

Supplement of

Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

Y. Zheng et al.

Correspondence to: Z. J. Jia (jia@issas.ac.cn)

Supplemental Material for

Competitive interactions between methane- and ammonia oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

Yan Zheng^{1,2}, Rong Huang¹, Baozhan Wang¹, Paul L.E. Bodelier³, Zhongjun Jia^{1*}

Author Affiliation

¹ State Key Laboratory of Soil and Sustainable Agriculture,
Institute of Soil Science, Chinese Academy of Sciences,
Nanjing, 210008, Jiangsu Province, China

² University of the Chinese Academy of Sciences,
Beijing, 100049, China

³ Netherlands Institute of Ecology (NIOO-KNAW),
Department of Microbial Ecology,
Droevendaalsesteeg 10,
6708 PB, Wageningen, the Netherlands

Corresponding author*

Zhongjun Jia

E-mail: jia@issas.ac.cn

Institute of Soil Science, Chinese Academy of Sciences, China

This file includes:

Supplemental Table S1 to S6

Supplemental Figure S1 to S8

Supplemental Reference

1 **Table S1.** The scenario of SIP microcosm construction over the course of 19 days of incubation

Treatment	$^{13}\text{C-CH}_4$	$^{13}\text{C-Urea}$	$^{13}\text{C-CH}_4+\text{Urea}$	$^{12}\text{C-CH}_4+\text{Urea}$	$^{13}\text{C-CH}_4$	$^{13}\text{C-Urea}$	$^{13}\text{C-CH}_4+\text{Urea}$	$^{12}\text{C-CH}_4+\text{Urea}$	$^{13}\text{C-CH}_4$	$^{13}\text{C-Urea}$	$^{13}\text{C-CH}_4+\text{Urea}$	$^{12}\text{C-CH}_4+\text{Urea}$
	CH_4 added (ppmv) [*]										Urea added ($\mu\text{g N g}^{-1} \text{d.w.s.}$) [*]	
Day-0-18:00pm [†]	9460	---	9322	9035	---	100	100	100	---	50000	50000	50000
The destructive sampling performed and the remaining microcosms were flushed with pressurized synthetic air (20% O_2 , 80% N_2)												
Day-5-18:00 pm	6114	---	7770	6821	---	100	100	100	---	50000	50000	50000
Day-7-18:00 pm	7946	---	8020	6362	---	---	---	---	---	---	---	---
Day-8-20:00 pm	8355	---	8018	8482	---	---	---	---	---	---	---	---
Day-9-18:00 pm	---	---	6755	7067	---	---	---	---	---	---	---	---
Day-10-10:00am	---	---	6201	6718	---	---	---	---	---	---	---	---
Day-10-18:00 pm	---	---	9766	9552	---	---	---	---	---	---	---	---
Day-11-10:00am	---	---	9113	9164	---	---	---	---	---	---	---	---
Day-11-20:00 pm	---	---	9229	9541	---	---	---	---	---	---	---	---
The microcosms were flushed with pressurized synthetic air (20% O_2 , 80% N_2)												
Day-12-21:00pm	18947	---	16081	15720	---	100	100	100	---	50000	50000	50000
Day-14-11:00am	---	---	11724	14355	---	---	---	---	---	---	---	---
Day-14-21:00pm	---	---	11762	12491	---	---	---	---	---	---	---	---
Day-15-11:00pm	---	---	8678	10431	---	---	---	---	---	---	---	---
Day-15-21:00pm	---	---	9591	11225	---	---	---	---	---	---	---	---
Day-16-11:00pm	---	---	17923	18598	---	---	---	---	---	---	---	---
Day-16-21:00pm	---	---	18190	17706	---	---	---	---	---	---	---	---
Day-17-11:00am	---	---	8792	10788	---	---	---	---	---	---	---	---
Day-17-21:00pm	---	---	17533	15901	---	---	---	---	---	---	---	---
Day-18-11:00am	---	---	10286	10430	---	---	---	---	---	---	---	---
Day-18-21:00pm	---	---	11928	12638	---	---	---	---	---	---	---	---
Day-19-11:00am	The destructive sampling performed.											

2 * The amount of substrate added to microcosms. The ^{13}C and ^{12}C -substrates were used for labeled and control microcosms, respectively.

3 [†] The timing of substrate added to microcosms, and the numbers in brackets indicate the time of day.

4 [‡] The date of SIP microcosms were flushed with pressurized synthetic air (20% O_2 , 80% N_2), and subsequently amended with fresh substrate.

5 --- No substrate added

6 **Table S2.** Primers and PCR conditions used in this study

Primer name	primer sequence(5'-3')	Targeted gene	Thermal Profile	Molecular analysis	Reference
515F	CCAGCMGCCGCGG	16S rRNA	95 °C, 3.0min; 30×(95 °C, 30s; 55 °C, 30s; 72 °C, 45s); 72 °C, 10min	Pyrosequencing	(Xia et al., 2011)
907R	CCGTCAATTCTTTAGTTT	gene			
A189F	GGNGACTGGGACTTCTGG	<i>pmoA</i> gene	95 °C, 3.0min; 40×(95 °C, 10s; 55 °C, 30s; 72 °C, 30s; 80 °C 5s; with plate read); melt curve 65 °C to 95 °C, incremental 0.5 °C, 0:05+plate read	Real-time PCR	(Costello and Lidstrom, 1999; Holmes et al., 1995)
mb661r	CCGGMGCAACGTCYTTACC		95 °C, 3.0min; 30×(95 °C, 30s; 55 °C, 30s; 72 °C, 45s); 72 °C, 10min	Pyrosequencing	
amoA-1F	GGGGTTTCTACTGGTGGT	bacterial <i>amoA</i> gene	95 °C, 3.0min; 40×(95 °C, 10s; 55 °C, 30s; 72 °C, 30s; with plate read); melt curve 65 °C to 95 °C, incremental 0.5 °C, 0:05+plate read	Real-time PCR	(Rotthauwe et al., 1997)
amoA-2R	CCCCTCGGGAAAGCCTTCTTC		95 °C, 3.0min; 30×(95 °C, 30s; 55 °C, 30s; 72 °C, 45s); 72 °C, 10min	Pyrosequencing	
Arch-amoAF	STAATGGTCTGGCTAGACG	Archaeal <i>amoA</i> gene	95 °C, 10.0min; 40×(95 °C, 30s; 55 °C, 45s; 72 °C, 30s; 82 °C 15s with plate read); melt curve 65 °C to 95 °C, incremental 1.0 °C, 0:05+plate read	Real-time PCR	(Francis et al., 2005)
Arch-amoAR	GCGGCCATCCATCTGTATGT				

7 **Table S3.** Pyrosequencing summary of the total microbial communities in SIP
8 microcosms using the universal primers 515F-907R of the total 16S rRNA genes

Treatment*		Pyrosequencing reads number†			
		High-quality read number	Bacteria	Archaea	MOB
Zero time	Zero Time-R1	9519	9218(96.8%)	290(3.05%)	28 (0.29%)
	Zero Time-R2	9110	8775(96.3%)	327(3.59)	26 (0.29%)
	Zero Time-R3	9369	9082(96.9%)	276(2.95)	24 (0.26%)
Day-5	¹³ C-CH ₄ -R1	7758	7593(97.9%)	160(2.06%)	1252 (16.1%)
	¹³ C-CH ₄ -R2	8630	8381(97.1%)	244(2.83%)	1273 (13.5%)
	¹³ C-CH ₄ -R3	8829	8626(97.7%)	202(2.29%)	1192 (13.5%)
	¹³ C-Urea-R1	7803	7525(96.4%)	273(3.50%)	31 (0.40%)
	¹³ C-Urea-R2	7807	7607(97.4%)	199(2.55%)	26 (0.33%)
	¹³ C-Urea-R3	6541	6372(97.4%)	167(2.55%)	24 (0.37%)
	¹³ C-CH ₄ +Urea-R1	7431	7290(98.1%)	138(1.86%)	1637 (22.0%)
	¹³ C-CH ₄ +Urea-R2	8372	8210(98.1%)	157(1.88%)	1633 (19.5%)
	¹³ C-CH ₄ +Urea-R3	7568	7435(98.2%)	129(1.70%)	1559 (20.6%)
	¹² C-CH ₄ +Urea-R1	6995	6826(97.6%)	166(2.37%)	1109 (15.9%)
	¹² C-CH ₄ +Urea-R2	8083	7944(98.3%)	133(1.65%)	1782 (22.1%)
	¹² C-CH ₄ +Urea-R3	7809	7648(97.9%)	157(2.01%)	1433 (18.4%)
Day-19	¹³ C-CH ₄ -R1	10104	9821(97.2%)	274(2.71%)	640 (6.33%)
	¹³ C-CH ₄ -R2	41172	40101(97.4%)	1045(2.54%)	3330 (8.09%)
	¹³ C-CH ₄ -R3	41230	40426(98.0%)	788(1.91%)	3235 (7.85%)
	¹³ C-Urea-R1	8294	7907(95.3%)	375(4.52%)	23 (0.28%)
	¹³ C-Urea-R2	31675	30450(96.1%)	1205(3.80%)	110 (0.35%)
	¹³ C-Urea-R3	44313	43117(97.3%)	1181(2.67%)	129 (0.29%)
	¹³ C-CH ₄ +Urea-R1	10370	10245(98.8%)	122(1.18%)	2961 (28.6%)
	¹³ C-CH ₄ +Urea-R2	7309	7190(98.4%)	118(1.61%)	1963 (26.9%)
	¹³ C-CH ₄ +Urea-R3	6494	6402(98.6%)	91(1.40%)	1955 (30.1%)
	¹² C-CH ₄ +Urea-R1	9485	9299(98.0%)	183(1.93%)	2672 (28.2%)
	¹² C-CH ₄ +Urea-R2	7695	7595(98.7%)	96(1.25%)	2129 (27.7%)
	¹² C-CH ₄ +Urea-R3	6663	6573(98.6%)	85(1.28%)	1750 (26.3%)
Average		12831			
Total reads		346428	337658	8581	

9 *: The designation of R1 to R3 represents triplicate microcosm incubations.

10 †: The value in parentheses represents the percentage of the targeted 16S rRNA phylotype reads to
11 total 16S rRNA gene sequence reads in each microcosm.

12 --- Not detected

13 **Table S4.** Pyrosequencing summary of the total microbial communities in the fractionated DNA by isopycnic centrifugation of total DNA
 14 extracted from SIP microcosms using the universal primers 515F-907R of the total 16S rRNA genes

DNA gradient fraction*	High-quality reads number							
	Day-5				Day-19			
	¹³ C-CH ₄	¹³ C-Urea	¹³ C-CH ₄ +Urea	¹² C-CH ₄ +Urea	¹³ C-CH ₄	¹³ C-Urea	¹³ C-CH ₄ +Urea	¹² C-CH ₄ +Urea
Fraction-13	39	107	4240	4593	4488	1384	5859	6410
Fraction-12	5134	4677	3861	5387	7446	3318	8093	8171
Fraction-11	4318	4658	3615	6492	6046	6916	7277	5441
Fraction-10	3227	4531	4941	5556	3682	6224	2472	6090
Fraction-9	4647	4710	5583	6323	6149	6102	4542	3867
Fraction-8	6195	5239	5534	4925	4108	6825	7147	8140
Fraction-7	8080	6620	3796	7488	5079	5527	6684	7118
Fraction-6	5889	7060	3736	1925	2570	3087	6374	4740
Fraction-5	7270	3306	6278	481	2134	5643	5804	5725
Fraction-4	9622	427	195	931	402	4526	7471	9873
Fraction-3	---	---	---	---	5568	5644	4424	1835
Average	5442	4134	4178	4410	4334	5018	6013	6128
Subtotal	54421	41335	41779	44101	47672	55196	66147	67410
Total	418061							

15 *: indicates DNA gradient fractions with different buoyant densities, and the smaller the number, the heavier the fractionated DNA.

16 --- Not determined.

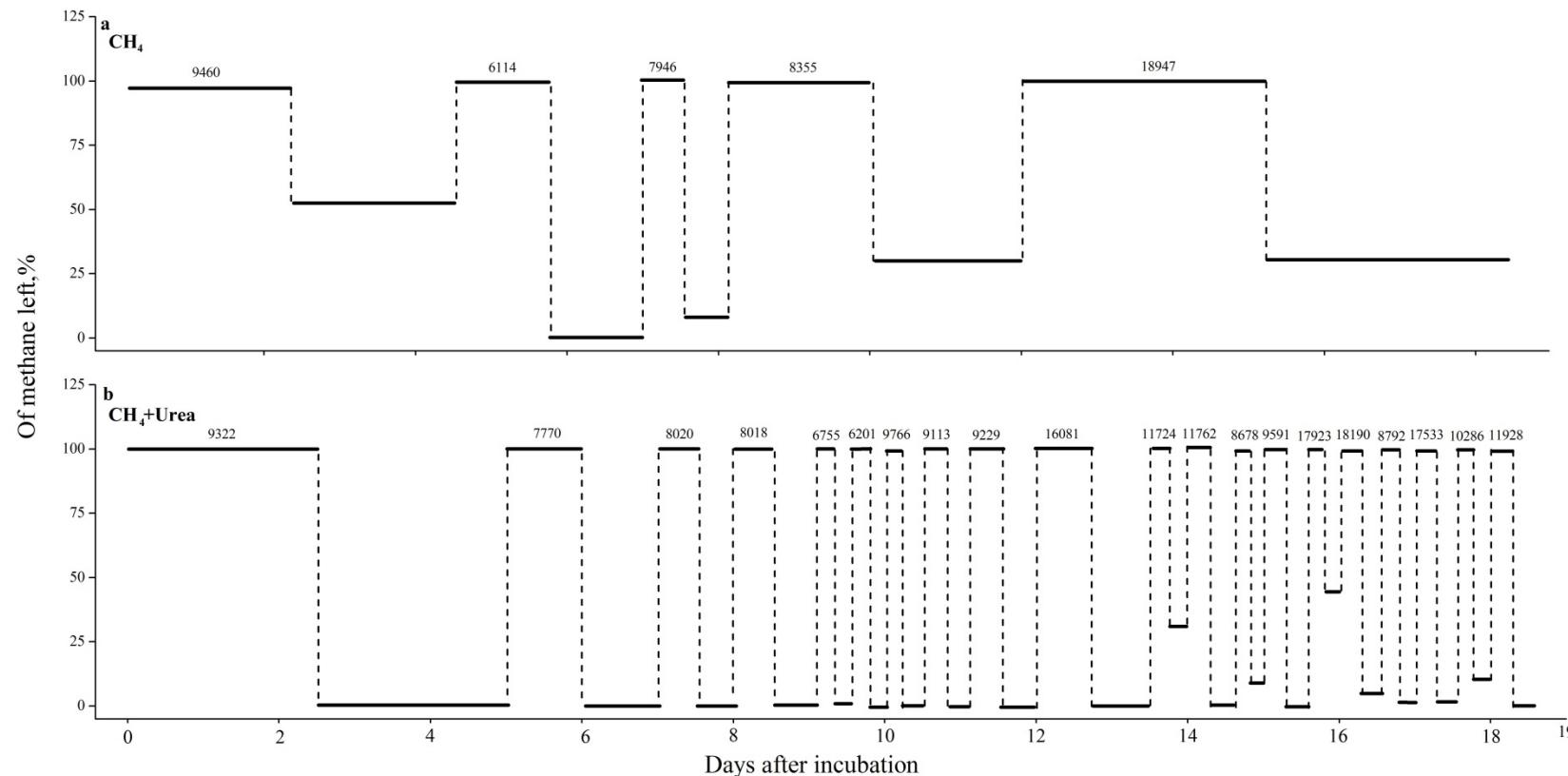
17 **Table S5.** Pyrosequencing summary of *pmoA* and *amoA* genes in the total DNA extract from SIP microcosms and in the ^{13}C -DNA fractions after
 18 isopycnic centrifugation of total DNA using primer pairs A189F-mb661r and amoA1F-2R, respectively.

Organisms*	Replicate	Day-0		Day-19			
		^{13}C -CH ₄		^{13}C -Urea		^{13}C -CH ₄ +Urea	
		Total DNA†	^{13}C -DNA‡	^{13}C -DNA	^{13}C -DNA	Total DNA†	^{13}C -DNA
<i>pmoA</i> genes of MOB	R1	4295	8244	---	---	1106	
	R2	3129	5297	367	---	5074	6877
	R3	---	5509	---	---	6073	
<i>amoA</i> genes of AOB	R1	5484	---	7572	---	2728	
	R2	472	---	---	10656	472	3262
	R3	6261	---	4832	---	4449	1115

19 * MOB and AOB represent methane-oxidizing bacteria and ammonia-oxidizing bacteria, respectively.

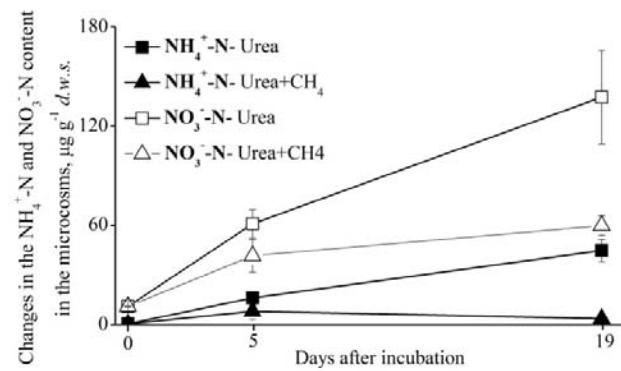
20 † indicates that pyrosequencing was performed on the total DNA extract from the ^{13}C -labeled microcosms.

21 ‡ indicates that pyrosequencing was performed on the ^{13}C -DNA fraction after ultracentrifugation of total DNA extract.

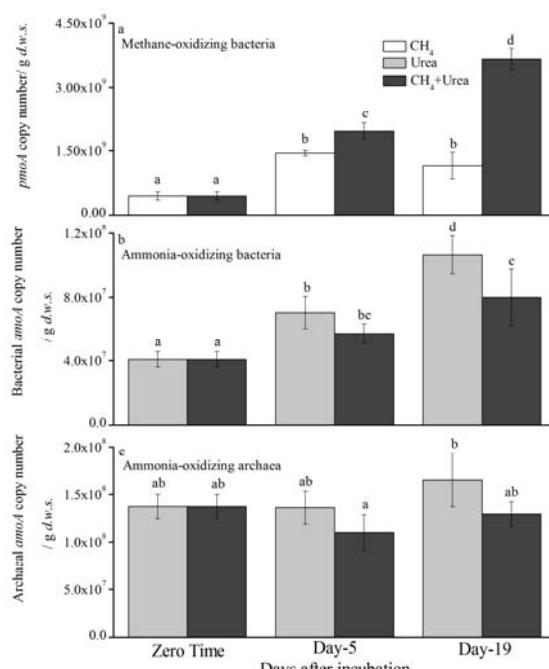

22 ---Not determined

23 . **Table S6.** The estimated budget of carbon and nitrogen assimilation by methanotrophs and ammonia oxidizers in microcosms at day 19

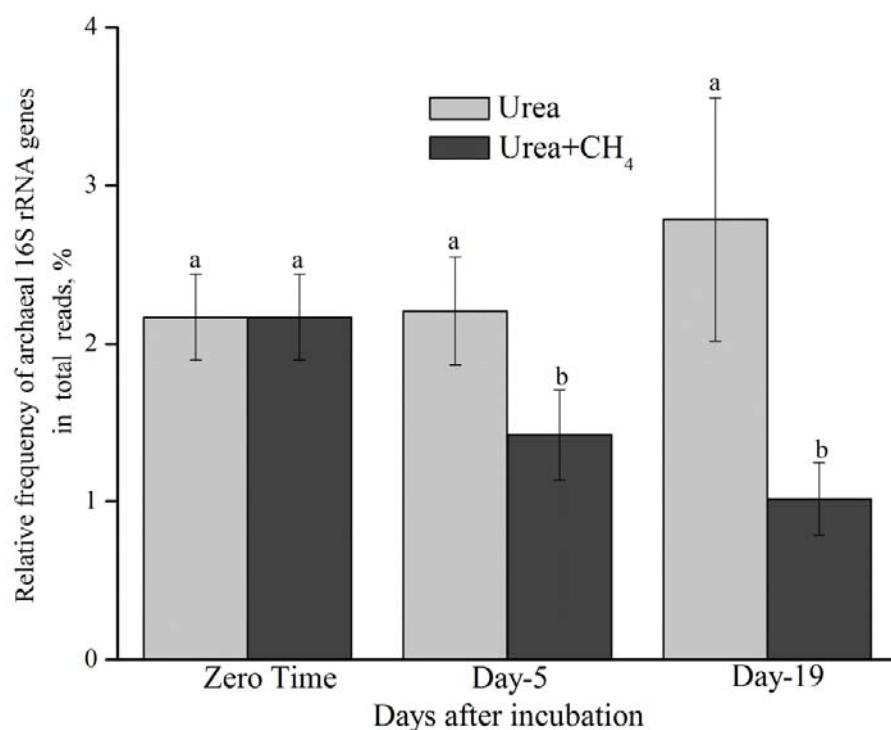
Treatment ^a	μmol CH ₄ -C/microcosm ^b			μg urea-N/microcosm	
	CH ₄ consumed	CO ₂ produced	CO ₂ assimilated by methanotrophs	Assimilation of urea-N by methanotrophs ^c	Nitrate produced from urea-N by ammonia oxidizers
¹³ C-CH ₄ +Urea-R1	1111	730.9	380.5 (34.2%)	1332 (74.0%)	364.2 (20.2%)
¹³ C-CH ₄ +Urea-R2	1081	688.8	392.4 (36.3%)	1373 (76.3%)	339.6 (18.9%)
¹³ C-CH ₄ +Urea-R3	1030	746.3	283.9 (27.6%)	994 (55.9%)	372.4 (20.69%)
Average	1074±41.1	722.0±29.8	352.3±59.5 (32.7%±4.54%)	1234±208.4 (68.7%±11.2%)	358.7±17.1 (19.9%±0.93%)
					88.7±10.5%


24 ^aThe designation of R1 to R3 represents incubation of triplicate microcosms.25 ^bThe amount of CH₄ consumed was calculated as the net difference in CH₄ concentration between day 0 and day 19. The amount of CO₂ produced was estimated in
26 a similar way. Assuming that all CH₄ consumed were converted to CO₂, the amount of CO₂ assimilated by methanotrophs could be calculated as the net difference
27 between the consumed CH₄ and the produced CO₂ at day 19 as previously described (Whalen et al., 1990).28 ^cFor every mole of assimilated carbon 0.25 moles of nitrogen have to be taken up (Bodelier and Laanbroek, 2004).

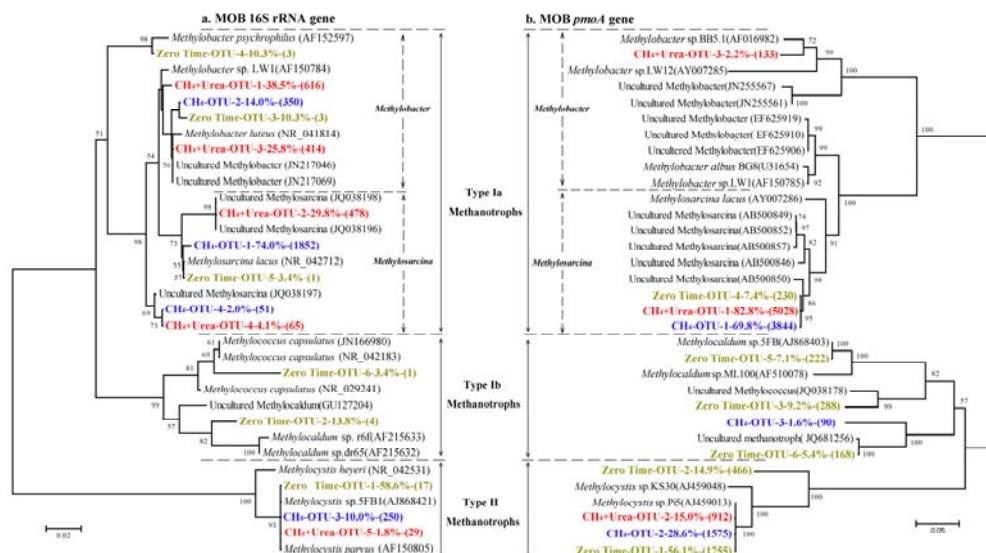
29 **Figure S1.** Methane consumption in soil microcosms over an incubation period of 19 days. Methane consumption is expressed as the percentage
30 of the methane concentrations left in the headspace of the microcosms relative to the initial methane concentration in the microcosms in the
31 absence (a) and presence (b) of urea nitrogen. The numbers above the columns denote the initial concentration (ppmv) immediately after the
32 methane additions.


33

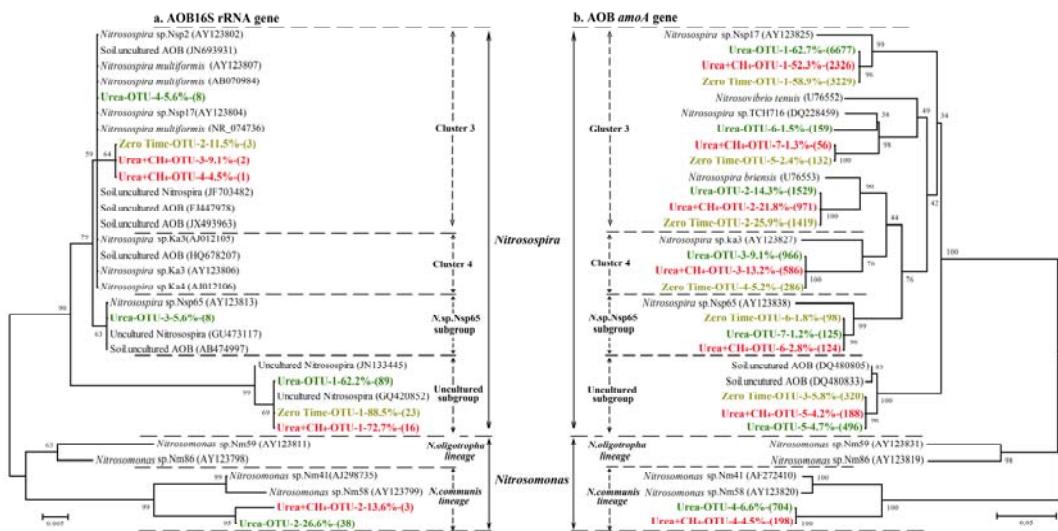
34 **Figure S2.** Changes in NH_4^+ -N and NO_3^- -N content in soil microcosms incubated
 35 with urea or CH_4 +Urea over the course of 19 days of incubation. The error bars
 36 represent standard deviation of the triplicate microcosms, while for the soil
 37 microcosms of CH_4 +Urea treatment 6 replicates were used including both ^{12}C -control
 38 and ^{13}C -labeled treatments.


39

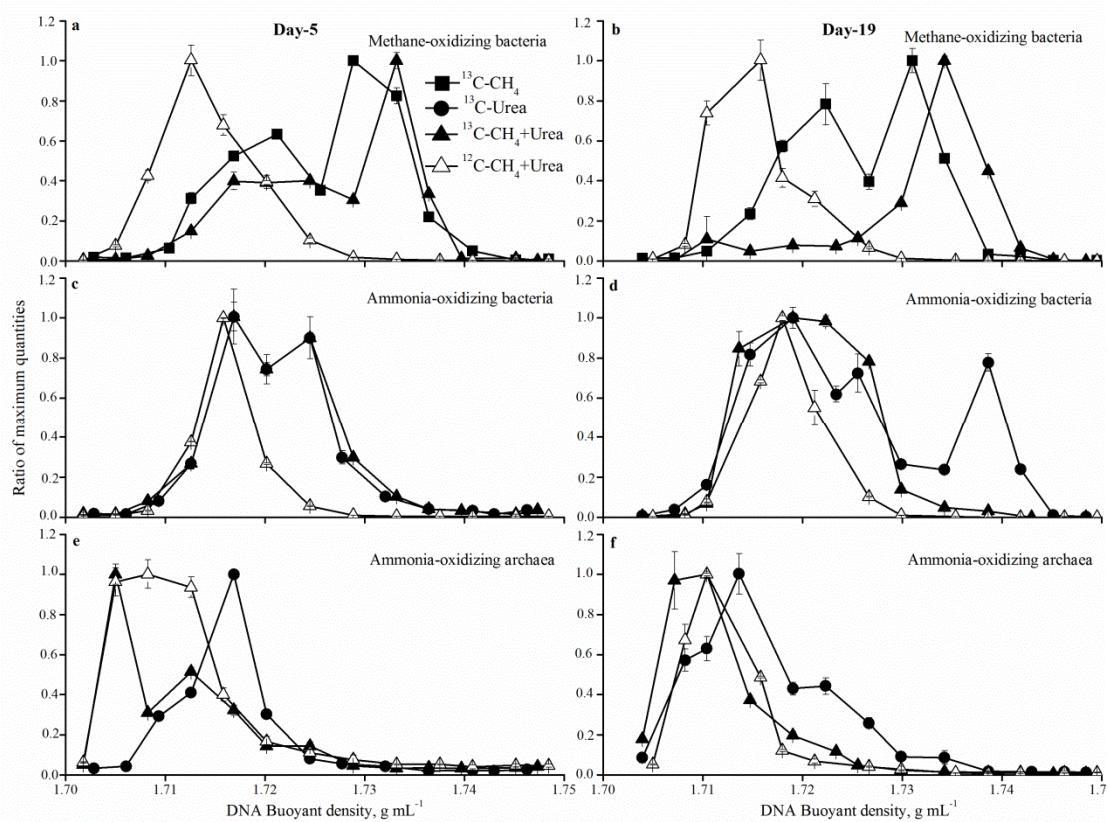
40 **Figure S3.** Quantitative distribution of *pmoA* gene copy numbers (a), *amoA* gene
 41 copy numbers of Bacteria (b) and Archaea (c) in total DNA from microcosms after
 42 incubation for 5 and 19 days. The error bars represent standard deviations of the
 43 triplicate microcosms. The different letters above the columns indicate a significant
 44 difference ($P<0.05$) using analysis of variance.


45

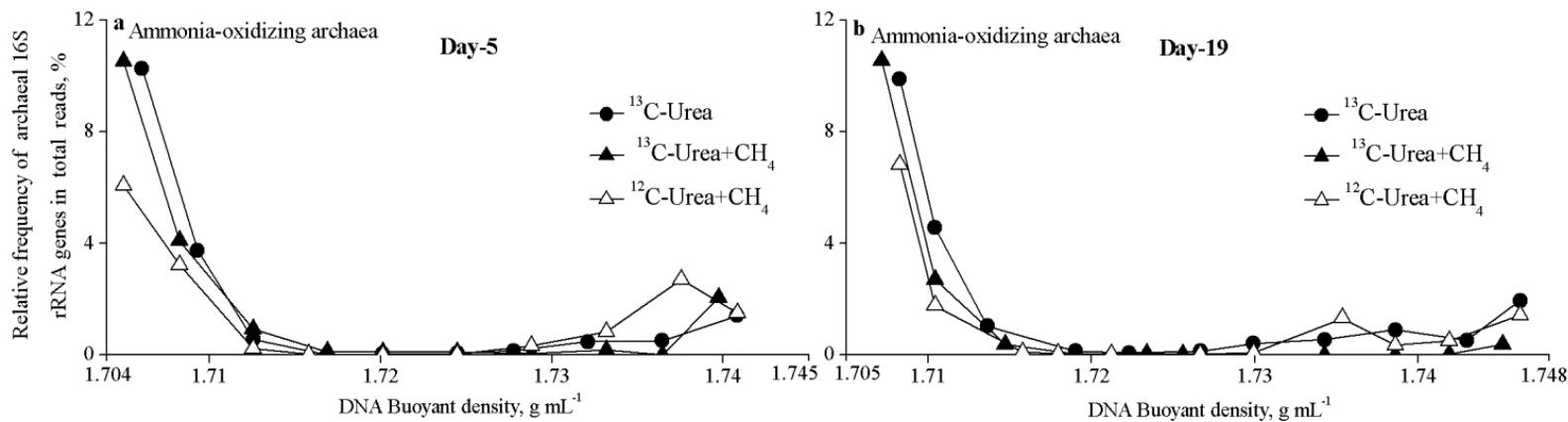
46 **Figure S4.** The effect of methane on ammonia-oxidizing archaea (AOA) in soil
47 microcosms incubated for 19 days. The relative frequency is expressed as the
48 percentage of the targeted reads to the total 16S rRNA gene sequences reads in soil
49 sample. The error bars represent standard deviation of the triplicate microcosms,
50 while for the soil microcosms of CH₄+Urea treatment 6 replicates were used
51 including both ¹²C-control and ¹³C-labeled treatments. The different letters above the
52 columns indicate a significant difference ($P<0.05$) using analysis of variance.



53


54 **Figure S5.** Phylogenetic tree showing the relationship of methane-oxidizing bacterial
 55 16S rRNA gene (a) and *pmoA* gene (b) sequences in soil microcosms to those
 56 deposited in the GenBank. Pyrosequencing reads of methanotrophic 16S rRNA genes
 57 and *pmoA* genes were used from triplicate microcosms at day 0 and day 19, and
 58 representative sequences were chosen for analysis. The designation of
 59 CH₄+Urea-OTU-1-38.5%-(616) indicates that OTU-1 containing 616 sequences with
 60 identity of >97% comprised 38.5% of methanotrophic 16S rRNA gene sequences in
 61 ¹³C-CH₄+Urea treatment after incubation for 19 days. CH₄-OTU-1-69.8%-(3844)
 62 indicates that OTU-1 containing 3844 sequences with identity of >87% comprised
 63 69.8% of *pmoA* gene sequences in ¹³C-CH₄ treatment after incubation for 19 days.
 64 One representative sequence was extracted using mothur software package for tree
 65 construction. The scale bar represents nucleotide acid substitution percentage.

67 **Figure S6.** Phylogenetic tree showing the relationship of ammonia-oxidizing bacterial
68 16S rRNA gene (a) and *amoA* gene (b) sequences in soil microcosms to those
69 deposited in the GenBank. Pyrosequencing reads of AOB 16S rRNA genes and *amoA*
70 genes were used from triplicate microcosms at day 0 and day 19. As for 16S rRNA
71 genes, all AOB sequence reads were retrieved for analysis using mother software
72 package, and only representative *amoA* gene reads were included for clarity to
73 construct phylogenetic tree. The designation of Urea+CH₄-OTU-1-52.3%-(2326)
74 indicates that OTU-1 containing 2326 sequences with identity of >97% comprised
75 52.3% of ammonia-oxidizing bacterial *amoA* gene sequences in ¹³C-Urea+CH₄
76 treatment after incubation for 19 days, and one representative sequence was extracted
77 using mothur software package for tree construction. The scale bar represents
78 nucleotide acid substitution percentage.



80 **Figure S7.** Quantitative distribution of *pmoA* gene copy numbers (a,b), *amoA* gene
 81 copy numbers of *Bacteria* (c,d) and *Archaea* (e,f) across the entire buoyant density
 82 gradient of the fractionated DNA from SIP microcosms after incubation for 5 and 19
 83 days. The normalized data are the ratio of gene copy number in each DNA gradient
 84 fraction to the maximum quantities for each treatment. The error bars represent
 85 standard deviations of the duplicate microcosms.

86

87 **Figure S8.** Relative frequency of the archaeal 16S rRNA gene sequences reads in DNA gradient fractions with a buoyant density gradient
88 isolated from SIP microcosms after incubation for 5 and 19 days. The frequency is expressed as the percentage of the targeted archaeal reads to
89 the total 16S rRNA gene sequences reads in each DNA gradient fraction.

93 **Reference**

94 Bodelier P. L. E. and Laanbroek, H. J: Nitrogen as a regulatory factor of methane oxidation in soils and
95 sediments, *FEMS Microbiol. Ecol.*, 47, 265-277, 2004.

96 Costello, A. M. and Lidstrom, M. E.: Molecular characterization of functional and phylogenetic genes
97 from natural populations of methanotrophs in lake sediments, *Appl. Environ. Microb.*, 65,
98 5066-5074, 1999.

99 Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B.: Ubiquity and diversity
100 of ammonia-oxidizing archaea in water columns and sediments of the ocean, *P. Natl. Acad. Sci. USA*,
101 102, 14683-14688, 2005.

102 Holmes, A. J., Costello, A., Lidstrom, M. E., and Murrell, J. C.: Evidence that particulate methane
103 monooxygenase and ammonia monooxygenase may be evolutionarily related, *FEMS Microbiol. Lett.*,
104 132, 203-208, 1995.

105 Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase structural gene amoA
106 as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations,
107 *Appl. Environ. Microb.*, 63, 4704-4712, 1997.

108 Whalen, S. C., Reeburgh, W. S., and Sandbeck, K. A.: Rapid Methane Oxidation in a Landfill Cover
109 Soil, *Appl. Environ. Microb.*, 56, 3405-3411, 1990.

110 Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., Zhu, J., Xiong, Z., Xu, J., Cai, Z., and Jia, Z.:
111 Autotrophic growth of nitrifying community in an agricultural soil, *ISME J.*, 5, 1226-1236, 2011.