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Abstract. The distribution of dissolved aluminium in the
West Atlantic Ocean shows a mirror image with that of dis-
solved silicic acid, hinting at intricate interactions between
the ocean cycling of Al and Si. The marine biogeochem-
istry of Al is of interest because of its potential impact on
diatom opal remineralisation, hence Si availability. Further-
more, the dissolved Al concentration at the surface ocean
has been used as a tracer for dust input, dust being the most
important source of the bio-essential trace element iron to
the ocean. Previously, the dissolved concentration of Al was
simulated reasonably well with only a dust source, and scav-
enging by adsorption on settling biogenic debris as the only
removal process. Here we explore the impacts of (i) a sed-
iment source of Al in the Northern Hemisphere (especially
north of ∼ 40◦ N), (ii) the imposed velocity field, and (iii)
biological incorporation of Al on the modelled Al distribu-
tion in the ocean. The sediment source clearly improves the
model results, and using a different velocity field shows the
importance of advection on the simulated Al distribution. Bi-
ological incorporation appears to be a potentially important
removal process. However, conclusive independent data to
constrain the Al / Si incorporation ratio by growing diatoms
are missing. Therefore, this study does not provide a defini-
tive answer to the question of the relative importance of Al

removal by incorporation compared to removal by adsorptive
scavenging.

1 Introduction

One of the first interesting findings of the now ongoing GEO-
TRACES programme is the remarkable mirror image be-
tween the distributions of dissolved aluminium (Aldiss) and
dissolved silicic acid (Sidiss) in the West Atlantic Ocean
(Fig. 1), which suggests a close interaction between the two
tracers. As Sidiss is a major nutrient for diatom growth, it
is important to understand this interaction. An initial effort
towards understanding this distribution of Aldisshas been ac-
complished by using an ocean circulation–biogeochemistry
model (Van Hulten et al., 2013). The model only had one
source, aeolian dust input at the surface, and one sink, scav-
enging by adsorption on settling biogenic debris. This pro-
vided a reasonable agreement with the measurements of
[Aldiss]. However, very high[Aldiss] near the seafloor in the
40–50◦ N region was not well reproduced, which suggests
that an additional source term of Al supply from the underly-
ing sediments in this region is required. Furthermore, there is
ample evidence and debate in the literature on the biological
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Figure 1. Observations of (a) [Aldiss] (nmol kg−1) and (b)
[Sidiss] (µmol kg−1) at the West Atlantic GEOTRACES transect
(Middag et al., 2014). Dots are the locations of the measurements.

incorporation of Al into the opaline (SiO2 · nH2O) frustules
of growing diatoms in ocean surface waters, and/or merely
post-depositional Al enrichment of fossil opal deposits in the
sediments. The importance of these processes needs to be
evaluated. Finally, in the previous simulation the model dis-
tributions of Sidiss deviated significantly from the observed
distribution (Fig.1b), most likely due to imperfections in the
circulation of the model.

The cycling and distribution of aluminium in the ocean has
received attention for several reasons, among which are the
interactions between the cycles of aluminium (Al) and silicon
(Si). Dissolved Al is scavenged by adsorption onto biogenic
debris that settles as aggregates into the deep ocean, hence-
forth called Alads(e.g.Stoffyn and Mackenzie, 1982; Orians
and Bruland, 1986; Hydes et al., 1988). In addition, dissolved
Al becomes incorporated into biological opal (SiO2 · nH2O),
primarily in the frustules of diatoms (e.g.Stoffyn, 1979; Hy-
des et al., 1988; van Beusekom and Weber, 1992; Koning
et al., 2007). The Al incorporated in opal of living diatoms
is hereafter called Aldiat. The relatively heavy opal (twice the
density of seawater) serves as ballast for settling aggregates;
it removes the adsorbed as well as the incorporated Al ef-
ficiently. This is consistent with the reduced levels of dis-
solved Al, in regions of high diatom production (e.g.Orians
and Bruland, 1986). Conversely, the rate of dissolution of
settling opal debris (hereafter called biogenic silica, Sibiog)
appears to be controlled by the Al / Si element ratio of this
opal. The higher the Al / Si ratio of opal, the lower the rate
of Sibiog dissolution (e.g.Lewin, 1961; van Bennekom et al.,
1991; Dixit et al., 2001; Gehlen et al., 2002).

Another major reason of interest in Al is the use of Al as
a tracer of aeolian dust supply into the surface ocean, which

is an important source of iron and other trace nutrients. In-
deed, it is currently assumed that the major source of Al to
the open ocean is dust deposition (e.g.Kramer et al., 2004; de
Jong et al., 2007). A fraction of the Al in dust (1–15 %) dis-
solves within the upper mixed layer (e.g.Orians and Bruland,
1986; Maring and Duce, 1987; Baker et al., 2006; Han et al.,
2012). Below the mixed layer the dissolution of Al from dust
is deemed negligible. The remaining 85–99 % fraction of Al
remains in the particulate, lithogenic phase and sinks to the
bottom of the ocean where it is assumed to be buried in the
sediment.

The second source of Al is hypothesised to be sediment re-
suspension and subsequent release, e.g. by desorption, from
previously sedimented Al (Moran and Moore, 1991; Mid-
dag et al., 2012, 2014). Such a source can be contrasted
with diffusion from sediments, which typically occurs only
for redox-active elements like iron and manganese. Indeed,
a high concentration of dissolved aluminium (Aldiss) has
been measured near the deep sediment in the West Atlantic
Ocean at 45–50◦ N (Fig. 1a), while Al is not redox-active.
One prerequisite is sufficient turbulence near the sediment.
This is satisfied at several locations in the West Atlantic
Ocean (Fig.2). Especially north of∼ 35◦ N and south of
∼ 40◦ S, significant resuspension of sediment occurs (Bis-
caye and Eittreim, 1977; Gross et al., 1988). Another ob-
vious prerequisite is an adequate supply of sedimenting Al
towards the seafloor. Even though lithogenic particulate Al
from dust deposition is such a supply, Al in that form is rela-
tively refractory, meaning that it is not easily released (Brown
and Bruland, 2009). Hence, sedimenting Al associated with
Sibiog is a more obvious candidate for the sediment source
of Aldiss. The scavenger and incorporator of Al, the Sibiog, is
mostly present alongside active diatom production: north of
44◦ N and south of 40◦ S (Nelson et al., 1995; Tréguer and
De La Rocha, 2013). Therefore, in these regions this prereq-
uisite is satisfied.

There appears to be variability in the sediment source of
Al. Generally,[Aldiss] is significantly higher near the sedi-
ment compared to concentrations 500 m above the sediment.
However, the elevation of [Aldiss] near the sediments of the
Southern Ocean is very small compared to its elevation in the
Atlantic Ocean (Moran et al., 1992; Middag et al., 2011b).
This strongly suggests that in the Southern Hemisphere the
desorption of Al from Alads from resuspended sediments is
very small compared to the desorption in the Atlantic Ocean.
Upon settling on the seafloor, the desorption of adsorbed alu-
minium is hypothesised to be controlled by the concentra-
tion of dissolved silicon in ambient seawater. At a higher
dissolved Si concentration, the desorption of Al is reduced
(Mackin and Aller, 1986). Especially in the Antarctic Bot-
tom Water (AABW), the[Sidiss] is very high, preventing des-
orption of Al. Biogenic silica may also play a role in pre-
venting desorption of Al, since (adsorbed) Al is incorporated
in biogenic silica (Koning et al., 2007). Understanding these
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Figure 2. Beam attenuation coefficient, a measure of the amount of
particles (e.g.Behrenfeld et al., 2006). Courtesy of Micha Rijken-
berg.

interactions is important for understanding the cycling of Si
and hence the primary production of diatoms.

Other sources do not appear to play a significant role in
adding Al to the ocean. Even though rivers carry a large
amount of Al, most of it is removed in estuaries and continen-
tal shelf sediments, and never enters the open ocean (Mackin,
1986; Orians and Bruland, 1986; Brown et al., 2010; Jones
et al., 2012). Finally, hydrothermal vents are not a source
of Al to the deep waters of the oceans either (Hydes et al.,
1986; Lunel et al., 1990; Elderfield and Schultz, 1996; Mid-
dag et al., 2011a).

The primary removal mechanism of Aldissfrom the surface
ocean is the adsorptive scavenging and settling with Sibiog
as the major carrier. Therefore this removal is large in areas
with high diatom production (Stoffyn and Mackenzie, 1982;
Orians and Bruland, 1986; Moran and Moore, 1988a, 1989,
1992). Besides being scavenged by surface adsorption, the
Aldissbecomes incorporated as a trace substitute for Si during
growth of living diatoms (e.g.Stoffyn, 1979; van Beusekom
and Weber, 1992; Chou and Wollast, 1997; Gehlen et al.,
2002; Koning et al., 2007; Middag et al., 2009). However, it
is not always clear how significant the effect of incorporation
is (Vrieling et al., 1999; Moran and Moore, 1988b; Ren et al.,
2011). Following diatom mortality, the incorporated Al, then
referred to as biogenic Al (Albiog), is exported with the Sibiog
debris. These processes are schematically presented in Fig.3.

Incorporated Al is likely to inhibit the dissolution of Sibiog
(Lewin, 1961; van Bennekom et al., 1991; van Beusekom
and Weber, 1992; Dixit et al., 2001). This means that at
a high Aldiat / Sidiat ratio in living diatoms and consequent
same ratio of Albiog / Sibiog in biogenic debris, less Sibiog will
be remineralised. Moreover, more silica will be buried and
hence lost from the system. Consequently, less Sidiss will be
returned to the surface through upwelling, resulting in de-
creased diatom production. This highlights the major link be-
tween Al and Si.

Recent years have seen the development of models of the
marine biogeochemical cycle of aluminium. For the Al re-
moval, Gehlen et al.(2003) and Van Hulten et al.(2013)
implemented a scavenging model, whileHan et al.(2008)

included both scavenging and biological incorporation of Al
into the frustules of diatoms.

Gehlen et al.(2003) had the objective of testing the sensi-
tivity of modelled Al fields to dust input and thus of evalu-
ating the possibility of constraining dust deposition via dis-
solved Al near the ocean’s surface. For this purpose they
embedded an Al cycle in the HAMOCC2 biogeochemical
model (Maier-Reimer, 1993). The Al model consists of a re-
versible first-order relation of adsorption of Aldissonto Sibiog.
In chemical equilibrium the Alads concentration is propor-
tional to the product of the concentrations of Aldiss and par-
ticulate Sibiog. The resulting modelled concentration of Aldiss
was of the same order of magnitude as the then published ob-
servations. The model ofVan Hulten et al.(2013) used the
same chemical equilibrium relation between adsorbed and
dissolved Al. Instead of testing the effect of different dust
fields, they tested the sensitivity to the solubility of Al from
dust in the ocean surface and in the water column. This con-
strained the percentage and depth of dissolution of Al from
the dust. The coefficient partitioning Alads and Aldiss was
constrained as well with the respective sensitivity simula-
tion. A sensitivity simulation with a margin sediment source
showed that margin sediments are probably not an important
source of Al. The main goal ofHan et al.(2008) was to bet-
ter constrain the dust deposition field. For this purpose they
used the Biogeochemical Elemental Cycling (BEC) model
improved byMoore and Braucher(2008) as a starting point.
This was used in combination with the Dust Entrainment
And Deposition (DEAD) model to explicitly constrain dust
deposition. In addition to scavenging,Han et al.(2008) added
a biological Al uptake module where the Al / Si uptake ratio
is a function of the ambient dissolved Al and Si concentra-
tions. However, they did not expand on the importance of
biological incorporation relative to adsorptive scavenging.

These recently developed models are consistent with the
first principles of Al cycling in the ocean, showing that the
dissolution of Al from dust and the reversible scavenging by
Sibiog can reproduce the main features of the observed Aldiss
concentration. However, the deep ocean has not been sim-
ulated very well, and significant numbers of accurate deep
ocean measurements of[Aldiss] have only become available
recently (e.g.Middag et al., 2009). Furthermore, some stud-
ies raise doubts about the scavenging nature of Al removal
from the ocean (e.g.Koning et al., 2007).

Recent high-accuracy observations from the West Atlantic
Ocean GEOTRACES transect show a mirror image between
[Aldiss] and [Sidiss] (Fig. 1). The key observation from this
transect data is that Sidiss is a nutrient type (enriched in old
water) and Al a scavenged type element (depleted in older
water). Furthermore, the mirror image suggests that (i) there
is a very modest sediment source of Al where[Sidiss] is rel-
atively high, i.e. where the AABW prevails flowing from
Antarctica up to 45◦ N, and (ii) the Denmark Strait Overflow
Water (DSOW) brings bottom waters with low[Sidiss] from
the Denmark Strait (∼ 66◦ N) to at least 45◦ N. The latter, in
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Figure 3. Aluminium cycling in the ocean. Dissolved Al enters the ocean through the release of Aldiss from deposited dust and resuspended
sediments, while rivers, hydrothermal vents and reducing sediments are negligible sources of Aldiss. Al is mostly removed by reversible
scavenging (presented in the yellow ellipse). The dashed arrow from aluminium to diatom frustules signifies incorporation of Al into diatom
frustules. Silicic acid (Sidiss) is presented as well, since it is an essential part of understanding Al cycling. However, not all sources of Sidiss
are presented in this figure.

combination with ample supply of adsorbed Al from opal de-
bris of diatom blooms in overlying surface waters, appears to
result in major desorption of Al from resuspended particles
in the bottom waters (Middag et al., 2014).

The other process of interest is that of biological incorpo-
ration of Al by diatoms. The goal in this research is to assess
whether this is a significant process. A simulation with incor-
poration is expected to yield a decrease of[Aldiss] compared
to the simulation without incorporation. The decrease may
even result in an unrealistically low[Aldiss] since scavenging
parameters were tuned in the reference simulation to fit the
open ocean main thermocline distribution of Aldiss and most
of the West Atlantic GEOTRACES transect at full depth.

In this study the model ofVan Hulten et al.(2013) is ex-
tended with three major changes. The different simulations
address the role of circulation, the importance of a sediment
source and the significance of biological incorporation of Al
by diatoms. Details on this model and of the observational
data set are given in Sect.2. Next, the results of the refer-
ence simulation and the three sensitivity simulations, relative
to the reference simulation and to the simulation inVan Hul-
ten et al.(2013), are presented in Sect.3. More discussion
about the model assumptions and the simulation results is to
be found in Sect.4. Finally, Sect.5 ends with the major con-
clusions.

2 Methods

2.1 Model description

2.1.1 Model framework

In order to simulate the three-dimensional distribution of dis-
solved Al, the biogeochemical model PISCES is used (Au-
mont and Bopp, 2006; Ethé et al., 2006). This model has
been employed for many other studies concerning trace met-
als, as well as large-scale ocean biogeochemistry (e.g.Au-
mont and Bopp, 2006; Gehlen et al., 2007; Arsouze et al.,
2009; Dutay et al., 2009; Tagliabue et al., 2010). In the sim-
ulations described here, PISCES has been driven by climato-
logical velocity fields obtained from the general circulation
model called Nucleus for European Modelling of the Ocean
(NEMO) (Madec, 2008) of which the dynamical component
is called Océan PArallélisé (OPA) (Madec et al., 1998).

The model PISCES simulates the cycle of carbon, the ma-
jor nutrients (nitrate, phosphate, ammonium, silicic acid) and
the trace nutrient iron, along with two phytoplankton types
(nanophytoplankton and diatoms), two zooplankton grazers
(micro- and mesozooplankton), two classes of particulate or-
ganic carbon (small and large) of differential settling veloci-
ties, as well as calcite and biogenic silica. The PISCES model
distinguishes three silicon pools: (i) the silicon content of
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living diatoms (Sidiat); (ii) the silicon content of dead, set-
tling diatoms (Sibiog) and (iii) dissolved silicic acid (Sidiss).
In the model, Sidiss and other nutrients are supplied to the
ocean by means of atmospheric dust deposition and rivers,
while iron enters the ocean as well through sediment remo-
bilisation (Aumont and Bopp, 2006). The standard version
of PISCES accounts for 24 tracers. For a more detailed de-
scription of PISCES see the auxiliary material ofAumont
and Bopp(2006).

In this study PISCES is run off-line forced by a climato-
logical year of monthly physical fields including turbulent
diffusion. All model fields are defined on the ORCA2 grid,
an irregular grid covering the whole world ocean with a nom-
inal resolution of 2◦ × 2◦, with the meridional (south–north)
resolution increased near the equator. It has two “north poles”
in Canada and Russia to eliminate the coordinate singularity
in the Arctic Ocean. Its vertical resolution is 10 m in the up-
per 100 m, increasing downwards to 500 m, such that there
are 30 layers in total and the ocean has a maximum depth of
5000 m.

2.1.2 Aluminium model

The Al model is based on the preceding model ofVan Hul-
ten et al.(2013) which computes the concentration of dis-
solved aluminium (Aldiss) and adsorbed Al (Alads). In this
study two additional tracers are introduced to PISCES: the Al
incorporated in the opaline frustules of living diatoms (Aldiat)
and its biogenic debris (Albiog). All tracer names are listed
in Table1. For completeness, the Si tracers in PISCES are
given as well. The concentrations of the tracers are indicated
by square brackets [ ], and are given in units of mol dm−3

(shortly M or molar).
There are two different sources of Al in the model. One

source is via the dissolution of dust particles in the upper
ocean layer. The dust deposition field was taken from the
output of the atmospheric dust model INCA (Hauglustaine
et al., 2004; Textor et al., 2006). The other source, which
has now been added to the previous model, is sediment re-
suspension and subsequent dissolution. When Alads reaches
the ocean floor, it is assumed to be buried, except for the
resuspension and subsequent dissolution of Al in some sim-
ulations. The model is schematically represented in Fig.3,
where the extensions toVan Hulten et al.(2013) are resus-
pension/desorption (bottom-left) and biological incorpora-
tion (top-right). Sediment and porewater reactions are not ex-
plicitly modelled. Resuspension and subsequent desorption
take place in the water column.

The model parameters are listed in Table2.
The aluminium fraction in dust (fAl ) is based on the mass

percentages of Al known to be present in the Earth’s crust.
This is about 8.1 % aluminium by mass on average (Wede-
pohl, 1995). Most of this Al consists of oxides that do not
dissolve easily. The fraction of Al from dust (αAl ) that dis-
solves is not well constrained but is probably in the range

Table 1.Aluminium and silicon tracers in the model.

Tracer Description

Aldiss dissolved Al: ions and colloids with∅ < 0.2 µm
Alads Al adsorbed onto biogenic silica
Aldiat Al incorporated in frustules of living diatoms
Albiog Al incorporated in frustules of dead diatoms

Sidiss dissolved Si, or silicic acid
Sidiat Si incorporated in frustules of living diatoms
Sibiog Si incorporated in frustules of dead diatoms

Table 2.Parameters for the reference simulation RefDyn2 (identical
to those of RefDyn1).

Parameter Symbol Value

Mass fraction of Al in dust fAl 8.1 %
Surface dissolution fraction αAl 5 %
Partition coefficient kd 112× 103 M−1

First-order rate constant κ 104 yr−1

Settling speed of Aladsand Albiog ws 30–200 m d−1

of 1–15 % (Orians and Bruland, 1986; Jickells et al., 2005).
HereαAl = 5% is chosen, since this is has been successfully
used in previous modelling work (Han et al., 2008; Van Hul-
ten et al., 2013). The dissolution occurs only in the upper
model layer (0–10 m depth range), and is described by

∂[Aldiss]

∂t

∣∣∣
deposition

=
αAlfAl

mAl1z1
8dust, (1)

wheremAl is the atomic mass of Al,1z1 = 10 m is the thick-
ness of the surface model layer and8dust is the dust flux
into the ocean. The Al that does not dissolve from dust is
assumed to play no role in the biogeochemical cycle of Al
on our timescales of interest, and can be thought of as being
buried in marine sediments.

Another source of Al is sediment resuspension (bottom-
left in Fig. 3). In reality, this is induced by near-sediment tur-
bulence, creating a 200–1000 m thick nepheloid layer above
the sediment containing significant amounts of suspended
sediment particles (e.g.Lampitt, 1985; Hwang et al., 2010).
However, here it is assumed that recently settled Alads is re-
suspended and subsequently partly dissolved in the bottom
model layer. Since the resuspension depends on settling of
Alads, the relevant model equation will be introduced at the
end of this section, after the settling equation.

Dissolved Al is assumed to adsorb onto biogenic silica par-
ticles, while other particles do not have an effect on the re-
moval of Aldiss (discussed inVan Hulten et al.(2013) and
Sect.4). Hence, aside from external inputs (and optionally
the incorporation within the silica), the Aldiss concentration
is governed by adsorption and desorption (yellow ellipse in
Fig. 3). The Aldiss and Aladsconcentrations are governed by
the following reversible first-order adsorption equation (Van
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Hulten et al., 2013):

∂[Alads]

∂t

∣∣∣
ad/desorption

= κ(A
eq
ads− [Alads]), (2)

where

A
eq
ads= kd · [Aldiss] · [Sibiog], (3)

in which A
eq
ads is the chemical equilibrium concentration of

Alads. The parameterkd (dm3 mol−1) is the partition coeffi-
cient andκ (s−1) is the first-order rate constant for equili-
bration of[Alads] to A

eq
ads. Finally, Sibiog is the biogenic silica

concentration, as with all concentrations, in mol dm−3. Since
total Al is conserved when only internal processes are con-
cerned, the time derivative of[Aldiss] equals the negative of
that of[Alads].

As an extension to the original model, aluminium is in-
corporated into the frustules of diatoms during production.
The diatom incorporation of Al is modelled by multiplying
the rate of production of diatom opal (Sidiat) with the dis-
solved Al / Si concentration ratio in ambient seawater, with
some refinements as explained below. For the biological Si
cycle, production and mortality (including grazing by micro-
and mesozooplankton) of diatoms, and dissolution of debris
Sibiog, are represented by prod, mort and diss, respectively,
in Eq. (4). All rate variables are proportional to the ratio of
Al and Si in the relevant source pool. Accordingly, the bio-
logical model equations for Al are as follows:

∂[Aldiat]

∂t

∣∣∣
bio

= RAl / Si · prod−
[Aldiat]

[Sidiat]
· mort (4a)

∂[Albiog]

∂t

∣∣∣
bio

=
[Aldiat]

[Sidiat]
· mort−

[Albiog]

[Sibiog]
· diss (4b)

∂[Aldiss]

∂t

∣∣∣
bio

=
[Albiog]

[Sibiog]
· diss− RAl / Si · prod. (4c)

No further refinement is made in any process, except, op-
tionally, for incorporation during production. This is accom-
plished by the incorporation ratioRAl / Si , which is defined as

RAl / Si = min

(
cin ·

[Aldiss]

[Sidiss]
, rmax

)
, (5)

where[Aldiss]/[Sidiss] is the ratio of dissolved Al and Si, and
cin (0 ≤ cin . 1) is an optional weight factor for the Al:Si in-
corporation ratio andrmax ≥ 0 is an optional prescribed max-
imum value for the Aldiat/Sidiat ratio within the opal of living
diatoms. These two optional parameters are not used in the
model simulations presented in this work (i.e. we usecin = 1
andrmax = ∞), but will be discussed in Sect.4.3.1on bio-
logical incorporation. The biological extension to the model
is schematically presented in Fig.3 as the dotted line from
“Aluminium” to “Diatom frustules”.

Both Albiog and Alads settle through the water column,
because the concurrent biogenic silica is denser than sea-
water. Adsorbed and incorporated Al (their concentrations

both denoted asApart) settle along with biogenic silica with
a velocityws, varying from 30 m d−1 in the upper 100 m to
200 m d−1 at 4 km below the mixed layer, according to

∂Apart

∂t

∣∣∣
settling

= −ws
∂Apart

∂z
. (6)

While settling through the water column, Albiog and Alads
may in the process remineralise (Eqs.4band2, respectively),
so adsorption and incorporation do not mean that all Al is
removed immediately from the model domain. Part of the Al
dissolves and may upwell, and may become incorporated or
scavenged once again at a later time.

Burial of Alads and Albiog proceeds in the bottom model
layer immediately above the sediment according to

∂Apart

∂t
= −

ws · Apart

1zbottom
, (7)

where1zbottom≤ 500 m is the thickness of the bottom layer.
It is of the same order of magnitude as the real resuspen-
sion, or nepheloid, layer. In two of the simulations, part of the
sedimented Alads is resuspended and dissolved in the bottom
water layer according to

∂[Aldiss]

∂t

∣∣∣
resusp

= β ·
ws · [Alads]

1zbottom
, (8)

whereβ is a constant (0< β ≤ 1), or some scalar function
to be defined later (Eq.9), representing the fraction of re-
suspended and subsequently dissolved Al. Note that in the
model only adsorbed Al is redissolved, while biogenic Al is
not (see Sect.4.2.2 for rationale). This process is different
from the sediment source inVan Hulten et al.(2013). In that
study sediment input was modelled analogously to the diffu-
sive iron source, while in this study the redissolution depends
on freshly sedimented Alads. The underlying rationale and
the derivation of Eq. (8) are given in AppendixA. Moreover,
silicic acid near the sediment apparently inhibits the disso-
lution of Alads. This is probably because Aldiss and Sidiss
are stoichiometrically saturated (Mackin and Aller, 1986).
Observations suggest a significant Al sediment source be-
low Denmark Strait Overflow Water (DSOW) where Sidiss
concentrations are below 30 µM (1 µM = 10−6 mol dm−3),
while they suggest only a very weak source from the sedi-
ment below AABW, which has much higher[Sidiss], exceed-
ing 50 µM (Middag et al., 2014). In one of the simulations,
the bottom water[Sidiss] will be used as an inhibitor of the
redissolution of Al from resuspended sediment.

The source code of the model is included as an electronic
supplement. This code can be used with NEMO-PISCES (in
this study version 3.1 was used), to be found athttp://www.
nemo-ocean.eu/(libre software licensed underCeCILL).

2.1.3 Simulations

The reference simulation (RefDyn2) is based on the “refer-
ence experiment” fromVan Hulten et al.(2013) (RefDyn1),
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but there is one notable improvement. A different set of dy-
namical fields (advection, turbulent diffusion and mixing)
is now used. The velocity fields used byVan Hulten et al.
(2013) (Dynamics 1) had an Atlantic Meridional Overturning
Circulation (MOC) that is too shallow and too weak, while
the northward flux of AABW is too strong, compared to esti-
mates based on measurements. The fields used in this study,
henceforth referred to as Dynamics 2, are a climatology from
a NEMO-OPA simulation forced by the DFS3 air–sea fluxes
(Large and Yeager, 2004; Uppala et al., 2005; Brodeau et al.,
2010). Dynamics 2 has a more realistic Atlantic overturn-
ing, compared to Dynamics 1. Firstly, the depth of North At-
lantic Deep Water is about 2 km inVan Hulten et al.(2013)
while it is closer to the more reasonable 3 km in the dynam-
ics used here. Secondly, the maximum of the Atlantic Over-
turning Stream Function (OSF) in the AABW dropped from
about 6–7 Sv in Dynamics 1 to about 2–3 Sv in Dynamics 2,
much more comparable to estimates based on observations
(Talley et al., 2003; Rayner et al., 2011). This results in a
significantly better simulation of the Sidiss distribution (see
discussion in Sect.4.1.1). The Sidissconcentration in AABW
is much closer to the observational concentration, compared
with the dynamical fields used byVan Hulten et al.(2013)
(basic statistics for the West Atlantic Ocean are presented in
Sect.3.2). This will especially be important for one of the
sediment resuspension simulations described below, since
that simulation depends on[Sidiss] in bottom water.

The reference simulation (RefDyn2) is initialised from the
steady-state concentrations of the reference experiment in
Van Hulten et al.(2013) (RefDyn1), and is then run for an-
other 1750 model years to steady state with Dynamics 2. The
resulting total Al budget (both dissolved and adsorbed) in
the world ocean in the reference simulation is around 6 Tmol
(1 Tmol = 1012 mol). After 1000 yr of simulation the Al bud-
get (total Aldiss + Alads integrated over the ocean volume)
does not change much (less than 1 % before reaching steady
state). Therefore, from year 1000 our two sets of sensitivity
simulations with sediment resuspension and biological incor-
poration are forked and run for another 500 yr, alongside the
reference simulation, to quasi-steady state. An overview of
the simulations with the key parameters is given in Table3,
and the two sets of sensitivity simulations are defined and
explained below.

The dust dissolution and scavenging parameters as used
by Van Hulten et al.(2013) resulted in a good simulation
of [Aldiss] in the upper ocean. Therefore, the same parame-
ters were used for the new reference simulation (RefDyn2,
Table 2). This is also the case for most sensitivity simula-
tions, except for IncorpLowScav where the partition coeffi-
cientkd is decreased. A sediment source is included in simu-
lations SedProp and SedMackin, and biological incorpora-
tion of Al is present in the simulations Incorp and Incor-
pLowScav (Table3).

In the first of our two sediment resuspension simulations,
60 % of sedimented Alads is redissolved just above the sed-

Table 3.Overview of the two reference simulations as defined in the
text, and the two sets of sensitivity simulations as defined later in the
text. If not specified otherwise, when the term reference simulation
is used, we refer to RefDyn2. Here RefDyn1 refers to the old “ref-
erence experiment” ofVan Hulten et al.(2013). Dynamics 1 refers
to the climatology based on ERS satellite data; Dynamics 2 is based
on DFS3. The Sidiss-dependence refers to the dependence on bot-
tom water [Sidiss] for dissolution of resuspended adsorbed Al. The
normal partition coefficient iskd = 112× 103 dm3 mol−1. This is
equivalent to thekd = 4×106 dm3 kg−1 in Van Hulten et al.(2013),
where the biogenic Si concentration was denoted in kg dm−3 in-
stead of mol dm−3. For consistency in the concentration units, we
changed the unit (and hence the value) ofkd.

Simulation Dyna- Sedi- Sidiss- Incor- kd
mics ment dependent poration

RefDyn1 1 no – no normal
RefDyn2 2 no – no normal
SedProp 2 yes no no normal
SedMackin 2 yes yes no normal
Incorp 2 no – yes normal
IncorpLowScav 2 no – yes normal/4

iment (β = 0.60, see Eq.8). This means that redissolution
is proportional to sedimentation, hence this simulation is
named SedProp. However, the West Atlantic Ocean GEO-
TRACES observations show a large elevation of[Aldiss] due
to resuspension only in the Northern Hemisphere and only
very little in the Southern Hemisphere (Fig.1a). It appears
that the process of release of Al from resuspended sedi-
ments is inhibited in the Southern Hemisphere. As shown
by Mackin and Aller(1986), the inhibition may be caused by
high [Sidiss], which is very high in the AABW in the South-
ern Hemisphere and flows as far north as∼ 40◦ N, albeit
somewhat diluted by vertical mixing with overlying NADW
that has lower Sidiss concentrations. Therefore the result of
Mackin and Aller(1986) is used to arrive at the following
dissolution fraction:

β = β0([Sidiss]bottom/µM)−0.828, (9)

whereβ0 is a dimensionless constant (in this simulation set to
16.85) and the−0.828 is fromMackin and Aller(1986). For
further discussion see the derivation in AppendixA and the
discussion in Sect.4.2. Henceforth this simulation is referred
to as SedMackin.

Finally, one set of two simulations with biological incor-
poration of Al into diatom frustules has been performed. In
these simulations Aldiss is scavenged in the same way as in
the other simulations. No limitation to the incorporation of
Aldiss has been applied. This means that for these simula-
tions,cin = 1 andrmax = ∞ (see Eq.5), such thatRAl / Si =

[Aldiss]/ [Sidiss]; alternatives will be discussed in Sect.3. The
first of two incorporation simulations, Incorp, is with the
normal scavenging parameters. The second one, IncorpLow-
Scav, is different with respect to Incorp in that the partition
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coefficient is decreased from 112 to 28×103 dm3 mol−1, for
reasons that will become clear in Sect.3.

2.2 Observational data sets

RecentGEOTRACESobservations of[Aldiss] in the Arctic
Ocean (Middag et al., 2009), Northeast Atlantic Ocean (Mid-
dag, 2010, Chapter 5), West Atlantic Ocean (Middag et al.,
2014), the Atlantic sector of the Southern Ocean (Middag
et al., 2011b, 2012, 2013) and the region south of Australia
(Remenyi, 2013) are used for a detailed comparison and op-
timisation of the model parameters. See the upper part of
Table4 for these data sets. These data sets comprise over-
all 4013 individual data values for dissolved Al. All values
have been verified versus international reference samples and
their consensus values of the SAFe and GEOTRACES pro-
grammes. SeeVan Hulten et al.(2013) for more details. In
addition to the data sets used byVan Hulten et al.(2013),
the GEOTRACES International Polar Year (GIPY) data by
Remenyi(2013) (data and dissertation on request available
from lead author) have been added to the data set, namely
SAZ-Sense (GIPY2) and SR3 (GIPY6). Those data are lo-
cated between Tasmania and Antarctica (438 data points).
Furthermore, there are five additional stations (120 extra data
points) in the Northwest Atlantic Ocean (64 PE 358). These
additional cruises add up to 558 extra data points, compared
to the number used byVan Hulten et al.(2013).

For a worldwide global ocean comparison one also has to
rely on data that were collected in the era before the refer-
ence samples of SAFe and GEOTRACES were available. In-
evitably, the criteria for selecting such previously published
data sets are less strict; seeVan Hulten et al.(2013) andMid-
dag(2010, 216–218) for the criteria used for each of the se-
lected data sets. The selected pre-GEOTRACES data sets are
listed in the lower part of Table4.

2.3 Data–model comparison

For the, mostly qualitative, visual comparison between
model and observations, horizontal and vertical cross sec-
tions of the model data are plotted. For the horizontal[Aldiss]

sections four different depths are presented, where “surface”
signifies the average over the upper 30 m, “500 m” is 400–
600 m averaged, “2500 m” is 2300–2700 m averaged and
“4500 m” is 4000–5000 m averaged. The respective obser-
vations (same depth ranges) are presented as coloured dots.
The colour scale is not linear to better show the main features
at both low and high concentrations of Aldiss.

The vertical [Aldiss] sections are of the GEOTRACES
cruises in the West Atlantic Ocean (64 PE 267, 319, 321,
358; and JC057 from Table4) and the Zero Meridian South-
ern Ocean (part of ANT XXIV/3). These sections are calcu-
lated from the three-dimensional model data by converting
the ORCA2-gridded model data to a rectilinear mapping, and
interpolating the rectilinear data onto the cruise track coordi-

Table 4.Observational data used for comparison with model.

Cruise Ocean Source #

ARK XXII/2 Arctic Middag et al.(2009) 1080
ANT XXIV/3 Southern Middag et al.(2011b) 919
SAZ-Sense Southern Remenyi(2013) 146
SR3 Southern Remenyi(2013) 292
64 PE 267 Atlantic Middag et al.(2014) 137
64 PE 319 Atlantic Middag et al.(2014) 383
64 PE 321 Atlantic Middag et al.(2014) 504
64 PE 358 Atlantic Middag et al.(2014) 120
JC057 Atlantic Middag et al.(2014) 432

Subtotal used primarily for detailed comparison 4013

IOC96 Atlantic Vink and Measures(2001) 1048
M 60 Atlantic Kremling (1985) 91
IRONAGES III Atlantic Kramer et al.(2004) 181
EUCFe Pacific Slemons et al.(2010) 195
MC-80 Pacific Orians and Bruland(1986) 92
VERTEX-4 Pacific Orians and Bruland(1986) 54
VERTEX-5 Pacific Orians and Bruland(1986) 59
KH-98-3 Indian Obata et al.(2007) 152

Subtotal of other observations for global comparison 1872

Grand total of all dissolved Al values 5885

nates. One of these figures also shows the Atlantic Overturn-
ing Stream Function (OSF), defined as the zonally (through
the Atlantic Ocean) and vertically (from the surface down-
ward) integrated meridional current speed. This is used as a
measure for the MOC.

The focus of this study is the West Atlantic Ocean for sev-
eral reasons. Firstly, recently measurements have been car-
ried out in that region, resulting in a large consistent (one
method) data set. Secondly, there are too few high-quality
observations in other regions of the ocean, making it very
difficult to define a reasonable goodness of fit. Thirdly, the
West Atlantic Ocean is of large importance to the MOC and
hence the deep ocean cycling of nutrients. For these reasons
all quantitative arguments in this study concern the West At-
lantic GEOTRACES transect.

2.3.1 Statistics

To compare quantitatively the model results with the obser-
vations, we focus only on the 1576 data points of the West
Atlantic Ocean GEOTRACES transect (Sect.3). First the
observations are linearly interpolated onto the model grid.
Then several statistics are determined, namely the root mean
square deviation (RMSD), the reliability index (RI) and the
correlation coefficientr2. These statistics are all based on
Stow et al.(2009), but the first two are adjusted for the inho-
mogeneous sample distribution in depth.
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The RMSD is determined by the following equation:

Dl =

√√√√∑30
k=11zk ·

∑60
j=1(mjk − ojk)2

60·
∑30

k=11zk

, (10)

whereo is the observed andm the modelled[Aldiss], weight-
ing with model layer thickness1zk of layer k ∈ {1. . .30}
for every stationj ∈ {1. . .60}. The l signifies the vertical
weighting modification of the standard RMSD. This is done
to compensate for the over-representation of data points near
the ocean surface. Furthermore, for each sensitivity simula-
tion we calculate the significance of the change in the RMSD
compared with the corresponding reference simulation. This
is determined by means of a Monte Carlo simulation on the
reference simulation for which a subsample of 400 has been
randomly selected from the original set of 1800 data–model
points. They are the pairs of observations and model data,
both on the model grid. This is done 50 000 times and from
this the 2σ confidence interval is calculated (the mean± two
times the standard deviation). Suppose that we wish to sim-
ulateq, and assumeq is in steady state. For each modelY

resulting inqY (x), the average RMSD of the Monte Carlo
simulation ofqY (x) must be outside the 2σ confidence range
of the RMSD distribution ofqX(x) to say thatY is a signifi-
cant improvement or worsening compared toX.

The reliability index adjusted by weighting with the model
layer thickness is defined as

RIl = exp

√√√√√√
30∑

k=1
1zk

60∑
j=1

(log
ojk

mjk
)2

60·
∑30

k=11zk

. (11)

Finally, the correlation coefficient is defined as

r =

∑1800
i=1 (oi − o)(mi − m)√∑1800

i=1 (oi − o)2
∑1800

i=1 (mi − m)2
, (12)

where 1800 is the total number of measurements of the West
Atlantic GEOTRACES transect and the bars denote averages.

3 Results

In this section the results of the simulations are pre-
sented. The relevant tracers of the raw model output can
be found athttp://data.zkonet.nl/index.php?page=Project_
view&id=2916&tab=Datasets.

3.1 Reference simulation and observations

Figure 4 shows the modelled yearly average steady-state
Aldiss concentration of RefDyn2 at four depths versus obser-
vations as coloured dots. In Fig.5 the GEOTRACES tran-
sects in the West Atlantic Ocean and the Zero Meridian

Southern Ocean are presented. At the surface of the Atlantic
Ocean, the highest modelled and measured[Aldiss] is located
from near the equator northwards to about 35◦ N. In the polar
oceans and in the South Pacific Ocean,[Aldiss] is very low.
At the West Atlantic transect, the MOC is clearly reflected by
the dissolved Al concentration. The decrease of[Aldiss] from
north to south in the North Atlantic Deep Water (NADW) is
due to net adsorptive scavenging onto settling biogenic silica.

The similarity between the model (RefDyn2) and the ob-
servations decreases in the deeper North Atlantic Ocean,
where according to the observations[Aldiss] increases with
depth (for depths below 800 m), while in the model the dis-
solved Al concentration decreases with depth. Besides this
general pattern of increasing[Aldiss] with depth in the ob-
servations, a very high concentration of Aldiss is present be-
tween 45 and 50◦ N near the sediment, which enhances the
dissimilarity between the reference simulation and the obser-
vations.

3.2 Improved dynamics

In this reference simulation (RefDyn2) Dynamics 2 was
used. This forcing has its maximum southward transport
at a reasonably realistic depth of almost 3 km (contour in
Fig.5), whileVan Hulten et al.(2013) used a forcing with the
strongest southward transport closer to 2 km (Dynamics 1).
The more reasonable OSF depth results in an improved sim-
ulation of [Aldiss] in the West Atlantic Ocean (Fig.5). The
RMSD of [Aldiss] of the reference simulation fromVan Hul-
ten et al.(2013) (RefDyn1) versus observations is 8.3 nM,
while the RMSD of this new simulation (RefDyn2) versus
observations is 8.7 nM. The difference between these RMSD
values is insignificant (Table5).

The first two rows in Table5 present the goodness of fit
statistics for[Sidiss]. Inspecting the RMSD, RefDyn2 of this
study appears a significant improvement over RefDyn1 of
Van Hulten et al.(2013). The improved Sidiss distribution
gives credibility to the[Sidiss]-dependent sediment resuspen-
sion simulation (also: Sect.4.1.1). Since[Sidiss] is improved,
it is likely that the Si cycle as a whole is improved, but an
assessment of the Si cycle is beyond the scope of this paper.

3.3 Sediment resuspension

Figure 6 shows the[Aldiss] resulting from the simula-
tion in which sediment resuspension is proportional to
wsAlads/1zbottom just above the sediment (SedProp).

In the Northern Hemisphere, the deep[Aldiss] is simu-
lated much better in this simulation than in RefDyn2 (Fig.5),
but in the Southern Hemisphere[Aldiss] is simulated much
worse. The dissolved Al concentration is too high near the
bottom, and elevated[Aldiss] levels are found throughout
the whole water column. Nonetheless, the addition of resus-
pension in this way does significantly improve the simula-
tion (Dl = 5.2 nM, compared to 8.7 nM for the reference
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Figure 4. Average of the final model year (1750) of the dissolved aluminium concentration (nM) from the reference simulation (RefDyn2)
at four depths. The respective observations (same depth ranges) are presented as coloured dots.

Figure 5. Dissolved aluminium concentration (nM) from RefDyn2
(simulated year 1750) along the Zero Meridian and West Atlantic
GEOTRACES transect. Observations are presented as coloured
dots. The contour is the Atlantic overturning stream function (OSF),
only defined north of Cape Agulhas and away from 36◦ N where
cross-land mixing through the unresolved Strait of Gibraltar does
not allow for a well-defined OSF.

simulation). However, in the southern Atlantic Ocean and
along the Zero Meridian in the Southern Ocean, sediment
input should be much closer to zero.

Figure 7a shows [Aldiss] from simulation SedMackin,
where sedimentary Al addition depends on bottom water
[Sidiss] according toMackin and Aller(1986) (β as defined
by Eq. 9). As expected, also in SedMackin the sediment

Figure 6. Simulated[Aldiss] (nM) from the [Sidiss]-independent
sediment resuspension simulation (500 yr after forking) along the
Zero Meridian and West Atlantic GEOTRACES transect (SedProp).
Observations are represented by the coloured dots.

resuspension source of Al results in a higher[Aldiss] near
40–50◦ N in the deep North Atlantic Ocean (Fig.7b) com-
pared to RefDyn2. However, several characteristics of the
observations are better reproduced by SedMackin than Sed-
Prop. Firstly, in the Southern Hemisphere, the[Aldiss] is only
slightly elevated near the sediment compared to the overly-
ing water (Fig.7a). The observations extend to practically
the bottom of the ocean, almost 6000 m at some latitudes
of the West Atlantic GEOTRACES transect, while the model
depth is only 5000 m. This makes a good comparison of deep
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Table 5.Statistics of[Sidiss] (first two rows) and[Aldiss] (other rows) of the simulations in the West Atlantic GEOTRACES transect. HereD

is the unweighted RMSD,Dl the vertically homogenised RMSD (accompanied with its significance compared withDl from the first row
of each subtable, and the 2σ range),r is the correlation coefficient, RI the reliability index and RIl is the vertically homogenised reliability
index. The significance is with respect to the first simulation in the corresponding subtable.

Simulation D Dl Significancel 2σ rangel r RI RIl

[Sidiss]:

RefDyn1 (Van Hulten et al., 2013) 23.8 µM 39.7 µM – [34.8, 44.4] 0.70 4.05 2.57
RefDyn2 (this study) 12.7 µM 18.0 µM improvement [15.8, 20.2] 0.77 4.02 2.07

[Aldiss]:

RefDyn1 7.4 nM 8.3 nM – [7.5, 9.2] 0.71 2.00 1.91
RefDyn2 8.9 nM 8.7 nM insignificant [7.9, 9.6] 0.71 2.10 1.98

RefDyn2 8.9 nM 8.7 nM – [7.9, 9.6] 0.71 2.10 1.98
SedProp 7.0 nM 5.2 nM improvement [4.6, 5.8] 0.75 1.97 1.68
SedMackin 7.1 nM 5.9 nM improvement [5.2, 6.4] 0.74 2.02 1.69
Incorp 13.1 nM 11.1 nM worsening [10.2, 12.0] 0.62 3.33 2.80
IncorpLowScav 11.7 nM 9.4 nM insignificant [8.6, 10.1] 0.61 2.35 2.08

(a)

(b)

Figure 7. Results from the[Sidiss]-dependent sediment resuspen-
sion simulation followingMackin and Aller(1986) of year 500 after
forking; sections along the Zero Meridian and West Atlantic GEO-
TRACES transects.(a) Modelled [Aldiss] (nM) with observations
plotted as coloured dots.(b) Relative difference of[Aldiss] between
SedMackin and RefDyn2 (%).

ocean[Aldiss] between model and observations difficult, but
the slightly elevated[Aldiss] in the near-sediment observa-
tions is consistent with the slight elevation that is mainly con-
fined to the bottom model layer. Secondly, the region from 0–
45◦ N at a depth below 2 km has a higher[Aldiss] compared

to the reference simulation (Fig.7b) and better represents the
observations.

Based on the low[Sidiss] alone, a high near-sediment
[Aldiss] is expected north of 50◦ N as well. Indeed, this is
the case in the observations, but it is not found in the model.
This could be related to the relatively low resolution of the
model which does not resolve well the dynamical (advection
and deep convection) and, related, biogeochemical processes
in this region. As expected, the resuspended Aldissmixes into
the (lower) NADW, but most of it is scavenged again before
reaching the equator (Fig.7b). The overall resulting[Aldiss]

is more consistent with the observations compared to the
original simulation (RefDyn2) without any sediment resus-
pension. For RefDyn2,Dl = (8.8± 0.8) nM, while for the
sediment resuspension simulations,Dl = 5.2 nM andDl =

5.9 nM, which are statistically significant improvements (see
Table5).

Figure8 shows the[Aldiss] at four depths for SedMackin,
with observations as coloured dots. Figure9 shows the dif-
ference of[Aldiss] between this simulation and the reference
simulation. In several semi-enclosed basins, like the Gulf
of Mexico and the Arctic Ocean, and the Atlantic Ocean,
[Aldiss] is higher compared to the reference simulation, espe-
cially near the sediment. The Gulf of Mexico, the Mediter-
ranean Sea, Baffin Bay and the Arctic Ocean may con-
tribute to [Aldiss] in the Atlantic Ocean. However, the in-
crease of near-sediment[Aldiss] in the West Atlantic Ocean at
45–50◦ N is much more likely caused by in situ resuspension
and subsequent dissolution (Fig.7b).

Several statistics show that SedMackin is an improvement
over RefDyn2 (Table5). This, together with the presented
concentration plots, shows that the sediment redissolution
process is an improvement of the model. This lends support
to the hypothesis of a sediment source of Al in the form of
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Figure 8. [Aldiss] (nM) of the[Sidiss]-dependent simulation with sediment resuspension (SedMackin) at four depths (500 yr after forking).

Figure 9. Difference of[Aldiss] (nM) between the simulation with[Sidiss]-dependent sediment resuspension (SedMackin) and the reference
simulation at four depths (500 yr after forking).
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resuspension and subsequent dissolution in the real ocean. In
most of the deep ocean (Fig.8c and d) the model overesti-
mates the observations. However, the statistics do not show
an improvement of SedMackin over SedProp. Apparently the
choice of β0 = 16.85 is too high, which only showed up
after a sufficiently long spin-up of the model. It would re-
quire several more trial and error model runs to arrive by
iteration to the optimal value ofβ0, but this is beyond the
scope of this paper.

3.4 Biological incorporation

The relative difference between the simulated[Aldiss] with
and without biological incorporation is presented in Fig.10
at four depths. In the main thermocline, north of 60◦ S,
[Aldiss] is significantly lower with incorporation than with-
out (Fig. 10a, b). While the reference simulation RefDyn2
simulates the observed[Aldiss] well in the upper part of the
ocean, in the simulation Incorp a large amount of Al is re-
moved by incorporation in addition to adsorptive scavenging
from the upper part of the ocean.

The significantly lower[Aldiss] in the main thermocline in
Incorp, compared with RefDyn2, makes the modelled con-
centrations much lower than the observed concentrations.
This suggests that incorporation may not occur (to such an
extent), which is consistent with the findings ofVrieling et al.
(1999). This result does not prove that biological incorpora-
tion of Al by diatoms does not occur. It only means that this
way of incorporating Al into the frustules in this model with
its current configuration yields an unrealistically low value
of [Aldiss]. There are several possibilities to compensate this
effect so that future simulations may still be compatible with
the incorporation hypothesis. Notably, the amount of Al in-
corporated into the frustules may need to be significantly re-
duced, or the scavenging parameters need to be adjusted, or
dust dissolution must be increased. The result of a simulation
with a decreased partition coefficient is presented next. Fur-
ther discussion of the three options can be found in Sect.4.3.

Figure11presents the relative concentration difference be-
tween IncorpLowScav and RefDyn2. The decrease in the At-
lantic Ocean surface waters is slightly smaller than in the
case with incorporation and a highkd (compare with Fig.10).
However, in the Southern Ocean the[Aldiss] has increased
relatively by a considerable amount, yielding concentrations
much higher than the observed concentrations.

The RMSD between IncorpLowScav and the observations
(at the West Atlantic GEOTRACES transect) is 9.4 nM. Even
though this is a significant improvement compared to Incorp,
it is only the case when absolute residuals are considered
(RMSD). When the correlation coefficient is considered, In-
corpLowScav (r = 0.61) appears not to be an improvement
over Incorp (r = 0.62). In fact, the correlation coefficient for
IncorpLowScav is the lowest of all simulations. Indeed, In-
corpLowScav shows poor model performance in the South-
ern Hemisphere (Fig.10). Compared to the simulation with-

out incorporation (RefDyn2), the run with incorporation with
fourfold lower partition coefficient (IncorpLowScav) per-
forms poorly. This degradation in model performance is in-
significant when the RMSD is considered (which consid-
ers absolute residuals). Dimensionless goodness of fits like
the reliability index RI or the correlation coefficientr do
not show any significant improvement or worsening of In-
corpLowScav either, compared with RefDyn2 (significance
values not presented). Finally, decreasing the first-order rate
constantκ has a very similar effect as decreasingkd (results
not presented).

From these considerations it may be concluded, within the
limitations of the model, that if incorporation is an important
process at all, it is unlikely to occur proportional to the am-
bient [Aldiss] / [Sidiss] ratio in surface seawater but rather in
a much smaller ratio (i.e.cin � 1 in Eq. (5) as further dis-
cussed in Sect.4.3.1).

4 Discussion

4.1 General biogeochemistry

4.1.1 Underlying model

Clearly, besides the dust solubility, the scavenging param-
eters and resuspension parameterisation, the Al model de-
pends on the dynamics (Sect.3.2) and the underlying bio-
geochemical model as well. Both the dynamics and the bio-
geochemical model have a strong impact on [Sidiss]. Fig-
ure 12 presents modelled [Sidiss] for both dynamical fields,
with measured [Sidiss] as coloured dots.

Clearly Fig. 12a, corresponding with Dynamics 1, shows
a strongly overestimated [Sidiss] in the deep ocean, while this
overestimation is significantly reduced in Fig. 12b (Dynam-
ics 2). The reason for this is that in Dynamics 2 the northward
flux of AABW is smaller and does not go as far northwards
as Dynamics 1. Hence, less Sidiss, which is rich in AABW,
reaches the northern parts of the deep Atlantic Ocean. In
other words, the more realistic deep overturning cell in Dy-
namics 2 results in a more realistic simulation of [Sidiss] in
the deep Atlantic Ocean (Table5). Even though we have im-
proved the Sidiss distribution by using a different dynami-
cal forcing, the absolute value of the deep [Sidiss] does not
match very well the observations. At most places in the deep
West Atlantic Ocean,[Sidiss] still overestimates the observa-
tions (Fig.12b). For the sediment resuspension simulation
SedMackin, this has been taken into account by modifying
the proportionality factorβ0 (Eq. 9). Still, β0 was estimated
somewhat too high as noted above.

The Sibiog concentration is important as well for the Al
model, namely for scavenging. However, there is no con-
sistent observational data set of [Sibiog]. Available data (e.g.
Lam, 2011) generally report particulate silica as the sum of
biogenic silica (diatom frustules) and silica mineral phases
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Figure 10. Relative difference of[Aldiss] (%) between the simulation with biological incorporation (Incorp) and the reference simulation
(RefDyn2) at four ocean depths (average over year 500).

Figure 11.Result of a 500 yr simulation with incorporation (no limitation, i.e.RAl / Si = [Aldiss]/ [Sidiss]) and a decreased scavenging parti-
tion coefficientk′

d = kd/4 = 28× 103 dm3 mol−1 (IncorpLowScav). Relative difference of[Aldiss] between IncorpLowScav and RefDyn2.
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(b)

(a)

Figure 12. The modelled silicic acid concentration at the West
Atlantic GEOTRACES section. Coloured dots are measurements
(data from K. Bakker, E. van Weerlee, M. Rijkenberg and
H. J. W. de Baar). Both simulated and observed concentrations are
in µM (on a non-linear scale).

such as silt and clay particles. For this reason, no one-to-one
comparison between modelled and measured biogenic silica
can be performed; only a qualitative analysis can easily be
done.Aumont and Bopp(2006) showed that primary pro-
duction of diatoms is small in the oligotrophic North Atlantic
Ocean, consistent with measurement-derived biogenic silica
export (e.g.Sarmiento and Gruber, 2006, Colour Plate 4).

4.1.2 Dust dissolution

Fractions of each of the elements in lithogenic dust particles
dissolve in the upper mixed layer, while below the mixed
layer the dissolution of the elements from dust is smaller.
It is generally assumed that most of the dust is refractory.
Therefore, in our model, Al from lithogenic particles is not
dissolved below the mixed layer. The neglect of dissolution
below the mixed layer is often casually assumed and has been
suggested by many studies on Al in the ocean (e.g.Orians
and Bruland, 1986; Baker et al., 2006; Buck et al., 2006).
However, no explicit observational study has been published
on the fate of lithogenic dust particles in the water column
below the mixed layer.

One of the sensitivity simulations ofVan Hulten et al.
(2013) suggests that there is no dissolution below the mixed
layer. That simulation, DustWC, included dissolution of dust
below the surface layer, while there was no sediment source.
DustWC did not perform better compared to their reference

experiment, RefDyn1. The impact of the dissolution below
the mixed layer had especially an aggravated impact in the
West Atlantic Ocean between 500 and 1500 m depth. Hence,
there is good reason for excluding water column dissolution
of lithogenic Al. The sediment resuspension simulations of
this study (SedProp and SedMackin) include a deep source of
Aldiss. If dissolution below the mixed layer would be added
to these simulations, this would probably worsen the Aldiss
distribution. Hence, there is good reason for excluding water
column dissolution of lithogenic Al.

4.1.3 Reversible scavenging

In our model Aldiss is reversibly scavenged. This means that
Aldiss is scavenged and, during downward settling, partly re-
leased in the water column. The release is caused by a com-
bination of decreasing Sibiog and Aldiss (Eqs2 and3). At first
sight, this release appears necessary to explain the non-zero
water column concentrations of Aldiss. This is consistent with
the notion that Sibiog with Aladsfollows the MOC and slowly
releases Aldiss. This can be seen in Fig.1a and Figs4 and
8, where[Aldiss] shows the “imprint” of the MOC. Still, it
is possible that desorption occurs at a slower rate than ad-
sorption, and that desorption hardly depends on the particle
concentration (Moran and Moore, 1992).

In the real ocean adsorptive scavengers other than biogenic
Si, as well as different “dissolved” Al particles, may play
a role. For example, colloidal Al and other colloids facili-
tate the removal of trace metals like Al (Moran and Moore,
1989; Moran and Buesseler, 1992). However, the fraction of
colloidal Al is only 0.2–3.4 % (of the operationally defined
filtrate < 0.2 µm Aldiss pool), meaning that the removal of
Al occurs mainly through direct adsorption, or the colloidal
fraction is rapidly turned over (Dammshäuser and Croot,
2012). Either case implies that the model may skip the col-
loidal fraction and convert Aldiss to Alads in a single step.1

4.2 Sediment source

4.2.1 Resuspension versus diffusion

Typically in shallow waters, dissolved iron (Fe) diffuses from
the sediment into the water above due to build-up of reduced
Fe within sediment pore waters.Van Hulten et al.(2013) per-
formed a simulation with a sediment source of dissolved Al
analogous to Fe. However, reduction and subsequent diffu-
sion of Al from sediments does not typically occur. The sed-
iment input simulation in this work is based on sediment re-
suspension in deep ocean bottom waters instead of upward
diffusion across the sediment–water interface.

1Furthermore,Moran and Moore(1988a) note that Al has a large
truly dissolved fraction, and “will not be removed as effectively [as
Th] during the coagulation process.” Finally, and also because of
these considerations, the data set available now does not distinguish
the colloidal from the soluble pool.
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The resuspension hypothesis has a stronger observational
basis than the diffusion hypothesis. Observations show that
there appears to be an Al source from sediments where
there is resuspension, e.g. around the Grand Banks (Moran
and Moore, 1991). This typically coincides with regions of
deep water formation or it occurs around seafloor elevations.
When there does not appear to be resuspension, there is gen-
erally no source of Aldiss. This of course does not exclude the
possibility of diffusion of Al out of sediments, but the obser-
vations link near-sediment Al elevations to regions of resus-
pension. Further discussion and references may be found in
Middag et al.(2014).

4.2.2 Shortcomings

Sediment resuspension is actually induced by near-sediment
turbulence, creating a layer of water above the sediment con-
taining significant amounts of suspended sediment particles.
This layer is about 200–1000 m thick and is referred to as
the nepheloid layer (Jackson, 2005). Due to the low vertical
resolution of the model (bottom layer is up to 500 m thick),
it was not possible to parameterise sediment resuspension by
means of the turbulence parameters present in the model. In-
stead, a certain portion of sedimented biogenic silica was
redissolved into the bottom model layer. This is hence not
a mechanistic model but a simple parameterisation. This is
reasonable because the bottom layer thickness is of the same
order of magnitude as the nepheloid layer.

There are no observations or good estimates of Al flux
from sediment resuspension, and there is no sediment model
for Al available. Therefore it is assumed that recently sed-
imented Alads is resuspended and subsequently partly dis-
solved (e.g.Lampitt, 1985; Hwang et al., 2010). Besides
Alads there is another particulate Al tracer present in some
of the model simulations, namely Albiog. This is not used
here, since Al incorporated into the frustule lattice is harder
to dissolve than Al adsorbed onto Sibiog. Also, Koning et al.
(2007) state that a significant amount of the Al, associated
with diatom frustules post-mortem, can be rinsed off and is
thus bound to the surface.

4.2.3 Inhibition

The dissolution of Al from resuspended sediments appears
to be inhibited by Sidiss. This effect has been included in
Eq. (9). Here we try to give an extensive qualitative ratio-
nale for the hypothesis, while a derivation of the final equa-
tion can be found in AppendixA. We believe that the ele-
vation of [Aldiss] in bottom waters (Fig.1a) is due to sig-
nificant dissolution/desorption from resuspended sediment in
part of the Northern Hemisphere, a process apparently inhib-
ited in the Southern Hemisphere. This may be explained by
the mirror image distribution of dissolved silicate (Fig.1b).
Namely, the Sidissconcentration is very high in the AABW in
the Southern Hemisphere and flows as far north as∼ 40◦ N,

albeit somewhat diluted by vertical mixing with overlying
NADW that has lower Sidiss concentrations. The high con-
centration of Sidiss in bottom waters possibly prevents the
dissolution/desorption of Al from sediments. Briefly, in the
northernmost part of the transect the DSOW cascades down
over the seafloor from∼ 65◦ N to ∼ 45◦ N, in the process
acquiring more and more dissolved Al due to redissolu-
tion/desorption from resuspended sediment particles in the
bottom nepheloid layer, which is very thick here (Biscaye
and Eittreim, 1977; Gross et al., 1988). Indeed, from 65 to
45◦ N the dissolved Al in the deepest bottom water sample
increases from 12 nM at 65◦ N to 34 nM at 44.8◦ N (Mid-
dag et al., 2014, their Fig. 9). The parallel increase of[Sidiss]

is slightly more modest from 8 µM at 65◦ N to 21 µM at
44.8◦ N. However, somewhere in between 45◦ N and 40◦ N
the southwards flowing DSOW becomes underlain by the
northward extreme of AABW with much higher[Sidiss] ≈

45 µM at 39.5◦ N. There is still significant sediment resus-
pension based on optical backscatter observations, but no
more release of Al, hence Sidissappears to inhibit any further
dissolution/desorption of Al from resuspended sediments.

The overall sediment source of Aldiss is likely due to a
combination of processes (bottom current velocity, resus-
pension, partial dissolution of clay minerals, partial disso-
lution of biogenic debris (Sibiog, Albiog) and desorption)
where porewater chemistry within the sediments likely plays
a role as well. However, neither the observations (Fig.1a)
nor the simulation modelling of dissolved Al have the ad-
equate vertical resolution to resolve all these processes. In-
stead we followMackin and Aller(1986) and the derivation
in AppendixA.

4.3 Incorporation

4.3.1 Biology

The simulation Incorp resulted in a much too small [Aldiss] in
the upper 500 m of the ocean, especially below (and down-
stream of) dust deposition. In this section three possibilities
are discussed that may leave open the option of biological
incorporation.

Firstly, too much Al might be biologically incorporated
into the frustules. A different moderation termRAl / Si would
be able to change that. One way is to decreasecin. This pa-
rameter describes a general preference of silicic acid above
aluminium when it is smaller than one and vice versa.Han
et al.(2008) definedcin = 0.08845, loosely based onGehlen
et al.(2002). Alternatively, one may also define a maximum
incorporationrmax. This parameter signifies that diatoms do
not allow aluminium in their frustule above a certain percent-
age. Several equivocal values forrmax may be derived from
different studies, among which are 0.007, based onGehlen
et al. (2002) as well, or 0.01 (van Cappellen et al., 2002),
or 0.0022, an incorporation ratio based on observations of
[Aldiss] and[Sidiss] at remineralisation depth (Middag et al.,
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2009). An additional simulation was performed with the pa-
rameterisation byHan et al.(2008), i.e. with cin = 0.08845
and rmax = ∞ (results not presented here). This simulation
does not yield significant changes compared to the reference
simulation (RefDyn2). Hence, from these simulations it can-
not be concluded whether incorporation (with a reduced in-
corporation ratecin) occurs.

Secondly, whether incorporation is moderated or not, the
part of the model that is independent of incorporation is
likely to need retuning, since incorporation functions as an
extra sink of Al. The settling velocityws scavenging pa-
rameterskd and κ may need to be adjusted (see Eqs.2, 3
and6). For instance, the partition coefficientkd may be de-
creased. This leaves more Aldiss in the surface ocean, com-
pensating the decrease of[Aldiss] by incorporation. To test
this hypothesis a simulation was performed with incorpora-
tion and a decreasedkd (IncorpLowScav). This simulation
showed a large effect ofkd on the Southern Ocean, and not
on the Atlantic Ocean, where incorporation had such a large
effect (Sect.3.4). Why is this the case?

In our model, in chemical equilibrium, the adsorbed Al
concentration is proportional to both[Aldiss] and [Sibiog]

(Eq. 3). The effect of the biogenic Si dependence is evident
in high-[Sibiog] areas like the Southern Ocean. Furthermore,
Sibiog is present in and below the euphotic zone, especially
in the Southern Ocean. This results in scavenging through-
out a significant portion of the water column. In other words,
kd has a much stronger sensitivity in the polar oceans com-
pared to other locations, as is actually shown by a simulation
of Van Hulten et al.(2013). A smallerkd therefore results in
more Aldiss in the Southern Ocean, while it has little effect
on the more problematic incorporation-induced decrease of
[Aldiss] in the Atlantic Ocean.

Increasing dust deposition, or solubility, is another pos-
sibility to compensate the decrease of[Aldiss] in the main
thermocline in the simulations where biological incorpora-
tion occurs. A preliminary simulation suggests that more
dust only affects the very surface of the ocean. Dust depo-
sition and dissolution of Al in the surface layer does not af-
fect the subsurface[Aldiss] much (at 50–400 m depth), while
as a consequence of biological incorporation a strong deple-
tion of Aldiss occurs there as well (result not presented here).
Dissolving lithogenic dust particles below the ocean surface
is another option. This has been done inVan Hulten et al.
(2013) by means of instantaneous dissolution in the water
column upon deposition on the sea surface according to a
function that exponentially decreases with depth. The depth-
dependent dissolution function can be fitted to the observa-
tions or the reference simulation, giving a reasonable first-
order simulation of[Aldiss]. Obviously, a simulation with in-
corporation and a dissolution function fitted to the observa-
tions is not very strong evidence for incorporation.

To summarise, the simulation IncorpLowScav showed that
changingkd cannot solve the problem, and we have to under-
stand why this is the case. Also a simulation with increased

dust dissolution does not give much hope. This suggests
that biological incorporation of Al into diatoms has only a
second-order effect on the dissolved Al distribution. This is
in line with the likely overestimation of Al to Si ratio in our
model during incorporation as discussed near the beginning
of this section. Indeed, there are several studies that cannot
detect the process of biological incorporation of Al into liv-
ing diatoms (e.g.Vrieling et al., 1999) and many studies are
unclear about the actual mechanism of removal (e.g.Moran
and Moore, 1988a; Ren et al., 2011). However, as discussed,
at the same time there are many studies strongly suggesting
the biological incorporation. Either parts of the model (which
is of relatively large complexity and contains many degrees
of freedom) are overlooked, e.g. in the complexities of the Si
cycle; or the amount of incorporation is smaller than assumed
in Incorp.

4.3.2 Post-mortem diagenesis within the sediments

Koning et al.(2007) andLoucaides et al.(2012, 2010) have
suggested that most of the Al found in diatom silicate in sed-
iments is incorporated after burial. These papers indicate that
the Al / Si ratio in living diatoms is most likely considerably
lower than the estimates used in the incorporation simula-
tions. Most incorporation is indeed after burial and hence
post-mortem. However, sedimentary processes are not the
focus of this work and only matters are discussed that are
of direct importance for the processes in the water column.
What we aimed for here is to test the effect on [Aldiss] by in-
cluding biological incorporation in opal of growing diatoms
by using the upper limit of Al / Si (namely the ambient dis-
solved Al / Si concentration ratio in the surface ocean wa-
ters). A study on sedimentary processes is beyond the scope
of this paper.

5 Conclusions

The Aldiss distribution in the upper part of the ocean has
previously been simulated reasonably well with only a dust
source and reversible scavenging as the removal process (Van
Hulten et al., 2013). However, the[Aldiss] was strongly un-
derestimated in the deep North Atlantic Ocean, highlighting
deficiencies in this model. The simulation is significantly im-
proved by the use of different dynamical fields and the addi-
tion of a resuspension source. The latter supports the idea
that the most significant sources of Al to the ocean are dust
deposition and sediment resuspension, and the most impor-
tant internal process is likely to be adsorptive scavenging.
The Al release from resuspended sediment appears to de-
pend on both Alads sedimentation and bottom water[Sidiss].
It has been shown that a parameterisation based onMackin
and Aller (1986) is able to simulate the deep ocean[Aldiss]

realistically, supporting the idea of stoichiometric saturation.
This implies that Al release from resuspension occurs only
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in bottom waters with relatively low Sidiss. These waters are
in the northern North Atlantic Ocean and the Arctic Ocean
(Middag et al., 2009); all other ocean basins have high Sidiss
in bottom waters that prevents such Al release. In fact, within
the Arctic Ocean, indeed in bottom waters, there is an ele-
vated trend of the dissolved Al / Si ratio as compared to mid-
waters, i.e. an indication of extra release of Al (Middag et al.,
2009, their Figs 5, 8, 13 and 18).

A data set of measurements of[Aldiss] in the deep and bot-
tom waters has been used, much larger than hitherto avail-
able. Nevertheless, the vertical resolution near the deep ocean
seafloor still is modest. Similarly, the deepest bottom water
box of the model extends to 500 m above the seafloor, and
in some regions the model extent of 5000 m is less than the
true full water column depth. Obviously, the very intriguing
sediment source of Al in the 40 to 65◦ N region would be
of great interest for a more detailed study with high verti-
cal resolution sampling just above the seafloor and similar
high vertical resolution modelling. Also porewater dynamics
is potentially important, hence it may be necessary to include
a more detailed parameterisation in future models. Similarly,
other types of particulate Al in resuspended sediments should
be considered in modelling.

Simulations with biological incorporation show that this
process is unlikely to occur proportional to the ambient dis-
solved Al / Si concentration ratio. The simulations suggest
that the relative importance of incorporation compared to
scavenging may be small, because changing the scavenging
parameters or surface dust dissolution cannot compensate for
the unrealistic decrease of dissolved Al in the main thermo-
cline. This does not imply that incorporation does not take
place, yet perhaps net incorporation is relatively small.

Clearly, more simulations, laboratory experiments and
field observations are needed to answer what the relative
amount of incorporation is compared to scavenging. When a
realistic model of incorporation has been developed, the next
step is to test the effect of Al on the Si cycle which could fi-
nally shed light on how large this effect is for the world ocean
and the role of diatoms in the climate system.

Finally, a word of caution. On the one hand, the resulting
overall improved simulation or fit versus the measurements
of [Aldiss] and[Sidiss] is another step forward. On the other
hand, for such a complex circulation–biogeochemistry model
with so many parameterisations, one cannot exclude the pos-
sibility of other combinations of parameterisations resulting
in a similar or perhaps even better goodness of fit to the mea-
surements. In other words, while the chosen processes of Al
supply and Al removal are sensible, also in keeping with
views in the literature, as is the ensuing fair simulation, the
findings should not be overinterpreted as conclusive evidence
in support of the chosen processes and their parameterisation.
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Appendix A: Sediment resuspension model

Based on observations,Mackin and Aller(1986) hypothe-
sised that release of Al from sediment is inhibited by pore-
water silicic acid, Si(OH)4. They wrote the following, using
{ } for chemical activity andp for −log10 as also in pH:

In general, when stoichiometric saturation
(sensuThorstenson and Plummer(1977)) exists
for an authigenic clay of constant composition in
sediment porewater having nearly invariant reac-
tive cation concentrations, the following will hold
(Mackin and Aller, 1984):

p{Al(OH)−4 }+ap{Si(OH)4}+bpH = pKeq, (A1)

where [a = Si / Al and b = H+ / Al are the stoi-
chiometries] of the clay andpKeq = apparent con-
stant excluding the effects of major cations and
other potentially reactive cations. To estimate val-
ues ofa and b for the Amazon shelf sediments
from [their] Fig. 2, we applied a regression tech-
nique which treatsp{Al(OH)−4 }, p{Si(OH)4} and
pH as independent variables (Mackin and Aller,
1984). The results of this treatment give the fol-
lowing:

1(±0.044)p{Al(OH)−4 } + 0.828(±0.093) (A2)

p{Si(OH)4} + 0.429(±0.070)pH = pKeq,

wherepKeq = 13.98(±0.13).

The chemical activities are in nM and µM for Al(OH)−4 and
Si(OH)4, respectively. Their use of stoichiometric satura-
tion is consistent with the mirror image between[Al(OH)−4 ]

and[Si(OH)4] as shown in Fig.1. Here[Al(OH)−4 ]bottom is
small in the Southern Hemisphere and large in the North-
ern Hemisphere, while both south of 40◦ S and north of
40◦ N sediment particles are present in the bottom water
(Fig. 2), strongly suggesting sediment resuspension. Actu-
ally, just south of 40◦ N is the largest sediment resuspension,
even though just north of this latitude,[Aldiss] is mostly ele-
vated near the sediment.

Eq. (A1) can be rewritten as

log10{Aldiss}pore+ a · log10{Sidiss}pore= B, (A3)

where Aldiss = Al(OH)−4 , Sidiss = Si(OH)4, and withB =

bpH− pKeq being an approximate constant (for pH= 8.1,
B = −10.5). The dissolved entities between the curly braces
are chemical activities in the porewater, but we need to model
fluxes from resuspended sediment into bottom water. We will
refer to the model layer (of max. 500 m thick) just above the
sediment asbottom water.

Since[Aldiss] and [Sidiss] are high in porewater (at least
[Sidiss] is very high in Southern Ocean porewater), the chem-
ical activities are not equal to the concentrations. But they are

proportional; their coefficients of proportionality are the ac-
tivity coefficientsγAl andγSi (e.g.Stone and Morgan, 1990):

{Aldiss}pore= γAl [Aldiss]pore

{Sidiss}pore= γSi[Sidiss]pore .
(A4)

So far we have rewritten the equations ofMackin and Aller
(1986) using simple mathematics and chemistry. We will
now introduce the model. For this purpose we will assume
that the empirical relationship ofMackin and Aller(1986)
(Eq. A1), found at the Amazon shelf, is valid everywhere.
This assumption is defendable ifMackin and Aller(1986)
have not made any extra implicit assumptions on top of the
research ofThorstenson and Plummer(1977); the latter only
used established thermodynamical relations.

From Eqs (A3) and (A4) the following relation can be de-
rived:

log10(γAl [Aldiss]pore) = B − a · log10(γSi[Sidiss]pore) (A5)

[Aldiss]pore/nM =
10B

γAl
·
(
γSi[Sidiss]pore/µM

)−a

= C · ([Sidiss]pore/µM)−a,

whereC = 10Bγ −1
Al γ −a

Si > 0.
The Al flux 8sed from the bottom water layer to the sed-

iment is given by8sed= ws · [Alads], with [Alads] the bot-
tom water layer concentration of adsorbed Al andws the
sedimentation rate. In line with the sediment resuspension
hypothesis, we assume that the aluminium flux8resuspfrom
resuspension and subsequent release of Aldiss (henceforthre-
suspension flux) is proportional to8sed, converting part of
the sedimented Al into dissolved Al in the bottom water
layer:

8resusp= β · 8sed= β · ws · [Alads], (A6)

whereβ ∈ [0,1] is the fraction of resuspended and subse-
quently released Al. In the original resuspension model,β is
a constant. In the more complex model, the resuspension flux
is taken to be proportional to[Aldiss]pore (as well as[Alads]).
Using Eq. (A5), this results in

β ∝ [Aldiss]pore/nM ∝ ([Sidiss]pore/µM)−a . (A7)

Furthermore, we assume that bottom water[Sidiss] is pro-
portional to porewater[Sidiss]. It is a first-order assumption.
Since we lack the knowledge of whether this is reasonable,
it would be useful if this assumption were tested, but that
is far beyond the scope of this work. Therefore, we cannot
give an explanation or perform a mechanistic simulation. To-
gether with Eqs (A6) and (A7), this assumption gives for the
change of[Aldiss] in the bottom layer due to resuspension:

∂[Aldiss]

∂t

∣∣∣
resusp

=
8resusp

1zbottom
= β ·

8sed

1zbottom

= β0

(
[Sidiss]bottom

µM

)−a

·
8sed

1zbottom
,

(A8)
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whereβ0 is a dimensionless constant and1zbottom is the
thickness of the bottom seawater model layer.

Since there can be no more redissolution than the amount
of Al that sediments (assuming steady state and no horizon-
tal remobilisation of sediment),β is at most one. If we want
to use the highest possible flux for resuspension near 45–
50◦ N, we setβ = 1 in that region. The modelled bottom wa-
ter [Sidiss] near 50◦ N is 30.3 µM. Hence, the proportionality
constant isβ0 = 30.30.828

= 16.85. Since bottom[Sidiss] far-
ther north is lower,β would there be higher than one. Since
the model assumes that only recently sedimented Alads is re-
suspended, it would not be physically correct ifβ > 1. There-
foreβ is constrained and hence given by

β = min(16.85· ([Sidiss]/µM)−0.828,1) , (A9)

which is to be plugged into the concentration change:

∂[Aldiss]

∂t

∣∣∣
resusp

= β ·
8sed

1zbottom
. (A10)

This equation is identical to Eq. (8) in the main text, hence
this result is what was to be demonstrated.

As a sanity check we substitute the minimum (13.4 µM)
and the maximum (148.6 µM) bottom[Sidiss] into this equa-
tion:

βmax = min(16.85· 13.4−0.828,1) (A11)

= min(1.96,1) = 1

βmin = min(16.85· 148.6−0.828,1) = 0.27 (A12)

This means that since bottom[Sidiss] is decreasing with lati-
tude, we expect 100 % redissolution anywhere north of 45◦ N
(it is set up like that). About 25 % of the sedimenting Alads is
dissolved in the Southern Ocean.
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