., 36, 2–21, 2010.

Liu, D., Clark, J. D., Crutchfield, J. D., and Sims, J. L.: Effect of pH
of ammonium oxalate extracting solutions on prediction of plant
available molybdenum in soil, Commun. Soil Sci. Plant Anal.,
27, 2511–2541, 1996.

Luo, Y. Q., Hui, D. F., and Zhang, D. Q.: Elevated CO2 stimulates
net accumulations of carbon and nitrogen in land ecosystems: A
meta-analysis, Ecology, 87, 53–63, 2006.

Ma, H. L., Zhu, H. G., Liu, G., Xie, Z. B., Wang, Y. L., Yang, L.
X., and Zeng, Q.: Availability of soil nitrogen and phosphorus in
a typical rice-wheat rotation system under elevated atmospheric
CO2, Field Crops Res., 100, 44–51, 2007.

Millett, J., Godbold, D., Smith, A. R., and Grant, H.: N2 fixation and
cycling in Alnus glutinosa,Betula pendulaandFagus sylvatica
woodland exposed to free air CO2 enrichment, Oecologia, 169,
541–552, 2012.

Mosier, A. R., Morgan, J. A., King, J. Y., LeCain, D., and Milchu-
nas, D. G.: Soil-atmosphere exchange of CH4, CO2, NOx, and
N2O in the Colorado shortgrass steppe under elevated CO2, Plant
Soil, 240, 201–211, 2002.

Natali, S. M., Sanudo-Wilhelmy, S. A., and Lerdau, M. T.: Plant
and Soil Mediation of Elevated CO2 Impacts on Trace Metals,
Ecosystems, 12, 715–727, 2009.

Niklaus, P. A., Leadley, P. W., Stocklin, J., and Korner, C.: Nutrient
relations in calcareous grassland under elevated CO2, Oecologia,
116, 67–75, 1998.

Norby, R. J. and Sigal, L. L.: Nitrogen-fixation in the lichenLobaria
pulmonariain elevated atmospheric carbon dioxide, Oecologia,
79, 566–568, 1989.

Otera, M., Kokubun, M., Tabei, H., Matsunami, T., Maekawa, T.,
and Okada, M.: Is yield enhancement by CO2 enrichment greater
in genotypes with a higher capacity for nitrogen fixation?, Agr.
Forest Meteorol., 151, 1385–1393, 2011.

Pepper, D. A., Eliasson, P. E., McMurtrie, R. E., Corbeels, M.,
ÅGren, G. I., StrÖMgren, M., and Linder, S.: Simulated
mechanisms of soil N feedback on the forest CO2 re-
sponse, Glob. Change Biol., 13, 1265–1281, doi:10.1111/j.1365-
2486.2007.01342.x, 2007.

Phillips, R. L., Whalen, S. C., and Schlesinger, W. H.: Influence of
atmospheric CO2 enrichment on nitrous oxide flux in a temperate
forest ecosystem, Global Biogeochem. Cy., 15, 741–752, 2001.

Ritchie, M. E. and Tilman, D.: Responses of legumes to herbivores
and nutrients during succession on a nitrogen-poor soil, Ecology,
76, 2648–2655, 1995.

Robinson, D. and Conroy, J. P.: A possible plant-mediated feedback
between elevated CO2, denitrification and the enhanced green-
house effect, Soil Biol. Biochem., 31, 43–53, 1999.

Robinson, E. A., Ryan, G. D., and Newman, J. A.: A meta-analytical
review of the effects of elevated CO2 on plant-arthropod interac-
tions highlights the importance of interacting environmental and
biological variables, New Phytologist, 194, 321–336, 2012.

Rogers, A., Ainsworth, E. A., and Leakey, A. D. B.: Will Elevated
Carbon Dioxide Concentration Amplify the Benefits of Nitrogen
Fixation in Legumes?, Plant Physiol., 151, 1009–1016, 2009.

Schäppi, B. and Körner, C.: In situ effects of elevated CO2 on the
carbon and nitrogen status of alpine plants, Funct. Ecol., 11, 290–
299, 1997.

Biogeosciences, 11, 3323–3337, 2014 www.biogeosciences.net/11/3323/2014/

http://dx.doi.org/10.1111/j.1365-2486.2007.01342.x
http://dx.doi.org/10.1111/j.1365-2486.2007.01342.x


B. A. Hungate et al.: Nitrogen inputs and losses in response to chronic CO2 exposure 3337

Seiler, T. J., Rasse, D. P., Li, J., Dijkstra, P., Anderson, H. P., John-
son, D. P., Powell, T. L., Hungate, B. A., Hinkle, C. R., and
Drake, B. G.: Disturbance, rainfall and contrasting species re-
sponses mediated aboveground biomass response to 11 years of
CO2 enrichment in a Florida scrub-oak ecosystem, Glob. Change
Biol., 15, 356–367, 2009.

Smart, D. R., Ritchie, K., Stark, J. M., and Bugbee, B.: Evidence
that elevated CO2 levels can indirectly increase rhizosphere den-
itrifier activity, Appl. Environ. Microbiol., 63, 4621–4624, 1997.

Smith, K. E., Runion, G. B., Prior, S. A., Rogers, H. H., and Torbert,
H. A.: Effects of Elevated CO2 and Agricultural Management on
Flux of Greenhouse Gases From Soil, Soil Science, 175, 349–
356, 2010.

Smith, V. H.: Effects of nitrogen-phosphorus supply ratios on
nitrogen-fixation in agricultural and pastoral ecosystems Biogeo-
chemistry, 18, 19–35, 1992.

Soussana, J. F. and Hartwig, U. A.: The effects of elevated CO2 on
symbiotic N2 fixation: A link between the carbon and nitrogen
cycles in grassland ecosystems, Plant Soil, 187, 321–332, 1996.

Sposito, G.: The surface chemistry of soils, Oxford University
Press, New York, 1984.

Sprent, J. I. and Raven, J. A.: Evolution of Nitrogen-Fixing Sym-
bioses, Proceedings of the Royal Society of Edinburgh Section
B-Biological Sciences, 85, 215–237, 1985.

Steven, B., Gallegos-Graves, L. V., Yeager, C. M., Belnap, J., Evans,
R. D., and Kuske, C. R.: Dryland biological soil crust cyanobac-
teria show unexpected decreases in abundance under long-term
elevated CO2, Environ. Microbiol., 14, 3247–3258, 2012.

Stiling, P. and Simberloff, D.: Leaf abscission – induced defense
against pests or response to damage, Oikos, 55, 43–49, 1989.

Stiling, P. and Cornelissen, T.: How does elevated carbon dioxide
(CO2) affect plant–herbivore interactions? A field experiment
and meta-analysis of CO2-mediated changes on plant chemistry
and herbivore performance, Glob. Change Biol., 13, 1823–1842,
2007.

Stiling, P., Rossi, A. M., Hungate, B., Dijkstra, P., Hinkle, C. R.,
Knott, W. M., and Drake, B.: Decreased leaf-miner abundance
in elevated CO2: Reduced leaf quality and increased parasitoid
attack, Ecol. Appl., 9, 240–244, 1999.

Stiling, P., Cattell, M., Moon, D. C., Rossi, A., Hungate, B. A., Hy-
mus, G., and Drake, B.: Elevated atmospheric CO2 lowers herbi-
vore abundance, but increases leaf abscission rates, Glob. Change
Biol., 8, 658–667, 2002.

Stiling, P., Moon, D., Hunter, M. D., Colson, J., Rossi, A., Hymus,
G. J., and Drake, B. G.: Elevated CO2 lowers relative and ab-
solute herbivore density across all species of a scrub-oak forest,
Oecologia, 134, 82–87, 2003.

Stiling, P., Moon, D., Rossi, A., Hungate, B. A., and Drake, B.:
Seeing the forest for the trees: long-term exposure to elevated
CO2 increases some herbivore densities, Glob. Change Biol., 15,
1895–1902, 2009.

Streeter, J.: Inhibition of legume nodule formation and N2 fixation
by nitrate, Crit. Rev. Plant Sci., 7, 1–23, 1988.

Temperton, V. M., Grayston, S. J., Jackson, G., Barton, C. V. M.,
Millard, P., and Jarvis, P. G.: Effects of elevated carbon dioxide
concentration on growth and nitrogen fixation in Alnus glutinosa
in a long-term field experiment, Tree Physiology, 23, 1051–1059,
2003.

Thornley, J. H. M., and Cannell, M. G. R.: Dynamics of mineral N
availability in grassland ecosystems under increased CO2: hy-
potheses evaluated using the Hurley Pasture Model, Plant Soil,
224, 153–170, 2000.

Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., and
Mahowald, N. M.: Influence of carbon-nitrogen cycle cou-
pling on land model response to CO2 fertilization and
climate variability, Global Biogeochem. Cy., 21, GB4018,
doi:10.1029/2006gb002868, 2007.

van Groenigen, K. J., Six, J., Hungate, B. A., de Graaff, M. A., van
Breemen, N., and van Kessel, C.: Element interactions limit soil
carbon storage, Proc. Natl. Acad. Sci. USA, 103, 6571–6574,
2006.

van Groenigen, K. J., Osenberg, C. W., and Hungate, B. A.: In-
creased soil emissions of potent greenhouse gases under in-
creased atmospheric CO2, Nature, 475, 214–121, 2011.

Vitousek, P. M. and Howarth, R. W.: Nitrogen limitation on land
and in the sea – how can it occur, Biogeochemistry, 13, 87–115,
1991.

Vitousek, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B.,
Grimm, N. B., Howarth, R. W., Marino, R., Martinelli, L., Rastet-
ter, E. B., and Sprent, J. I.: Towards an ecological understanding
of biological nitrogen fixation, Biogeochemistry, 57, 1–45, 2002.

Vlek, P. L. G. and Lindsay, W. L.: Thermodynamic stability and
solubility of molybdenum minerals in soils, Soil Sci. Soc. Am.
J., 41, 42–46, 1977.

Williams, A. G. and Whitham, T. G.: Premature leaf abscission –
an induced plant defense against gall aphids, Ecology, 67, 1619–
1627, 1986.

Williams, R. J. P. and Fraústo da Silva, J. J. R.: JJRF The involve-
ment of molybdenum in life, Biochem. Biophys. Res. Commun.,
292, 293–299, 2002.

Yoneyama, T., Fujita, K., Yoshida, T., Matsumoto, T., Kambayashi,
I., and Yazaki, J.: Variation in natural abundance of N-15 among
plant-parts and in N-15-N-14 fractionation during N-2 fixation
in the legume rhizobia symbiotic system, Plant Cell Physiol., 27,
791–799, 1986.

Zaehle, S. and Dalmonech, D.: Carbon-nitrogen interactions on land
at global scales: current understanding in modelling climate bio-
sphere feedbacks, Curr. Opinion Environ. Sustainabil., 3, 311–
320, 2011.

Zanetti, S., Hartwig, U. A., Luscher, A., Hebeisen, T., Frehner, M.,
Fischer, B. U., Hendrey, G. R., Blum, H., and Nosberger, J.:
Stimulation of symbiotic N2 fixation in Trifolium repens L un-
der elevated atmospheric pCO2 in a grassland ecosystem, Plant
Physiol., 112, 575–583, 1996.

Zhang, L., Wu, D., Shi, H., Zhang, C., Zhan, X., and Zhou,
S.: Effects of Elevated CO2 and N Addition on Growth and
N2 Fixation of a Legume Subshrub (Caragana microphylla
Lam.) in Temperate Grassland in China, Plos One, 6, e26842,
doi:10.1371/journal.pone.0026842, 2011.

www.biogeosciences.net/11/3323/2014/ Biogeosciences, 11, 3323–3337, 2014

http://dx.doi.org/10.1029/2006gb002868
http://dx.doi.org/10.1371/journal.pone.0026842

